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ABSTRACT
In recent years, a wide spectrum of database tuning systems have
emerged to automatically optimize database performance. However,
these systems require a significant number of workload runs to
deliver a satisfactory level of database performance, which is time-
consuming and resource-intensive. While many attempts have been
made to address this issue by using advanced search optimizers,
empirical studies have shown that no single optimizer can dominate
the rest across tuning tasks with different characteristics. Choosing
an inferior optimizer may significantly increase the tuning cost.
Unfortunately, current practices typically adopt a single optimizer
or follow simple heuristics without considering the task character-
istics. Consequently, they fail to choose the most suitable optimizer
for a specific task. Furthermore, constructing a compact search
space can significantly improve the tuning efficiency. However,
current practices neglect the setting of the value range for each
knob and rely on a large number of workload runs to select im-
portant knobs, resulting in a considerable amount of unnecessary
exploration in ineffective regions.

To pursue efficient database tuning, in this paper, we argue that
it is imperative to have an approach that can judiciously determine
a precise space and search optimizer for an arbitrary tuning task.
To this end, we propose OpAdviser, which exploits the information
learned from historical tuning tasks to guide the search space con-
struction and search optimizer selection. Our design can greatly
accelerate the tuning process and further reduce the required work-
load runs. Given a tuning task, OpAdviser learns the geometries
of search space, including important knobs and their effective re-
gions, from relevant previous tasks. It then constructs the target
search space from the geometries according to the on-the-fly task
similarity, which allows for adaptive adjustment of the target space.
OpAdviser also employs a pairwise ranking model to capture the
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relationship from task characteristics to optimizer rankings. This
ranking model is invoked during tuning and predicts the best op-
timizer to be used for the current iteration. We conduct extensive
evaluations across a diverse set of workloads, where OpAdviser
achieves 9.2% higher throughput and significantly reduces the num-
ber of workload runs with an average speedup of ∼3.4× compared
to state-of-the-art tuning systems.
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1 INTRODUCTION
Optimizing the configuration of a database management system
(DBMS) is a critical aspect to achieve high system performance.
Conventionally, the tuning task has been performed manually by
database administrators (DBAs), involving workload and hardware
configuration analysis, selection of appropriate configurations, and
performance testing. However, the manual tuning process is time-
consuming and expertise-consuming when dealing with complex
modern workloads and various hardware environments, especially
in the cloud environment. Consequently, automatic configuration
tuning has attracted lots of attention in the research community [4,
11, 16, 26, 32, 33, 37, 42–44, 46, 47, 52, 54].

The current systems for configuration tuning share a generic
workflow. Initially, the tuning system defines a search space that en-
compasses all possible configurations, given a target workload and
a performance metric. Subsequently, the system iteratively explores
configurations within the search space according to the suggestion
from a search optimizer, which aims to find the configuration that
maximizes the database performance. Notably, evaluating a config-
uration necessitates resources and time to run the workload, which
dominates as the major cost when tuning databases. Minimizing
the number of workload runs for finding a good configuration is a
crucial requirement to adopt the tuning systems in practical sce-
narios, such as production services with numerous databases [24].
A sophisticated tuning system should deliver a satisfactory level of
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database performance with minimal cost of workload runs. Given
a tuning task, the construction of search space and the choice of
search optimizer are themain factors that affect the tuning efficiency.
While prior research has tried to enhance the tuning efficiency by
selecting important knobs [5, 17, 23] and developing advanced
search optimizers [22, 24, 50, 53, 56], when applying these tuning
systems in practice, we find the following issues and challenges.

Ineffective Huge Search Space. In the literature, it is commonly
assumed that the number of evaluations required to find an opti-
mum is proportional to the size of the search space [48]. Popular
databases such as PostgreSQL or MySQL have hundreds of config-
urable knobs [20, 24]. Studies have shown that selecting a few im-
portant knobs can expedite the subsequent tuning process [23, 51].
However, a static selection of global important knobs is not applica-
ble to various workloads, since theymay vary across workloads [23].
To select workload-specific important knobs, existing practices con-
duct many target workload runs on different configurations before
proceeding to tune the selected knobs. Unfortunately, the number
of workload runs required to well select the important knobs could
be up to hundreds in quantity, which even surpasses the workload
runs required for the actual tuning process itself, as discussed in
Section 3.1. As a result, the high cost associated with this approach
poses a significant challenge for enhancing the overall tuning effi-
ciency in practice.

We also find that a vital factor to speed up the tuning process has
been ignored for long. That is how to define an appropriate value
range for each tuning knob. Existing tuning approaches usually
adopt the default value ranges provided by the database manual,
which are excessively broad and may contain theoretical values that
are infeasible for a specific workload. For instance, the default range
for innodb_buffer_pool_size is 5 MegaByte to 16 ExaByte in
MySQL, with the upper bound far exceeding the available instance
memory. As a result, tuning efforts would be wasted in unproduc-
tive areas [49], leading to out of memory errors [21]. Furthermore,
even when the upper bound of memory-related knobs is set below
the instance capacity, there is still a significant amount of super-
fluous space, which also holds true for other types of knobs. This
excessive space arises because the default ranges are designed to
cover all possible workload scenarios, rather than being customized
to a specific workload, so the default ranges are excessively large
for performance tuning, as shown in Section 3.2. Given this fact,
we propose to build compact ranges that are tailored to each work-
load. It should be as small as possible while still including optimal
regions. In such a way, the search space could be substantially re-
duced, which further improves tuning efficiency. Unfortunately,
identifying the compact knob ranges without lots of target obser-
vations is not easy. To this end, we face the challenge that “how to
define a compact space for a given tuning task without the
need for a large number of workload runs”.

Fixed Search Optimizer for Different Tuning Tasks. Many ad-
vanced search optimizers have been proposed to navigate the search
space for database tuning, which can be classified into two cate-
gories: search-based and learning-based. Search-based optimizers
employ heuristics or meta-heuristics to explore optimal configu-
rations, such as BestConfig [56] and genetic algorithm (GA) [9].
Learning-based optimizers aim to improve exploration by mod-
eling the performance function and can be further classified into

Reinforcement-Learning based [9, 31, 50] and Bayesian-Optimization
based [5, 10, 15, 17, 24, 27, 53, 55] approaches.

Despite the availability of various search optimizers, the appli-
cability of different optimizers remains unclear since no single
optimizer can dominate all tuning tasks, as indicated by the no
free lunch theorems for optimization [48] and the empirical stud-
ies [6, 51] on database tuning. Using an inferior and sub-optimal
optimizer could result in a significant performance loss of several or-
ders of magnitude [6, 51]. A recent study [9] on database tuning has
suggested that GA is suitable for the early tuning phase, where it fo-
cuses more on sampling configurations with high short-term gains,
while DDPG performs better in the later stages. Accordingly, it pro-
poses to adopt GA during the early tuning phase and then switch
to DDPG [35] for higher performance. However, the real-world
scenarios are more complex due to the ever-increasing candidates
of search optimizers and distinct tuning tasks, e.g., various work-
loads and different shapes of search space. Simple heuristics fail to
recommend the optimal search optimizer since they cannot capture
the relationship between the tuning tasks and the performance of
disparate optimizers. Therefore, to further enhance the efficiency
of database tuning, we face the challenge that “how to identify
an appropriate search optimizer for a specific tuning task”.
The decision is hard to make since we cannot perform exhaustive
testing of all candidate optimizers on potential tuning tasks, as it is
prohibitively expensive.

Our Approach. The aim of this study is to expedite database
tuning by simultaneously addressing the aforementioned two chal-
lenges by the automation of search space construction and optimizer
selection. To achieve this, we propose OpAdviser, a data-driven
approach that acts as an Optimization Adviser for database con-
figuration tuning. Specifically, tuning services could accumulate a
wealth of historical data as they perform tuning for different clients
and applications. Valuable knowledge can be extracted from the
historical data to guide the setting of target tuning without con-
ducting extensive experiments. Thus, OpAdviser leverages the data
collected from previous tuning tasks and constructed benchmark
data to automatically build a compact search space and select an
appropriate search optimizer for a given task.

First, OpAdviser constructs a compact search space which can
significantly reduce the number of target workload runs needed
to finish knob tuning. It learns the geometries of search space
from the tuning data collected in previous tuning tasks. Although
different tasks share common knowledge, their respective important
knobs and effective ranges are quite different. Consequently, the
geometries derived from one previous task may not be entirely
suitable for the target. To address this issue, OpAdviser extracts
the promising region from different source tasks based on their
similarity with the target task. It adjusts the task similarity during
tuning based on the augmented observations and adapts the target
search space according to the on-the-fly task similarity through
weighted voting. The transfer process is carefully designed so that
the negative transfer is avoided when source tasks are less similar
and the common geometries are extracted to tailor the search space.

Second, OpAdviser selects a suitable search optimizer by cap-
turing the mapping from task characteristics to the performance
ranking of each optimizer. It takes an arbitrary task as input and
predicts the most promising optimizer without online testing via a
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pre-trained model. The difficulty in this process lies in two aspects.
The first is how to capture the relationship from various tuning
tasks to the performance of different optimizers. The second is how
to collect diverse data for training functional models. To learn the
relationship, OpAdviser derives meta-features from tuning tasks
and employs a sample-efficient pairwise ranking model that can
predict the relative performance of two candidate optimizers given
an input meta-feature. And to enhance the quality of the training
dataset, OpAdviser employs active learning to construct the dataset
in the offline phase. To summarize, our contributions include:
• The first work that systematically and efficiently addresses the

search space construction and the search optimizer selection
problems for database configuration tuning (Section 4).

• A transfer-learning approach that constructs compact search
space by extracting the promising geometries from similar his-
torical tasks (Section 5).

• A data-driven method that recommends suitable search optimiz-
ers by capturing the relationship from the task characteristics to
the performance ranking of candidate optimizers (Section 6).

• A thorough comparison of OpAdviser against state-of-the-art
tuners and further analysis that validates our design (Section 7).
The remainder of the paper is organized as follows. We formally

define the database configuration tuning problem in Section 2 and
analyze the related unsolved problems in Section 3. Then, we pro-
vide system overview in Section 4 and introduce space construction
in Section 5 and optimizer recommendation in Section 6. We report
the evaluation results in Section 7 and conclude the paper.

2 PRELIMINARIES
We formulate the problem and define the related terminologies.
Database Tuning Problem. We consider the scenario where a
DBMS is optimized for a target workload. The end-user provides
a performance metric to be optimized, denoted by a performance
function 𝑓 . Common performance functions used in database tun-
ing include system throughput, or tail latency (e.g., 95th percentile
latency). Given a specific configuration 𝜃 , accessing its correspond-
ing performance 𝑓 (𝜃 ) requires stress testing the DBMS using the
target workload when 𝜃 is applied. Assuming that the objective is a
maximization problem, database configuration tuning aims to find
a configuration 𝜃∗ ∈ Θ in a given search space Θ, where

𝜽 ∗ = argmax
𝜽 ∈𝚯

𝑓 (𝜽 ). (1)

Search Space. A search space is the set of all possible configura-
tions. DBMS has a set of 𝑛 configurable knobs 𝑘1, . . . , 𝑘𝑛 , alongside
their respective domains Θ1, . . . ,Θ𝑛 . The knob domains can be ei-
ther continuous or categorical. A continuous domain is defined
by the lower bound 𝑙𝑖 and the upper bound 𝑢𝑖 . And a categorical
domain is defined by the set of possible values 𝑠𝑖 . Given the set of
knobs, the search space can be defined as Θ = Θ1 × . . . ×Θ𝑛 . It can
be viewed as an 𝑛-dimentional bounding box (or hyperrectangle),
which is parameterized by the value range of each knob.

Example.Most database tuning systems prune search space by
identifying top-k important knobs. The unimportant knobs are
fixed to the default value or the best value observed so far. In this
work, we propose to construct a search space Θ̂(Φ) by identifying
tight value ranges with Φ as a controled parameter. If a knob is

TPC-H JOB Twitter Sysbench
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Intersection of Important Knobs across  Workloads
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Figure 1: Important Knobs Are Workload-Specific – We
present the percentage of intersection among the top-10 im-
portant knobs from four different workloads.

continuous, its range parameter Φ𝑖 = (𝑙𝑖 , 𝑢𝑖 ), where 𝑙𝑖 ≥ 𝑙𝑖 and
𝑢𝑖 ≤ 𝑢𝑖 . If a knob is categorical, its range parameter Φ𝑖 = 𝑠𝑖 , where
𝑠𝑖 ⊆ 𝑠𝑖 . We also refer to the reduced ranges as effective ranges.
Search Optimizer. The search optimizer is the algorithm that
suggests a promising configuration over a given search space to
improve the pre-defined performance metrics. Due to the increasing
interest in configuration tuning, there are many candidate algo-
rithms such as MBO [25], SMAC [22], DDPG [35], GA [29], and so
on. We denote the search optimizer adopted at iteration 𝑡 as 𝑂𝑡 .

Example. CDBTune adopts DDPG along the whole tuning pro-
cess, i.e., 𝑂𝑡 = 𝐷𝐷𝑃𝐺 , 𝑡 = 1, . . . ,𝑇 . Hunter adopts GA in the first
140 iterations and adopts DDPG afterward, which is denoted by

𝑂𝑡 =

{
GA, 𝑡 ≤ 140
DDPG, 𝑡 > 140

(2)

Historical Observations.We denote the historical observations
of a tuning task 𝑤𝑖 by 𝐻 𝑖 = {𝜃𝑖

𝑗
, 𝑓 (𝜃𝑖

𝑗
,𝑤𝑖 )}𝑇𝑖𝑗=0, where 𝑓 ( · ,𝑤𝑖 ) is

the performance function under the tuning task𝑤𝑖 . We denote the
target tuning task as𝑤𝑡 with its observations denoted as 𝐻𝑡 .

3 PROBLEM ANALYSIS
There are general rules and guidelines to construct the search space
and select a search optimizer. But they have limitations: either
requiring a large number of target workload runs (contrary to
the aim of efficient tuning) or exhibiting unstable performance
(inconsistent among different tuning tasks). Hence, we take a deep
dive into existing problems and discuss the issues we address.

3.1 Knob Selection
Database systems typically own hundreds of configuration knobs
that determine the system’s runtime behavior. For instance, Mysql
and PostgreSQL have over 190 and 170 configurable knobs, respec-
tively [24]. Research [23, 51] has shown that tuning a small subset
of knobs can be sufficient to achieve near-optimal performance
and accelerate the configuration optimization due to the reduced
search space. In practice, DBAs pre-select several knobs based on
their experience and past tuning observations [53]. Regardless of
the difference in target workloads, the pre-select workload is tuned.
However, important knobs are workload-specific. Figure 1 presents
the intersection of top-10 important knobs from four workloads,
where the intersection of important knobs between any two work-
loads is less than 50%. Thus, tuning according to a static ranking
would restrictively improve the database performance.
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Figure 2:Well Selecting Important Knobs Takes Considerable
Observations – Tuning performance on top-10 knobs selected
based on different numbers of observations.

To automatically identify workload-specific important knobs,
existing approaches [5, 9, 17, 51] analyze knob importance by col-
lecting target observations under different configurations [24]. First,
they generate hundreds of configurations using a space-filling sam-
pling technique, such as Latin Hypercube Sampling (LHS) [38],
or a search optimizer, such as SMAC [22]. Each configuration is
then evaluated in the DBMS by running the target workload, and
a machine learning model is trained based on the observations to
quantify how each knob affects the DBMS performance. Finally, an
optimizer is adopted to optimize over a smaller space defined by
the selected knobs with high importance. The preceding knob selec-
tion process can accelerate the later optimizations but comes with
the cost of collecting hundreds of target observations. Collecting a
target observation takes comparable time with a tuning iteration
since the time of running target workload dominates both of them.
Currently, state-of-the-art methods are required to deliver a satis-
fying tuning performance within hundreds of iterations (e.g., 200
iterations) [51]. Using the above process to select important knobs
for each tuning task clearly breaks the goal of efficient tuning.

To highlight such cost, we generate target observations on Sys-
bench by sampling configurations using LHS from a 50-dimensional
space and evaluating their performance via target workload runs.
Following the above knob selection procedure, we select top-10
important knobs based on different numbers of target observations,
respectively. Figure 2 presents the performance of tuning the se-
lected knobs where the performance of tuning all the 50 knobs
is a baseline. We can see that only when more than 100 observa-
tions are used to select the knobs, the tuning performance becomes
better than the baseline. Moreover, the knobs selected based on
insufficient target observations results in a biased search space that
excludes the optimal regions, leading to a bad tuning performance.
In summary, selecting knobs based solely on target observations
is costly and inefficient. And we aim to identify workload-specific
important knobs by leveraging similar historical tasks, rather than
relying on a large number of target workload runs.

3.2 Knob Rang Setting
Despite the interest in selecting important knobs, there are currently
no established guidelines to set the value ranges of each knob for a
given workload. Existing practices adopt the default value ranges
provided in the database manuals. These ranges are excessively
broad and contain invalid and nonsense values for a specific tuning
task, leading to a highly large and necessary search space.

We conduct experiments to analyze the effective ranges that are
worth tuning. We collect approximately one thousand observations
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Figure 3: Default Ranges Are Superfluous – The proportion
of effective range size against the default range size.
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Figure 4: No Single Optimizer Dominates All Tuning Tasks –
Performance of different optimizers on two workloads.

under various configurations for Sysbench and Twitter workloads
and then derive the effective range for each knob based on the obser-
vations. The approach for deriving the effective range is presented
in Section 5.2. Essentially, only the configurations that fall within
the effective range have the potential to outperform the default
configurations. The results, presented in Figure 3, demonstrate that
more than 100 knobs have narrower effective ranges than the de-
fault ranges specified in the MySQL manual. For a fair comparison,
we set the default upper bound for memory-related knobs below
the instance capacity. Specifically, the space defined by the effective
ranges is 4.8 · 1079× and 2.4 · 1053× smaller than the default space
for Sysbench and Twitter, respectively. The findings indicate that
the conventional practice of exploring the space defined by default
ranges is resource-intensive, which wastes a large number of trials
exploring infeasible areas.

However, defining appropriate value ranges is a non-trivial task
that requires careful consideration. One must balance the need to
exclude unpromising regions while avoiding the risk of exclud-
ing optimal areas. Additionally, similar to the important knobs,
the effective range may differ between workloads. Therefore, pre-
derived effective ranges cannot be directly transferred to new tasks
without adaptation. As a concrete example, the effective range of
innodb_thread_concurrency on the Sysbench workload is larger
than that on the Twitter workload, whereas the opposite is true for
innodb_spin_wait_delay. To this end, in this paper, we seek to
construct specific value ranges for a given workload.
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Figure 5: Overview: Architecture and Workflow of OpAdviser.

3.3 Search Optimizer Selection
Given the availability of various search optimizers for database
tuning, several rule-based heuristics exist for choosing search op-
timizers. For instance, Hunter [9] suggests a two-phase approach
that initially utilizes GA [29] and subsequently DDPG [35]. And
one experimental study [51] has demonstrated empirically that
SMAC [22] has the best overall performance among the candidate
optimizers. However, faced with various tuning tasks, the general
rules could fail and cause bad tuning performance. To illustrate, Fig-
ure 4 represents the tuning performance of the two-phase approach
and the performance of different optimizers on Sysbench and Twit-
ter workloads. Notably, selecting a suitable strategy can improve
the tuning performance (e.g., Two-Phase in Sysbench andMBO [25]
in Twitter). Nonetheless, different search optimizers demonstrate
varying performance rankings on the two workloads, and the gen-
eral rules fail to recommend an optimizer that consistently performs
the best. Therefore, given the different characteristics of tuning
tasks, it is vital but challenging to select suitable search optimizers.

Opportunities. This paper aims to explore two directions: (1)
identifying workload-specific important knobs and their effective
ranges without requiring extensive target observations, and (2)
selecting appropriate search optimizers to enhance tuning effi-
ciency. To achieve these goals, we propose a transfer-learning-based
approach that obviates the need for exhaustive experimentation
on the target workload by utilizing historical observations from
previous tasks. Previous studies in database tuning have utilized
historical observations to enhance the performance model of the
search optimizer, such as workload mapping [5], RGPE [53], and
fine-tuning [50]. Orthogonal to these approaches, we focus on au-
tomatically designing search space and selecting search optimizers
with the merit of transfer learning.

4 OVERVIEW
Figure 5 presents the architecture and workflow of OpAdviser.

Architecture. The right-hand side represents the client where
end users submit tuning requests and a cloud database instance
to be optimized. On the right-hand side, the tuning system, OpAd-
viser, is comprised of five components: (1) controller, which controls
the tuning process by interacting with end users and the database
instances; (2) data repository, which stores tuning-related data,

including historical observations from different tuning tasks. Ob-
servations in the data repository are represented as {𝜃𝑖

𝑗
, 𝑓 (𝜃𝑖

𝑗
,𝑤𝑖 )},

where 𝑖 indicates the 𝑖𝑡ℎ task. The observations contain the config-
urations of all configurable knobs, even those that are not tuned
during tuning, and therefore have the same dimensions; (3) space
constructor, which constructs a compact search space; (4) optimizer
adviser, which selects a suitable search optimizer; and (5) configura-
tion generator, where the selected optimizer generates a promising
configuration over the constructed search space.

Workflow. To initiate a tuning task, the end user first specifies
the tuning objective, tuning budget, the database instance, and the
target workload. An iterative tuning workflow is then activated.
At each iteration, the controller applies a new configuration to
the cloud database, executes the workload, and fetches the data-
base performance after the workload running finishes (steps 1-2
in Figure 5). The observation {𝜃𝑡

𝑗
, 𝑓 (𝜃𝑡

𝑗
,𝑤𝑡 )} is then stored in the

data repository (step 3 in Figure 5). Using the observations of the
target and historical tasks, space constructor (discussed in Section
5) identifies similar tasks and constructs a compact search space
by combining their promising regions (step 4 in Figure 5). Then,
optimizer adviser (discussed in Section 6) extracts a meta-feature
from the target task by analyzing its search space and historical ob-
servations, and inputs the meta-feature to a meta-ranker, which is
pre-trained on constructed benchmark data. Then the meta-ranker
predicts the performance ranking of the candidate optimizers, and
a top-ranked optimizer is recommended (step 5 in Figure 5). Subse-
quently, the recommended optimizer and the constructed search
space are passed to configuration generator where the optimizer
explores the search space by suggesting a promising configuration,
which is passed to the controller (step 6 in Figure 5). Once the
tuning budget is exhausted, OpAdviser returns the best configu-
ration found so far to the end user. OpAdviser is designed to be
self-improving, whereby its performance improves with the increas-
ing tuning observations accumulated in the data repository.

5 SEARCH SPACE CONSTRUCTION
In this section, we present a new approach to automatically con-
struct a precise search space without collecting large numbers of
observations on the target workload. Our approach takes the ob-
servations from previous tasks (also referred to as source tasks)
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and the target task as inputs and outputs a compact target search
space Θ̂ ⊆ Θ. Since Θ̂ is smaller, the search optimizer will find its
optimum faster, i.e., requiring fewer workload runs. To construct Θ̂
without many target observations, we utilize the effective regions
extracted from similar source tasks. Our method has three steps:
(1) similar task identification where we identify a set of candidate
tasks with similar characteristics to the target task, (2) effective
region extraction where we extract the effective region from each
candidate based on the task similarity, (3) majority weighted voting
which utilizes the geometries of the extracted regions to generate
the target space where the majority regions are retained.

5.1 Similar Task Identification
A database tuning system can accumulate a wealth of historical
observations as it performs different tuning tasks. These previous
tasks can offer valuable insights for identifying the promising re-
gion for target tuning. For instance, similar workloads running
on different hardware may share common ranges for hardware-
agnostic knobs. Even for different workloads, the bad search area
could be similar, such as a buffer size that is too small. Hence, for a
given target task, examining similar historical tasks could reveal
analogous promising regions.

The first question is how to quantify the similarity between a
source task and the target task so that we can transfer the effec-
tive regions accordingly. We address this problem by considering
whether the two tasks have similar performance rankings for differ-
ent configurations, which indicates whether we can adopt the good
region of one task for another. For the target task and a source task,
we measure their similarity as the ratio of concordant ranking pairs
based on the target observations. In this context, given two target
observations (𝜃1, 𝑓 (𝜃1)) and (𝜃2, 𝑓 (𝜃2)), if a the performancemodel
of the source task can correctly predict their relative performance,
we identify the presence of a "concordant ranking pair" between
the source and target tasks. The ratio of concordant ranking pairs
reflects the generalization ability of source performance model on
the target task. Formally, we define the similarity 𝑆 (𝑖, 𝑡) between
source task𝑤𝑖 and the target task𝑤𝑡 as follows:

𝑆 (𝑖, 𝑡 ) = 2
|𝐻𝑡 | ( |𝐻𝑡 | − 1) 𝐹 (𝑖, 𝑡 ),

𝐹 (𝑖, 𝑡 ) =
|𝐻𝑡 |∑︁
𝑗=1

|𝐻𝑡 |∑︁
𝑘=𝑗+1

1
(
𝑓 (𝜃 𝑗 ) ≤ 𝑓 (𝜃𝑘 )

)
⊗ 1

(
𝑓
′ (𝜃 𝑗 , 𝑤𝑖 ) ≤ 𝑓

′ (𝜃𝑘 , 𝑤𝑖 )
)
,

(3)

where 𝐹 (𝑖, 𝑡) is the number of concordant ranking pairs, 𝐻𝑡 is the
number of target observations, and ⊗ is the exclusive-nor operator.
And 𝑓

′
is performance model fitted on the historical observations

of the source task𝑤𝑖 . We train the performance model in the offline
phase using the random forest algorithm as it is lightweight and
known to perform well for categorical input data [22].

Taking Figure 6 as an illustration, the first row represents the
target response surface, while the subsequent three rows depict
the source response surfaces. In the 4th iteration, we have three
target observations (𝜃1 < 𝜃2 < 𝜃3) with performance ranking pairs:
𝑓 (𝜃1) ≤ 𝑓 (𝜃2), 𝑓 (𝜃2) ≥ 𝑓 (𝜃3), and 𝑓 (𝜃1) ≤ 𝑓 (𝜃3). Considering
the source task𝑤3, its rankings for these three configurations are:
𝑓
′ (𝜃1) ≤ 𝑓

′ (𝜃2), 𝑓
′ (𝜃2) ≥ 𝑓

′ (𝜃3), and 𝑓
′ (𝜃1) ≥ 𝑓

′ (𝜃3). It exhibits

two concordant pairs with the target, resulting in 𝑆 (1, 𝑡) = 2
3 . Simi-

larly, in the 6th iteration, there are 10 performance ranking pairs.
Task𝑤3 can correctly rank three of them, resulting in 𝑆 (3, 𝑡) = 3

10 .
As the number of target observations grows, the ratio of concordant
ranking pairs increasingly approximates the ground-truth similar-
ity. OpAdviser filters source tasks with similarity below 0.5 because
they provide less utility for the target than a random guess.

5.2 Effective Region Extraction
In this subsection, we explain how we extract the effective region
from a source task by taking into account its similarity to the target
task. We denote the region extracted from 𝑖-th task as Θ̂(Φ𝑖 ), where
Φ is the parameter that defines the effective region, as formulated
in Section 2. Our goal is to obtain an effective region that contain
the promising configurations while keeping it as small as possi-
ble for the sake of efficient tuning. To this end, we formulate the
identification of the effective region as a constrained optimization
problem, where we minimize the size of the effective region while
ensuring that it still includes promising configurations:

argmin
Φ𝑖

Λ(Φ𝑖 ),

s.t. ∀𝜃 ∈ 𝐺, 𝜃 ∈ Θ̂(Φ𝑖 ) .
(4)

In Equation 4, the objective function minimizes the size of Θ̂(Φ𝑖 ),
while the constraint condition ensures that Θ̂(Φ𝑖 ) contains the
promising configurations. Specifically, Λ(Φ𝑖 ) denotes the size of
Θ̂(Φ𝑖 ), and 𝐺 denotes a set of promising configurations. We con-
sider the configurations with performance level above a certain
threshold as promising, i.e.,𝐺 =

{
𝜃 ∈ Θ|𝑓 (𝜃,𝑤𝑖 ) ≥ 𝑓 𝑖

𝑏

}
, where 𝑓 𝑖

𝑏

is the performance standard. To form 𝐺 , we utilize the observed
configurations in 𝐻 𝑖 and randomly sampled configurations. For
an observed configuration, if its observed performance 𝑓 ( · ,𝑤𝑖 ) is
higher than 𝑓 𝑖

𝑏
, we add it to 𝐺 . For a randomly sampled configura-

tion, if its predicted performance 𝑓
′ ( · ,𝑤𝑖 ) is higher than 𝑓 𝑖𝑏 , we

add it to𝐺 . And the size of Θ̂(Φ𝑖 ) is quantified by the total number
of possible configurations within the region:

Λ(Φ𝑖 ) =
∏
𝑘𝑖
𝑗
∈𝐾1

(
𝑢𝑖𝑗 − 𝑙 𝑗

) ∏
𝑘𝑖𝑡 ∈𝐾2

���𝑠𝑖𝑡 ���, (5)

where 𝐾1 denotes the set of continuous knobs and 𝐾2 denotes the
set of categorical knobs. To this end, we can derive that Equation
4 has a simple closed-form solution. For a continuous knob 𝑘 𝑗 , its
lower bound and upper bounds are given by

𝑙𝑖𝑗 =𝑚𝑖𝑛

{
𝜃 𝑗
��𝜃 ∈ 𝐺

}
, 𝑢𝑖𝑗 =𝑚𝑎𝑥

{
𝜃 𝑗
��𝜃 ∈ 𝐺

}
. (6)

For a categorical knob 𝑘𝑡 , its possible value is given by

𝑠𝑖𝑡 =

{
𝜃𝑡
��𝜃 ∈ 𝐺

}
. (7)

The effective region encompasses all the potential configurations
with performance superior to 𝑓 𝑖

𝑏
. Given the solution of Equation 4,

it is not difficult to see that the value of 𝑓 𝑖
𝑏
largely affect the size of

the effective region. To properly control the region size, we adjust
𝑓𝑏 based on task similarity, as defined by Equation 8::

𝑓 𝑖
𝑏
= 𝑓 𝑖

𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡
+ 2

(
𝑓 𝑖
𝑏𝑒𝑠𝑡

− 𝑓 𝑖
𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡

) (
𝑆 (𝑖, 𝑡) − 0.5

)
, (8)
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where 𝑓 𝑖
𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡

is the default performance of the source task, 𝑓 𝑖
𝑏𝑒𝑠𝑡

is the best-observed performance of the source task, and 𝑆 (𝑖, 𝑡) is
the task similarity between the source and the target task. The
underlying principle of this design is as follows. If the source task is
highly similar to the target task, 𝑓 𝑖

𝑏
approaches 𝑓 𝑖

𝑏𝑒𝑠𝑡
, resulting in a

small extracted region. Otherwise, 𝑓 𝑖
𝑏
deviates from 𝑓 𝑖

𝑏𝑒𝑠𝑡
, leading to

a large extracted region with less space pruned. Continue with the
running example in Figure 6, with 𝜃 = 1 as the default configuration.
In the 6th iteration, we have 𝑓 1

𝑏
= 𝑓 1

𝑑𝑒𝑓 𝑎𝑢𝑙𝑡
+ 0.6(𝑓 1

𝑏𝑒𝑠𝑡
− 𝑓 1

𝑑𝑒𝑓 𝑎𝑢𝑙𝑡
)

and 𝑓 2
𝑏
= 𝑓 2

𝑑𝑒𝑓 𝑎𝑢𝑙𝑡
. Consequently, this leads to a smaller effective re-

gion (red area) when utilizing𝑤1 as the basis and a larger one when
using𝑤2. Given the high similarity between𝑤1 and the target, we
can extract a small region based on𝑤1 with a high confidence that
the optimal configuration of the target lies within it. Conversely,
due to the lower similarity of𝑤2 to the target, OpAdviser controls
the extracted region based on 𝑤2 to be relatively large. This pre-
vents aggressive pruning of the search space, such as in the case of
pruning the region 3.5 < 𝜃 < 4.5 based on𝑤2.

To further decrease the dimensionality of the effective region,
we employ feature selection algorithms [19] to identify important
knobs based on the historical observations 𝐻 𝑖 . Specifically, we
adopt SHAP [36], a toolkit that measures feature importance by
interpreting performance changes between configurations. It has
been shown to yield the most meaningful importance scores in the
context of database tuning [51]. For each knob, SHAP computes its
contribution (i.e., SHAP value) to the enhancement of the system’s
performance from the base level to the target level. We then discard
the knob with only negative contributions (assuming a maximiza-
tion objective). The removal of a knob indicates that it does not
merit further tuning, and its effective range is set to zero.

5.3 Majority Weighted Voting
Given the effective regions extracted from each candidate task, the
final step of our approach is to generate the target search space,
including the important knobs and their value ranges.

We adopt a majority weighted voting strategy to aggregate the
suggestions from candidate tasks, where the the decision ofmajority
is respected. The weight assigned to 𝑖-th task is proportional to
its similarity with the target task, i.e.,𝑤𝑖 = 𝑆 (𝑖,𝑡 )∑𝑚

𝑗=1 𝑆 ( 𝑗,𝑡 )
, where𝑚 is

the number of voters. To ensure consensus among the candidate
tasks, we set the total weight threshold to 50% [41] . Knobs with
a majority agreement to remove are eliminated, while those with
a majority agreement to retain are preserved. Importantly, unlike
existing practices [9, 51, 53], this approach does not require a hyper-
parameter for setting the number of important knobs. Then, for
each retained knob, we enumerate the extracted effective ranges
and also retain the parts with the majority vote. We generate the
target range by creating one tight bounding box enclosing all the
regions with majority voting.

To further avoid negative transfer [57], we employ two strate-
gies. First, we consider the target task as a voter. We generate a
referenced effective region using the current target observations,
using the same approach in Section 5.2. To calculate the weight of
the target voter, we measure its generalization ability on unseen
configurations using the out-of-sample concordant ordering ratio,
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(c) Iteration 11.

Figure 6: A Toy Example, Showing Three Steps of Space Con-
struction: (1) Computing similarity 𝑆 (𝑖, 𝑡) based on the number of
concordant ranking pairs between the target performance (black
point) and the predicted performance (grey point) and filtering
tasks with 𝑆 (𝑖, 𝑡) < 0.5 (red cross). (2) Extracting effective regions
(red area) with performance better than a standard (red dashed
line) controlled by 𝑆 (𝑖, 𝑡). (3) Constructing target range (pale pink
shading in the first row) by a weighted combination of the red areas.

defined in Equation 9:

𝑆 (𝑡, 𝑡 ) = 2
|𝐻𝑡 | ( |𝐻𝑡 | − 1) 𝐹 (𝑡, 𝑡 ),

𝐹 (𝑡, 𝑡 ) =
|𝐷𝑡 |∑︁
𝑗=1

|𝐷𝑡 |∑︁
𝑘=𝑗+1

1
(
𝑓 (𝜃 𝑗 ) ≤ 𝑓 (𝜃𝑘 )

)
⊗ 1

(
𝑓
′
− 𝑗 (𝜃 𝑗 ) ≤ 𝑓

′
−𝑘 (𝜃𝑘 )

)
,

(9)

where 𝑓
′
− 𝑗 (𝜃 𝑗 ) is the performance prediction of 𝜃 𝑗 from the model

fitted on 𝐻𝑡 with the observation for 𝜃 𝑗 left out. As the target
observations increase with each iteration, the target model’s gener-
alization ability improves steadily. OpAdviser extracts the effective
region based on the target task, when the leave-one-out model can
better generalize to unseen configurations than random guess, i.e.,
𝑆 (𝑡) > 0.5. In the ongoing example illustrated in Figure 6, OpAd-
viser warms up the space recommendations using the historical
tasks in the 4th iteration. The target model is introduced since
the 6th iteration with its weight increasing, so that the geometries
learned from target observations are given more importance. Sec-
ond, we sample voters from the candidate tasks instead of using
all of them. We denote the set of candidate tasks as 𝐶 . We sample
𝑘 (𝑘 < |𝐶 |) tasks out of the candidate tasks without replacement,
following the possibilities based on their scaled similarities. The
task sampling adds randomness to the generated target space and
avoids the optimizer being trapped in the local optimum.
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6 SEARCH OPTIMIZER RECOMMENDATION
In this section, we present a data-driven approach that recommends
suitable search optimizers for a given task. Instead of rule-based
selection, our approach considers the task characteristic and sug-
gests a promising optimizer accordingly. It leverages the knowledge
extracted from the running history of different optimizers through
a pre-trained model and can thus produce predictions without ac-
tually running candidate optimizers on the current tasks.

6.1 Meta-Feature Extraction
In the context of optimizer selection, the meta-feature is informa-
tive tuning-related variables that characterize the tuning task and
can impact the tuning performance of different search optimizers.
Studies have shown that several factors in a tuning task can lead
to different suitable optimizers. For example, the dimensionality
and composition of a search space can impact the performance of
search optimizers, with some optimizers being better suited to more
categorical or continuous knobs [51]. The response surface of the
database performance function can also impact the search perfor-
mance of optimizers [51]. The response surface is the mathematical
relationship between the input variables and the output function. In
the context of database tuning, the difference in response surface is
mainly caused by different workloads and hardware environments.
We also consider the tuning phase, as some search optimizers have
been shown to perform better in the early stage of tuning, while oth-
ers perform better later [9]. In summary, We extract the following
meta-features for each tuning task:

(1) Space feature. This feature includes the number of tuning knobs,
the size of the search space, and the ratio of continuous tuning
knobs to categorical tuning knobs.

(2) Response surface feature. We adopt a similarity vector that
contains the ratios of concordant ordering pairs (discussed in
Section 5.2) between the current task and each previous tuning
task. This vector can be viewed as a distributed representation
of the target response surface [12].

(3) Tuning process feature. We use the number of current iterations
as the feature to represent the tuning process.

Themeta-feature is updated after each tuning iteration so that we
can select suitable optimizes for different iterations. Note that dif-
ferent search optimizers could share the same tuning observations,
providing us with the opportunity to adopt different optimizers
during the tuning process.

6.2 Offline Data Generation
It is challenging and unreliable to rely on general heuristics, such
as "DDPG performs well in large search spaces [50]", "SMAC is the
overall best [51]", and "start with GA before switching to DDPG [9]"
for optimizer selection. One reason is that determining suitable
decision thresholds, such as at which size DDPG is preferred over
SMAC or the iteration count for transitioning from GA to DDPG,
is complex. And choosing the appropriate heuristic to follow can
be difficult. Additionally, the heuristics rely on human experience,
which may not cover the diverse tuning tasks with varying features.

To address these challenges, we propose a data-driven solution
utilizing machine learning models for tuning task selection. In order

to train our model, we require data that demonstrates how differ-
ent candidate optimizers perform under specific tuning conditions.
However, performing exhaustive testing on all the potential tuning
tasks is prohibitively expensive, given so many possible tuning
conditions. To efficiently collect the data with less testing effort, we
employ active learning techniques to select samples for testing and
labeling. We begin by generating a set of candidate tuning tasks by
varying search spaces and response surfaces. We iteratively choose
tasks with the highest uncertainty to test, as indicated by the clas-
sification margin [30], a well-established metric for active learning.
The sample with the smallest margin represents the greatest uncer-
tainty. This process continues until a desired decision margin level
is reached or the testing budget is exhausted.

6.3 Meta-Ranker Construction
Utilizing the collected data, we proceed to build our learning model,
referred to as namely meta-ranker. Our approach frames opti-
mizer selection as a ranking problem, with the objective of pre-
dicting the pairwise ranking of optimizers based on provided tun-
ing conditions. To achieve this, we employ LambdaMART [8], a
well-established learning-to-rank algorithm. LambdaMART utilizes
gradient-boosting decision trees to optimize a pairwise loss func-
tion, effectively capturing the relative performance of optimizers
in diverse tuning scenarios. Meta-ranker takes as input the task
meta-feature and two candidate optimizers for comparison, pro-
ducing a ranking of their relative performance on the given task.
Its training data is structured as (𝑚,𝑜𝑖 , 𝑜 𝑗 , 𝐼 ), where𝑚 represents
the meta-feature of a tuning task, 𝑜𝑖 and 𝑜 𝑗 are one-hot encodings
for candidate optimizers, and 𝐼 serves as an identifier. When 𝑜𝑖
outperforms 𝑜 𝑗 , 𝐼 is assigned the value of one, and zero otherwise.

In the online phase , OpAdviser extracts the meta-feature from
the target task, inputs this feature along with the pair of candi-
date optimizers into meta-ranker, and recommends the top-ranked
optimizer. The meta-ranker allows us to systematically discern op-
timizer performance concerning specific tuning task characteristics.
And it offers the advantage of being more sample-efficient than
other models [18, 34]. Compared to a direct classification model
to predict the best optimizer, more information can be extracted
by considering pairwise performance. Moreover, compared with
a regression model, the meta-ranker only requires comparisons
between pairs of optimizers and handles the noisy data, and data
with different scales better.

7 EXPERIMENTS
We first compare OpAdviser’s performance against state-of-the-art
baselines. Then, we conduct micro-analysis of OpAdviser’s individ-
ual components and evaluate the generalization ability. Finally, we
evaluate on a cold start scenario.

7.1 Experiment Setting
Hardware. Our experiments are conducted on cloud instances,
running MYSQL 5.7 as the target DBMS. Unless otherwise stated,
we adopt the instance type with 16 cores of CPU and 32 GBmemory.
Target Workload. We employ four workloads with different char-
acteristics: Sysbench read-only (RO), Sysbench write-only (WO),
Sysbench read-write (RW), and Twitter. We load 300 tables under
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Sysbench, with each table containing 800 thousand records, result-
ing in a total data size of ∼ 50 GB. We load the data with a scale
factor of 3000, resulting in a total data size of ∼ 16 GB. We use
throughput as a maximization objective for the four workloads.
The above setting is similar to prior works [24, 51].
Candidate Optimizer. Following our prior work [51], we se-
lect four promising optimizers, namely MBO [25], SMAC [22],
DDPG [35], and GA [29], as candidate optimizers in the optimizer
adviser module. MBO is a BO-based optimizer that adopts a mixed-
kernel GP as its surrogate model. SMAC adopts a random-forest-
based surrogate which assumes a Gaussian model. DDPG adopts
Deep Deterministic Policy Gradient algorithm to learn the configu-
ration tuning policy for DBMS. GA is a meta-heuristic inspired by
the process of natural selection.
Data Repository.We generate training data for meta-ranker by
constructing various tuning conditions. To create the potential
tasks, we construct the search space by adjusting the tuning knobs,
resulting 390 distinct spaces. Additionally, we diversify the response
surfaces using 9 workloads, including Twitter, YCSB, TPC-C, Voter
in OLTBench [14], Sysbench RO, Sysbench WO, Sysbench RW,
JOB [28], TPC-H [1]. The outlined procedure generates 3510 tuning
tasks under varying conditions. Among these, we actively labeled
48 tasks, documenting the tuning performance of the four candidate
optimizers across different tuning iterations. Additionally, these
tuning observations also used for constructing the search space
during the target tuning. To ensure the fairness of comparison, we
hold out any observations of the target workload that are present
in the data repository. Specifically, when tuning Sysbench, regard-
less of its mode, we hold out the observations for Sysbench RW,
Sysbench RO, and Sysbench WO.
Tuning Setting.MYSQL 5.7 has 197 configurable knobs [51]. OpAd-
viser automatically constructs a search space from the input 197-
dimensional space by identifying important knobs and their effec-
tive ranges. For the baselines, we adopt the initial input search
space as stated in their papers: the input space contains 90, 65, 20,
197 generally important knobs for LlamaTune, Hunter, ResTune,
and CDBTune, respectively. OtterTune incrementally selects im-
portant knobs, beginning with 4 knobs. To select the generally
important knobs, we rank the knobs by their average SHAP value
across the workloads. We mostly adopt the knob ranges provided
in the MySQL manual [2, 3], except that if a knob’s upper bound
exceeds the instance capacity, we set it equal to the instance capac-
ity. We perform three tuning sessions for each baseline, reporting
the median of the best tuning performances so far. Each tuning
session comprises 200 iterations, where each iteration involves a
three-minute stress test to run the target workload.

7.2 End-to-end Comparison
We compareOpAdviserwith five existing tuning approaches, namely,
LlamaTune [24], Hunter [9], DB-BERT [45], ResTune [53], and
SMAC [22]. We also evaluate two ablation versions of OpAdviser:
OpAdviser-w/o-Optimizer, which removes the optimizer adviser,
and OpAdviser-w/o-Space, which removes the space constructor.
Figure 7 illustrates the performance of the best configurations found
so far by different approaches throughout the iteration process.
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Figure 7: End-to-end Comparison over The Tuning Time.

7.2.1 Comparison with LlamaTune [24]. LlamaTune is a recently
proposed database configuration tuning system that reduces the
space dimension based on randomized embeddings [39]. It maps
the input search space Θ𝐷 to a lower-dimensional intrinsic space
Θ𝑑 , where 𝑑 << 𝐷 , by a randomized projection matrix 𝐴 ∈ R𝐷∗𝑑 ,
and then optimizes over the low-dimensional Θ𝑑 using the SMAC
optimizer. The suggested point 𝑝 in the low-dimensional space is
projected to 𝑝 in the original space by 𝑝 = 𝐴𝑝 .

OpAdviser outperforms LlamaTune on the fourworkloads, achiev-
ing throughput improvements of 11.24% ~ 452.21% and 7.38% ~
54.23% given a time budget of 2.5 hours and 10 hours, respectively.
We observe that LlamaTune has inferior tuning performance in the
initial phase since it does not use prior tuning knowledge (cold start).
Additionally, its space projection restricts a one-to-many mapping
from Θ𝑑 to Θ𝐷 , forcing multiple knob values to be determined by
one dimension in Θ𝑑 . This approach relies on the assumption that
tuning a small set of important knobs, whose size is less than or
equal to 𝑑 , can improve database performance. However, values of
other less important knobs still need to be located in reasonable
ranges, which may be violated by the one-to-many mapping. There-
fore, the space projection may cause a ceiling effect on the tuning
performance, as shown in Figure 7 (a).

7.2.2 Comparison with Hunter [9]. Hunter is another state-of-the-
art database configuration tuning system that divides the tuning
process into two phases. In the first 140 iterations (the first phase),
it uses GA as the search optimizer to optimize over the input search
space and then uses a random forest model to identify the top-20
important knobs based on the observations from the first phase.
In the second phase, it uses DDPG as the search optimizer to tune
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the top-20 knobs. However, similar to LlamaTune, Hunter also
has a cold start issue since it does not utilize prior tuning data.
Additionally, its choice of optimizer and the number of iterations
using GA are decided empirically based on experiments on several
workloads [9], which may not be generally applicable.

7.2.3 Comparison with DB-BERT [45]. DB-BERT applies BERT
model [13] to analyze database manuals and other relevant text
documents. It fine-tunes model weights in the training phase to
translate natural language hints into recommended settings. At run
time, DB-BERT uses reinforcement learning to learn to aggregate,
adapt, and prioritize hints for optimal performance in a specific
tuning task. As shown, DB-BERT recommends better configurations
at the early phase, but its effectiveness diminishes later, restricted
by the limited tuning hints extracted from texts.

7.2.4 Comparison with ResTune [53]. ResTune fits multiple base
learners on observations of each corresponding source task and
combines their predictions as a meta-learner. However, the per-
formance scales of different history tasks usually differ, and the
combined prediction will be dominated by the base learners where
the output values are larger [7]. While ResTune performs well ini-
tially due to the use of prior knowledge, it improves slowly later.
OpAdviser addresses the scale problem by transferring the effective
regions instead of the model’s predictions.

7.2.5 Comparison with OtterTune [6]. OtterTune identifies the
most similar workload from the data repository through work-
load mapping and utilizes matched data and target observations
to train a surrogate model. OtterTune’s approach of merging data
without considering their similarity ratio can cause negative trans-
fer. Furthermore, OtterTune selects important tuning knobs using
an increasing heuristics approach, which performs less effectively
than OpAdviser, as demonstrated in Section 7.4.1.

7.2.6 Comparison with CDBTune [50]. CDBTune employs the data
repository’s observations to pre-train a DDPG model. Then, it up-
dates the model through gradient descent (fine-tune) based on the
feedback information. CDBTune’s performance is not stable due to
the potential overfitting of the neural network to source workloads.

7.2.7 Comparison with SMAC [22]. We apply SMAC to optimize a
search space with 20 generally important knobs (SMAC-20) and all
197 knobs (SMAC-197). SMAC-197 performs poorly because of its
excessively large search space. Although SMAC-20 achieves better
performance, it still falls behind.

7.2.8 Summary. Compared to the best baseline in each workload,
OpAdviser reaches its best configuration ∼3.4× faster on average
and can achieve the same best throughput with half the tuning
budget. It also improves final throughput by ∼9.2% on average.

7.3 Overhead Analysis.
Offline Training. OpAdviser collects the training data for meta-
ranker through an offline process. In our experimental setup, which
involves a 200-iteration tuning budget with 3-minute stress-testing
per iteration, the labeling process for one task consumes ∼ 2400
minutes (4×200×3). To label all 48 tuning tasks, we allocate approx-
imately 20 days of effort, utilizing four parallel database instances.

Table 1: Algorithm Time Per Iteration on Average.

OpAdviser LlamaTune Hunter DB-BERT ResTune OtterTune CDBTune

5.92s 1.67s 0.02s 9.61s 6.86s 6.89s 0.13s
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Figure 8: Comparison of Different Space Strategies.

For cloud service providers or companies offering database tuning
services, this overhead is manageable and can be quickly recouped
by the OpAdviser’s tuning efficiency compared to other systems,
as evidenced in Figure 7. And the corresponding observations can
aid in the construction of the search space. Nonetheless, the offline
data collection may pose challenges for small end-users seeking to
optimize their own applications. They usually begin tuning with
no initial historical data available and we further discuss this cold
start scenario in Section 7.7.
Online Generation. We measure the time required by different
approaches for generating a configuration, which does not include
the time for target workload runs. The results are presented in Table
1. Due to the need of constructing space and selecting optimizers,
OpAdviser has a longer algorithm time than several approaches.
Specifically, OpAdviser takes 4.93 seconds to construct the search
space, with an average time of 4.21 seconds spent on calculating the
concordant ranking pairs ratio between the current task and his-
torical tasks. Optimizer recommendation tasks 0.25 seconds where
extracting the meta-feature and the inference of meta-ranker are
relatively faster. Overall, OpAdviser’s algorithm time is comparable
to other approaches. Database tuning systems replay the target
workload on the suggested configuration to gather the feedback,
which usually takes 3 minutes or more to obtain stable observa-
tions [6, 50, 53], dominating the tuning time. Therefore, despite
OpAdviser’s longer algorithm time, OpAdviser still outperforms
the baselines in the end-to-end tuning time by identifying better
configurations with less target workload runs.

7.4 Evaluation of Space Construction
7.4.1 Comparison with Different Space Construction Strategies. We
compare OpAdviser’s space constructor with the following base-
lines: (1) Static, which constructs a search space defined by the
top-20 knob based on a static ranking of general importance; (2)
Increase, adopted in OtterTune [5], which begins with tuning the
top four knobs and adds two knobs every four iterations, according
to the static ranking; (3) Decrease, adopted in Tuneful [17], which
begins with tuning all the knobs and removes 40% unimportant
knobs every 10 iterations based on the importance ranking gener-
ated from the previous 10 observations; (4) Box [40], which suggests
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Table 2: Ablation in Space Construction on Sysbench RO.

Module Throughput
(txn/sec)

Improvement
ratioKnob Range Similarity

- - - 12240 -
✓ ✓ - 9742 -20.4%
✓ - ✓ 15872 29.7%
- ✓ ✓ 21376 74.6%
✓ ✓ ✓ 25406 107.6%
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Figure 9: Comparison of Optimizer Selection Strategies.

a minimal search space containing the best-observed configurations
of all the previous tasks. OpAdviser outperforms all the baselines,
as shown in Figure 8. Static and Increase suffer from the common
drawback of excluding workload-specific important knobs from the
search space. Although Decrease aims to generate an importance
ranking specific to the target task, the 10 target observations are
insufficient to accurately rank the knobs. Moreover, these three
baselines adopt the default range which is too large, leading to an
inefficient search. Box is most closely related to our approach since
they both focus on defining more compact value ranges. Neverthe-
less, Box neglects task differences and merely transfers the space
containing best source configurations, resulting in overly aggres-
sive pruning of the search space. By considering task similarity and
dynamically adjusting the size of the extracted regions accordingly,
our approach effectively addresses the limitations of Box.

7.4.2 Ablation Study. We present an ablation study on the tech-
niques employed in the space constructor: knob selection (Knob),
range reduction (Range), and similarity control (Similarity). Tables
2 show the results, where the improvement ratio against using no
technique (the first row) is presented. We observe that applying
any combination of Similarity with Knob or Range improves per-
formance compared to using no technique. The best performance is
observed when all three techniques are used in tandem, validating
the efficacy of similarity control. We further observe that the ab-
sence of similarity filtering and voting results in negative transfer
with an improvement ratio, due to its need for a workload-specific
space construction. Besides, we find that range reduction leads to
more performance improvement than knob selection.

7.5 Evaluation on Optimizer Recommendation
7.5.1 Comparison with Different Recommending Strategies. We
present a comparative analysis of several strategies for recommend-
ing optimizers, including: (1) employing a single optimizer, such
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Figure 10: Utility of Active Learning. In Figure (a), we present
the accuracy of the meta-ranker trained via active learning
and random sampling. Figure (b) displays the associated tun-
ing performance, with a horizontal line representing the
baseline performance with SMAC as the default optimizer.

as SMAC, MBO, DDPG, and GA; (2) OpAdviser, our approach that
adopts a pairwise ranking model to predict the relative performance
of two candidate optimizers; (3) Classify, a variant of OpAdviser that
adopts a classification model to directly predict the best-performing
optimizer; (4) Regress, another variation of OpAdviser that employs
a regression model to predict the absolute performance of candidate
optimizers and recommends the one with the highest prediction; (5)
Two-Phase, an approach proposed by Hunter [9], which employs
GA in the first 140 iterations and then switches to DDPG. To evalu-
ate the performance of these strategies, we conduct experiments on
Sysbench RW and Twitter, and the results are presented in Figure
9. We observe that OpAdviser outperforms the other strategies.
Furthermore, in terms of the choice of meta-models, the pairwise
ranking model stands out due to its sample efficiency.

7.5.2 Utility of Active Learning. OpAdviser employs an active learn-
ing technique to collect training data for the meta-ranker. In Figure
10, we compare this technique with random sampling, illustrating
their classification accuracy for the best optimizer in leave-one-out
validation and the tuning performance in SYSBENCH RO. The meta-
ranker, trained with active learning, achieves higher accuracy due
to learning from more informative data within the same labeling
budget. Figure 10 (b) shows that the meta-ranker makes better deci-
sions than the heuristics of “SMAC is the best-performing optimizer
in most cases” (indicated by the black horizontal line) after training
on the initial 15 labeled tasks using active learning. Moreover, given
the same labeling budget, active learning leads to a higher tuning
performance than random sampling.

7.6 Evaluation on Generalization
While prior experiments analyze the adaptability to unseen work-
loads by holding out the target workload, we next evaluate the
generalization on different data sizes and hardware settings.

7.6.1 Varying Data Sizes. The appropriate range of a knob could
be influenced by the size of the database. We verify the performance
of OpAdviser when the target database size diverges from that of
the historical tuning tasks. We conduct comparative analyses with
LlamaTune, Hunter, and OtterTune using the SYSBENCH bench-
mark. The data repository includes tuning tasks with database sizes
ranging from 10 GB to 40 GB. We load the target database with dif-
ferent sizes by adjusting the number of tables and table sizes. Figure
11 presents results, depicting performance improvements within
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Figure 11: Generalization across Different Data Sizes.
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Figure 12: Generalization across Hardware Environments.

1 hour (hatched bars) and 10 hours (solid bars). OpAdviser consis-
tently excels across data sizes, particularly under a 1-hour tuning
budget, since it could exclude unpromising regions in the early
phase, informed by geometries learned from similar workloads.

To reason the generality across database sizes, we analyze the
search space suggested by OpAdviser. Across target data sizes
from 10 GB to 50 GB, the suggested space consistently covers
the global optimum while pruning unpromising regions through-
out tuning iterations. OpAdviser assigns higher concordant rank-
ing ratio to tasks with similar sizes, resulting in compact effective
regions. In cases where the target task significantly differs from
source tasks, while OpAdviser initially excludes the optimum, it
still eliminates unfavorable ranges for lots of important knobs,
such as innodb_thread_concurrency for concurrency control and
binlog_case_size for background processes. Notably, OpAdviser
progressively expands the search space to encompass optimum,
avoiding negative transfer. For instance, in target tasks with a 500
GB database, the optimal value for table_open_cache is 3.7k, with
a default range of 1 ∼ 524k. Initially, at the 10th iteration, OpAdviser
suggests a range of 0.9k ∼ 2.4k. After 20 iterations, the suggested
range expands to 0.5k ∼ 5.1k, encompassing the value of 3.7k. This
expansion occurs as the concordant ranking ratios approach ground-
truth similarity, and the weight of target tasks increases with more
target observations accumulated.

7.6.2 Varying Hardware Environments. We assess OpAdviser’s gen-
eralization across diverse hardware instances, comparing it to Lla-
maTune and Hunter. OtterTune is excluded from the comparison
due to its lack of hardware adaptation support [5]. Figure 12 dis-
plays the results, where “4C16M” represents an instance equipped
with 4 core CPUs and 16 GB memory, and similar notations apply
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Figure 13: Evaluation on Cold Start Scenario: OpAdviser’s
advantage increases as completing more tuning tasks.

to other instances. OpAdviser’s data repository only contains his-
torical observations for instances with 16 cores CPUs and 32 GB
memory. Despite this limitation, OpAdviser consistently outper-
forms the baselines across configurations ranging from “4C16M” to
“16C64M”. For instances with more significant differences, OpAd-
viser still achieves competitive performance with the baselines.

7.7 Evaluation on Cold Start Scenario
We assess OpAdviser’s performance under an initial absence of his-
torical data and conduct comparisons with OtterTune, LlamaTune,
and Hunter, tuning workloads generated by OLTPBench and SYS-
BENCH. For fairness, we deactivate the optimizer recommendation
module and adopt SMAC as the optimizer, consistent with Lla-
maTune. The order of issuing tuning tasks is randomized. Upon
completing a tuning task, OpAdviser and Ottertune add the obser-
vation to their respective data repositories. Figure 13 illustrates
the results. In the absence of historical observations, OpAdviser
constructs the search space by extracting the effective region based
on the target observations, when the target concordant ordering
ratio exceeds 0.5 (better than random guessing). This mechanism
demonstrates performance comparable to Hunter’s knob selection
and LlamaTune’s randomized embeddings, both of which also re-
duce the search space based on target observations. Furthermore,
OpAdviser’s advantages over other baselines gradually become evi-
dent after completing the third tuning task, with the assistance of
historical observations.

8 CONCLUSION
In this paper, we studied the techniques to enhance the efficiency of
database tuning. Instead of focusing on designing advanced search
optimizers, we concentrated on automating the construction of
compact search space and selecting appropriate search optimizers
for a given tuning task in an efficient manner. Our approach utilizes
tuning history from past tasks to make informed decisions. Ex-
tensive experiments have shown that OpAdviser can significantly
improve database tuning compared to state-of-the-art systems.
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