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ABSTRACT

Modern database engines must well use multicore CPUs, large main
memory and fast storage devices to achieve high performance. A
common theme is hiding latencies such that more CPU cycles can
be dedicated to “real” work, improving overall throughput. Yet
existing systems are only able to mitigate the impact of individual
latencies, e.g., by interleaving memory accesses with computation
to hide CPU cache misses. They still lack the joint optimization of
hiding the impact of multiple latency sources.

This paper presents MosaicDB, a set of latency-hiding tech-
niques to solve this problem. With stackless coroutines and carefully
crafted scheduling policies, we explore how I/O and synchroniza-
tion latencies can be hidden in a well-crafted OLTP engine that
already hides memory access latency, without hurting the per-
formance of memory-resident workloads. MosaicDB also avoids
oversubscription and reduces contention using the coroutine-to-
transaction paradigm. Our evaluation shows MosaicDB can achieve
these goals and up to 33X speedup over prior state-of-the-art.
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1 INTRODUCTION

Various kinds of latency exist in modern database engines [13, 30, 41,
46, 55, 57] that target machines with large main memory, fast SSDs
and multicore CPUs. When the working set fits in memory, memory
is the primary home of data and various important data structures
(e.g., indexes and version chains [62]) where memory blocks at
random locations are chained using pointers. As a result, data stalls
caused by pointer chasing in turn become a major bottleneck [27].

Since hardware prefetchers are ineffective for pointer chasing [5,
32, 54], modern CPUs offer prefetching instructions [24] that allow
software to proactively move data from memory to CPU caches in
advance. Importantly, such instructions are asynchronous, allowing
software prefetching approaches to overlap computation and data
fetching [5, 27, 32, 48]. Coupled with lightweight coroutines [25],
latency-optimized OLTP engines [21] use software prefetching to
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Figure 1: Main sources of latency in memory-optimized OLTP
engines. Software prefetching can effectively hide data stalls
(c). MosaicDB further mitigates the impact of other latencies
(a, b, d) while preserving the benefits of software prefetching.

hide data stalls with the coroutine-to-transaction execution model
in an end-to-end manner. In these systems, transactions are mod-
eled as coroutines that are suspendable and resumable at various
code locations. Each worker thread runs a scheduler that switches
between coroutines (transactions) upon potential last-level cache
misses, improving overall throughput by overlapping data fetching
of one transaction with another’s on-CPU computation. Notably,
the cost of suspending and switching between stackless coroutines
is very low (similar to calling a function), allowing the engine to
gain net performance increase, sometimes by up to 2x [21].

1.1 Just Hiding Memory Latency Is Not Enough

Despite the significant performance improvement observed by end-
to-end latency-optimized engines [21], these systems are still inad-
equate and leave many unexplored opportunities in further hiding
more types of latency, as shown in Figure 1.

First, as data size grows, it becomes necessary to support larger-
than-memory databases. As a result, in Figure 1(c—d) a transaction
may access both memory- and storage-resident data. Yet existing
latency-optimized OLTP engines based on software-prefetching
are mostly designed to hide data stalls caused by memory accesses
(0.1us level) shown in Figure 1(c), without considering different
levels of data movement latency, especially storage accesses at the
10ps to ms level. As we elaborate later, a direct addition of storage
accesses to an end-to-end OLTP engine optimized for hiding mem-
ory latency would cancel out the benefit of software prefetching or
even yield worse throughput than without using prefetching at all.

Second, in addition to the complexity caused by a mix of different
data access latencies, the software architecture of a database engine
can also induce latency during forward processing. As shown in Fig-
ure 1(a), CPU cores may be oversubscribed to run more threads than
the degree of hardware multiprogramming, causing OS scheduling
activities. The use of synchronization primitives can also lead to
additional delays. For example, in Figure 1(b) the number of (re)tries
(consequently, latency) to acquire a contended spinlock [53] could
be arbitrarily long depending on the workload, making system
behavior highly unpredictable.
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These issues limit the applicability of latency-optimized database
engines. Future engines should further address other sources of
latency, and more importantly, do so while preserving the benefits
of existing latency-hiding techniques, such as software prefetching.

1.2 MosaicDB: Latency Hiding at the Next Level

This paper presents MosaicDB, a multi-versioned, latency-optimized
OLTP engine that hides latency from multiple sources, including
memory, I/O, synchronization and scheduling as identified earlier.
To reach this goal, MosaicDB consists of a set of techniques that
could also be applied separately in existing systems.

MosaicDB bases on the coroutine-to-transaction paradigm [21]
to hide memory access latency. On top of that, we observe that
the key to efficiently hiding I/O latency without hurting the per-
formance of memory-resident transactions is carefully scheduling
transactions such that the CPU can be kept busy while I/O is in
progress. To this end, MosaicDB proposes a pipelined scheduling
policy for coroutine-oriented database engines. The basic ideas are
(1) keeping admitting new requests in a pipelined fashion such that
each worker thread always works with a full batch of requests, and
(2) admitting more I/O operations to the system only when there
is enough I/O capacity (measured by bandwidth consumption or
IOPS). This way, once the storage devices are saturated, MosaicDB
only accepts memory-resident requests, which can benefit from
software prefetching. By carefully examining alternatives in later
sections, we show how these seemingly simple ideas turned out to
be effective and became our eventual design decision.

To avoid latency caused by synchronization primitives and OS
scheduling, MosaicDB leverages the coroutine-to-transaction para-
digm to regulate contention and eliminate the need for background
threads. Specifically, each worker thread can work on multiple
transactions concurrently, but only one transaction per thread will
be active at any given time. This avoids oversubscribing the system
by limiting the degree of multiprogramming to the amount of hard-
ware parallelism (e.g., number of hardware threads). Consequently,
the OS scheduler will largely be kept out of the critical path of the
OLTP engine because context switching only happens in the user
space as transactions are suspended and resumed by the worker
threads. Using this architecture, MosaicDB also further removes
the need for dedicated background threads (e.g., log flushers) which
were required by pipelined commit [26] that is necessary to achieve
high transaction throughput without sacrificing durability: cleanup
work such as log flushes can be done using asynchronous I/O upon
transaction commit, which will then suspend and be resumed and
fully committed only when the I/O request is finished.

We implemented MosaicDB on top of CoroBase [21], a latency-
optimized OLTP engine that hides memory latency using software
prefetching. Compared to baselines, on a 48-core server, MosaicDB
maintains high throughput for memory-resident transactions, while
allowing additional storage-resident transactions to fully lever-
age the storage device. Overall, MosaicDB achieves up to 33x
higher throughput for larger-than-memory workloads; with given
CPU cores, MosaicDB is free of oversubscription and outperforms
CoroBase by 1.7x under TPC-C; MosaicDB has better scalability
under high contention workloads, with up to 18% less contention
and 2.38X throughput compared to state-of-the-art.
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Although MosaicDB is implemented and evaluated on top of
CoroBase, the techniques can be separately applied in other systems.
For example, contention regulation can be adopted by systems that
use event-driven connection handling where the total number of
worker threads will never exceed the number of hardware threads.
We leave it as future work to explore how MosaicDB techniques
can be applied in other systems.

1.3 Contributions

This paper makes four contributions. @ We quantify the impact of
various sources of latency identified in memory-optimized OLTP
engines, beyond memory access latency which received most atten-
tion in the past. @ We propose design principles that preserve the
benefits of software prefetching to hide memory latency and hide
storage access latency at the same time. € In addition to memory
and storage I/O, we show how software database engine architec-
ture could be modified to avoid the latency impact of synchroniza-
tion and OS scheduling. @ We build and evaluate MosaicDB on
top of an existing latency-optimized OLTP engine to showcase
the effectiveness of MosaicDB techniques in practice. MosaicDB is
open-source at https://github.com/sfu-dis/mosaicdb.

2 BACKGROUND

We begin by clarifying the type of systems that our work is based
upon and assumptions. We then elaborate the main sources of
latencies that MosaicDB attempts to hide, followed by existing
latency-optimized designs that motivated our work.

2.1 System Architectures and Assumptions

We target memory-optimized OLTP engines that both (1) leverage
large DRAM when data fits in memory and (2) support larger-than-
memory databases when the working set goes beyond memory.

Larger-Than-Memory Database Engines. There are mainly
two approaches to realizing this. One is to craft better buffer pool
designs [37, 46] which use techniques like pointer swizzling [18, 28]
and low-overhead page eviction algorithms [37, 58] to approach in-
memory performance when data fits in DRAM, while otherwise pro-
viding graceful degradation and fully utilizing storage bandwidth.
The other approach employs a “hot-cold” architecture [14, 31] that
does not use a buffer pool, and separates hot and cold data whose
primary homes are respectively main memory and secondary stor-
age (e.g., SSDs). In essence, a hot-cold database engine consists
of a “hot store” that is memory-resident (although persistence is
still guaranteed) and an add-on “cold store” in storage. A transac-
tion then could access data from both stores. However, note that
both “stores” use the same mechanisms for such functionality as
concurrency control, indexing and checkpointing, inside a single
database engine without requiring cross-engine capabilities [64].
In this paper, we focus on the hot-cold architecture and leave it as
future work to explore the buffer pool based approach.

Hot-Cold Storage Engines. Figure 2 shows the design of ER-
MIA [30], a typical hot-cold system that employs multi-versioned
concurrency, in-memory indexing and indirection arrays [50] to
support in-memory data (hot store) and storage-resident data (cold
store). Many other systems [13, 14, 39, 40] follow similar designs.
An update to the database will append a new in-memory record
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version to the indirection array and generate a log record in the log
buffer which will later be flushed to the storage device. That is, data
records are permanently stored in secondary storage in the form of
logs, which are periodically compacted and consolidated, i.e., the
log is the database. Within a table, each record is uniquely identified
by a record ID (RID). Each table is represented by an indirection
array which is a resizable array where each entry carries the ad-
dress (in memory or storage) of a unique data record. An index then
maps keys to RIDs, which in turn are indexes into the indirection
array. Note that different from RIDs in traditional systems [49],
RIDs here are logical without record address information, which
must be retrieved through the indirection array.

With such architecture, a transaction can access a record in
three steps: (1) traverses the index to obtain the RID i, (2) examines
the table’s indirection array using i as the index, and (3) accesses
the desired record data in memory or from storage. Many such
designs are also multi-versioned [30, 36, 41, 47, 61, 62] to extract
more concurrency. As a result, in Figure 2, an indirection array
entry can point to a version chain (a linked list of versions) or an
address in storage. In the former case, in step (3) the transaction
traverses the version chain to retrieve the desired record version
as dictated by the concurrency control protocol, such as snapshot
isolation. In the latter case, the transaction must issue an I/O to
access the cold record, which can be cached using various strategies.
Some systems [14] use per-thread caching of cold data. Such design
decisions are orthogonal to our work.

Since the hot store assumes DRAM is large enough to hold at least
the working set, recent memory-optimized OLTP engines [21, 30,
31, 57] also often employ redo-only logging without using a buffer
pool. This way, updates (log records) by aborted transactions are
discarded without ever reaching storage. The logs then store actual
data generated by committed transactions. The system can recover
by replaying the logs after applying a previous checkpoint (if any).
For cold records, the recovery process mainly needs to fill the
indirection arrays with record addresses in storage (the log) without
having to materialize any data record. During forward processing,
accesses to cold records can be done on demand by reading the log
at addresses carried by the corresponding indirection array entries.

2.2 Where Can Latencies Come From?

We identify and analyze four main sources of latency, given the
hot-cold architecture and assumptions described in Section 2.1. We
focus on hiding these latencies in current mainstream database
servers and discuss latencies that may arise in other environments.

Pointer Chasing. Modern database engines use various in-
memory data structures that are directly addressed by virtual mem-
ory pointers. Memory blocks used by these data structures are
usually allocated from the heap and chained together using point-
ers. For example, the nodes of an in-memory B+-tree are allocated
and deallocated as the tree grows and shrinks. To traverse a tree
from its root node to the target leaf node, the accessing thread
must dereference multiple pointers from the root to the leaf node,
forming a random access pattern. Unfortunately, such patterns are
very difficult (if not impossible) for hardware prefetchers to pre-
dict accurately, leading to very high likelihood of last-level cache
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Figure 2: The “hot-cold” store architecture of MosaicDB. In-
dexes map keys to RIDs. Per-table indirection arrays are
indexed by RIDs and store record locations.

misses! upon pointer dereference. As a result, in main-memory sys-
tems data stalls often dominate total CPU execution time. Beyond
indexes, version chains in multi-versioned systems as described in
Section 2.1 can also cause a significant amount of data stalls when
the accessing thread searches for a particular version. In some sys-
tems, over 50% of the total CPU cycles can be spent on waiting for
data to be loaded from memory to CPU caches [21]. Hiding such
stalls can potentially lead to much higher overall performance.

Synchronization. In-memory data structures require proper
synchronization for correctness. For example, shared index node
states are often protected by latches (spinlocks or mutexes). Under
contention, a small number of latches may by accessed by a large
number of threads. Compared to low contention or uncontended
cases, acquiring a latch that is under contention costs more CPU
cycles by retrying atomic instructions such as compare-and-swap
(CAS) [24]. Such retries can be unbounded without guaranteed
progress or success in a finite number of steps, causing long delays
and unfairness among transactions.

Storage I/0. As data size grows, it is necessary to allow transac-
tions to access cold or a mix of hot and cold records. Naturally, this
would require the accessing transaction to issue I/O requests to load
data from storage (if not already cached). Despite of recent advances
in fast storage, such as NVMe SSDs [22], storage I/O is still orders
of magnitude slower than memory accesses. Worse, I/O requests
are often done on the critical path via synchronous I/O primitives
(e.g., pread) as the data is needed right away by the requesting
transaction. Some systems, such as MySQL, alleviate this issue by
prefetching data in the background using dedicated I/O threads and
asynchronous I/O primitives (e.g., AIO [45]). On the one hand, it
is difficult to accurately predict the workload and prefetch exactly
the needed data from storage.? On the other hand, using dedicated
threads can also cause (1) inter-thread communication overhead
because the transaction worker thread must notify and be notified
by the I/O threads to initiate and complete I/O requests, and (2)
oversubscription overhead which we elaborate next.

Oversubscription/OS Scheduling. CPU cycles are precious
resources that must be well used. In systems that must handle
larger-than-memory databases, it is desirable to overlap on-CPU
compute (e.g., in-memory transactional logic) with I/O operations
in the background. A straightforward and widely adopted approach
is to oversubscribe the hardware and leverage the OS for scheduling,

!Unless otherwise specified, throughout the paper cache misses refers to last-level
misses that mandate accessing memory.
Not to be confused with prefetching from memory to CPU caches.



. void scheduler(coros) {
while (!batch_done) {
for (c : coros) {
if lc.is_done()
c.resume();

1. promise<void> coroutine(..) { 1
2 __mm_prefetch(p, ..) 2
3. co_await suspend_always(); 3
4. data = *p; // Cache hit 4.
5. 5
6. co_awalt suspend_always(); 6
7 data = *q; // Cache hit 7
8 8

}
}

(a) An example coroutine (b) Scheduler logic

Pop | Free ' Push  push/pop Push Pop | Free |
Other | ™= [Other ofother ™= [ Other | ™= [ Other
frames frames coroutines frames frames

(c) Call stack changes as the example coroutine suspends and resumes

Figure 3: Software prefetching using C++20 coroutines. A
coroutine (a) can suspend and be resumed by the scheduler
(b). Coroutine frames are popped from/pushed onto the caller
thread’s stack as they are suspended/resumed (c).

i.e., spawning more software threads than the number of hardware
threads (hyperthreads) or physical cores. The OS then transparently
schedules worker threads depending on whether they are handling
/0. While a thread is asleep waiting for (synchronous) I/O to finish,
another thread can be scheduled to run on the CPU, improving
overall CPU utilization. The downside is that the OS scheduler
can require a non-trivial amount of CPU cycles for itself, cancel-
ing out the benefits of overlapping compute and I/O of different
threads. This is especially true for modern fast NVMe SSDs that ex-
hibit a narrowing gap between memory performance [22]. Systems
that use dedicated I/O threads have similar issues. Although these
threads run “in the background,” they still consume actual CPU
cycles (especially on fast SSDs which often prefer spinning rather
than interrupts [22]) and may compete with transaction worker
threads in environments with a fixed budget (e.g., in the cloud),
again triggering OS scheduler activities.

Other Latencies and Environments. We find the above laten-
cies are dominant in memory-optimized hot-cold engines. Beyond
such engines, other important latencies can arise. For example, a
system that uses pessimistic concurrency control may suffer from
latency caused by logical lock contention, in addition to synchro-
nization latency caused by latches. In contrast, memory-optimized
systems typically use optimistic approaches to concurrency control,
mitigating the impact of lock-induced latency. Networking delays
can also lead to extra latency in distributed database engines.

We focus on single-node, memory-optimized engines built for
mainstream database servers that are typically dual- or quad-socket.
Latencies caused by memory accesses and synchronization can be
even more visible at larger scales (e.g., on servers with over 1000
cores across tens of sockets [1]). We leave it as future work to hide
other latencies and explore other environments at larger scales.

2.3 State-of-the-Art and Motivation

Many previous efforts have been dedicated to hiding either mem-
ory [5-7, 15, 44, 48] or storage [2, 33] access latencies. With soft-
ware prefetching, state-of-the-art database engines use cooperative
multi-tasking enabled by C++ coroutines [25] to hide memory ac-
cess latency [21, 27, 48]. Figure 3 depicts the approach. Coroutines
are functions that can suspend (give up CPU time) voluntarily and
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be resumed later by a user-space scheduler as needed. This gives
the opportunity for OLTP engines to overlap compute and memory
accesses of different transactions, leading to the recent coroutine-
to-transaction execution paradigm [21]. Each worker thread runs
a user-space scheduling logic that takes incoming transactions in
batches and each transaction is modeled as a coroutine that will
suspend execution upon possible cache misses. For example, in
Figure 3(a), a transaction may invoke a coroutine to read records
in memory and suspends its execution (line 3) after issuing an
asynchronous prefetching instruction [24] (line 5). The scheduler
in Figure 3(b) serves transactions in a round-robin manner and
switches to and resumes the next transaction T in the batch, hop-
ing to overlap its compute with the just-suspended transaction’s
prefetching. T may suspend later for the same reason. Importantly,
C++20 coroutines are stackless. As Figure 3(c) shows, the coroutine
frame directly (re)uses the underlying thread’s stack. This allows
fast switching with overhead that is cheaper than a last-level cache
miss whereas traditional solutions [52] use their own stacks. Switch-
ing between them involves high overhead that defeats the purpose
of software prefetching.

Compared to the traditional sequential execution model where a
thread executes one transaction at a time, coroutine-to-transaction
keeps multiple transactions open per thread. This can increase the
conflict window and even cause deadlocks using a single thread
due to transactions on the same thread conflicting with each other.
In practice, however, many memory-optimized systems [30, 31, 41,
42, 57] already use optimistic concurrency [34, 38] that avoids these
issues, making coroutine-to-transaction a natural fit. Our work also
assumes optimistic concurrency, following prior work [21].

Coroutine-to-transaction has proven to be effective for hiding
memory access latency, but still lacks the ability to hide storage
/O latency, which is typically done by using asynchronous I/O
primitives (e.g., io_uring [9]). As we discuss later, blindly com-
bining asynchronous I/O and coroutine-to-transaction can lead to
poor performance. Some systems leverage asynchronous I/O to
overlap storage and compute, but they typically do so using heavy-
weight mechanisms, such as stackful coroutines [11, 43, 52] and OS
threads. Compared to stackless coroutines, these mechanisms bring
non-trivial overheads that will cancel out the benefits of software
prefetching [27]. These issues call for a new approach that allows
asynchronous I/O to co-exist with and not canceling out the effect
of memory latency hiding techniques. It was also unclear how syn-
chronization and oversubscription/OS scheduling overheads can be
mitigated under the coroutine-to-transaction paradigm. MosaicDB
thus aims to enable latency hiding for both memory and storage
accesses, and at the same time leverage coroutines to mitigate the
impact of oversubscription and synchronization.

3 MOSAICDB OVERVIEW

MosaicDB is a multi-versioned hot-cold OLTP engine that optimizes
for both in-memory and out-of-core data accesses, while mitigating
the impact of oversubscription and synchronization latencies. At its
core is a new out-of-core coroutine-to-transaction paradigm that still
models transactions as coroutines like prior work [21], but addition-
ally (1) allows transactions that access storage-resident data to use



asynchronous I/O without extra inter-thread communication over-
head mentioned in Section 2.2, (2) does so without sacrificing the
benefits of software prefetching, and (3) naturally avoids oversub-
scription overhead and regulates contention. As shown in Figure 4,
MosaicDB ensures that each core (or hyperthread) runs only one
software thread to avoid oversubscription and heavyweight OS
scheduler activities. @ With the coroutine-to-transaction paradigm,
each worker thread—instead of directly running one transaction at
a time—takes multiple transactions which are modeled as corou-
tines and switches between them as needed. @ Each transaction
coroutine in turn invokes the corresponding coroutines for han-
dling data accesses which may traverse indexes and version chains.
Depending on whether the target data is from the hot or cold store,
the transaction may only need to suspend its execution upon possi-
ble cache misses or @ further issue asynchronous I/O requests (e.g.,
using io_uring or Linux AIO).3 @-@ After the current transaction
is suspended, control is returned to the scheduler which @ con-
tinues to handle the next request and repeats this process. When
the scheduler resumes a previously suspended transaction, it may
continue executing the transaction by dereferencing a pointer to
the data in memory (if the requested data is in the hot store), or
checking whether the asynchronous I/O operation has finished.
MosaicDB inherits the relevant designs in CoroBase [21] to guar-
antee durability and maintain ACID properties. This is done using
redo-only logging as described in Section 2.1 and pipelined/group
commit [26]. During forward processing, transactions generate log
records in memory and are only committed after the log records
are persisted. Upon commit, the underlying thread still decouples
the transaction and places it on a (partitioned) commit queue. Dif-
ferent from prior approaches, however, MosaicDB does not use
background threads to monitor and release transactions from the
commit queue (i.e., truly commit the transaction with results re-
turned to the application). Instead, this is checked by the worker
thread itself in between requests lazily: a log flush is issued (using
asynchronous I/0) whenever the log buffer is full or times out. The
worker thread then checks for log I/O status the next time it accesses
the log buffer. If the I/O has finished, it then examines the commit
queue to release transactions whose log records are persisted. This
way, MosaicDB also avoids oversubscribing the CPU by not using
additional background threads like previous work [26, 64].

4 MITIGATING DATA ACCESS LATENCY

Prior coroutine-to-transaction engines focused on hiding stalls
caused by in-memory transactions [21] (i.e., those that only access
the hot store). The in-memory setup mandated flattening nested
function/coroutine calls yet allowed simple batch scheduling poli-
cies. However, the presence of cold store transactions requires a
departure from these designs. The rest of this section describes how
MosaicDB caters such transactions while maintaining the effect of
software prefetching for accessing memory-resident data.

3We refer to I/O mechanisms that do not block the issuing thread (e.g., io_uring and
Linux AIO) as “asynchronous I/O.” This is not to be confused with “asynchronous
commit” which allows transactions to commit without persisting their log records.
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Figure 4: Overview of MosaicDB. Each core/hyperthread runs
one thread to schedule transactions in a pipelined manner.
Transactions (coroutines) suspend and resume upon cache
misses and I/0 to overlap compute and data access latency.

4.1 Selective Coroutine Nesting

Database engines use nested function call chains to modularize
their implementations. Given an engine implementation, one may
simply change the function and return types (e.g., using co_return
instead of return) to convert the necessary functions to corou-
tines, in addition to adding suspend/resume calls. Nested function
call chains then become nested coroutine call chains. With proper
coroutine library support, any suspend operation inside a coroutine
will cause the calling coroutine to be popped out of the stack with
control eventually returned to the scheduler which then switches to
the next request. Although transforming function call chains into
fully-nested coroutines is simple, it brings non-trivial overhead that
cancels out the benefits of software prefetching. To reduce corou-
tine switching overhead, recent approaches [21] suggest a two-level
design where function call chains in the storage engine are “flat-
tened” to become a single coroutine, which can be called by trans-
action coroutines. While such two-level coroutine-to-transaction
increases the size of a single coroutine and can increase instruction
cache misses, these costs are outweighed by the benefit, allowing
coroutine-to-transaction to effectively hide data stalls, since fewer
cycles are spent on coroutine switching.

Hiding I/O latency makes the function call chains even deeper
by involving additional functions that handle I/O requests (e.g.,
issuing and checking completion of asynchronous I/O, followed
by deserialization). In theory, such additional call chains should
be inlined to maintain the aforementioned two-level coroutine-
to-transaction structure for the lowest overhead, given it is also
relatively straightforward to do so for in-memory data accesses
which mostly only involve traversing an index and a version chain
to access a record in the hot store. However, we observe that this
is neither easy nor necessary. On the one hand, such flattening
is usually done manually and the additional storage-related call
chain can be complex. Inlining all of them can further bloat code
with worse instruction cache utilization and make the code hard
to maintain. On the other hand, storage access latency is still or-
ders of magnitude longer than memory latency. This means we
need to switch to transaction coroutines that access I/O much less
frequently, amortizing the switching overhead.



These observations lead to a simple but useful selective coroutine
nesting approach that only allows nested coroutines for storage-
related functions: Based on an existing two-level coroutine-to-
transaction design, we instrument the storage-related functions to
become nested coroutines and keep the two-level flattened corou-
tines for memory accesses. The result is that a transaction will work
exactly the same as before until it accesses storage, by invoking in-
lined record access coroutines in Figure 4. If the transaction accesses
storage-resident data, as shown in Figure 4, with the corresponding
indirection array entry which points to a location in storage, the
record access coroutine will issue asynchronous I/O and suspend.
Control is then returned to the scheduler which will later check
whether the I/O has finished and resume the transaction coroutine
if so. After that, the data read from storage is converted into a node
in the in-memory version chain for future accesses.

Our implementation uses io_uring [9]; other asynchronous I/O
libraries can also work with MosaicDB as long as they present an
asynchronous interface that allows the application to separately
issue and check for I/O completion. With io_uring, each worker
thread has a thread-local I/O module where there is a “ring” for /O
operations. I/O requests are processed using submission/completion
queues. The submission queue in each ring has a fixed number of
slots for submission queue entries (SQEs), defined when the ring is
initialized. Therefore, all transactions on the same worker thread
share this ring to access storage. AnI/O request is issued by creating
an SQE and completions are indicated by completion queue entries
(CQEs). The latter can complete out of order respective to the former.
We therefore tag each SQE with the issuing transaction’s ID to
distinguish different transactions’ CQEs.

Now we walk through the process of reading a record using
the example shown in Figure 4. (a) Worker thread 1 first starts
Transaction 1 (a coroutine) and begins to read the record matching
key A (step @ in the figure). (b) It then probes the index, during
which process we issue prefetch instructions followed by suspend
statements (). (c) Control then returns to the scheduler (@). (d)
Depending on the scheduler’s logic, it resumes Transaction 2 to
continue from where it left off (@), (e) until it encounters the next
suspend or concludes. At some point during the execution of Trans-
action 1, Thread 1 gets the pointer corresponding to RID N and
finds that it points to a a location in storage, (f) so the thread issues
an asynchronous I/O (@), immediately suspends the transaction
after submitting an SQE, and returns to the scheduler (@-@). Each
time the scheduler wants to resume Transaction 1, it first peeks at
the completion queue to look for the next completed I/O request,
which occurs in the user space, and resumes the transaction the
completed request belongs to, which is not necessarily Transaction
1. (g) The worker thread gets the I/O request belonging to Transac-
tion 1, retrieves the request, and marks the CQE consumed. Next,
we discuss the scheduling policy used in the above process.

4.2 Basic Storage-Aware Batch Scheduling

Traditional coroutine-to-transaction was designed for in-memory
OLTP workloads that exhibit similar transaction profiles, without
considering the fact that modern OLTP workloads are increas-
ingly heterogeneous with varying transaction types in addition to
short, memory-only transactions (e.g., operational reporting [4]
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and storage accesses). As a result, the worker thread simply gathers
a batch of requests at a time, and then switches between them
upon pre-defined suspend calls. A new batch cannot be admitted
until all the transactions in the current batch are concluded (com-
mitted or aborted). Such traditional batch scheduling [21, 27, 48]
has been widely adopted by existing coroutine-based systems, but
exhibits two fundamental issues for mixed memory/storage work-
loads, which we address in the rest of this section. We start by
proposing storage-aware batch scheduling, a simple adaptation of
traditional batch scheduling, and then discuss how we evolve it
towards the desirable scheduling policies.

At a first glance, it may seem trivial to extend traditional batch
scheduling without any change by simply suspending the transac-
tion coroutine once an asynchronous I/O is issued. The first issue
with this approach is that as I/O request status is part of the trans-
action state, the scheduler has to resume the coroutine to find out
whether a previous in-progress I/O associated with the transaction
has finished. If the I/O is still in-progress, the scheduler would have
to switch to the next transactions, in essence wasting the work to
resume a transaction. This was not a significant problem in pure-
memory environments because typically modern x86 processors
allow only a smaller amount of outstanding asynchronous memory
loads, which makes it possible to make very accurate “educated
guesses” about when the data will be fetched into the cache and
batch size. Thus, in most cases, after a transaction is resumed, its
requested data is indeed in the CPU cache, making the (already
low) switching overhead worthwhile. Yet for the I/O case, recall
that it is impractical to inline the I/O stack and I/O latency is still
orders of magnitude higher than memory access latency. The for-
mer increases the cost of coroutine switching. Coupled with the
latter, the two properties mean that when I/O and memory accesses
are mixed in a batch of transactions, most of the cycles spent on
checking asynchronous I/O completion state are wasted.

Our first scheduling policy (storage-aware batch scheduling) re-
solves this issue by decoupling I/O status tracking and transaction
context. As shown in Figure 5(a), for each worker thread, we sep-
arately allocate an array of I/O status tracking structures,* each
of which corresponds to a transaction in the current batch being
processed by the thread. The scheduler then still works in the same
way as before, but before resuming a transaction, it first checks
whether the transaction was suspended because of an asynchronous
I/0 request. If so, it then directly checks the thread-local I/O status
without resuming the transaction and only resumes the transaction
if the I/O has completed; otherwise it directly proceeds to the next
transaction. If the transaction was suspended due to a potential
CPU last-level cache miss, the scheduler still directly resumes it
because currently software cannot query CPU cache status.

4.3 Pipelined Scheduling

Storage-aware batch scheduling avoids wasting CPU cycles on
resuming/suspending storage-bound transactions. However, since
it uses a fixed-size batch and only processes transactions by full
batches, new (memory-resident) transactions may not be scheduled
to run timely while there are in fact enough CPU cycles. Consider

4io_uring contexts in our current implementation. Each 1/O request is tagged with the

issuing transaction ID to distinguish I/O completions for different transactions.
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Figure 5: Scheduling policies. (a) Storage-aware batch can
selectively resume storage-bound transactions but can lead
to low CPU utilization and throughput. (b) Vanilla pipelined
improves CPU utilization but can starve in-memory transac-
tions. (c) Dual-queue pipelined isolates memory- and storage-
bound transactions to fully utilize storage bandwidth while
maintaining high in-memory transaction performance.

a batch of ten (which is typical) where four of the transactions are
I/O bound and six are memory-bound. Since I/O exhibits much
higher latency, it is likely that the more lightweight memory-bound
transactions will conclude earlier than the storage-bound ones.
With batch scheduling, six out of ten slots in the batch will be
vacant until the storage-bound transactions conclude much later;
memory-bound transactions would have to wait to be admitted in
the next batch, lowering CPU utilization and overall throughput
and affecting the performance of memory-resident transactions.
Vanilla Transaction Pipelining. To improve CPU utilization,
MosaicDB instead processes transactions in a pipelined fashion
that allows individual new transactions to be admitted as long as
there is free slot in the batch. This allows more memory-bound
transactions to be processed as I/O is in-progress for the rest of the
batch. As Figure 5(b) shows, whenever a transaction is concluded, a
new request can be admitted to the queue. Such vanilla transaction
pipelining was first discussed in CoroBase [21], but was deemed
unnecessary for pure in-memory workloads. Under mixed memo-
ry/storage workloads, however, more in-memory transactions can
slip through to maintain high throughput. The downside of this
policy is that there is no admission control for transactions and
the system can be easily dominated by storage-bound transactions,
starving memory-resident data accesses. For example, as shown
in Figure 5(b), storage-bound transactions can occupy the slots for
longer time, and as they keep getting admitted, they will eventually
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Algorithm 1 Dual-Queue Pipelined Scheduling.

1 def DualQueuePipeline():
[hot] = get_transaction_requests()
3 while not shutdown:
if hot[i].is_done():

5 hot_txn_done++
if interval.is_up() or hot.empty():
7 hot_txn_done = @
for j = @ to cold_queue_size - 1:
9 if cold[j].is_done():

idle_slots_in_cold_queue.push(j)

11 else if cold[j].is_hot():
staging.push(cold[j1)
13 idle_slots_in_cold_queue.push(j)
else:
15 tid, read_size = peek()
if valid_tid(tid) and
17 read_size = expected_size:
cold[tid].resume()
19 fetch_transaction()
else if hot[i].is_cold():
21 cold[idle_slots_in_cold_queue.pop()] = hot[i]
fetch_transaction()
23 else:
hot[i].resume()
25 i =1 % hot_queue_size

dominate all the slots even though they only constitute a small
portion of the workload mix. As a stop-gap solution, the system can
prioritize memory-bound transactions by reserving a certain num-
ber of slots. This way, if the number of storage-bound transactions
exceeds a threshold, they will not be admitted and must wait until a
slot is freed up.’ However, modern SSDs exhibit much higher band-
width and often requires high queue depth (i.e., number of parallel
requests) for software to extract their full potential. As a result, the
queue can become very long, requiring the scheduler logic to scan
through a long (sub)array of I/O states. This essentially increases
memory prefetching distance, eventually canceling out the benefits
of software prefetching for memory-bound transactions. Thus, it is
desirable to keep the queue short, while still allowing saturating
the storage device with enough many I/O slots.

Dual-Queue Transaction Pipelining. To solve these issues, we
advocate a pipelined design that decouples memory- and storage-
bound transactions. Each thread is associated with two queues
respectively for memory- and storage-bound transactions, in addi-
tion to a staging area, shown in Figure 5(c). If a previously memory
(storage) bound transaction on the memory (storage) queue turns
to access the cold (hot) store, it is then moved the the corresponding
queue. In our current implementation, all the new transactions start
with a hot-store access because the indexes are in-memory. The
worker thread always works on the memory queue unless (1) it
finds a cold request, (2) a pre-defined interval is up, or (3) the mem-
ory queue is empty. Algorithm 1 shows the details. In case (1), the

>Most systems already feature similar admission control features, which can be modi-
fied to work with MosaicDB, so we do not repeat here.



worker thread moves the storage-bound transaction to the storage
queue and then admits another transaction to fill up the slot. Both
cases (2) and (3) happen after a transaction is concluded (line 7 in
Algorithm 1). The predefined interval in case (2) records the number
of transactions processed from the hot queue (hot_txn_done in
Algorithm 1) and is configurable. Each time a transaction is com-
pleted in the memory queue, hot_txn_done is incremented. After
that, if the counter reaches a predefined threshold or the memory
queue is empty, the worker thread will iterate over the cold queue
and process transactions by checking whether their in-progress
I/Os have completed (same as the storage-aware batch scheduling
policy in Section 4.2). This way, the worker thread can attend to
memory-bound transactions more promptly, while storage-bound
transactions are checked and resumed less frequently to match
storage I/O capabilities.

Since a transaction can transition between memory-bound and
storage-bound, a transaction on the memory queue may need to
find a slot on the storage queue when the latter is already full. In
this case, we abort the transaction so as to ensure there is enough
slots left to process memory requests. Conversely, a storage-bound
transaction may become memory-bound again after processing
I/O. It will then be placed back to the memory queue if there is
a vacant slot. Otherwise, we place it in the staging area and pri-
oritize transactions from it (over other requests) to be admitted
to the memory queue once it has space. This allows us to keep
the benefits of software prefetching while extracting the full po-
tential of the storage device. The sizes of the queues need to be
tuned according to the target workload and the underlying storage
device’s capability (bandwidth and IOPS), but we believe this is
not a major limiting factor of MosaicDB as the parameter space is
not large: the memory queue should be kept similar to batch sizes
used in previous in-memory coroutine-to-transactions (8—10) for
the two-level coroutine switching mechanism to work well, and
the storage queue only needs to be tuned when storage capability

(bandwidth/IOPS) changes (e.g., by upgrading to a faster SSD).

5 MITIGATING OVERSUBSCRIPTION AND
SYNCHRONIZATION LATENCY

Without userspace scheduling like MosaicDB, many systems leave
it to the OS to schedule transactions and oversubscribe the system
to improve CPU utilization. Some memory-optimized database en-
gines already try their best to not oversubscribe the system. They
typically use at most one software worker thread per hardware
hyperthread (or per physical core). Even so, oversubscription can
still happen with various background threads, such as log flush-
ers, group commit threads, and checkpointing threads [26]. With
a fixed CPU budget (e.g., in the cloud), these background threads
still require a non-trivial amount of CPU cycles and can cause OS
scheduler activities that will lower throughput. Note that although
some background threads only run periodically (e.g., checkpoint-
ing), some will run frequently. We take the widely used parallel log-
ging [60, 63] and pipelined commit [26] mechanisms as an example.
With parallel logging, each worker thread accumulates log records
in a local buffer and then flushes them to storage upon (group) com-
mit. Further, pipelined commit decouples transactions and threads,
such that log flushing does not block the thread from taking the

584

next request. The system then needs to keep pre-committed trans-
actions whose log records have not reached storage, and only notify
the client after the log records are persisted. This process is often
accomplished using background flusher/committer threads: after
the worker thread finishes running the transaction logic, it places
the transaction on a commit queue (or a partitioned queue to ease
contention) and continues to process the next request. The com-
mit queue is monitored by a committer thread that periodically
checks log status and retires transactions from the commit queue as
their log records are persisted. Log status is maintained by another
flusher thread that invokes I/O primitives (e.g., pwrite) to flush log
records submitted by worker threads. As we will see in Section 6,
this design can significantly lower throughput under high load as
the background threads compete with foreground worker threads.
MosaicDB leverages the coroutine-to-transaction architecture
to eliminate background threads all together, avoiding oversub-
scription. All the threads in MosaicDB are worker threads and
transaction logging/commit operations are processed in exactly the
same way as “normal” I/O operations during forward processing.
Upon commit, the worker thread appends the transaction’s log
records to a thread-local log buffer, and if necessary (e.g., the buffer
is full), issues an asynchronous I/O to flush the log. The scheduler
logic then switches to the next transaction while I/O is in-progress,
and when it resumes the same transaction, it additionally checks
whether the transaction’s log records have been made persistent
(by comparing the current durable and the transaction’s commit
log sequence numbers). If so, it resumes the transaction to finish
post-processing (e.g., finalizing its newly generated versions). This
way, all the additional I/O requests associated with transaction
commit are handled by worker threads. Moreover, the scheduling
queues in Section 4 replaces the commit queue in past systems,
saving resources and avoiding a potential source of contention.
Other work (e.g., checkpointing) can be performed using system
transactions [17] which are then processed in similar ways.
MosaicDB’s coroutine-oriented architecture also allows to limit
contention while maintaining a high degree of concurrency. Each
worker thread can keep multiple transactions open, yet only one of
the transactions will be actively running at any time, while others
are suspended waiting for data to be fetched to the CPU cache or
memory. Compared to systems with oversubscription, MosaicDB
limits contention naturally to the degree of multiprogramming, i.e.,
at most there will be the same number of hyperthreads/cores that
contend for a shared resource, keeping OS scheduler out of the
critical path. Without oversubscription and excessive contention,
individual data structures, e.g., indexes, can then focus on handling
contention only up to the physical resources available. Various
solutions already exist and MosaicDB can easily adopt them [3].

6 EVALUATION

In this section, we evaluate MosaicDB under various workloads that
exhibit latency from memory/storage accesses, CPU core oversub-
scription and synchronization. Through experiments, we confirm:

e MosaicDB can hide storage access latency without drastically
impacting in-memory transaction throughput. Meanwhile, it
yields higher throughput for storage-bound transactions than
the traditional thread-to-transaction execution model does.



e MosaicDB can avoid CPU core oversubscription by removing
background threads altogether, improving performance.

e MosaicDB effectively mitigates synchronization overhead under
high contention by limiting contention levels.

6.1 Experimental Setup

Hardware and Software. We use a dual-socket server equipped
with two 24-core Intel Xeon Gold 6342 CPUs clocked at 2.80 GHz
(up to 3.50 GHz with turbo boost). The CPU has 36 MB of caches.
In total the server has 256GB of main memory occupying all the
six channels per socket to maximize memory bandwidth. We use
three SSDs in the server in our evaluation to understand the impact
of storage devices: a 500GB Samsung 980 PRO [51], a 375GB Intel
Optane SSD DC P4800X [23], and a 480GB Dell SATA SSD [12].
Using fio, we observe that for random accesses, the Samsung/In-
tel/Dell SSDs can deliver up to 860K/490K/125K IOPS, respectively.
Unless otherwise specified, we use the Samsung SSD. All the data is
persisted on the storage device, with data in the hot store also kept
in-memory. For all experiments, hyperthreading is disabled and
direct I/O mode (O_DIRECT) is enabled to simplify the interpretation
of results. The server runs Ubuntu Linux 22.04.3 LTS with kernel
5.15. In our experiments, we set I/O page size to 2KB and scale the
number of threads up to the point where the SSD is saturated. For
asynchronous I/O, we use io_uring and compiled all the code using
GCC 11 with all the optimizations.

Benchmarks. To focus on evaluating the effectiveness of our
designs in hiding latencies, we implement benchmarks that directly
interface with the engine via C++ APIs, bypassing SQL and net-
working layers. We run different end-to-end benchmarks where
the database engine is dominated by latencies generated from (1)
storage accesses, (2) CPU oversubscription and (3) synchronization,
respectively. For (1), we use microbenchmarks to stress test Mo-
saicDB. Microbenchmarks allow us to closely control the hot and
cold data ratios to evaluate different scheduling policies and under-
stand MosaicDB’s performance behavior. For (2), we run TPC-C [56]
to evaluate the impact of oversubscription caused by background
threads and show the effectiveness of MosaicDB. For (3), we run
a high-contention microbenchmark that issues single-step insert-
only transactions with monotonically increasing keys to study how
well MosaicDB can handle synchronization latency. We give the
detailed workload setups in the following corresponding sections.

6.2 Larger-Than-Memory Performance

Our first experiment evaluates the performance of memory- and
storage-bound transactions.

Workloads. To stress test MosaicDB, we separately load two
tables, one as the hot store with all the data in memory, and the
other as the cold store with all the data only in secondary storage
(the log in our design). Accesses to both stores are done by (1)
traversing the index to obtain an RID and (2) using the RID to access
the indirection array. For hot access, in step (2) the transaction
traverses an in-memory version chain, while for cold accesses the
transaction in step (2) would obtain the permanent address of the
record in storage and issue an I/O request to access it. Note that
we do not cache cold records in memory;, i.e., accessing a storage-
resident record will always lead to an I/O. This allows us to reliably
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interpret experimental results and independently scale the sizes
of both stores. Implementing a cache is promising but orthogonal
future work. We use 8-byte keys and a 8-byte values for each data
record. All experiments start with a freshly loaded database with
300 million hot records and 3 million cold records, in total taking
~16GB of storage space (including padding as required by direct
1/0). The amount of cold records does not matter here, because cold
records are not cached, so that we can constantly create storage-
bound transactions during the experiments. We vary the percentage
of storage-bound transactions following a uniform distribution to
choose the records to access. We evaluate two types of workloads:
read-only and read-write. For read-only, an in-memory transaction
reads 10 records in the hot table, and a storage-bound transaction
reads 8/2 records in the hot/cold tables. We use 40 threads which
can saturate the SSD. For read-write workloads, there are 50% read-
only transactions (10 reads) and 50% read-modify-write (RMW)
transactions (10 updates); cold read-only transactions have 2/8
cold/hot reads; cold RMW transactions have 2/8 cold/hot updates
where a cold update is a cold read followed by an update. Based
on the IOPS and bandwidth that our storage device can offer, we
use 10 threads to saturate the storage device with I/Os needed by
reading cold records and flushing log records.

Variants. We vary the scheduling policy discussed in Section 4.

e Sequential: Baseline that uses traditional thread-to-transaction
to process transactions sequentially, but still uses prefetch in-
structions as a best-effort optimization for memory accesses.
Cold store accesses are done using synchronous io_uring calls:
the thread will spin until the I/O completes.

e Batch: The storage-aware batch scheduling policy described in
Section 4.2. We tuned the batch size and set it to 8.

e Pipeline: The vanilla pipelined scheduling policy in Section 4.3.
Queue size is set to 16, with memory- and storage-bound trans-
actions each using half the capacity.

e MosaicDB: Same as Pipeline but uses the dual-queue pipelined
scheduling policy. Unless otherwise noted, we set the memory/s-
torage queue sizes to 8/16 and check the storage queue once after
eight transactions are concluded.

Read-Only Throughput. Figure 6 shows the throughput and
latency of MosaicDB and baselines along with SSD IOPS, as the
workload mix features more storage-bound transactions. When the
workload is purely in-memory, as expected, the three coroutine-
to-transaction variants all outperform Sequential, corroborating
with results obtained by prior work [21]. Such performance im-
provement comes from the increased interleaving of transactions
which allows us to hide memory data stalls by overlapping software
prefetching and computation. As we start to increase storage-bound
transactions in the mix, the throughput of Sequential drops dras-
tically, which is mainly attributed to waiting for I/O completions
via spinning. For Batch, the storage-bound transactions stall the
admission of new transactions, which eventually runs into the same
problem as Sequential has. That is, the scheduling logic eventually
degrades into a Sequential-equivalent that waits synchronously
for the storage-bound transactions. For Pipeline and MosaicDB,
the hot throughput well sustains, thanks to the reserved slots for
in-memory transactions, but the additional CPU cycles needed to
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Figure 6: Read-only microbenchmark results under varying
percentages of storage-bound transactions (40 threads).

issue and check I/O states still led to reduced interleaving of in-
memory transactions. For coroutine variants in general, a single
worker thread can handle multiple I/O requests, thus hiding storage
latency with interleaving and improving SSD utilization by up to a
factor of two (measured in IOPS at 10%). When the workload is still
memory-bound (i.e., 5% storage-bound transactions), compared to
Sequential, the total throughput of Batch/Pipeline/MosaicDB
is 1.6X/1.9%/1.9x higher. Across benchmarks, MosaicDB commits
1.55%-33X in-memory transactions than Sequential; MosaicDB
achieves up to 33x speedup over Batch. When the workload be-
comes more storage-bound, the hot throughput of Pipeline cannot
keep up with MosaicDB’s, because Pipeline always needs to check
the storage-bound transactions, which is not necessary when the
storage device is saturated. In contrast, MosaicDB has two queues,
allowing threads to work on the in-memory queue most of the time.
The loss of total throughput of MosaicDB is sustained at 16%, when
the SSD is just fully utilized (i.e., 10% storage-bound transactions).

Read-Only Latency. Interleaving-based approaches like Mo-
saicDB may trade latency for throughput. As shown in Figure 6,
Sequential consistently exhibits the lowest latency. Pipeline
uses twice as many slots as Batch and MosaicDB’s hot queue, lead-

ing to ~2X the latency for in-memory transactions than Sequential.

The latency of MosaicDB always stands in between Batch and
Pipeline because compared to Batch, MosaicDB is also affected by
the storage queue, although the scheduler does not always check the
cold queue. With more storage-bound transactions, Batch’s latency
is bounded by the batch size, which is smaller than MosaicDB’s cold
queue size. So we observe the growing gap between Batch and
MosaicDB. Compared to Pipeline, MosaicDB spends more cycles
on the hot queue, leading to slightly lower latency than Pipeline.

Read-Write Performance. Figure 7 shows the performance
of MosaicDB under the RMW workload where records are fetched
from storage, updated in memory and then persisted in the log. This
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Figure 7: Read-write (50% read-only, 50% update-only) mi-
crobenchmark results under 10 threads and a varying per-
centage of storage-bound transactions.

workload is write-heavy with 50% RMW transactions. Compared to
cold reads that use 2KB I/Os, log records are first buffered in mem-
ory and persisted in SSD in batches (8MB per thread in our setup),
which makes write IOPS an order of magnitude lower than read
IOPS. For the in-memory workload, Batch/Pipeline/MosaicDB
is 1.39%/1.29%/1.29x faster than Sequential. This is because log
flushes are asynchronous and we use double buffering to avoid
blocking writers while write I/O is in-progress. Therefore, prefetch-
ing still plays a role in improving throughput. However, since RMW
transactions contribute to more I/O API calls for log flushes, fewer
cycles can be dedicated to software prefetching, leading to lower
speedups for in-memory transactions. With more storage-bound
transactions, the coroutine-oriented variants overall follow a similar
trend seen in the read-only benchmarks, with MosaicDB maintain-
ing high performance for both in-memory and storage-bound trans-
actions. MosaicDB is up to 2.1x faster than Sequential in terms of
the overall performance with comparable storage-bound transac-
tion processing speed. Batch usually has the highest cold through-
put as it treats both hot and storage-bound transactions equally,
which means more storage-bound transactions get processed while
in-memory transactions are starved. From 0% to 50% storage-bound
transactions, the total throughput of MosaicDB drops by 21%, but
is still on par with Sequential’s in-memory throughput. In terms

of latency, we observed similar results to those from the read-only
workloads, except that the cold queue size of MosaicDB is doubled
in this workload to accommodate more storage-bound transactions,
which become slower due to the increased storage access latency.
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Impact of Queue Size. MosaicDB favors in-memory transac-
tions over storage-bound transactions. Therefore, in Figure 8, the
total throughput of the system is robust to the storage queue size
(QS). In practice, we first experimentally find the desirable mem-
ory queue size under pure in-memory workloads, which usually is
below 10 and is 8 in our case. The tuning for storage-bound trans-
actions is also lightweight. The intuition is that the storage queue
size should be large enough to not underutilize the storage device,
but not too large to forfeit memory prefetching. In Figure 8, with a
small percentage of storage-bound transactions (e.g., 5%), storage
access latency can be hidden very well, so QS does not impact total
throughput. With more I/O, MosaicDB can easily saturate storage
with QS=16 (also used in the following experiments); a larger QS
will only increases the latency of in-memory transactions.

Impact of Devices and Page Size. The selected devices have
very distinctive characteristics. The Samsung SSD delivers the high-
est IOPS and bandwidth but has a relatively higher latency (usually
> 100us) than the Intel Optane SSD (10us at its best). The Dell SSD
has very limited bandwidth and the highest latency, which is the
least powerful among the three devices in every dimension. Figure 9
shows that MosaicDB yields similar performance on the Samsung
and Intel devices, and outperforms other approaches. Under the
hood, all the three devices are fully utilized, but the performance is
still bounded by in-memory transaction throughput as MosaicDB
prioritizes in-memory transactions. The uniqueness of read-write
workloads is that the in-memory transactions also generate logs
that lead to I/O writes, therefore in-memory transaction throughput
is also affected by IOPS of the device. In other words, as MosaicDB fa-
vors in-memory transactions, which could in turn lead to more I/Os
than other approaches, its performance is not always guaranteed to
be the best but is still comparable to others. We also evaluated the
impact of page size on the performance of MosaicDB. For brevity,
the details are left out. Briefly, regardless of page size, the perfor-
mance with the same settings between runs barely changes, as for
read-only workloads, the overall performance is always bounded
by in-memory transactions whether or not the device is saturated.
For read-write workloads, the in-memory transaction throughput
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Figure 11: Throughput of read-
only workloads using MosaicDB
under different coroutine flatten-
ing/nesting approaches.

is also affected by logs flushes, but the write I/Os only happen when
the log buffer is full. Since the log buffer size is fixed, throughput
insensitive to individual page sizes, unlike cold reads.

6.3 Effect of Oversubscription Avoidance

We evaluate the effect of oversubscription avoidance in MosaicDB
using the TPC-C benchmark [56]. We take two variants of CoroBase
as baselines as they are also based on the coroutine-to-transaction
paradigm but use background threads.

e Oversubscribed: All the threads (worker and background) are
limited to run on a given CPU budget of N cores. We set the
number of worker threads to be the number of CPU cores so that
the background threads will be scheduled by the OS to compete
with worker threads.

e Dedicated: Uses an additional CPU core for the background
log flushing thread. Each thread is pinned to a different core,
avoiding OS scheduler activities.

All the three variants here run the batch policy with a batch
size of four for fair comparison. We vary the number of threads
to understand how performance is affected by oversubscription as
background thread work increases. We run experiments before the
SSD is saturated to eliminate the impact of storage performance. Fig-
ure 10 shows the result. All the variants scaled up to six threads, and
Oversubscribed is on par with Dedicated and MosaicDB. How-
ever, with more threads, the overhead of oversubscription starts
to appear (shaded area in the figure), which increases to 35% at 10
threads. For Oversubscribed, using more threads leads to more
OS scheduling activities, as the background thread needs to flush
logs and group commit transactions more frequently, so the ef-
fective CPU cycles that can be used by threads to process transac-
tions become fewer. Compared to Oversubscribed and Dedicated,
MosaicDB does not oversubscribe CPU cores or require additional
resources, and outperforms Oversubscribed by 1.7x.

6.4 Effect of Reduced Contention

Our next experiment evaluates MosaicDB’s effect on contention
regulation. We use an insert-only workload that issues monotoni-
cally increasing new keys to continuously append new records to a
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Figure 12: Throughput of a high-contention insert-only workload.

single table. All the data is stored in tmpf's to avoid I/O becoming a
bottleneck and to stress the system. Each transaction inserts a new
record. We start each experiment with a table containing 300 mil-
lion records. All worker threads are pinned to use one NUMA node.
We ran the benchmarks with the three coroutine-based variants
in Section 6.2 and obtained the same results because insert-only
workloads always happen in-memory first before their log records
are flushed. For brevity, we show the performance of Batch and
compare it with the baseline (Sequential). We vary the batch size
between 4 and 8 to explore how interleaving plays a role in reducing
synchronization overhead.

Figure 12 shows the throughput (a) and contention level as mea-
sured by the percentage of cycles spent on acquiring the latch (b).
Sequential is on par with MosaicDB until four threads. Starting
at eight threads, Sequential’s performance first drops drastically
by 40%, then remains at single-threaded performance. Beyond four
threads, MosaicDB’s performance first drops at eight threads be-
fore it starts to scale. Compared to Sequential, two factors affect
the performance of MosaicDB: (1) the number of threads and (2)
degree of interleaving (batch size). Similar to Sequential, using
more threads can lead to higher contention, hence reduced perfor-
mance. However, MosaicDB interleaves transactions on each thread,
which helps reduce the chance of all the threads contending on the
latch at the same time. The reason for the drop at eight threads
is due to the increased number of threads (contention) playing a
bigger role, whereas beyond eight threads, the effect of reduced
contention because of interleaving starts to show up, leading to
better performance than Sequential. Overall, at batch size of 4/8,
MosaicDB’s contention is up to 8%/18% lower than Sequential’s,
which gives MosaicDB up to 1.71x/2.38x higher throughput and
generally better scalability under high contention.

6.5 Effect of Selective Coroutine Nesting

We run the same read-only workload as the one in Section 6.2 but
use three different coroutine approaches: (1) flattened which has the
least coroutine suspend/resume overhead, (2) selectively nested and
(3) fully nested (the most overhead). We show two representative
cases based on whether there is storage access. As Figure 11 shows,
when the workload is purely in-memory, using flattened coroutines
gives the same performance as selectively nested coroutines. This
is expected because the two structures are the same on the in-
memory codepath. However, using fully nested coroutines leads to
18% slowdown because the memory path is heavily affected by the
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depth of the coroutine chain; the same effect was also documented
elsewhere [21]. With storage access, selectively nested coroutines
have deeper coroutine chains than flattened on the storage path, but
the performance is still comparable. The reason is storage latency
is much higher than memory latency, and storage coroutine call
chains are resumed only after I/O is finished, amortizing the cost.

7 RELATED WORK

Memory-Optimized OLTP Engines. Indirection has been studied
extensively in previous work [8, 13, 21, 30, 40, 50, 62]. Bw-Tree [40]
and Hekaton [13] rely on indirection to provide latch-free index
operations. ERMIA and CoroBase, which MosaicDB is based upon,
use indirection arrays to reduce index maintenance costs.

Cold Data Management. Some systems [16, 29, 35] identify
and compress cold data to reduce its main-memory footprint. The
cold data is compressed into a format that is optimized for OLAP
queries. These techniques can be adopted by MosaicDB to extend its
capabilities for large OLAP queries. Siberia [14] is integrated with
Hekaton [13] to manage a hot store and a cold store. In H-Store [55],
anti-caching [10] supports larger-than-memory transactions by
ensuring first all the data needed by a transaction is in-memory.

Optimizations for Fast Storage Devices. Recent NVMe SSDs
come with very high bandwidth and low latency, mandating careful
redesigns of storage engines [22]. DANA [19] employs multiple
SSDs to achieve memory-like bandwidth. LeanStore [37], a storage
engine which was first proposed for optimizing I/Os associated
with SSDs, has been upgraded in its recent version [20] for ex-
ploiting DANA-based storage backend using stackful coroutines.
Merzljak et al. [59] suggest a way to take advantage of NVMe SSDs
by leveraging coroutines and asynchronous I/O for OLAP.

8 SUMMARY

We have identified latencies beyond memory access latency from
multiple sources, i.e., storage I/O, oversubscription/OS schedul-
ing and synchronization, in memory-optimized OLTP engines. Yet
prior work mostly focused on mitigating a single source of latency.
With the coroutine-to-transaction execution model providing a new
perspective for building memory-optimized database engines and
advances in modern hardware, we see unexplored opportunities in
jointly hiding these identified latencies. We present MosaicDB, a
multi-versioned, latency-optimized OLTP engine that hides differ-
ent latencies at the same time. Techniques in MosaicDB can be ap-
plied independently in other systems. Overall, MosaicDB achieves
up to 33X higher throughput under larger-than-memory workloads.
With a given CPU budget, MosaicDB avoids oversubscription and
improves TPC-C throughput by 1.7X. MosaicDB also scales well
under skewed workloads, with up to 18% less contention and 2.38x
higher throughput than state-of-the-art.
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