
Kamel: A Scalable BERT-based System for Trajectory Imputation
Mashaal Musleh

University of Minnesota, USA
Mohamed F. Mokbel

University of Minnesota, USA

ABSTRACT
Numerous important applications rely on detailed trajectory data.
Yet, unfortunately, trajectory datasets are typically sparse with large
spatial and temporal gaps between each two points, which is a ma-
jor hurdle for their accuracy. This paper presents Kamel; a scalable
trajectory imputation system that inserts additional realistic trajec-
tory points, boosting the accuracy of trajectory applications. Kamel
maps the trajectory imputation problem to finding the missing word
problem; a classical problem in the natural language processing
(NLP) community. This allows employing the widely used BERT
model for trajectory imputation. However, BERT, as is, does not lend
itself to the special characteristics of trajectories. Hence, Kamel
starts from BERT, but then adds spatial-awareness to its operations,
adjusts trajectory data to be closer to the nature of language data,
and adds multipoint imputation ability to it; all encapsulated in
one system. Experimental results based on real datasets show that
Kamel significantly outperforms its competitors and is applicable
to city-scale trajectories, large gaps, and tight accuracy thresholds.

PVLDB Reference Format:
Mashaal Musleh and Mohamed F. Mokbel. Kamel: A Scalable BERT-based
System for Trajectory Imputation . PVLDB, 17(3): 525-538, 2023.
doi:10.14778/3632093.3632113

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/meshalawy/KAMEL.

1 INTRODUCTION
Numerous important applications heavily rely on trajectory data
generated from GPS devices. Such applications include path finding
(routing) [15, 26, 49, 76], traffic monitoring and forecasting [28, 31,
45, 67], location-based services [9, 22, 80]), contact tracing [2, 48,
72], map inference [7, 14, 58, 63], and urban planning [27, 36, 37].
Unfortunately, due to bandwidth, battery, and storage limitations,
trajectory data are inherently sparse, i.e., there are frequent spatial
and temporal gaps between every two consecutive readings. Such
gaps present an inherent uncertainty of the object’s whereabouts
between each two GPS readings. The higher the sparsity (i.e., the
larger such gaps spatially and temporally), the lower the accuracy
and quality of all applications that rely on trajectory data.

As a means of boosting the accuracy of trajectory data and hence
their applications, several techniques have been proposed to im-
pute trajectory data by trying to predict the trajectory whereabouts

This work is supported by NSF under grants IIS-1907855 and IIS-2203553.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:10.14778/3632093.3632113

within the gaps (e.g., see [8, 34, 40, 79]). The large majority of such
techniques rely on matching the trajectories on the underlying
road network, where the imputation process becomes mainly about
finding the road network shortest path between each two consecu-
tive trajectory points. Unfortunately, all such techniques have the
implicit assumption that the underlying road network is available
and reliable, which is not always true. Road networks, like any
other type of data, suffer from all sorts of inaccuracy, and may not
be even available in many places [44, 51, 64]. In fact, Microsoft
has recently announced that it has found more than one million
kilometers of roads missing from current maps [47], Amazon has its
own map inference techniques [3], Uber and Lyft build their own
map on top of OpenStreetMaps [43, 65], while Apple has recently
completely rebuilt its map [4]. This is a very practical problem that
triggered a multi-billion dollars industry for constructing accurate
maps [17, 23] and a whole area of industrial and academic research
of map inference, which aims to infer (all or missing parts) of a
road network from trajectory data [7, 14, 58, 63]. This calls for new
trajectory imputation techniques that do not rely on the underlying
road network, and hence can generate accurate trajectories that
can be used to infer the road network. This paper is concerned
with imputing trajectories under this setting, which is when the
road network is not used as an input in any way. There are only a
couple of such approaches [20, 35], but, they are only applicable
for small road networks and assume abundance of trajectory data.
This makes them not applicable to large-scale road networks.

In this paper, we present Kamel; a new framework for scalable
trajectory imputation that is the first to combine the following
distinct features: (1) does not require the knowledge of the under-
lying road networks as it makes its imputations solely based on
input trajectories, (2) does not require prior highly dense trajectory
data (i.e., large number of trajectories in a small area), (3) scales up
to support large geographical areas beyond junction or small city
areas, and (4) supports trajectory imputation in both offline bulk
mode and online mode for incoming streams of trajectories.

Themain idea ofKamel is tomap the trajectory imputation to the
"finding the missing word" in Natural Language Processing (NLP),
which is usually solved using the widely used BERT model [19].
Given a statement like "Paris is the ... of France", where "..." repre-
sents a missing word (due to speech recognition, translation, or
typo), BERT finds out that the missing word is "capital". To do so,
BERT is first trained by large numbers of statements. Kamel deals
with trajectories as statements, where a trajectory/statement is com-
posed of an ordered set of points/words drawn from a finite pool of
possible points/words. Also, points/words in a trajectory/statement
are spatially/semantically related and are constrained by rules im-
posed by the underlying road network/language grammar. Hence,
at its core, Kamel is equipped with a BERT model trained by a set
of trajectories, and then used to impute sparse trajectories.

525

https://doi.org/10.14778/3632093.3632113
https://github.com/meshalawy/KAMEL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632113
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Kamel Architecture

However, using BERT as is within Kamel is not straightforward
and results in a very poor accuracy and performance. This is mainly
due to three main challenges: (1) Spatial awareness. BERT is not
spatially aware, where it may poorly train its model by including
datasets that are not spatially related and/or produce results that are
not spatially feasible. (2) Training Data factor. This is the average
number of times each word appears in the training dataset. The orig-
inal BERT [19] is trained on ∼3.3B word corpus composed of ∼30K
distinct words, so each word appears ∼100K times on average in the
training set. Meanwhile, trajectory data is no where close to these
numbers. A typical trajectory dataset (e.g., Portland dataset [66])
would have ∼2M GPS points with ∼1.5M distinct points, so each
point appears only once on average in the training dataset. Such
very low training data factor significantly degrades the quality of
BERT to be almost useless. (3)Multiple missing points. BERT usually
aims to find one missing word in a statement, while trajectory impu-
tation may need to find several missing points between two known
points. Applying BERT repetitively to do so would significantly
degrade the imputation quality and performance.

Kamel overcomes all the challenges of using BERT through an
architecture composed of fivemainmodules, Tokenization, Partition-
ing, Spatial Constraints, Multipoint Imputation, and Detokenization.
The Partitioning and Spatial Constraintsmodules address the spatial
awareness challenge by injecting spatial awareness into both BERT
training process and output result, respectively. The Tokenization
and Detokenization modules address the training data factor chal-
lenge by clustering points into tokens to increase their appearance
in the training dataset. TheMultipoint Imputationmodule addresses
the multiple missing points challenge by estimating the probability
of multiple points together to form an imputed segment.

Our goal is to show that NLP models (e.g., BERT), trained with
trajectory data, have the potential to push the state-of-the-art in
trajectory imputation. We do not aim to find the best NLP model
suited for trajectories. We have chosen BERT as it is one of the
most commonly used models. Yet, other BERT variants or language
models can be also used with different adaptations. We opted for
a design that employs BERT as is as an architecture, trained on
trajectories, rather than language, which makes Kamel attractive

for industrial and open-source market that are already familiar
with it and would need less disturbance to their systems. The
experimental evaluation based on system deployment of Kamel
and real datasets shows that Kamel achieves a high recall score
of 89% of the missing points from the ground truth trajectories,
with high precision. Comparison with other approaches shows that
Kamel achieves nearly three times the score of the baselines and
the state-of-the-art methods, and can work on various straight and
curved trajectories, with gaps as large as 2.5 km.

The rest of this paper is organized as follows: Section 2 presents
Kamel architecture. The five modules of Kamel are described in
Section 3 to 7. Experimental results are presented in Section 8.
Section 9 discusses related work. Section 10 concludes the paper.

2 KAMEL ARCHITECTURE
Figure 1 depicts the architecture of Kamel, where it takes two
types of input: (1) training data; new trajectory datasets which
does not produce any output, instead Kamel uses it to enrich its
models. (2) sparse trajectories; the trajectories that the users wants
to impute. Kamel receives such data either in bulk offline mode or
as a stream of incoming trajectories. In both cases, Kamel outputs
the set of imputed dense trajectories that correspond to the sparse
input. Kamel is a BERT-based system, where BERT is used as a core
component and is depicted as a black box at the bottom of Figure 1.
However, as mentioned earlier, using BERT as is results in a poor
accuracy and performance, due to three main challenges, spatial
awareness, training data factor, and multiple missing points. Hence,
internally,Kamel is composed of fivemainmodules to address these
challenges, namely: Tokenization, Partitioning, Spatial Constraints,
Multipoint Imputation, and Detokenization, described briefly below:
Tokenization. This module is a gateway to Kamel, where all input
go through it first. It addresses the training data factor challenge by
converting each input point to a token that covers a specific spatial
area. This reduces the number of distinct items and increases their
appearance in the training set. The output of this module is a set of
tokens sent to the Partitioning module. Details are in Section 3.
Partitioning. This module addresses the spatial awareness chal-
lenge as it builds various BERTmodels based on the spatial coverage
of the input data. It takes its input as a set of tokens produced from
the Tokenization module. In case these tokens represent training
data, the Partitioning module stores such data in its raw trajectory
store. Then, it decides whether to enrich or expand one of its exist-
ing models, or even build a new model, and calls BERT accordingly.
The new or updated models will be stored in a dedicated model
repository. In case the input tokens represent sparse trajectories
that need to be imputed, the Partitioning module finds out which
BERT model needs to be used to impute each trajectory. For each
trajectory gap represented by two end tokens, it calls the selected
BERT model to impute one token between the two end tokens. The
output of BERT is a set of candidate tokens (with probabilities) sent
to the Spatial Constraint module. Details are in Section 4.
Spatial Constraints. This module addresses the spatial awareness
in BERT output. Its input is the set of candidate tokens produced
from BERT. Then, it drops off some of these tokens that do not
satisfy a set of spatial constraints. Remaining tokens are passed to
the Multipoint Imputation module. Details are in Section 5.

526

Figure 2: Example Output of the Tokenization Module

Multipoint Imputation. This module addresses themultiple miss-
ing points challenge. It converts its input from a candidate imputed
token to a sequence of tokens through calling BERT iteratively. It
outputs the most likely sequence of tokens for each trajectory gap
and sends it to the Detokenization module. Details are in Section 6.
Detokenization. This module addresses the training data factor
challenge, and to some extent it reverses the Tokenization module.
The input to this module is the imputed trajectory, represented as
tokens. The output is the imputed trajectory represented as points,
which is the final output of Kamel. Details are in Section 7.

3 TOKENIZATION
This module is the gateway for Kamelwhere all input data (training
data or sparse trajectories) have to go through before any other
Kamel module. A typical trajectory input is composed of points,
each represented by its latitude and longitude coordinates. With the
high precision of such coordinates, a certain point does not often
appear more than once or twice in a training dataset, which is not
enough to train a BERT model. Contrast this to the language that
BERT is used to work with, where each word may appear 100+K
times during the training. This module aims to address this chal-
lenge by partitioning the whole space into a set of non-overlapping
cells, where all points located in the same cell are given the same
token, which is the cell ID. This means that a trajectory dataset will
be presented as a set of tokens (cell IDs) instead of a set of points.
So, different points will have the same token, and hence they can
appear more often in the training dataset, which is also composed of
tokens. To increase accuracy and efficiency, the tokenizationmodule
has to decide on how to partition the space into cells (Section 3.1)
and the optimal cell size for each dataset (Section 3.2).

3.1 Hexagonal Space Partitioning
For its tokenization scheme, Kamel uses a flat hexagonal grid
structure based on Uber’s H3 Hexagonal Hierarchical Spatial In-
dex [10, 24]. In this index, the whole world geographical area is di-
vided into a set of non-overlapping hexagons, where each hexagon
has a unique ID ℎ𝑖 . Figure 2 shows an example of the tokenization
process using a hexagonal grid. The upper part of the figure shows
an input trajectory that consists of five points 𝑃1 to 𝑃5, and the
bottom part shows the output tokenized trajectory which consists
of five tokens 𝑡1 to 𝑡5, where each token corresponds to one of the
input points. It is important to note that the road network in the
background is shown only for illustration, but the imputation pro-
cess does not rely on (or even know about) it. Other tokenization
alternatives such as Google S2 squares [59] partitioning, which is

(a) H= 25m (b) H= 75m (c) H= 200m

(d) Accuracy vs Cell Size

Figure 3: Selection Between Different Cell Sizes

basically a form of a grid structure is also a possible alternative.
However, hexagons help achieve more accurate imputations as
confirmed by our experiments in Section 8.5.

The rationale of using hexagons over common traditional square
or rectangular partitioning is that: With a hexagonal grid, all the six
neighbors of each cell 𝐶 have the same exact properties in terms of
distance to 𝐶 centroid and the length of the shared border with 𝐶 .
This is in contrast to rectangular partitioning, where each cell would
have four corner neighbors sharing a point, two neighbors sharing
the length, and two other neighbors sharing the width. Ensuring
that all neighbors have the same properties makes it more suitable
for BERT as going from one token (hexagon) to its neighbor would
not be influenced by our partitioning. Meanwhile, we acknowledge
that unlike rectangles, hexagons are not hierarchical, where we
cannot fit a set of neighbor hexagonal cells into one bigger hexag-
onal cell. Yet, this is not a concern to Kamel, as there is no need
for such hierarchy. Hexagons are needed only to tokenize points to
cells, and later to detokenize cells to points (Section 7). The cost of
mapping a point to its hexagonal cell has a constant time, as it is
done through a series of coordinate system conversions [25].

3.2 Cell Size Optimization
Deciding on the right cell size would significantly impact Kamel
accuracy. Figures 3(a)-(c) depict three different sizes, with edge
lengthH = 25, 75, and 200 meters, respectively, laid on top of the
same part of a road network. The cell size is inversely proportional
to the number of distinct cells (tokens); the larger the size the less
the number of distinct tokens, and hence token will appear more in
the training set. Hence, large sizes would address the training data
factor challenge and push for better imputation accuracy. Mean-
while, with large sizes, each cell becomes not really representative
of the points inside it, as too many points would map to the same
cell, which would negatively affect the accuracy of both the tok-
enization and detokenization modules (Section 7). In addition, large
sizes make it difficult for BERT to learn distinguishable contexts
between trajectories since a large cell would capture trajectories
from many roads and directions. This may call for having small
sizes, which would highly increase the number of distinct tokens
in the dataset. This makes the decision on the right cell size an opti-
mization problem, as illustrated in Figure 3(d), where both ends of
the spectrum lead to low accuracy. Kamel is shipped with a default
cell size obtained from our exhaustive experiments in Section 8.
However, Kamel acknowledges that the optimal cell size might be
different for each dataset, as it depends on both the trajectories and
area characteristics. Hence, Kamel is equipped with an auto tuning
module that sets the system cell size for a given training dataset.
When the input to the tokenization module is a training dataset, we
sample the input data and try training BERT models for various
cell sizes, and then pick the size that achieves the highest accuracy.

527

Figure 4: Pyramid Data Structure for Models Repository

4 PARTITIONING
The original BERT is trained separately for each language. For ex-
ample, the BERT model used for English is pretty different from the
BERT model used for Korean, as each is trained by totally different
datasets. While the boundaries between languages are clear, it is
not the case for spatial areas. Trajectory datasets may come from
nearby, overlapping, or far spatial areas. The Partitioning module
in Kamel is responsible for having spatial-awareness in BERT mod-
els by maintaining various models for various spatial areas even
though their boundaries are not well defined. One can look at each
BERT model in Kamel as a model for a different language. Hence,
we maintain two data stores: A simple trajectory store [18, 62] that
maintains the set of tokenized trajectories that Kamel received as
input training dataset and a model repository that maintains all
BERT models that Kamel has built for various spatial areas. Build-
ing and/or updating such models is completely done offline, where
it may take hours depending on the number of models and trajecto-
ries. However, this does not affect the scalability of the imputation
process itself, which is done online and only usees the precom-
puted models in its process. This way, Kamel scales to support
large geographical areas. The tokenized input trajectories received
by the Partitioning module either represent a set of sparse trajecto-
ries that need to be imputed or training trajectories. In the former
case, the Partitioning module basically consults its model reposi-
tory (Section 4.1) to retrieve the BERT model that is best suited for
the imputation process. For training trajectories, the Partitioning
module uses it to update its model repository (Section 4.2).

4.1 Models Repository Structure and Retrieval
Kamel maintains its model repository in a disk-based hierarchi-
cal pyramid data structure of 𝐻 levels [5], where each level ℎ is
decomposed to 4ℎ equal cells. The pyramid root is of height zero
and has only one cell that covers the whole space. The pyramid is
built bottom up, and not all levels have to be maintained. In fact, we
only maintain the lowest 𝐿 levels of the pyramid, because there is
usually not enough trajectory data to build models for higher levels.
The number of levels 𝐻 and 𝐿 are parameters that balance between
the high resolution of the model and the maintenance overhead of
the pyramid structure. Figure 4 gives an example of such structure
with 𝐻 = 5 and 𝐿 = 3. Shaded cells are the ones that have models,
while blank ones have nothing to maintain.

We maintain two kinds of models: (1) Single-cell models, which
are built based on the contents of a single cell, and (2) Neighbor-cells
models, which are built based on the contents of two neighboring
cells sharing an edge, and stored in either the north or west cell
of the two neighbors. The goal of neighbor-cell models is to help
in boundary cases, where we need a model to cross the contents
of two neighboring cells, especially, if they do not share a parent,
or if their parent cell does not have a model. To ensure the model
accuracy, we build a model at cell 𝐶 at level 𝑙 only if there are at
least 𝑘 × 4(𝐻−𝑙) tokens in that cell, where 𝑘 is a system parameter
(default 20K) and 𝐻 is pyramid height. This means that we need
at least 𝑘 tokens to build a model at a leaf node and 4𝑘 tokens to
build a model at a cell just above the leaf level. For the neighbor cell
models, we double that threshold. Each cell𝐶 contains one or more
of the following: (1) The number of tokens in the trajectory store
that lie within 𝐶 , (2) A single-cell BERT model for the contents of
𝐶 , along with its metadata, which include model statistics and last
update date, (2) Up to two neighbor-cell BERT models (with their
metadata) for the contents of 𝐶 and its east and/or south neighbor
cells, and (3) Up to two pointers to neighbor-cell BERT models
stored at the north and/or west neighbor cells.

When the input to the Partitioning module is a sparse trajectory
to be imputed, we find the smallest cell 𝐶 or pair of neighbor cells
𝐶𝑖 and 𝐶 𝑗 that fully enclose the trajectory minimum bounding
rectangle, and pick BERT model accordingly for the imputation
process. Calling the model does not scan or read any trajectory
data after it has been trained offline, which makes Kamel highly
scalable. In case there is no single or pair of cells with models to
cover the trajectory, we split it into sub-trajectories that can be
enclosed within a model. For those sub-trajectories that cannot fit
in any of our models, we just impute them by a simple straight line.

4.2 Models Repository Maintenance
Whenever a new training trajectory dataset T is received, we first
add it to our trajectory store. Then, we find the pyramid cell𝐶 as the
smallest cell that fully encloses the minimum bounding rectangle
of all trajectories in T . Then, we enrich T by adding to it the set of
trajectories in our trajectory store that are fully enclosed in𝐶 . With
𝐶 , we do the following four steps: (1) If the number of tokens in T
is above the model threshold, we build a BERT model and store it
at 𝐶 , which will either update an existing model or create a new
one. (2) For each cell 𝐶𝑖 among the four neighbors of 𝐶 , if the total
number of tokens in 𝐶 and 𝐶𝑖 is above our model threshold, we
retrieve all trajectories in 𝐶𝑖 and use it with T to build a neighbor-
cell model. The model is stored in the north or west cell of 𝐶 and
𝐶𝑖 , with a pointer to it from the other cell. (3) If the total number
of tokens in 𝐶 and its three siblings is above the threshold to build
a model at their parent, we do so. This would be done recursively
for 𝐶’s ancestors till we reach the lowest maintained level. (4) If 𝐶
is a non-leaf node, we split the trajectories in T among the four
children cells of 𝐶 , and check if this would warrant building a new
model at any of these children cells. We do so recursively till there
are not enough tokens to build a model. Note that this does not need
to happen for every single trajectory. Instead, it is scheduled as a
background process when needed for a batch of new trajectories,
without causing any downtime to the system.

528

(a) Right Turn

(b) Roundabout Turn

(c) U-Turn

(d) Overpass Exit

Figure 5: Spatial Constraints Using Different Road Examples

5 SPATIAL CONSTRAINTS
The original BERT does not have any restrictions in its output
as any word in the vocabulary can be the answer as long as it is
the most likely one. However, in case of trajectory imputation, we
would need to impose some constraints, due to two main reasons:
(1) Imputed points have to respect physical movement constraints.
For example, an imputed point 𝑝 between two segment end points
𝑆 and 𝐷 should be within a spatial range that respects the loca-
tions and timestamps of both 𝑆 and 𝐷 . Unfortunately, BERT as is,
may end up in predicting 𝑝 outside that range as BERT may have
seen that point following 𝑆 for another segment that does not end
at 𝐷 . Moreover, unlike the original BERT that imputes only one
point, and hence only picks the top possibility, we impute multiple
points, and hence we pick the top 𝑘 possible candidates (details in
Section 6). With large value of 𝑘 , it is more likely to have candidate
imputed points that do not respect the physical movement con-
straints. (2) Cycles. As we aim to impute multiple points for each
segment, BERT may end up producing points that go into cycles
and hence do not converge to the segment end point.

The Spatial Constraints module takes the output from BERT as
its input and filters out those tokens that (a) do not respect the
physical movement constraints (Section 5.1), or (b) result in cycles
in the imputed segment (Section 5.2). The output of the Spatial
Constraints module is passed to the Multipoint Imputation module.

5.1 Physical Movement Constraints
The physical movement constraints mainly specify an area where
any imputed token 𝑡 between the two segment end tokens 𝑆 and
𝐷 must be located in. Figure 5 gives examples for applying such
constraints for four road cases, namely, right turn, roundabout, U-
turn, and overpass exit. In all cases, we need to impute a trajectory
segment between tokens 𝑆 and𝐷 , where 𝑡1 and 𝑡2 are the tokens that
just come before 𝑆 and after 𝐷 , respectively. There are two types
of physical movement constraints: speed and direction constraints.
In all four road cases in the figure, the blue dashed ellipse presents
an area computed per the speed constraints, where physically, a
token cannot take place outside such area. The set of red hexagons
(tokens) are picked per the direction constraints, where none of
them can be an imputed token between 𝑆 and 𝐷 . This makes the set
of green tokens are the only acceptable ones for any imputed token
between 𝑆 and 𝐷 , where they present the set difference between
the tokens within the blue ellipse and the red tokens. Below are the
details of how to compute the area of each constraint.

Speed Constraints Area. The rationale behind such area is that
travel distance correlates with duration, and a vehicle has a physical
limit on where it can travel to, given a time span. This area is
depicted as a blue dashed ellipse in the four cases of Figure 5,
where the centers of tokens 𝑆 and 𝐷 are the ellipse foci points. The
maximum total sum of distances from foci points to any point 𝑝
in the ellipse is 𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 × TimeDiff (𝑆 ,𝐷), where TimeDiff is the
timestamp difference between 𝑆 and𝐷 . While the token timestamps
are already given as part of the input data, there are several ways to
compute the maximum speed. One way is to use a fixed speed limit
based on the city we are trying to impute trajectories in. Another
way is to consider the speed of the preceding imputed segment
multiplied by a conservative factor. Kamel currently uses a fixed
speed inferred from its training trajectory data. In the four cases
of Figure 5, token 𝑡4 would be rejected as it is outside the dashed
ellipse, and hence it is physically impossible to reach there.
Direction Constraints Area. The rationale behind such area is
that an imputed token should respect the direction from 𝑆 to 𝐷 ,
and not jump ahead of 𝐷 towards 𝑡2 or before 𝑆 towards 𝑡1. This
area is depicted as a set of red hexagonal tokens in Figure 5, where
it is computed as all tokens deviated within a certain angle (default
45°) from 𝑆 towards its previous token 𝑡1 and from 𝐷 towards its
next token 𝑡2. In the four cases of Figure 5, token 𝑡5 is rejected as it
is within 45°angle from the direction of 𝐷 to 𝑡2.

5.2 Cycles Prevention
It is important to note that when imputing a gap between two
tokens 𝑆 and 𝐷 , it is most likely that we will need to insert multiple
tokens in between. Hence, during the imputation of one segment,
BERT will be called many times, which may result in having cycles.
A cycle is formed if the sequence of the last 𝑥 tokens are repeated.
A trivial cycle would take place when 𝑥=1, which means that BERT
has returned the same token as the last imputed token. In this case,
the Spatial Constraints module would just reject this outcome. For
a non-trivial case of 𝑥 > 1, the Spatial Constraints module always
checks the last 𝑥 imputed tokens, and rejects all of them together
if a cycle is detected. Kamel uses a default value of 𝑥=6, which is
very reasonable to detect almost all possible cycles.

Figure 5(d) gives an interesting case for an overpass route, where
four imputed tokens 𝑡8, 𝑡6, 𝑡7, 𝑡8 are added between 𝑆 and 𝐷 . Al-
though 𝑡8 appears twice, but this is not considered a cycle as there
is no repeated sequence of any length 𝑥 . This shows the ability of
Kamel to impute such non-trivial trajectory.

529

Figure 6: Iterative BERT Calling

6 MULTIPOINT IMPUTATION
For each trajectory segment, the input to this module is a set of
candidate tokens returned from BERT and filtered out from the
Spatial Constraints module. Each token is associated with a prob-
ability indicating how likely it is to be the imputed token. Since
BERT is designed to predict only one missing word in a statement,
it just picks the token with the highest probability. However, in
case of trajectories, one token is not enough to impute a segment.
Hence, the goal of the Multipoint Imputation module is to adapt
BERT to support imputing multiple tokens between each two con-
secutive trajectory tokens, such that the distance between any two
consecutive tokens is less than a certain maximum gap distance,
𝑚𝑎𝑥𝑔𝑎𝑝 . Kamel employs two approaches: (1) iterative BERT calling
(Section 6.1), which resembles calling BERT, as is, iteratively and
(2) Bidirectional beam search (Section 6.2), which employs a spa-
tially modified version of the classical Beam search algorithm [56]
to guide multiple BERT calls. In both approaches, we put a hard
limit on the maximum number of times that BERT can be called.
If exceeded, we declare failure and resort to linear line imputation
between the segment end points. For each segment, the output of
the Multipoint Imputation module is a complete imputed trajectory
segment as a sequence of hexagonal tokens.

6.1 Iterative BERT Calling
This approach basically calls BERT iteratively to fill in multiple
imputed tokens between the segment end tokens 𝑆 and 𝐷 , such
that the distance between any two consecutive tokens is less than
a certain gap distance,𝑚𝑎𝑥𝑔𝑎𝑝 . Algorithm 1 gives the pseudo code
for this approach, where it starts by initializing the output segment
to its two end tokens, and a GapPointer variable to the starting
token, indicating where to insert our next imputed token. Then, it
calls BERT, which returns a set of candidate tokens to pick one of
them as the next imputed one. The candidate tokens are passed by
the Spatial Constraints module (SConstraints) to filter out tokens
that do not satisfy the speed and direction constraints as described
in Section 5. Then, we insert the candidate token with the highest
probability just after 𝑆 . Finally, we call the function FindFirstGap to
find the first gap in the segment with a length more than𝑚𝑎𝑥𝑔𝑎𝑝 .
If such gap exists, we repeat the cycle by calling BERT to find the
next imputed token and so on. The algorithm concludes when there
is no such gap, and returns the complete imputed segment.
Example. Figure 6 gives an example of the iterative BERT calling
approach to impute the trajectory segment between tokens 𝑆 and
𝐷 with maximum allowed gap distance𝑚𝑎𝑥𝑔𝑎𝑝=2. In the first itera-
tion, token 𝑡2 is returned from BERT as the candidate token with
highest probability (0.4) and passed all spatial constraints. Hence, it
is inserted as the first imputed point between 𝑆 and 𝐷 . Then, we try
to find if there is still any gap in the segment. Apparently, 𝑆 and 𝑡2
are within two tokens from each other, which means that there is no

Algorithm 1 Iterative BERT Calling

Procedure IterativeBERT(SourceToken 𝑆 , DestinationToken 𝐷)
1: Segment← {𝑆, 𝐷}; GapPointer← 𝑆

2: while GapPointer is not null do
3: CandTokens← BERT(Segment, GapPointer)
4: CandTokens← SConstraints(GapPointer, CandTokens)
5: Segment← Insert(Segment, Top(CandTokens), GapPointer)
6: GapPointer← FindFirstGap(Segment)
7: end while
8: return Segment

gap in between to fill. However, 𝑡2 and 𝐷 are still of distance more
than two tokens from each other. Hence, the FindFirstGap function
will return 𝑡2 as the token that we still need to add (at least) one
more point after it. This means that we need to go through a second
iteration, which returns token 𝑡13 as the top candidate valid token
to be inserted between 𝑡2 and 𝐷 . Then, calling the FindFirstGap
function will again return 𝑡2 as the distance between 𝑡2 and 𝑡13 is
still within two tokens. Then, in a third iteration, 𝑡9 will be added
between 𝑡2 and 𝑡13. Then, FindFirstGap will return null as all tokens
are within a distance less than two tokens from each other. Hence,
the algorithm returns the imputed segment as 𝑆 , 𝑡2, 𝑡9, 𝑡13, 𝐷 .

6.2 Bidirectional Beam Search
The iterative calling approach is kind of a greedy approach as it only
considers the topmost probable token in each iteration. That may
not be the right decision as it may lead to less probable later options.
Hence, we introduce the bidirectional beam search approach that
aims to pick the most probable sequence of tokens between the
source and destination tokens.
Main Idea.Ourmain idea is to adapt the classical Beam Search [56],
designed for searching graphs, to work for trajectory imputation.
Instead of searching all possible paths in a graph, beam search lim-
its its search to only the top 𝐵 promising paths, where a higher 𝐵
gives more accurate results, but more expensive search. We then
employ the following to adopt the beam search idea for trajectory
imputation: (1) Instead of searching in only one direction, we make
the beam search bidirectional, as trajectory imputation could go
in several directions to impute a given segment. So, we keep track
with the most probable 𝐵 sequence of tokens of all directions that
can contribute to the final imputed segment. (2) As the probability
of a sequence of tokens is computed by multiplying each token
probability, longer segments are penalized by having smaller prob-
abilities. Since we are looking for the most probable path, not the
shortest one, we counterweight this penalty via length normaliza-
tion [71]. In particular, a segment 𝑆 with a probability 𝑃 would
have its normalized probability as 𝑃 × |𝑆 |𝛼 where 0<= 𝛼 <=1 is the
normalization strength, which we set to 1 as a default, and |𝑆 | is
the number of tokens in segment 𝑆 .

530

Algorithm 2 Bidirectional Beam Search

Procedure BeamBERT(Token 𝑆 , Token 𝐷 , BeamSize 𝐵)
1: Gap.Segment← {(𝑆, 𝐷), 1}; Gap.Pointer← 𝑆

2: AllGaps← {Gap}; ProbLimit←∞; AnswerSet← 𝜙 ;
3: while AllGaps is not null do
4: NewSegments← 𝜙

5: for each Gap in AllGaps do
6: CandTokens← BERT(Gap.Segment, Gap.Pointer)
7: CandTokens← SConstraints(Gap.Pointer,CandTokens)
8: for each token T in Top(CandTokens,𝐵) do
9: Segment← Insert(Gap.Segment,T,Gap.Pointer,Prob(T))
10: NewSegments← NewSegments ∪ Segment
11: end for
12: end for
13: NewSegments← TopB(NewSegments,𝐵,ProbLimit)
14: AllGaps← 𝜙

15: for each Segment in NewSegments do
16: Gaps← FindGaps(Segment)
17: if Gaps is empty then
18: AnswerSet← AnswerSet ∪ Normalized(Segment)
19: ProbLimit←Min(ProbLimit, Segment.Probability)
20: else
21: AllGaps← AllGaps ∪ Gaps
22: end if
23: end for
24: end while
25: return Top(AnswerSet)

Algorithm.Algorithm 2 gives the pseudo code for our bidirectional
beam search approach. It starts by initializing the list AllGaps by
one gap for the source and destination tokens and a pointer to the
source token, indicating where we need to insert our next token.
Unlike the case for iterative calling, the gap segment is associated
with a probability, initialized by 1. Then, for each gap in AllGaps, we
call BERT followed by the Spatial Constraints module to get the list
of candidate tokens, along with their probabilities. Unlike the case
of iterative calling where we only care about the top token, here we
care about the top 𝐵 probable tokens (Line 8 in Algorithm 2). Hence,
for each such token 𝑇 , we construct a new segment by inserting 𝑇
in the gap, along with updating the segment probability. Among
all such new segments constructed for all gaps, we pick only the
top 𝐵 of them according to their probability, bounded by an upper
limit (initially set to ∞) (Line 13 in Algorithm 2). For each of the
remaining 𝐵 segments, we aim to find all the gaps that are still there
to address in the next iteration. If any of such segments has no gaps,
we add it to our answer set with its normalized probability score,
and use that score to adjust our upper limit of considering any
further segments. Once there are no gaps in any of the segments,
we conclude by returning the segment with the highest probability.
Example. Figure 7 gives an example of the bidirectional beam
search algorithm to impute the gap between 𝑆 and 𝐷 with beam
size 𝐵 = 3. In the first iteration, we call BERT to get the top-𝐵
probable tokens, which returns 𝑡2, 𝑡11, and 𝑡13, with probabilities
0.4, 0.3, and 0.2, respectively. Having 𝑡2 between 𝑆 and 𝐷 leaves
one gap between 𝑡2 and 𝐷 as the distance between them is more
than our𝑚𝑎𝑥𝑔𝑎𝑝 threshold. Meanwhile, having 𝑡11 leaves two gaps

between 𝑆 and 𝑡11 and between 𝑡11 and 𝐷 . Then, having 𝑡13 leaves
only one gap between 𝑆 and 𝑡13. So, in total, we have four gaps to
consider further. Hence, in the second iteration, we make four BERT
calls, one for each gap. The first returns three tokens 𝑡8, 𝑡13, and
𝑡15 with a probability of 0.1 each. The segment probability is 0.04
as they will be multiplied by 0.4, which is the probability of the
previous iteration. The second gap (between 𝑆 and 𝑡11) returns 𝑡4,
𝑡6, and 𝑡7 with probabilities 0.1, 0.1, and 0.6, respectively. Multiplied
by 0.3, the segment probability for these tokens are 0.03, 0.03, and
0.18, respectively. Similarly, The third call returns tokens 𝑡13 𝑡15,
𝑡16 with segment probabilities 0.24, 0.03, 0.03, and the fourth call
returns tokens 𝑡2 𝑡6, 𝑡15 with segment probabilities 0.04, 0.06, 0.04.
Out of the 12 new segments, we only pick the top 3 probable ones,
namely, segments {𝑆 , 𝑡7, 𝑡11, 𝐷}, {𝑆 , 𝑡11, 𝑡13, 𝐷}, and {𝑆 , 𝑡6, 𝑡13, 𝐷}.

In the third iteration to find if there are still gaps in the three
segments we still have. The first segment has a gap between 𝑡11
and 𝐷 . Similarly, the second segment has a gap between 𝑆 and
𝑡11. Meanwhile, there are no gaps in the third segment, and hence
it is concluded as one possible complete imputed segment, with
an updated normalized probability 0.06×21=0.12. We then use this
probability as a lower limit of any segment to be considered further.
Hence, we call BERT for only two gaps. The first call suggests 𝑡13,
𝑡15, and 𝑡16 with probabilities 0.2, 0.1, and 0.2. To get the segment
probabilities, we multiply each by 0.18 as the probability given
from the previous iteration. To get the normalized probability, we
multiply each segment probability by three as each segment would
have three imputed tokens. This makes the normalized segment
probabilities for these tokens are 0.11, 0.05, and 0.11. Similarly, the
second call suggests tokens 𝑡7, 𝑡3, and 𝑡6 with normalized probabil-
ities 0.36, 0.14, 0.07. Among these six segments, we pick only the
top three ones that are above our lower limit of 0.12. There are only
two such segments, namely, {𝑆 , 𝑡7, 𝑡11, 𝑡11, 𝐷} with probability 0.36
and {𝑆 , 𝑡7, 𝑡11, 𝑡13, 𝐷} with probability 0.14. In the fourth iteration,
we find out that the first segment has no more gaps, hence we add
it to the answer set with its probability 0.36. We call BERT for the
second segment to get a concluded one with a normalized score of
0.15. Finally, among the three concluded segments, we return the
one with the highest probability of 0.36. Contrast this to what we
get from the Iterative Calling approach (Figure 6), where we end up
with a segment with a normalized probability of 0.06, which shows
how powerful is our bidirectional beam search approach.

7 DETOKENIZATION
The output of the Multipoint Imputation module is an imputed tra-
jectory presented as a set of hexagonal tokens. Then, the objective
of the Detokenization module is to take this output and convert
each of its tokens to be a point. The output of the Detokenization
module is a complete imputed trajectory presented as a sequence
of GPS points. The functionality of the Detokenization module is
composed of the below offline and online operations:
Offline Operations. When training data is uploaded to Kamel
and passed through its Tokenization module, Kamel triggers the
classical DBSCAN clustering algorithm [21] to spatially cluster the
contents of each token, based on each point’s direction. Since we
do not have any information on the underlying road network, the
clustering would help in understanding where the points in each

531

Figure 7: Bidirectional Beam Search

token are usually located within the token. Figure 8 gives three
outcome cases of running a DBSCAN clustering algorithm on a
hexagonal token where the road network within the hexagon has
a right turn. It is important to note that the road network here is
just drawn for illustration, but it is not actually available to Kamel.
In the first case (Figure 8(a)), there were enough data points that
made the clustering algorithm identify two separate clusters, one
going in a horizontal direction, and one in a vertical direction. In
the second case (Figure 8(b)), there was not enough data to get two
clusters, so, all data in the hexagon is considered as one cluster. In
the third case (Figure 8(c)), there were almost no data in the token
to run a clustering algorithm. In the first two cases, the centroid
of each cluster is presented by a solid dot. In the third case, the
solid dot represents the hexagon centroid. The information for all
clusters along with their centroids are stored per each token as its
metadata, to be used later in the online part.
Online Detokenization. When receiving the output of the Multi-
point Imputation module, the Detokenization module goes through
each token, and replaces it with a centroid point using the following
procedure: If the token𝑇 has multiple clusters (Figure 8(a)), we first
compute the token direction angle as the average of the incoming
angle between 𝑇 and its preceding token and the outgoing angle
between 𝑇 and its next token. Then, we pick the cluster that has
a closer direction angle to 𝑇 , and return its centroid point. If the
token has only one cluster (Figure 8(b)), we just return the centroid
point of that cluster. Finally, if there are no clusters in the token
(Figure 8(c)), we just return the hexagon centroid. It is important
to note that this latter case is unlikely to take place, as BERT is
very unlikely to recommend a hexagon token that has not appeared
much in its training data, due to the lack of points there.

(a) Cluster Centroid (b) Data Centroid (c) Hexagon Centroid

Figure 8: Three Outcomes for Clustering Points in a Token

8 EXPERIMENTAL EVALUATION
Baselines. Kamel is designed as a pre-processing step for map in-
ference applications, a practical case where the road network is not
used as input either because it is not available or not trusted. Hence,
we compare Kamel, based on a real system implementation [50]
against TrImpute [20] as the state-of-the-art and the only trajectory
imputation technique that does not rely on an underlying map and
scale up to large networks. For a baseline, we also compare against
linear interpolation, where trajectories are imputed by a simple
linear line. For complete analysis, we include Map Matching [74]
results as an example of techniques that rely on road networks.
Datasets. (1) Porto, Portugal [54]: 1.7M trajectories for real taxi
trips, composed of ∼83M GPS points, driven for a total length of
∼8.8M 𝑘𝑚 spanning an area of ∼500 𝑘𝑚2, and (2) Jakarta, Indone-
sia [30]: 56K trajectories for real ride-sharing trips, composed of
∼56M GPS points, driven for a total length of ∼500K 𝑘𝑚 spanning
an area of ∼660 𝑘𝑚2. For each dataset, we use 80% for training and
20% for testing. We sparsify testing trajectories by imposing gaps
where we keep the first trajectory point, then, remove all points
within distance 𝑆𝑝𝑎𝑟𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , keep the next point, and so on.

532

Performance metrics. (1) Recall. We discretize ground truth tra-
jectories by placing points 𝑃 as one point every𝑚𝑎𝑥𝑔𝑎𝑝 distance
(same threshold used in the imputation process). The Recall is the
ratio of points in 𝑃 that the algorithm has correctly recalled within
the accuracy threshold 𝛿 from the imputed trajectory. (2) Precision.
We discretize imputed trajectories by placing points 𝑄 as one point
every𝑚𝑎𝑥𝑔𝑎𝑝 distance. Precision is the ratio of points in 𝑄 that are
within accuracy threshold 𝛿 from the ground truth. (3) Failure Rate.
An imputation technique fails to impute a trajectory segment when
it just inserts a linear line between the segment end points. Failure
rate is the ratio of segments imputed by a linear line. (4) Time Over-
head. Training and imputation time overhead of each algorithm.
Default values and parameter tuning. Unless mentioned oth-
erwise, we set the maximum allowed gap 𝑚𝑎𝑥𝑔𝑎𝑝 to 100m, the
accuracy threshold 𝛿 to 50m for Porto and 25m for Jakarta, and the
imposed sparsity distance 𝑆𝑝𝑎𝑟𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 to 1km. For Kamel param-
eter tuning, our experiments for both datasets (omitted for space
constraints) show that setting hexagon sizeH to 75m, beam size B
to 10, and pyramid levels 𝐿 and𝐻 to 3 and 10 give the best trade-offs
between accuracy and overhead. For Porto, we only needed to build
three single-cell models, as one in each of the lowest three pyramid
levels. For Jakarta, we had to build 20 models as 7 single-cell and 7
neighbor-cells models in the lowest level, two single-cell and one
neighbor-cell models in each of the other two levels. We use BERT
original architecture as described in [19] and its open-source imple-
mentation [6], with 768 hidden dimensions, 12 attention heads, and
12 hidden layers. The average vocabulary size in our experiments
is ∼80K, which creates ∼165M trainable parameters.
Experiments Design. Sections 8.1 and 8.2 study the impact of
sparse distance 𝑆𝑝𝑎𝑟𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and accuracy threshold 𝛿 , respec-
tively. The overhead of training and imputation time is discussed in
Section 8.3. Section 8.4, 8.5, and 8.6 study the impact of road type,
grid type, and training data properties, respectively. Section 8.7
performs an ablation study for Kamel components. Training was
conducted using a single Google Cloud TPU. All other experiments
were conducted using an Intel(R) Xeon(R) Silver 4112 CPU running
@ 2.60GHz, with 196GB of memory and 1TB of SSD storage.

8.1 Impact of Data Sparseness
Figure 9 gives the impact of data sparseness on the recall, precision,
and failure rate of Kamel and its competitors for both datasets.
For reference, we also report the performance of map matching
techniques that have the knowledge of the full underlying network,
however, we do not consider map matching as a competitor, as
Kamel, and its competitors, work on the environments where road
network is not reliable. For all experiments, we vary 𝑆𝑝𝑎𝑟𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
from 500 to 4,000m. For Porto data in Figures 9(a) and 9(b), Kamel
consistently achieves much higher accuracy than competitors. It is
even very close to the performance of map matching, which shows
how powerful is Kamel where it acts as if it knows the underlying
road network, while it really has no knowledge about it.

For lower gaps (e.g., 500m), Kamel gives the best performance,
but other techniques, even linear interpolation, still give acceptable
performance, as it is not that hard to impute small gaps. For medium
gaps (e.g., 1,500 - 2,500m), Kamel is 1.5 to 3 times better than its
competitors. TrImpute was unable to cope with such gaps as it

only works when there are highly dense prior trajectories, which
is not practical. It is important to note that these medium gap sizes
are the most practical ones, given the current sampling rates of
location-tracking devices. We stretched our experiments to very
large sparse gaps for up to 4km, which is analogous to asking BERT
to predict a full 200 words paragraph given only the first and last
words. Even with this, Kamel still gives more than 50% recall and
precision, while TrImpute and linear interpolation gives around
25% and 10% recall, respectively. This shows that Kamel is still able
to do some useful imputation even for unusually very large gaps.

Figures 9(c) and 9(d) repeat the same experiments for Jakarta.
Similarly, Kamel consistently outperforms its competitors. How-
ever, Kamel has a better performance than Porto, both in terms of
absolute recall and precision and in its relative performance to its
competitors. The main reason is that even though Jakarta dataset
has significantly less number of trajectories than Porto, each trajec-
tory, on average, has 1,000 points compared to 50 points in Porto.
Longer trajectories give more semantics on what points could come
after others, and only Kamel takes full advantage of this.

Figures 9(e) and 9(f) give the impact of data sparseness on the
failure rate for both datasets. By definition, linear interpolation has a
100% failure rate.Kamel significantly outperforms TrImpute in both
datasets and for all sparse gaps. For Porto, Kamel has consistently
less than 1% failure rate, compared to up to 2.5% for TrImpute. For
Jakarta, as the data is more sparse, failure rate is higher for both
with up to 3% for Kamel and 6% for TrImpute. In all cases, failure
rate is still within 2% for Kamel for the medium practical gaps,
which is highly acceptable for the trajectory imputation.

8.2 Impact of Accuracy Threshold
Figure 10 gives the impact of varying the accuracy threshold 𝛿 from
5 to 100m on the recall and precision of Kamel and its competitors
for both Porto and Jakarta datasets. We also plot the performance
of map matching as a point of reference. The objective is to under-
stand the accuracy of each method when used for either relaxed
applications that can entertain large thresholds or sensitive ap-
plications that require few meters of accuracy. For Porto dataset,
Kamel consistently achieves higher accuracy than its competitors,
with a performance that is almost identical to map matching. For
high 𝛿 (e.g., 75-100m), though Kamel gives higher recall and pre-
cision than its competitors, the difference is not that much. The
main reason is that by increasing 𝛿 , lower accuracy techniques like
TrImpute would still be able to catch. However, a 100m accuracy
threshold may not be practical to consider, especially in dense cities
where 100m distance may just lead to a different road. For medium
𝛿 (e.g., 25-50m), which are more practical and acceptable by the
large majority of trajectory applications, Kamel has ∼80% recall
and precision, which is significantly higher than that of TrImpute
and linear interpolation. We stretched our experiments to very tight
accuracy threshold less than 10m. While TrImpute and linear in-
terpolation become almost useless, Kamel is still able to cope with
∼40% recall and precision. For Jakarta dataset, we get a similar anal-
ysis and conclusion. The only difference is that all techniques give
higher accuracy for the corresponding 𝛿 for Porto. The main reason
is that Jakarta spans a large area, hence a higher value of 𝛿 would
be acceptable as roads are not as close to each other as in Porto.
However, for lower 𝛿 , Kamel has significantly higher accuracy.

533

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e
c
a
ll

Sparseness (meter)

KAMEL

TrImpute
Linear

Map Match

(a) Porto – Recall

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

KAMEL

TrImpute
Linear

Map Match

(b) Porto – Precision

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e
c
a
ll

Sparseness (meter)

KAMEL

TrImpute
Linear

Map Match

(c) Jakarta – Recall

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

KAMEL

TrImpute
Linear

Map Match

(d) Jakarta – Precision

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

Linear
TrImpute
KAMEL

(e) Porto – Failure

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

Linear
TrImpute
KAMEL

(f) Jakarta – Failure

Figure 9: Impact of Data Sparseness on Recall, Precision, and Failure Rate

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e
c
a
ll

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

Map Match

(a) Porto – Recall

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

Map Match

(b) Porto – Precision

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e
c
a
ll

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

Map Match

(c) Jakarta – Recall

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

Map Match

(d) Jakarta – Precision

Figure 10: Impact of Accuracy Threshold on Recall and Precision

 0.1

 1

 10

 100

 1000

 10000

Porto Jakarta

T
ra

in
in

g
 T

im
e

in
 M

in
u
te

s
 (

lo
g
 s

c
a
le

)

KAMEL

TrImpute

(a) Training Time

 0.1

 1

 10

 100

 1000

 10000

Porto Jakarta

Im
p
u
ta

ti
o
n
 T

im
e

in
 S

e
c
o
n
d
s
 (

lo
g
 s

c
a
le

) KAMEL

TrImpute
Map Match

(b) Imputation Time

Figure 11: Timing Analysis

8.3 Training and Imputation Time
Figure 11 gives the training and imputation time for Porto and
Jakarta datasets. For training time, apparently Kamel takes more
time than TrImpute, with 680 minutes for Porto and 780 minutes for
Jakarta. This is mainly because Kamel inherits the complex training
model from BERT, while TrImpute training basically computes a
simple set of stats and lookup indices. However, we do not see this
as a major issue since training is an offline process and only happens
periodically whenever a bulk of new trajectories is received, and
without affecting the imputation or causing any system downtime.
Figure 11(b) gives the average imputation time for trajectories.
Kamel takes longer with 540 seconds for Porto and 220 seconds for
Jakarta, which is mainly due to the Multipoint Imputation module
that trades-off accuracy with imputation time. Since our main goal
in Kamel is higher accuracy, we tune our modules to achieve higher
accuracy, while accepting the imputation time overhead.

8.4 Impact of Road Type
This section aims to understand the behavior of Kamel and its
competitors for straight and curved road segments.Hence, as we
have the ground truth for our test trajectories, we classify each test
trajectory segment into two types: straight and curved. A segment
is identified as straight if the Euclidean distance between its two
end points is within a very small threshold (5m by default) from
their road network distance, otherwise, the segment is identified as
curved. Figures 12-I and 12-II repeat the same experiments of Sec-
tions 8.1 and Section 8.2, when only focusing on straight and curved
segments, respectively. Experiments are only shown for Jakarta
dataset. Porto dataset gives a similar analysis and conclusion.

For straight segments (Figure 12-I), Kamel outperforms its com-
petitors in all measures, sparsity gaps, and accuracy thresholds. For
sparsity gaps (Figures 12-I(a)-(b)), TrImpute gives the worst perfor-
mance, as it gets distracted with various directions of surrounding
GPS points and misses the easiest case of going in a straight direc-
tion. Kamel outperforms linear interpolation, mainly due to our
definition of a straight segment, which allows for a 5m threshold.
For failure rate (Figure 12-I(c), Kamel significantly outperforms
others. For various thresholds 𝛿 (Figures 12-I(d)-(e)), both Kamel
and linear interpolation exhibit similar high performance, while
TrImpute has a much worse performance for lower 𝛿 .

For curved segments (Figure 12-II), Kamel consistently has the
highest performance in all measures. For the most practical medium
gaps, Kamel significantly outperforms TrImpute, which shows the
resilience of Kamel towards curved segments. For failure rates
(Figure 12-II(c)), Kamel consistently outperforms its competitors.
For various thresholds 𝛿 (Figures 12-II(d)-(e)), it is expected that the
performance of TrImpute and linear interpolation catch withKamel
for large 𝛿 , which is a very relaxed value that is not practical in
most applications. For practical medium 𝛿 , Kamel is clearly better,
showing its applicability to most trajectory applications. For very
tight values of 𝛿 < 10𝑚, both TrImpute and linear interpolation are
useless, while Kamel has more than 50% recall and precision.

8.5 Impact of Grid Type
Figure 12-III compares two tokenization alternatives for Kamel,
namely, Uber H3 Hexagons [24] and Google S2 Squares [59]. For S2,
we set the edge length to 120m to ensure a similar area coverage
as that of hexagons with edge length of 75m. In all measures, a
hexagonal grid gives better performance due to its unique prop-
erties. In particular, all neighbors of a certain hexagonal cell have
identical properties in terms of the length of shared borders and
the distance between their centroids, which makes the transition
patterns between cells more consistent and easier to learn.

8.6 Impact of Training Data Properties
Figure 12-IV studies the impact of the training data size for Jakarta
dataset (Porto dataset gives similar behavior), where we compare
four variants of Kamel trained on 100%, 75%, 50%, and 25% of the
available training trajectories. In all metrics, the three variants 100%,
75%, and 50% perform almost identically with only some minor
differences. Only the 25% variant shows a noticeable reduction
in performance. This shows that Kamel can still achieve its good
results even with as little as half of the data it has. Figure 12-V
studies the impact of the density of training data. We train Kamel
using four variations of Jakarta dataset, all have the same number
of trajectories but differ in their GPS density. Those variants include
the original dense dataset which has a sampling rate of 1 second,
and three other sparse variants with sampling rates 15, 30, and
60 seconds. For all metrics, Kamel still achieves almost the same
performance for the 1 and 15 seconds sampling rates. It is important

534

(a) (b) (c) (d) (e)

I
St
ra
ig
ht

Se
gm

en
ts

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e

c
a

ll

Sparseness (meter)

KAMEL

TrImpute
Linear 0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

KAMEL

TrImpute
Linear 0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

Linear
TrImpute
KAMEL

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e

c
a

ll

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

II
Cu

rv
ed

Se
gm

en
ts

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e

c
a

ll

Sparseness (meter)

KAMEL

TrImpute
Linear

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

KAMEL

TrImpute
Linear

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

Linear
TrImpute
KAMEL

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e

c
a

ll

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear 0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

KAMEL

TrImpute
Linear

III
Gr

id
Ty

pe

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e

c
a

ll

Sparseness (meter)

Hexagons (H3)
Squares (S2)

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

Hexagons (H3)
Squares (S2)

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

Hexagons (H3)
Squares (S2)

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e

c
a

ll

Accuracy Threshold δ (meter)

Hexagons (H3)
Squares (S2)

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

Hexagons (H3)
Squares (S2)

IV
T r
ai
ni
ng

Si
ze

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e

c
a

ll

Sparseness (meter)

100 %

75 %
50 %
25 %

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

100 %

75 %
50 %
25 %

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

100 %

75 %
50 %
25 %

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e

c
a

ll

Accuracy Threshold δ (meter)

100 %

75 %
50 %
25 % 0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

100 %

75 %
50 %
25 %

V
Tr
ai
ni
ng

D
en
sit
y

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e

c
a

ll

Sparseness (meter)

1 Sec.

15 Sec.
30 Sec.
60 Sec.

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

1 Sec.

15 Sec.
30 Sec.
60 Sec.

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

1 Sec.

15 Sec.
30 Sec.
60 Sec.

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e

c
a

ll

Accuracy Threshold δ (meter)

1 Sec.

15 Sec.
30 Sec.
60 Sec. 0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

1 Sec.

15 Sec.
30 Sec.
60 Sec.

VI
A
bl
at
io
n
St
ud

y

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

R
e

c
a

ll

Sparseness (meter)

KAMEL

No Part.
No Const.
No Multi.

0.2

0.4

0.6

0.8

1.0

 1000 2000 3000 4000

P
re

c
is

io
n

Sparseness (meter)

KAMEL

No Part.
No Const.
No Multi.

0.00

0.01

0.10

1.00

 1000 2000 3000 4000

F
a

ilu
re

 R
a

te
 (

lo
g

 s
c
a

le
)

Sparseness (meter)

KAMEL

No Part.
No Const.
No Multi.

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

R
e

c
a

ll

Accuracy Threshold δ (meter)

KAMEL

No Part.
No Const.
No Multi.

0.2

0.4

0.6

0.8

1.0

 10 25 50 75 100

P
re

c
is

io
n

Accuracy Threshold δ (meter)

KAMEL

No Part.
No Const.
No Multi.

Sparseness vs. Recall, Precision, and Failure Rate Accuracy Threshold vs. Recall and Precision

Figure 12: Performance Analysis Under Various Scenarios

to note that the 15 seconds sampled data is basically 15 times less
(7%) of the original data. While having dense data is much better for
training, this experiment shows that Kamel can still work perfectly
fine with only 7% of its available data for Jakarta.

8.7 Ablation Analysis
Figure 12-VI performs an ablation study of Kamel using Jakarta
dataset, to understand the impact of each of its components by
disabling them one at a time and then measure all performance
metrics. In particular, we compare four system variants: (a) Kamel:
our full system as explained in this paper, (b) No Part.: disables the
Spatial Partitioning module (Section 4) by training one BERT model
for the entire data, (c) No Const.: disables the Spatial Constraints
module (Section 5) by accepting any BERT prediction, and (d) No

Multi.: disables the Multipoint Imputation module (Section 6) by
calling BERT only once to get a single imputation point.

For recall and precision across various 𝑆𝑝𝑎𝑟𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (Figures 12-
VI(a) and (b)), removing any of Kamel components significantly
reduces its accuracy. For the recall, removing the multipoint impu-
tation affects the performance the most because the system now
predicts only one point for each gap and leaves the rest of it, hence
reduces the recall. In contrast, removing the spatial constraints af-
fects the precision the most while affecting the recall the least. This
is because removing these constraints does not prevent the system
from still predicting some accurate imputations, but will allow it to
predict so many noisy points. For the failure rate (Figure 12-VI(c)),
removing any module causes Kamel to fail more except when re-
moving the spatial constraints, which causes less failure rate. This

535

is because BERT is now allowed to make any prediction regardless
of how imprecise it is. Removing the multipoint imputation module
causes Kamel to fail the most as this makes Kamel predict only
one point for each gap. Similarly, in Figures 12-VI(d) and (e), the
recall and precision for the full Kamel for all accuracy thresholds 𝛿
is higher than it is when removing any of its components. For the
recall, one observation here is that the variant with no spatial par-
titioning starts lower than other variants at lower thresholds 𝛿 , but
then outperforms them with the increase of 𝛿 . This shows the max-
imum effect of the spatial partitioning is at lower thresholds. This
is where the locally trained models are mostly needed to improve
the accuracy. For precision, without the spatial constraints module,
the precision is consistently low around 10% or less regardless of 𝛿 .

9 RELATED WORK
Trajectory ImputationwithRoadNetwork. The immense need
for high resolution trajectories motivated the efforts to insert points
between each two consecutive trajectory points. Such a process
had various names, including trajectory interpolation [39, 79], com-
pletion [35], cleaning [77], restoration [34], recovery [69, 70], and
imputation [20, 50]. The large majority of such work mainly rely on
matching trajectory points on the underlying road network [8, 40],
followed by a shortest path algorithm between consecutive points.
Unfortunately, none of this work is applicable to us as they all rely
on an underlying road network. In our case, we aim for imputation
without road network knowledge as our target applications include
map inference, which needs to infer the unknown road network.
Trajectory Imputation without Road Network. Motivated by
the unreliability of road networks [17, 23] and the need to develop
trajectory-based map inference techniques [1], it becomes highly
important to develop trajectory imputations techniques that do
not rely on the road network, and hence can be used as a prepa-
ration step before any map inference technique [7, 14, 58, 63]. Un-
fortunately, existing techniques suffer from one or more of the
following: (1) only impute one or two points between each two
trajectory points [69], (2) only applicable to impute high gran-
ularity zones [32, 55], (3) only applicable to junction-level road
network [35]. Our proposed Kamel system overcomes all of these
issues as it scales up to impute tens of points between each two
trajectory points, applicable to a very fine granularity of GPS points,
and applicable to a city-scale road network. The closest work to
ours is TrImpute [20], which uses historical data to find the most
likely imputed points for each trajectory segment. However, it only
works when there are significant amounts of highly dense historical
data, which is not a practical case. We consider TrImpute as our
direct competitor and compare against it in our experiments.
NLP Models and Trajectories. The BERT language model was
introduced in 2018 [19] as an infrastructure for a myriad of com-
plex linguistic tasks, including sentence completion. It utilizes the
Transformer neural network [68], trained on vast textual corpora
by removing random words from sentences and tasks the model
with predicting each missing word based on surrounding context
(left and right words). Since then, several new models and varia-
tions were proposed, including XLNet [75], RoBERTa [38], Distil-
BERT [60], ALBERT [33], and GPT [11], each focusing on a certain

aspect such as training size, objectives, and masking procedures. Re-
search efforts in employing language models for the spatial domain
mainly utilize it as a pretrainedmodel in its lingual form by verbally
asking it questions of spatial nature [29, 53, 73]. Our system Kamel
does not use a pretrained BERT model. Instead, it trains BERT with
trajectory data through its system architecture and five components
built around BERT. We have chosen the BERT model as it is the
first and most commonly used language model, yet other BERT
variants can be also used. Our goal is not to find which language
model is best suited for trajectories. Instead, our goal is to show that
language models, in general, trained with trajectory data, can be
adopted to solve trajectory imputation with higher accuracy than
state-of-the-art techniques. We opted for a design that employs
BERT as is. Another design alternative would be to embed spatial
awareness inside the core of each internal BERT component, as
outlined in our recent vision paper [52]. Our rationale is that our
design is more attractive to a large sector of systems that already
deploy the BERT model and would need less disturbance to their
systems. Future work would explore the second design option by
carefully looking into the internal components of BERT one by one.
Time-series Imputation. In the same way we have mapped the
trajectory imputation problem to the missing word problem and
used NLP models to solve it, one can also consider mapping it
to the multivariate time series imputation problem, and use any
of its solutions that are based on Generative Adversarial Net-
works [41, 42, 61], Generative Learning Models [13, 46, 57], Re-
current Neural Networks [12], Graph Neural Networks [16], or
attention mechanisms [78]. Similar to the case of language models,
solutions to the multivariate time series imputation: (a) assume only
few missing data points, hence to support trajectory imputation, it
would need to go through a multipoint imputation module similar
to that of Section 6, (b) mainly impute sensor readings, which have
a very limited domain of values, hence to support trajectory im-
putation, it would need Tokenization and Detokenization modules
similar to that of Sections 3 and 7, (c) are not spatially-aware, hence
to support trajectory imputation, it would need spatial partitioning
and spatial constraints modules similar to that of Sections 4 and 5.
In essence, an orthogonal approach to ours is to start from a multi-
variate time series imputation algorithm and adopt it in a similar
way to what we have done in Kamel for NLP models.

10 CONCLUSION
This paper has presented Kamel; a scalable BERT-based system
for trajectory imputation. Kamel maps the trajectory imputation
problem to finding the missing word problem in natural language
processing (NLP). Hence, Kamel starts from using BERT, the widely
used language model for NLP problems. However, BERT, as is,
does not lend itself to the special characteristics of the trajectory
imputation problem. Hence, Kamel architecture is composed of five
main modules to make BERT applicable for trajectory imputation.
These modules adapt the nature of trajectory data to be more fit for
BERT, and inject the spatial-awareness in both the input and output
of BERT. Experimental results based on real system implementation
and real datasets show that Kamel significantly outperforms its
competitors. In addition, unlike all related approaches, Kamel was
able to impute city-scale trajectories, large sparse gaps that need
tens of imputed points, all within tight accuracy thresholds.

536

REFERENCES
[1] S. Abbar, M. Alizadeh, F. Bastani, S. Chawla, S. He, H. Balakrishnan, and S.Madden.

The Science of Algorithmic Map Inference (Tutorial). In KDD, 2018.
[2] R. Alseghayer. Racoon: Rapid Contact Tracing of Moving Objects Using Smart

Indexes. In MDM, 2021.
[3] Road Inference From GPS Trajectories. https://www.amazon.science/

publications/ring-net-road-inference-from-gps-trajectories-using-a-deep-
segmentation-network/.

[4] Apple rolls out all-new map across Belgium, Liechtenstein, Luxembourg, the
Netherlands, and Switzerland. https://www.apple.com/cm/newsroom/2022/12/
apple-rolls-out-all-new-map-across-belgium-liechtenstein-luxembourg-the-
netherlands-and-switzerland/.

[5] W. G. Aref and H. Samet. Efficient Processing of Window Queries in The Pyramid
Data Structure. In PODS, 1990.

[6] Bert implementation by google. https://github.com/google-research/bert/.
[7] J. Biagioni and J. Eriksson. Inferring Road Maps from Global Positioning System

Traces: Survey and Comparative Evaluation. Transportation Research Record:
Journal of the Transportation Research Board, 2291(1), 2012.

[8] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle
Tracking Data. In VLDB, 2005.

[9] I. R. Brilhante, J. A. F. de Macêdo, F. M. Nardini, R. Perego, and C. Renso. Planning
Sightseeing Tours Using Crowdsensed Trajectories. ACM SIGSPATIAL Special,
7(1), 2015.

[10] I. Brodsky. Uber’s Hexagonal Hierarchical Spatial Index. https://eng.uber.com/h3.
[11] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language Models are Few-Shot Learners.
In NeurIPS, 2020.

[12] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent Neural Networks
for Multivariate Time Series with Missing Values. Nature Scientific Reports, 2018.

[13] Z. Che, S. Purushotham, M. G. Li, B. Jiang, and Y. Liu. Hierarchical Deep Gen-
erative Models for Multi-Rate Multivariate Time Series. In Proceedings of the
International Conference on Machine Learning, ICML, 2018.

[14] C. Chen, C. Lu, Q. Huang, Q. Yang, D. Gunopulos, and L. J. Guibas. City-Scale
Map Creation and Updating using GPS Collections. In KDD, 2016.

[15] L. Chen, S. Shang, C. S. Jensen, B. Yao, Z. Zhang, and L. Shao. Effective Efficient
Reuse of Past Travel Behavior for Route Recommendation. In KDD, 2019.

[16] A. Cini, I. Marisca, and C. Alippi. Filling the G_ap_s: Multivariate Time Series
Imputation by Graph Neural Networks. In International Conference on Learning
Representations, ICLR, 2022.

[17] CNN Buisness. The Billion Dollar War over Maps. https://money.cnn.com/2017/
06/07/technology/business/maps-wars-self-driving-cars/index.html.

[18] P. Cudré-Mauroux, E. Wu, and S. Madden. TrajStore: An Adaptive Storage System
for Very Large Trajectory Data sets. In ICDE, 2010.

[19] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training Deep Bidirec-
tional Transformers for Language Understanding. CoRR, abs/1810.04805, 2018.

[20] M. M. Elshrif, K. Isufaj, and M. F. Mokbel. Network-less trajectory imputation.
In SIGSPATIAL, 2022.

[21] M. Ester, H. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In KDD, 1996.

[22] Q. Gao, G. Trajcevski, F. Zhou, K. Zhang, T. Zhong, and F. Zhang. DeepTrip:
Adversarially Understanding Human Mobility for Trip Recommendation. In
SIGSPATIAL, 2019.

[23] Grand View Research. Abolute Reports. Global High Accuracy Map Market Size,
Status and Forecast 2021-2027, Mar. 2020. https://www.grandviewresearch.com/
industry-analysis/digital-map-market.

[24] H3: Hexagonal Hierarchical Geospatial Indexing System. https://h3geo.org/.
[25] Conversion from latitude/longitude to containing H3 Cell Index. https://h3geo.

org/docs/core-library/latLngToCellDesc/.
[26] S. He, F. Bastani, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S.Madden.

Roadrunner: Improving the Precision of Road Network Inference from GPS
Trajectories. In SIGSPATIAL, 2018.

[27] T. He, J. Bao, S. Ruan, R. Li, Y. Li, H. He, and Y. Zheng. Interactive Bike Lane
Planning Using Sharing Bikes’ Trajectories. TKDE, 32(8), 2020.

[28] B. Hossain, K. A. Adnan, M. F. Rabbi, and M. E. Ali. Modelling Road Traffic
Congestion from Trajectories. In DSIT, 2020.

[29] J. Huang, H. Wang, Y. Sun, Y. Shi, Z. Huang, A. Zhuo, and S. Feng. ERNIE-GeoL:
A Geography-and-Language Pre-trained Model and its Applications in Baidu
Maps. In KDD, 2022.

[30] X. Huang, Y. Yin, S. Lim, G. Wang, B. Hu, J. Varadarajan, S. Zheng, A. Bulusu,
and R. Zimmermann. Grab-posisi: An extensive real-life GPS trajectory dataset
in southeast asia. In PredictGIS@SIGSPATIAL, 2019.

[31] B. B. Krogh, O. Andersen, E. Lewis-Kelham, N. Pelekis, Y. Theodoridis, and K. Torp.
Trajectory Based Traffic Analysis. In SIGSPATIAL, 2013.

[32] J. Krumm. Maximum Entropy Bridgelets for Trajectory Completion. In SIGSPA-
TIAL, 2022.

[33] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. ALBERT: A
Lite BERT for Self-supervised Learning of Language Representations. In ICLR,
2020.

[34] B. Li, Z. Cai, M. Kang, S. Su, S. Zhang, L. Jiang, and Y. Ge. A Trajectory Restoration
Algorithm for Low-sampling-rate Floating Car Data and Complex Urban Road
Networks. International Journal of GIS, 35(4), 2021.

[35] Y. Li, Y. Li, D. Gunopulos, and L. J. Guibas. Knowledge-based Trajectory Comple-
tion from Sparse GPS Samples. In SIGSPATIAL, 2016.

[36] Y. Li, J. Luo, C. Chow, K. Chan, Y. Ding, and F. Zhang. Growing Charging Station
Network For Electric Vehicles With Trajectory Data Analytics. In ICDE, 2015.

[37] F. Lin and H. Hsieh. An Intelligent And Interactive Route Planning Maker For
Deploying New Transportation Services. In SIGSPATIAL, 2018.

[38] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
CoRR, abs/1907.11692, 2019.

[39] J. A. Long. Kinematic Interpolation of Movement Data. International Journal of
Geographical Information Science, 30(5), 2016.

[40] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-Matching for
Low-Sampling-Rate GPS Trajectories. In SIGSPATIAL, 2009.

[41] Y. Luo, X. Cai, Y. Zhang, J. Xu, and X. Yuan. Multivariate Time Series Imputa-
tion with Generative Adversarial Networks. In Advances in Neural Information
Processing Systems, NeurIPS, 2018.

[42] Y. Luo, Y. Zhang, X. Cai, and X. Yuan. E2GAN: End-to-End Generative Adversarial
Network for Multivariate Time Series Imputation. In IJCAI, 2019.

[43] Lyft Engineering. How Lyft Creates Hyper-Accurate Maps from Open-Source
Maps and Real-Time Data. https://eng.lyft.com/how-lyft-creates-hyper-accurate-
maps-from-open-source-maps-and-real-time-data-8dcf9abdd46a.

[44] Mapillary. Unveiling theMapping in Logistics Report: The Impact of BrokenMaps
on Last-Mile Deliveries. https://blog.mapillary.com/update/2020/02/14/mapping-
in-logistics.html.

[45] C. Meng, X. Yi, L. Su, J. Gao, and Y. Zheng. City-wide Traffic Volume Inference
with Loop Detector Data and Taxi Trajectories. In SIGSPATIAL, 2017.

[46] X. Miao, Y. Wu, J. Wang, Y. Gao, X. Mao, and J. Yin. Generative Semi-supervised
Learning for Multivariate Time Series Imputation. In AAAI, 2021.

[47] Discover New Roads with BingMaps. https://blogs.bing.com/maps/2022-12/Bing-
Maps-is-bringing-new-roads/.

[48] M. F. Mokbel, S. Abbar, and R. Stanojevic. Contact Tracing: Beyond the Apps.
ACM SIGSPATIAL Special, 12(2), 2020.

[49] M. Musleh, S. Abbar, R. Stanojevic, and M. F. Mokbel. QARTA: An ML-based
System for Accurate Map Services. PVLDB, 14(11), 2021.

[50] M. Musleh and M. Mokbel. A Demonstration of KAMEL: A Scalable BERT-based
System for Trajectory Imputation. In SIGMOD, 2023.

[51] M. Musleh and M. F. Mokbel. RASED: A Scalable Dashboard for Monitoring Road
Network Updates in OSM. In MDM, 2022.

[52] M. Musleh, M. F. Mokbel, and S. Abbar. Let’s Speak Trajectories. In SIGSPATIAL,
Seattle, WA, USA, 2022.

[53] V. K. Penumadu, N. Methani, and S. Sohoney. Learning Geospatially Aware Place
Embeddings via Weak-supervision. In SIGSPATIAL, 2022.

[54] Taxi Service Trajectory. Prediction Challenge. ECML PKDD 2015. http://www.
geolink.pt/ecmlpkdd2015-challenge/dataset.html.

[55] K. K. Qin, Y. Ren, W. Shao, B. Lake, F. Privitera, and F. D. Salim. Multiple-level
Point Embedding for Solving Human Trajectory Imputation with Prediction.
ACM TSAS, 2023.

[56] D. R. Reddy et al. Speech Understanding Systems: A Summary of Results of
the Five-Year Research Effort. Department of Computer Science. Carnegie Mellon
University, Pittsburgh, PA, 17, 1977.

[57] X. Ren, K. Zhao, P. J. Riddle, K. Taskova, Q. Pan, and L. Li. DAMR: Dynamic Ad-
jacency Matrix Representation Learning for Multivariate Time Series Imputation.
Proceeding of ACM Management of Data, 1(2), 2023.

[58] S. Ruan, C. Long, J. Bao, C. Li, Z. Yu, R. Li, Y. Liang, T. He, and Y. Zheng. Learning
to Generate Maps from Trajectories. In AAAI, 2020.

[59] S2 Spherical Geometry Library. https://s2geometry.io/.
[60] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.
[61] R. Shahbazian and S. Greco. Generative Adversarial Networks Assist Missing

Data Imputation: A Comprehensive Survey and Evaluation. IEEE Access, 11, 2023.
[62] Z. Shang, G. Li, and Z. Bao. DITA: Distributed In-Memory Trajectory Analytics.

In SIGMOD, 2018.
[63] R. Stanojevic, S. Abbar, S. Thirumuruganathan, S. Chawla, F. Filali, and A. Aleimat.

Robust Map Inference through Network Alignment of Trajectories. In SDM, 2018.
[64] Traffic Technology Today. Poor maps costing delivery companies US $6bn an-

nually. https://www.traffictechnologytoday.com/news/mapping/poor-maps-
costing-delivery-companies-us6bn-annually.html.

[65] Uber engineering. enhancing the quality of uber maps with metrics computation.
https://eng.uber.com/maps-metrics-computation/.

[66] UCR STAR: The UCR Spatio-temporal Active Repository. OSM/GPS Dataset for
Portland, OR, USA. https://star.cs.ucr.edu/?OSM/GPS#center=45.5428,-122.6544.

537

https://www.amazon.science/publications/ring-net-road-inference-from-gps-trajectories-using-a-deep-segmentation-network/
https://www.amazon.science/publications/ring-net-road-inference-from-gps-trajectories-using-a-deep-segmentation-network/
https://www.amazon.science/publications/ring-net-road-inference-from-gps-trajectories-using-a-deep-segmentation-network/
https://www.apple.com/cm/newsroom/2022/12/apple-rolls-out-all-new-map-across-belgium-liechtenstein-luxembourg-the-netherlands-and-switzerland/
https://www.apple.com/cm/newsroom/2022/12/apple-rolls-out-all-new-map-across-belgium-liechtenstein-luxembourg-the-netherlands-and-switzerland/
https://www.apple.com/cm/newsroom/2022/12/apple-rolls-out-all-new-map-across-belgium-liechtenstein-luxembourg-the-netherlands-and-switzerland/
https://github.com/google-research/bert/
https://eng.uber.com/h3
https://money.cnn.com/2017/06/07/technology/business/maps-wars-self-driving-cars/index.html
https://money.cnn.com/2017/06/07/technology/business/maps-wars-self-driving-cars/index.html
https://www.grandviewresearch.com/industry-analysis/digital-map-market
https://www.grandviewresearch.com/industry-analysis/digital-map-market
https://h3geo.org/
https://h3geo.org/docs/core-library/latLngToCellDesc/
https://h3geo.org/docs/core-library/latLngToCellDesc/
https://blog.mapillary.com/update/2020/02/14/mapping-in-logistics.html
https://blog.mapillary.com/update/2020/02/14/mapping-in-logistics.html
https://blogs.bing.com/maps/2022-12/Bing-Maps-is-bringing-new-roads/
https://blogs.bing.com/maps/2022-12/Bing-Maps-is-bringing-new-roads/
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
https://s2geometry.io/
https://www.traffictechnologytoday.com/news/mapping/poor-maps-costing-delivery-companies-us6bn-annually.html
https://www.traffictechnologytoday.com/news/mapping/poor-maps-costing-delivery-companies-us6bn-annually.html
https://eng.uber.com/maps-metrics-computation/
https://star.cs.ucr.edu/?OSM/GPS#center=45.5428,-122.6544

[67] A. Vahedian, X. Zhou, L. Tong, Y. Li, and J. Luo. Forecasting Gathering Events
through Continuous Destination Prediction. In SIGSPATIAL, 2017.

[68] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is All you Need. In NeurIPS, 2017.

[69] J. Wang, N. Wu, X. Lu, W. X. Zhao, and K. Feng. Deep Trajectory Recovery with
Fine-Grained Calibration using Kalman Filter. TKDE, 33(3), 2021.

[70] H. Wu, J. Mao, W. Sun, B. Zheng, H. Zhang, Z. Chen, and W. Wang. Probabilistic
Robust Route Recovery with Spatio-Temporal Dynamics. In KDD, 2016.

[71] Y. Wu et al. Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation, 2016.

[72] L. Xiong, C. Shahabi, Y. Da, R. Ahuja, V. Hertzberg, L. Waller, X. Jiang, and
A. Franklin. REACT: Real-Time Contact Tracing and Risk Monitoring Using
Privacy-enhanced Mobile Tracking. ACM SIGSPATIAL Special, 12(2), 2020.

[73] H. Xue, B. P. Voutharoja, and F. D. Salim. Leveraging Language Foundation
Models for Human Mobility Forecasting. In SIGSPATIAL, 2022.

[74] C. Yang and G. Gidofalvi. Fast Map Matching, An Algorithm Integrating Hidden
Markov Model With Precomputation. IJGIS, 32(3), 2018.

[75] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le. XLNet:
Generalized Autoregressive Pretraining for Language Understanding. In NeurIPS,
2019.

[76] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-Drive:
Driving Directions Based on Taxi Trajectories. In SIGSPATIAL, 2010.

[77] A. Zhang, S. Song, J. Wang, and P. S. Yu. Time Series Data Cleaning: From
Anomaly Detection to Anomaly Repairing. PVLDB, 10(10), 2017.

[78] J. Zhao, C. Rong, C. Lin, and X. Dang. Multivariate time series data imputation
using attention-based mechanism. Neurocomputing, 542, 2023.

[79] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing Uncertainty of Low-Sampling-
Rate Trajectories. In ICDE, 2012.

[80] F. Zhou, H. Wu, G. Trajcevski, A. A. Khokhar, and K. Zhang. Semi-supervised Tra-
jectory Understanding with POI Attention for End-to-End Trip Recommendation.
ACM TSAS, 6(2), 2020.

538

	Abstract
	1 Introduction
	2 Kamel Architecture
	3 Tokenization
	3.1 Hexagonal Space Partitioning
	3.2 Cell Size Optimization

	4 Partitioning
	4.1 Models Repository Structure and Retrieval
	4.2 Models Repository Maintenance

	5 Spatial Constraints
	5.1 Physical Movement Constraints
	5.2 Cycles Prevention

	6 Multipoint Imputation
	6.1 Iterative BERT Calling
	6.2 Bidirectional Beam Search

	7 Detokenization
	8 Experimental Evaluation
	8.1 Impact of Data Sparseness
	8.2 Impact of Accuracy Threshold
	8.3 Training and Imputation Time
	8.4 Impact of Road Type
	8.5 Impact of Grid Type
	8.6 Impact of Training Data Properties
	8.7 Ablation Analysis

	9 Related Work
	10 Conclusion
	References

