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ABSTRACT
The social network host has knowledge of the network structure

and user characteristics and can earn a profit by providing mer-

chants with viral marketing campaigns. We investigate the problem

of host profit maximization by leveraging performance incentives

and user flexibility. To incentivize the host’s performance, we pro-

pose setting a desired influence threshold that would allow the host

to receive full payment, with the possibility of a small bonus for

exceeding the threshold. Unlike existing works that assume a user’s

choice is frozen once they are activated, we introduce the Dynamic
State Switching model to capture “comparative shopping” behavior
from an economic perspective, in which users have the flexibilities

to change their minds about which product to adopt based on the

accumulated influence and propaganda strength of each product.

In addition, the incentivized cost of a user serving as an influence

source is treated as a negative part of the host’s profit.

The host profit maximization problem is NP-hard, submodu-

lar, and non-monotone. To address this challenge, we propose an

efficient greedy algorithm and devise a scalable version with an ap-

proximation guarantee to select the seed sets. As a side contribution,

we develop two seed allocation algorithms to balance the distri-

bution of adoptions among merchants with small profit sacrifice.

Through extensive experiments on four real-world social networks,

we demonstrate that our methods are effective and scalable.
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1 INTRODUCTION
Influence maximization (IM) [28] is a crucial task in the analysis

of social networks with significant commercial value in viral mar-

keting [16], network monitoring [30], social recommendation [58],

and so on. Given a social graph and an integer 𝑘 , the objective of

IM is to identify a set of 𝑘 seed nodes as the source of information

propagation such that the expected number of influenced nodes

is maximized under a specified diffusion model. The study of IM

has attracted significant attention in the fields of data management,

leading to the focuses on (1) designing practical objectives accord-

ing to real-world application demands [5, 20, 27]; (2) modeling

information diffusion process based on users’ behaviors and inher-

ent properties [7, 35, 54]; and (3) devising effective and efficient

solutions with quality guarantees [18, 41, 48].

Traditional IM assumes that merchants can access the social

network and determine optimal seed users to initially adopt their

product
1
. However, in reality, social networks are often owned by

third-party hosts like Facebook or TikTok, which keep the network

structure secret for their own benefit and privacy legislation [35, 60].

Merchants typically lack direct access to the network and are de-

pendent on the host’s permission to run their marketing campaigns.

Motivated by this observation, there has been an increasing focus on

studying the IM problem from the perspective of the host [5, 6, 20].

Additionally, multiple competing merchants may launch similar

products around the same time in the marketplace [6, 29, 32]. For

instance, in 2022, iPhone 14 series, Huawei Mate 50 series and Sam-

sung Galaxy series were launched around September [1, 23, 42].

Therefore, in this work, we consider a scenario where the social
platform host conducts the seed selection for multiple competing mer-
chants, each offering a budget as the quoted price for their desired level
of influence. We define a practical host profit maximization prob-

lem under a novel diffusion model that incorporates the economic

perspective of “comparative shopping” behavior [12, 46, 55].

Host Profit Maximization. The host of a social network plat-

form, who has knowledge about the social graph structure and

user characteristics, has the opportunity to generate profit by pro-

viding merchants with influence in marketing campaigns on the

platform
2
[20, 43, 59]. The host’s profit is calculated by subtracting

the incentivizing cost from the revenue. The revenue represents

1
The term product may also refer to opinions, technologies, innovations, etc.

2
Influencer marketing has grown from a $1.7 billion in 2016 to a projected $16.4 billion

in 2022, reported in https://sproutsocial.com/insights/pr-and-influencer-marketing/.
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the amount paid by each merchant to the host for a desired number

of user adoptions, while the cost refers to the payment made by

the host to incentivize the seed users. The host can evaluate the

user adoptions through user actions, i.e. retweet and like. Unlike

previous research [3, 4, 20], we introduce a novel revenue computa-

tion approach that incorporates a “retail goal or threshold” defined

by each merchant’s desired level of influence spread. In complex

market environments, achieving the requested influence level may

not always be feasible [43, 59]. Hence, we formalize that the host

earns partial or even no payment if they are unable to meet the

merchant’s requirement, and a small extra reward if they exceed the
merchant’s demand. Host can estimate Furthermore, in contrast to

prior studies [3, 20, 60], we assume that the cost of incentivizing

seed users is a negative part of the host’s profit, as only the host

can evaluate a user’s influence ability.

Dynamic State SwitchingModel.The traditional single-merchant

Independent Cascade (IC) and Linear Threshold (LT) models [28],

as well as their extended multi-merchant versions [29, 35, 36, 54]

all assume that users’ adoptions are frozen upon one-time acti-

vation, regardless of the arrival of other even-matched products,

which contradicts Kalish’s famous characterization of new product

adoption
3
[26]. In economic and marketing contexts, users usually

engage in “comparative shopping” behavior [12, 46, 55] where con-
sumers search for and compare various similar competing products
based on factors such as price, warranty policy, and quality reviews
before making a purchase decision4. To capture this nature, we pro-

pose theDynamic State Switching (DSS) model where users change

their minds from product A to B iff (1) the influence strength from

friends for B is greater than that of A, and (2) the host’s propaganda
strength for B is stronger than that of A. The model converges

when no more user is activated and no user changes her mind.

Applicability. Competitive Electric Vehicle (EV) merchants may

utilize social platforms for promotion. Merchants like Tesla, Rivian,

and NIO submit campaign proposals to a host, including a mini-

mum sales target (desired number of adoptions) and budget, and

incentive and penalty measures [4, 59]. The host in turn selects

influential users for each merchant accordingly. During the cam-

paign, an activated user (e.g., influenced by friends’ EV purchases)

refrains from making an immediate decision based solely on the

popularity of a choice, such as Tesla among her friends. Instead, she

tends to gather and compare information about other comparable

EVs. The decision-making process considers various factors, like

price or online quality reviews. Users make the final purchase deci-

sions either when their adoption converges or at a predetermined

timestamp, such as before the end of the marketing campaign.

Theoretical Analyses and Solutions.We demonstrate that un-

der the DSS model, the Host Profit Maximization problem is not
monotone and submodular, and NP-hard. Moreover, it is also NP-
hard to approximate with any constant factor. These results imply

that our problem is not tractable in general. However, we develop

an effective greedy algorithm with approximation guarantee to

allocate seed users for multiple merchants extended from the ROI-

Greedy [25]. Solving the multi-merchant scenario is non-trivial

3
Products awareness is propagated through word-of-mouth effects, after an individual

becomes aware, she would decide which item to adopt based on other considerations.

4
2 in 3 UK online shoppers compare before they buy [12].

due to the need for a meticulous seed allocation strategy and con-

sideration of dynamic changes in user’s product adoption while

maintaining theoretical guarantees. We also propose a scalable

version of our method with performance bounds by leveraging Re-
verse Influence Sampling method to estimate the expected influence

spread, while a novel unbiased estimation method is specifically

tailored for our DSS model. As a side contribution, we consider the

practical case where the host aims to maintain long-term business

relationships with all merchants. We investigate how to allocate

seeds fairly with minimal profit sacrifice (i.e., up to 10% as shown in

§ 5) to ensure a balanced distribution of adoptions amongmerchants

and propose two heuristic solutions.

Contributions and Roadmap.

• We study the host profit maximization problem where a

merchant will make the full payment if a desired influence

spread is achieved, while the incentivized cost of a user is

treated as a negative part of the host’s profit (§ 2.2).

• We design theDynamic State Switching propagation model

to capture the “comparative shopping” behavior from an

economic perspective (§ 2.1).

• We characterize the hardness of solving our problem (§ 2.3),

and develop an effective greedy seed selection method to

maximize the host’s profit with an approximation guaran-

tee (§ 3.1). Moreover, we devise a scalable version of our

approximation algorithm (§ 3.2).

• We present a practical scenario, and propose two heuristic

methods to balance the distribution of adoptions among

products while sacrificing little profit of host (§ 4).

• We conduct thorough experimental evaluations using four

real-world social network datasets, and validate that our

algorithms are effective and scalable (§ 5).

• We present a thorough literature review about other social

advertising variants (§ 6) and conclude our paper (§ 7).

2 PRELIMINARIES
A social network platform, referred to as the host, owns a social
graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of 𝑛 users and 𝐸 ⊆ 𝑉 × 𝑉
represents the set of 𝑚 social connections. Each edge 𝑒 = (𝑢, 𝑣)
is associated with a weight𝑤𝑢,𝑣 , depicting the influence strength

from user 𝑢 to 𝑣 . H = {ℎ1, ℎ2, ..., ℎ |H | } is a set of |H | merchants
who would like to promote their products on a social network.

Each merchant ℎ𝑖 submits a campaign proposal to the host, which
includes a minimum desired influence spread 𝐼𝑖 (i.e., a threshold)

and the corresponding budget 𝐵𝑖 that the merchant is willing to pay.

The host evaluates the influence diffusion on her social network

and selects a set of seed users 𝑆𝑖 for merchant ℎ𝑖 , 𝑆𝑖 ∩ 𝑆 𝑗 = ∅, 𝑖 ≠ 𝑗 .

In the following, we present the novel Dynamic State Switching
(DSS) information diffusion model (§ 2.1) to capture “comparative
shopping” behavior and facilitate the influence spread estimation.

After that, we formally define our host profit maximization problem

(§ 2.2) and provide the theoretical characteristics (§ 2.3).

2.1 The DSS Propagation Model
In the classical single-merchant LTmodel [28], each node is assigned

an activation threshold randomly from the range [0, 1]. The sum of

the weights of all incoming edges for each node is normalized to be
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Figure 1: Illustrating propagation of products under Dynamic State Switchingmodel

at most 1. The propagation process begins with a set of seeds that

are initially active and then progresses in discrete steps. If the sum

of the weights of the incoming edges from all active neighbors is no

smaller than the threshold of an inactive node, that node becomes

active in the next time step. The diffusion process terminates when

no more nodes can be activated. Each node can be activated once

and remains active until the end of the propagation process.

We extend the classical LT model to the multiple-merchant set-

ting, which is referred to as the Dynamic State Switching (DSS)
propagation model. This model consists of three phases: activation,

adoption, and switching. For each merchant ℎ𝑖 ∈ H , a set 𝑆𝑖 of

nodes is selected as its seeds and is initially adopted by product ℎ𝑖 .

The influence then propagates as follows:

(1) Activation phase. Similar to K-LT [35] and AtI [54] models,

an inactive node in DSS model will be activated in the same way

as the LT model. Initially, all nodes are inactive. At time 0, for each

merchant ℎ𝑖 , the node 𝑢 ∈ 𝑆𝑖 become active with its product ℎ𝑖 .

At any time 𝑡 ≥ 1, an inactive node 𝑣 becomes active when the

sum of incoming weights from its active neighbors (regardless of

products
5
) is at least 𝑣 ’s activation threshold. Once a node becomes

active, it remains active until the end of the diffusion process.

(2) Adoption phase. Let F𝑖 be the set of 𝑣 ’s neighbors that

have adopted product ℎ𝑖 . When node 𝑣 is activated, it selects the

product that is adopted by most of its active neighbors, formally,

arg maxℎ𝑖 ∈H
∑
𝑢∈F𝑖 𝑤𝑢,𝑣 .We assume that each node can only adopt

one product due to the competitive nature of the market and con-

sumer’s limited budget [29, 35, 54].

(3) Switching phase. After node 𝑣 is activated, it continuously
receives information from neighbors and may switch adoption

at subsequent time steps. Once node 𝑣 is aware of new products

at any time step, it makes a comparison and switches its adop-

tion to the product ℎ 𝑗 iff (1) its influence weight is higher, i.e.,∑
𝑢∈F𝑗 𝑤𝑢,𝑣 >

∑
𝑢∈F𝑖 𝑤𝑢,𝑣 , and (2) its quoted price per unit in-

fluence is higher, i.e.,

𝐵 𝑗

𝐼 𝑗
>

𝐵𝑖

𝐼𝑖
. The first condition reflects users’

preference for a product with stronger recommendations from their

friends, while the second condition captures the impact of the so-

cial platform’s propaganda strength on users’ purchasing choices.

Specifically, the host, who aims to maximize total profit, naturally

favors products with a larger quoted price per unit influence. Conse-

quently, through ranking these products higher when users search

for comparisons, the host can increase users’ exposure and famil-

iarity with these products, potentially affecting users to switch

their purchase decisions, which also aligns with the well-known

“exposure effect”6 observed in consumer research [24]. Noting that

5
This captures the natural process bywhich a user becomes familiar with and interested

in a category of products through the joint influence of all the products in that category.

We assume that similar products share the same set of influence probabilities.

6
Repeated exposure to a product during the shopping process leaves a deep impression,

increasing familiarity and trust in the product.

in real applications, the second condition can be replaced by any

factor relevant to “comparative shopping” behavior that may affect

the user’s purchase decision, such as product quality and price.

Comparisons with existing multi-merchant models. The K-LT
model [35] assumes that node 𝑣 decides to adopt a product only

based on its neighbors who were activated at the last time step,
while we consider all previously activated neighbors, which reflects

that users make purchase decisions based on the information accu-

mulated up to that time step, similar to the Weighted-Proportional
Competitive (WPCLT) model [9]. The AtI model [54], decides on

adoption based on the similarity between the user and product

features. Besides, the Com-IC model [36], extended from IC model,

assumes that users reconsider whether to adopt a previously un-

successfully activated product in complementary marketing, but

does not account for state switching in competitivemarketing. Thus,

none of these models consider the famous “comparative shopping”
behavior. To the best of our knowledge, we are the first to model the

changing of social choices in competitive influence maximization.

Example 1. Figure 1 shows an example of the DSSmodel. Suppose
there are three merchants, each has a seed 𝑣1 (blue), 𝑣3 (red), and 𝑣4

(green), respectively. At time t=1, 𝑣2 becomes active because𝑤𝑣1,𝑣2
+

𝑤𝑣4,𝑣2
=0.4+0.2>𝜃𝑣2

=0.5. Then, 𝑣2 adopts product ℎ1 since it carries
the largest weight (i.e., ℎ1=0.4>ℎ3=0.2) among its active neighbors,
𝑣5 adopts product ℎ3, and 𝑣6 remains inactive. At time t=2, 𝑣6 becomes
active in the activation phase because the total incoming weights from
its active neighbors becomes higher than its activation threshold (i.e.,
0.9>0.8). In the adoption phase, due to theDSSmodel considering the
accumulative effect of products since the beginning of the propagation
process, 𝑣6 adopts product ℎ2 ( ℎ2=0.5>ℎ1=0.3>ℎ3=0.1). However,
under the K-LT model [35], 𝑣6 will adopt product ℎ1 because it only
considers the effect of 𝑣6’s neighbors who were activated at the last
time step (i.e., only 𝑣2 was activated with ℎ1 at time t=1). At time
t=3, in the switching phase, 𝑣5 switches its adoption to product ℎ2

since it carries a larger weight (i.e., ℎ2 =0.5>ℎ3 =0.3) and stronger
propaganda strength (i.e., 𝐵2

𝐼2
= 1.5>

𝐵3

𝐼3
=1.2) than product ℎ3. The

propagation ends at 𝑣5 because there are no more nodes that can be
activated and switch adoption further.

2.2 Problem Definition
As mentioned before, |H | merchants compete in a social network

with similar products, each announcing the host with an influence

threshold 𝐼𝑖 and corresponding budget 𝐵𝑖 . The host seeks for an

allocation S, which is a set of |H | disjoint sets S = {𝑆1, 𝑆2, ..., 𝑆 |H | },
where 𝑆𝑖 is the seed set assigned to merchant ℎ𝑖 to conduct the

marketing campaign propagation and try to earnmaximal profit.We

first define the Revenue function and Cost function for a merchant.

Definition 1. (Revenue function). The revenue that host gains
from merchant ℎ𝑖 as 𝑅(𝑆𝑖 ) for a desired influence level 𝐼𝑖 is
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𝑅 (𝑆𝑖 ) = 𝐵𝑖 · (1 + 𝛾 ·
𝜎 (𝑆𝑖 ) − 𝐼𝑖

𝐼𝑖
) (1)

where 𝜎 (𝑆𝑖 ) is the expected influence of 𝑆𝑖 , and 𝛾 is a parameter

of penalty or reward. When 𝜎 (𝑆𝑖 ) < 𝐼𝑖 ,𝛾 is a penalty parameter (i.e.,

𝛾𝑝 ) controlling the severity of penalty, and it is a reward parameter

(i.e., 𝛾𝑟 ) determining the level of reward when 𝜎 (𝑆𝑖 ) ≥ 𝐼𝑖 . Note that,

when 𝛾 = 1, the Revenue function is reduced to the classical revenue
maximization problem with CPE model [3, 4, 20]. Similar to [59],

the choice of 𝛾 is orthogonal to our problem. More details on the

realistic selection of 𝛾 (𝛾𝑝 and 𝛾𝑟 ), each merchant’s 𝐼𝑖 and 𝐵𝑖 and

other parameters are referred to the experiments in § 5.

Suppose that each node 𝑣 ∈ 𝑉 is associated with an incentive

cost 𝑐 (𝑣) according to its influence ability, we then introduce the

notion of Cost function for a seed set 𝑆𝑖 .

Definition 2. (Cost function). The incentive cost that the host
needs to pay for selecting 𝑆𝑖 as seed set for merchant ℎ𝑖 is

𝐶 (𝑆𝑖 ) =
∑︁
𝑣∈𝑆𝑖

𝑐 (𝑣) (2)

It is well known that profit is equal to revenue minus cost. There-

fore, the profit that the host earns from merchant ℎ𝑖 is denoted as

𝑃 (𝑆𝑖 ), and 𝑃 (𝑆𝑖 ) = 𝑅(𝑆𝑖 ) − 𝐶 (𝑆𝑖 ). Finally, we formally define the

profit maximization problem from the host’s perspective.

Definition 3. (HOST PROFIT MAXIMIZATION). Give a so-
cial graph𝐺 = (𝑉 , 𝐸), a merchant setH , and seed user incentive cost
𝑐 (𝑣), 𝑣 ∈ 𝑉 , the goal of our problem is to find a feasible allocation
S = {𝑆1, 𝑆2, ..., 𝑆 |H | } for all merchants, which can maximize the total
profit of the host. Formally:

arg max

S
𝑃 (S) =

∑︁
𝑆𝑖 ∈S

𝑃 (𝑆𝑖 ), subject to: 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ (3)

Note that limiting the products adopted by a seed can increase

the credibility and persuasion for followers [6, 20, 54].

2.3 Problem Characteristics
A possible world G = (𝑉 , 𝐸G) is known as one certain instance of

an uncertain graph. The influence spread of the seed set S in G is

denoted by 𝜎G (S), which is the number of users that can be reached

from the seed set S in G. Each world G exists with a probability

𝑃 (G) = ∏
(𝑢,𝑣) ∈𝐸G 𝑤𝑢,𝑣

∏
(𝑢,𝑣) ∈𝐸\𝐸G (1 −𝑤𝑢,𝑣), and the influence

spread of the seed set is the weighted sum of its influence spread

over all possible worlds [50, 54], i.e., 𝜎 (S) = ∑
G⊑𝐺 (𝑃 (G) · 𝜎G (S)).

Notice that under the DSS propagation model, an activated user

(except seed user) can only switch its adoption to another product

with stronger propaganda strength, that is, if a user that has adopted

product ℎ 𝑗 switches adoption to the product ℎ𝑖 (𝑖 ≠ 𝑗 ),
𝐵𝑖

𝐼𝑖
>

𝐵 𝑗

𝐼𝑖
always holds. Based on the above, we provide the following basic

theoretical characteristic of our problem. Note that, due to limited

space, detailed proofs for Theorem 2 and 3, and other omitted proofs

can be found in our full version [11].

Theorem 1. (Non-monotonicity.) The host profit maximization
is non-monotone under the DSS propagation model.

v u

w

1.0

1.0 User

Cost

v u w

$1.5 $0.5 $1

Figure 2: Counter-example of monotonicity

Proof. We illustrate that our problem is non-monotone under
the DSS propagation model through a counter-example. In Figure 2,

we consider that two merchants ℎ1 and ℎ2, ℎ1 proposes influence

threshold 𝐼1 = 5 and corresponding 𝐵1 = $7.5, as for ℎ2, 𝐼2 = 5 and

𝐵2 = $5, we set penalty parameter 𝛾𝑝 = 1 and reward parameter

𝛾𝑟 = 0.3. The costs of users 𝑣 , 𝑢,𝑤 are shown in the right table, e.g.,

host needs to pay $1.5 to incentivize 𝑣 as a seed user.We assume that

user 𝑣 was already assigned to 𝑆1 (i.e., seed set of merchant ℎ1), and

under the DSS model, user 𝑢 and𝑤 will be activated by user 𝑣 with

probability 1. The host’s profit is 𝑃 (S) = $7.5(1+1·3−5

5
) −$1.5 = $3.

If then we assign user 𝑢 to the seed set 𝑆2 of merchant ℎ2, the host’s

profit is reduced to 𝑃 (S′) = 𝑃 (𝑆1) + 𝑃 (𝑆2) = ($7.5(1 + 1 · 2−5

5
) −

$1.5) + ($5(1 + 1· 1−5

5
) − $0.5) = $2. If we assign the seed sets in the

other order (i.e., first 𝑆2 and then 𝑆1), then the profit would increase

from $0.5 to $2. In general, the host profit maximization problem is

non-monotone with respect to the addition of seed sets. □

Theorem 2. (Submodularity.) The host profit maximization is
submodular under the DSS propagation model.

Proof. Let S = {𝑆1, ..., 𝑆𝑖 , ..., 𝑆 |H | } and S′ = {𝑆 ′1, ..., 𝑆
′
𝑖
, ..., 𝑆 ′|H | }

be two seed sets such that 𝑆𝑖 ⊆ 𝑆 ′
𝑖
,∀1 ≤ 𝑖 ≤ |H |. And we denote the

marginal profit gain of adding a user 𝑣 (i.e., 𝑣 ∈ 𝑉 − S′) to 𝑆𝑖 in S as
𝑃 (𝑣 |S) = 𝑃 (𝑣 |𝑆𝑖 ) = 𝐵𝑖 ·𝛾

𝐼𝑖
𝜎G (𝑣 |𝑆𝑖 ) − 𝑐 (𝑣) (𝑃 (𝑣 |S′) =

𝐵𝑖 ·𝛾
𝐼𝑖

𝜎G (𝑣 |𝑆 ′𝑖 ) −
𝑐 (𝑣)), where 𝜎G (𝑣 |𝑆𝑖 ) (𝜎G (𝑣 |𝑆 ′𝑖 )) denotes the marginal influence

gain of adding 𝑣 to 𝑆𝑖 (𝑆
′
𝑖
). For any two seed sets S and S′ (where

𝑆𝑖 ⊆ 𝑆 ′
𝑖
) and any node 𝑣 ∈ 𝑉 − S′. Considering the three phases

included in the DSS propagation model, there are three cases when

adding 𝑣 into 𝑆𝑖 and 𝑆
′
𝑖
. Then due to Kempe et al. [28] has proved

that influence function 𝜎 (·) is submodular under the LT model, we

prove that the marginal gain of adding a user 𝑣 to seed set 𝑆 ′
𝑖
∈ S′

is no larger than that of adding 𝑣 into 𝑆𝑖 ∈ S, and we take the

weighted sum over all possible worlds, conclude that our problem

is submodular under the DSS model. □

Theorem 3. (NP-Hardness.) The host profit maximization is
NP-hard and is NP-hard to approximate within any factor.

Proof. Wefirst prove the hardness of our problem using a reduc-

tion from the 3-PARTITION problem (3PM) [17], and then illustrate

it is also NP-hard to approximate within any factor. □

3 HOST PROFIT MAXIMIZATION
In this section, we first revisit ROI-Greedy algorithm [25] for single

merchant profit maximization, then extend it to adapt to our mul-

tiple merchants’ case, denoted as Fill-Greedy, while non-trivially
maintaining its approximation guarantee (§ 3.1). Since the efficient

implementation of Fill-Greedy is challenging, we then devise the

scalable version by leveraging the random reverse reachable sets [8],
which also comes with a theoretical guarantee (§ 3.2). Detailed

proofs of Section 3, omitted for lack of space, can be found in [11].
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Algorithm 1 Fill-Greedy

Input: H,𝑉 , 𝛾𝑟 , 𝛾𝑝

Output: S = {𝑆1, 𝑆2, ..., 𝑆 |H| }
1: Initialize S = {∅1, ∅2, ..., ∅|H| }
2: Assign each merchant 𝛾𝑖 = 𝛾𝑝

3: M ← {(𝑣, 𝑖 ) : (𝑣, 𝑖 ) ∈ 𝑉 × [ |H| ] }
4: whileM ≠ ∅ do

5: (𝑣∗, 𝑖∗ ) ← arg max(𝑣,𝑖 ) ∈M

𝐵𝑖
𝐼𝑖

𝛾𝑖 ·𝜎 (𝑣 |S)
𝑐 (𝑣)

6: M ← M − {(𝑣∗, 𝑖∗ ) }
7: if 𝑣∗ ∈ ⋃𝑖∈ [|H|] 𝑆𝑖 then continue;

8: if 𝐵𝑖∗
𝐼𝑖∗

𝛾𝑖∗𝜎 (𝑣∗ |S) − 𝑐 (𝑣∗ ) ≤ 0 then continue;

9: 𝑆𝑖∗ ← 𝑆𝑖∗ ∪ {𝑣∗}
10: Update adoption choice of 𝑣 ∈ Υ (S) \⋃𝑖∈ [|H|] 𝑆𝑖
11: if 𝜎 (𝑆𝑖∗ ) ≥ 𝐼𝑖∗ then 𝛾𝑖∗ = 𝛾𝑟

12: Return S = {𝑆1, 𝑆2, ..., 𝑆 |H| }

3.1 The Fill-Greedy Algorithm
Revisiting ROI-Greedy. Jin et al. [25] proposed ROI-Greedy to

solve the well-known unconstrained submodular maximization

with modular costs (USM-MC) [10, 21, 25, 50], whose representative
instance is single-merchant profit maximization. ROI-Greedy starts
from 𝑆 = ∅, iteratively selects the user 𝑣 ∈ 𝑉 \𝑆 that maximizes

𝜎 (𝑣 |𝑆 )
𝑐 (𝑣) and inserts it into 𝑆 if it satisfies 𝜎 (𝑣 |𝑆) > 𝑐 (𝑣). ROI-Greedy

terminates when no user in 𝑉 \𝑆 can satisfy the condition 𝜎 (𝑣 |𝑆) >
𝑐 (𝑣). ROI-Greedy ensures a strong approximation guarantee, that

is, 𝑓 (𝑆) − 𝑐 (𝑆) ≥ 𝑓 (𝑆∗) − 𝑐 (𝑆∗) − ln
𝑓 (𝑆∗ )
𝑐 (𝑆∗ ) · 𝑐 (𝑆

∗), where 𝑆∗ is the
optimal solution to USM-MC.

Since there is no solution to the USM-MC in the multi-merchant

case, inspired by the ROI-Greedy, we design Fill-Greedy to select

seed sets and allocate them to multiple merchants to maximize the

host’s overall profit. Note that, Fill-Greedy is a non-trivial exten-

sion of ROI-Greedy since (1) an additional seed allocation strat-

egy among multiple merchants requires meticulous design, (2) the
switching phase of theDSSmodel makes the user’s adoption change

dynamically, further complicating the technology, and (3) the ap-
proximation guarantee cannot simply follow existing proofs for

single-merchant case.

Fill-Greedy. Algorithm 1 presents the pseudo-code of Fill-Greedy.
First, we initialize an empty seed set for each merchant (Line 1)

together with her proposed 𝛾𝑝 (Line 2).M ⊆ 𝑉 × [|H |] denotes
the set of (user, merchant) candidate pairs (Line 3). In each step,

we greedily select the element (𝑣∗, 𝑖∗) that increases the profit

maximally (i.e., maximizing

𝐵𝑖
𝐼𝑖
𝛾𝑖 ·𝜎 (𝑣 |S)
𝑐 (𝑣) ) (Line 5) and removing

it fromM (Line 6), then the picked user 𝑣∗ is added into 𝑆𝑖∗ iff

both conditions are satisfied (Lines 7–8): (1) the user 𝑣∗ has not
been assigned to any merchant yet; (2) profit marginal gain of (𝑣∗,
𝑖∗) is positive. After adding new seed into seed set, for each user

𝑣 ∈ Υ(S) \ ⋃𝑖∈[ |H| ] 𝑆𝑖 , we update their adoption choices based

on the switching phase of the DSS model (Line 10), where Υ(S)
denotes the set of users influenced by S. If the influence spread

of 𝑆𝑖∗ exceeds ℎ𝑖∗ ’s threshold 𝐼𝑖∗ , we set 𝛾𝑖∗ = 𝛾𝑟 (Line 11), which

denotes the exceed influence spread will be rewarded with
𝐵𝑖∗
𝐼𝑖∗

𝛾𝑟

Algorithm 2 CandGeneration

Input: H,𝑉 , 𝛾𝑝 , 𝛾𝑟

Output: 𝑻
1: Initialize 𝑻 = ∅,𝜼 = ∅
2: Compute each merchant 𝜂𝑖 =

𝐵𝑖
𝐼𝑖
× max{𝛾𝑝 , 𝛾𝑟 }, 𝜼 ← 𝜂𝑖

3: 𝜂max ← arg max𝜂𝑖 ∈𝜼 𝜂𝑖
4: while𝑉 ≠ ∅ do
5: 𝑣 ← arg max𝑢∈𝑉 \𝑻

𝜎 (𝑢 |𝑇 )
𝑐 (𝑢)

6: if 𝜂max · 𝜎 (𝑣 |𝑇 ) − 𝑐 (𝑣) > 0 then
7: 𝑇 ← 𝑇 ∪ {𝑣},𝑉 ← 𝑉 \{𝑣}
8: else break;
9: Return 𝑻

per influenced user. The process terminates whenM is empty (Line

2). The performance of Fill-Greedy is guaranteed by Theorem 4.

Theorem 4. (Approximation Guarantee). For the host profit
maximization problem, suppose Fill-Greedy returns S. Then we have:

𝑃 (S) ≥ 𝑃
(
S𝑜

)
− |H | · ln 𝑅 (S𝑜 )

𝐶 (S𝑜 ) ·𝐶
(
S𝑜

)
(4)

where S
𝒐 = {𝑆𝑜

1
, 𝑆𝑜

2
, ..., 𝑆𝑜|H | } is the optimal solution to our problem

and 𝑆𝑜
𝑖
is the optimal seed set to eachmerchant. Let 𝑃 (S𝑜 ) = 𝑅(S𝑜 )−

𝐶 (S𝑜 ), where 𝑅(S𝑜 ) = ∑
𝑆𝑜
𝑖
∈S𝑜 𝑅(𝑆𝑜𝑖 ) and 𝐶 (S

𝑜 ) = ∑
𝑆𝑜
𝑖
∈S𝑜 𝐶 (𝑆𝑜𝑖 )

based on Definition 1 and Definition 2.

Intuitively,M ⊆ 𝑉 × [|H |] can be quite large (i.e., for NetHEPT
network, |M| = 76145 if |H | = 5), rendering Algorithm 1 from

being efficient on large-scale social graphs. Therefore, we propose

Algorithm 2 to prune the search space in Algorithm 1, by replacing

the whole user set 𝑉 with the set of candidate user 𝑇 that are

potentially to be selected as seeds (i.e., utilizing 𝑇 , |M| is reduced
to 47110). Suppose there is a super merchant, we apply ROI-Greedy
to select users that satisfy the loosest requirement (Line 6), such

that all the potential seed users can be selected into 𝑇 . The main

difference between Algorithm 1 and 2 lies in the metric to decide

whether a selected user can be inserted into 𝑇 : in each iteration,

it chooses the user 𝑣 ∈ 𝑉 \𝑇 whose maximum revenue marginal

gain is larger than its cost, i.e., the maximum profit marginal gain

of 𝑣 is positive (𝜂max · 𝜎 (𝑣 |𝑇 ) − 𝑐 (𝑣) > 0) (Line 6), where 𝜂max =

arg max𝑖∈ |H|
𝐵𝑖

𝐼𝑖
×max{𝛾𝑝 , 𝛾𝑟 } (Lines 2–3).

3.2 Scalable Host Profit Maximization
Algorithm 1 (Fill-Greedy) involves a huge number of influence

spread computations to find the user for each merchant that yields

the maximum increase in profit 𝑃 (𝑆𝑖 ). However, given any seed

set 𝑂 , computing its exact influence spread 𝜎 (𝑂) under the LT
model is #P-hard [15]. Recent research focuses on sampling-based

influence spread estimation, ranging from naive Monte Carlo (MC)
simulations [28] to advanced reverse influence sampling (RIS) [8].
Each sampled reverse reachable (RR) set from RIS is denoted as 𝑅,

which is a subset of 𝑉 conceptually generated as follows:

(1) Select a user 𝑣 ∈ 𝑉 uniformly at random from 𝐺 .

(2) Generate a randomwalk from 𝑣 that follows the incoming edges

of each user.

(3) 𝑅 is the set of users in the random walk (including 𝑣).

Given any user set𝑂 and a random RR set 𝑅, we define a random

variable 𝑌 (𝑂, 𝑅) such that 𝑌 (𝑂, 𝑅) = 1 if𝑂 ∩𝑅 ≠ ∅ and 𝑌 (𝑂, 𝑅) = 0
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Algorithm 3Multi-Profit Maximization (MPM)

Input: H,𝑉 ,𝑇 , 𝜖 , 𝛿

Output: S = {𝑆1, 𝑆2, ..., 𝑆 |H| }
1: Initialize S = {∅1, ∅2, ..., ∅|H| }, 𝜃1 ← 𝑛, 𝑖 ← 1

2: while 𝜃𝑖 ≤ 𝜃𝑚𝑎𝑥 do
3: Generate two sets of random RR sets, | R1 | = | R2 | = 𝜃𝑖

4: S← Fill-Oracle(R1 )
5: 𝛽 ← (𝑅R1 (S) − 𝐶 (S) )/(𝑅R2 (S) − 𝐶 (S) )
6: (𝜖1 + 1) (𝜖1 + 2)/𝜖2

1
= 𝑅R2 (S)/ln(5 · 𝑖2/𝛿 ) · 𝜃𝑖/(𝑛 · Γ)

7: (2𝜖2 + 2)/𝜖2

2
= (𝑅R2 (S) − 𝐶 (S) )/ln(5 · 𝑖2/𝛿 ) · 𝜃𝑖/(𝑛 · Γ)

8: if (𝛽 − 1)/𝛽 + 𝜖1 + 𝜖2 ≤ 𝜖, 𝜖1 + 𝜖2 ≤ 𝜖, 𝛽, 𝜖1, 𝜖2 > 0 then
9: break
10: 𝑖 ← 𝑖 + 1, 𝜃𝑖 ← 2𝜃𝑖

11: Return S = {𝑆1, 𝑆2, ..., 𝑆 |H| }

otherwise. Tang et al. [53] show that 𝜎 (𝑂) under the LT model

equals 𝑛 · E[𝑌 (𝑂, 𝑅)]. Given a set R = {𝑅1, 𝑅2, ...} of RR sets, 𝑛 ·
E[𝑌 (𝑂, 𝑅)] could be unbiasedly estimated by the empirical mean∑
𝑅∈R 𝑌 (𝑂, 𝑅)/|R| based on concentration bounds.

In our problem, we need to design a method to estimate 𝑅(S) =∑
𝑖∈ |H| 𝐵𝑖 (1 + 𝛾

𝜎 (𝑆𝑖 )−𝐼𝑖
𝐼𝑖
) for any solution S = (𝑆1, ..., 𝑆 |H | ) to our

problem. Existing works [3, 4, 20] generate a set R𝑖 of random RR

sets for each merchant 𝑖 ∈ [|H |] with |R1 | = |R2 | = ... = |R |H | |,
such that 𝜎 (𝑆𝑖 ) can be estimated using R𝑖 for each 𝑖 ∈ [|H |],
assuming that each user can be influenced by multiple products

simultaneously and spread the them to the neighbors. However,

according to § 2.1, we take into account that each user could adopt

and spread at most one product while she can switch adoption

in the propagation process, i.e., multiple merchants share with a

whole social graph. Based on this, we generate a set of random

RR sets R for all merchants, which is the same as the classical RIS
approach. Since the current unbiased estimation methods fail to meet
the requirements of the switching phase in the propagation of our
model, we design a novel method to fill this gap.

Given S = {𝑆1, 𝑆2, ..., 𝑆 |H | } and a random RR set 𝑅, we de-

fine a random variable C𝑅 (𝑆𝑖 , 𝑅) such that C𝑅 (𝑆𝑖 , 𝑅) = 𝑘𝑖/|𝑅 | and
C𝑅 (S, 𝑅) =

∑
𝑖∈ |H| (𝑘𝑖/|𝑅 |) = (∑𝑖∈ |H| 𝑘𝑖 )/|𝑅 | = |𝑅 |/|𝑅 | = 1 if

there exists a seed set 𝑆𝑖 ∈ S intersects 𝑅, where 𝑘𝑖 denotes the
number of users influenced by 𝑆𝑖 in 𝑅. Otherwise, C𝑅 (S, 𝑅) = 0.

Given a set R of random RR sets, we denote 𝑅R (𝑆𝑖 ) = 𝐵𝑖 (1+
𝛾
CR (𝑆𝑖 ,R)·𝑛/|R |−𝐼𝑖

𝐼𝑖
) as an unbiased estimation of 𝑅(𝑆𝑖 ) for any 𝑖 ∈

|H |, where C𝑅 (𝑆𝑖 ,R) =
∑
𝑅∈R 𝑘𝑖/|𝑅 |. To add them up, we have

𝑃R (S) = ∑
𝑖∈ |H| (𝑅R (𝑆𝑖 ) − 𝐶 (𝑆𝑖 )) as an unbiased estimation of

𝑃 (S). Note that, considering users may switch adoption after being

activated, 𝑘𝑖 will be updated once a new seed user is generated.

Based on our Fill-Greedy solution and RIS technique, we pro-
pose the MPM algorithm. The basic idea of MPM is the same as

Fill-Greedy’s: it starts from an empty solution set S and iteratively

selects the nodes that maximize the marginal profit gain into S.
As discussed above, the exact value of 𝜎 (𝑣 |S) cannot be computed

in polynomial time. Therefore,MPM has to resort to RIS method,

which provides the expected influence spread with theoretical guar-

antee when generating a sufficient number of RR sets. However, a

challenging question arises: how large a sample set should we use
to achieve the approximation guarantee without excessive computa-
tion overheads? Inspired from [25], we use a trial-and-error method

Algorithm 4 Fill-Oracle

Input: RR sets R
Output: S = {𝑆1, 𝑆2, ..., 𝑆 |H| }
1: Initialize S = {∅1, ∅2, ..., ∅|H| }
2: Assign each merchant 𝛾𝑖 = 𝛾𝑝

3: M ← {(𝑣, 𝑖 ) : (𝑣, 𝑖 ) ∈ 𝑇 × [ |H| ] }
4: Let CR (𝑣) be the number of RR sets covered by 𝑣 in R
5: whileM ≠ ∅ do

6: (𝑣′, 𝑖′ ) ← arg max(𝑣,𝑖 ) ∈M

𝐵𝑖
𝐼𝑖

𝛾𝑖CR (𝑣)
𝑐 (𝑣) · 𝑛|R |

7: M ← M − {(𝑣′, 𝑖′ ) }
8: if 𝑣′ ∈ ⋃𝑖∈ [|H|] 𝑆𝑖 then continue;

9: if 𝐵𝑖′
𝐼𝑖′

𝛾𝑖′ CR (𝑣′ ) · 𝑛|R | − 𝑐 (𝑣
′ ) ≤ 0 then continue;

10: 𝑆𝑖′ ← 𝑆𝑖′ ∪ {𝑣′ }
11: Update adoption choice of 𝑣 ∈ Υ (S) \⋃𝑖∈ [|H|] 𝑆𝑖
12: if 𝑛

|R | · CR (𝑆𝑖′ , R) ≥ 𝐼𝑖′ then 𝛾𝑖′ = 𝛾𝑟

13: Remove from R all RR sets that are covered by 𝑣′

14: Return S = {𝑆1, 𝑆2, ..., 𝑆 |H| }

in MPM to overcome this hurdle. During the generation of RR

sets, we gradually double the number of RR sets and provide an

approximation guarantee achieved so far, andMPM terminates if

the approximation reaches the desired value or the number of RR

sets is sufficiently large. Algorithm 3 shows the pseudo-code of

MPM, while Algorithm 4 (Fill-Oracle) demonstrates a sub-routine

invoked, which estimates 𝜎 (𝑣 |S) via RIS-based method.

Algorithm 3 first generates two collections of RR sets with R1 =

R2 = 𝑛 (Lines 1–3). Then, it uses R1 as the input to the Fill-Oracle,
which generates a solution S by employing the RIS-based method in

Fill-Greedy (Line 4). Afterwords, it uses R2 to verify the quality of

solution S (Lines 6–9) sinceR2 is independent ofR1. Due to the Cost
Function is a modular function and𝐶 (S) is the same nomatter onR1

or R2, we suppose that if the estimation profit derived from R2 (i.e.,

𝑅R2 (S) − 𝑐 (S)) is much smaller than the estimation derived from

R1 (i.e., 𝑅R1 (S) − 𝑐 (S)), it means that R1 over-estimates S’s profit.
In this case,MPM discards solution S, doubles the size of R1 and R2

(Line 10) and repeats the above process until a satisfying solution is

returned, i.e., (1) R2 agrees the quality of S generated by R1 (Lines

8–9), or (2) the number of generated RR sets reaches 𝜃max (Line 2),

where 𝜃max = (8 + 2𝜖) (1 + 𝜖1) 𝑛
ln

6

𝛿
+∑𝑖∈|H| 𝜏𝑖 ln

2𝑛
𝜏𝑖

𝜖2
max{1,𝑅R2 (S)−(1+𝜖1 )𝐶 (S)} , 𝜏𝑖 is

the maximum number of users that can be selected by merchant ℎ𝑖 .

Finally, Algorithm 3 terminates with S = {𝑆1, 𝑆2, ..., 𝑆 |H | } (Line 11).
MPM terminates with approximation guarantee as Theorem 5, S𝑜

is the optimal solution and 𝛿, 𝜖 ∈ (0, 1) are input parameters.

Theorem 5. (Approximation Guarantee ofMPM).With prob-
ability at least 1−𝛿 for ∀𝛿 ∈ (0, 1),MPM returns a solution S satisfies

𝑃 (S) ≥ (1 − 𝜖)𝑅
(
S𝑜

)
−𝐶

(
S𝑜

)
− |H | · ln 𝑅 (S𝑜 )

𝐶 (S𝑜 ) ·𝐶
(
S𝑜

)
(5)

In what follows, we tackle two key challenges in MPM while

satisfying Theorem 5, that is, (1) how to set the maximum number

of RR sets 𝜃max (Line 2) and (2) how to set conditions to evaluate

whether the current solution satisfies the performance guarantee

(Lines 6–9). Extending the Chernoff Inequalities [39], we prove that
in each round ofMPM (Lines 3–10), the estimations 𝑅R1 (S𝑜 ) and
𝑅R2 (S) are concentration bounds with a high probability.
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Table 1: Merchants’ Contracts
H ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 ℎ10

𝐵𝑖 9000 9000 7500 6000 7500 12000 9000 6000 7200 6000

𝐼𝑖 7500 6000 5000 6000 7500 8000 9000 5000 6000 5000

𝐵𝑃𝐼𝑖 1.2 1.5 1.5 1.0 1.0 1.5 1.0 1.2 1.2 1.2

In
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|H |
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Figure 3: Influence spread comparison using Algorithm 3

Lemma 1. With probability at least 1- 2𝛿
3
, for each iteration of

Algorithm 3, where 𝜖1, 𝜖2, 𝛽 > 0, we have

𝑅R2 (S) ≤ (1 + 𝜖1) 𝑅 (S) (6)

𝑅R1

(
S𝑜

)
≥ (1 − 𝜖2) 𝑅

(
S𝑜

)
(7)

Based on Lemma 1, consider two cases that depend on whether

Line 8 in MPM is satisfied. Case (1): Line 8 is satisfied, then in

the last iteration, we have (𝛽 − 1)/𝛽 + 𝜖1 + 𝜖2 ≤ 𝜖, 𝜖1 + 𝜖2 ≤
𝜖, 𝛽, 𝜖1, 𝜖2 > 0. By Lemma 1, we prove that Eq. (5) holds with

probability at least 1 − 2𝛿
3
. Case (2): Line 8 is not satisfied, when

MPM terminates, based on the Chernoff Inequalities, we derive the
𝜃max (|R |) and prove that Eq. (5) holds with 1 − 𝛿 (details can be

found in the proof of Theorem 5 in [11]). Combining these two

cases, the approximation guarantee ofMPM is demonstrated.

Theorem 6. (Time Complexity of MPM). The expected time

complexity ofMPM is𝑂 (𝑚
∑

𝑖∈ [|H|] E[𝑃𝑖 ({𝑣∗ }) ] (ln 1

𝛿
+𝑛 ln |H | )

𝜖2
), where

𝑣∗ is a random user selected from 𝐺 with probability proportional to
its in-degree.

4 BALANCE-SENSITIVE ALGORITHM
In this section, we present a more practical application based on

previous proposed approaches as our side contribution. We first

highlight the significance of balancing in practical scenarios (§ 4.1).

Then, we introduce two efficient heuristic methods to balance the

distribution of adoption results among merchants (§ 4.2 and § 4.3).

4.1 Motivation
The proposed algorithms in § 3 guarantee that the host can gain

maximum profit from multiple merchants. However, a host purely

pursues profit maximization may fall into a trap that, as the quoted
price per unit influence varies among different merchants, the sup-

plied influence of some merchants may be far from their required

threshold while some of the merchants’ influence is far exceeded.

That is, the host will dramatically sacrifice some merchants to

achieve a larger profit. In Example 2, we give an example via ap-

plying Algorithm 3 on a real-world social network Epinions. Due
to the distribution of influence spread provided by the host being

seriously imbalanced, it may harm the reputation of the host and

her long-term business cooperation with certain merchants whose

requirements are far from being satisfied.

Algorithm 5 Merchant-Driven Multi-Round Search (OBO)

Input: H,𝑉 , 𝛾𝑟 , 𝛾𝑝

Output: S = {𝑆1, 𝑆2, ..., 𝑆 |H| }
1: Initialize S = {∅1, ∅2, ..., ∅|H| }
2: Assign each merchant 𝛾𝑖 = 𝛾𝑝

3: Order merchants based on decreasing order of
𝐵𝑖
𝐼𝑖
𝛾𝑖

4: while𝑉 ≠ ∅ ∪ H ≠ ∅ do
5: for each ℎ𝑖 ∈ H do

6: 𝑣 ← arg max𝑢∈𝑉 \S

𝐵𝑖
𝐼𝑖

𝛾𝑖𝜎 (𝑢 |𝑆𝑖 )
𝑐 (𝑢)

7: if 𝐵𝑖
𝐼𝑖
𝛾𝑖𝜎 (𝑣 |𝑆𝑖 ) − 𝑐 (𝑣) > 0 then

8: 𝑆𝑖 ← 𝑆𝑖 ∪ {𝑣},𝑉 ← 𝑉 \{𝑣}
9: else H ← H\{ℎ𝑖 }
10: if 𝜎 (𝑆𝑖 ) ≥ 𝐼𝑖 then 𝛾𝑖 = 𝛾𝑟

11: Return S = {𝑆1, 𝑆2, ..., 𝑆 |H| }

Example 2. We consider ten merchantsH = {ℎ1, ℎ2, ..., ℎ10} par-
ticipating in a market campaign, with each requesting demanded
influence (threshold) 𝐼𝑖 , the payment 𝐵𝑖 it is willing to pay if the
demanded influence is satisfied, and benefit per influence 𝐵𝑃𝐼𝑖 (i.e.,
𝐵𝑃𝐼𝑖 = 𝐵𝑖/𝐼𝑖 ) as listed in Table 1. We apply Algorithm 3 to deploy a
set of seed users 𝑆𝑖 to each merchant to satisfy its requirement, while
maximizing the profit earned by host. The distribution result of in-
fluence are plotted in Figure 3, we can see that host only select seed
users for merchants with 𝐵𝑃𝐼 of 1.5 and 1.2, especially for merchants
with 𝐵𝑃𝐼 = 1.5 (i.e., ℎ2, ℎ3 and ℎ6), the influence of these merchants
are far exceeding their thresholds. However, for those merchants with
𝐵𝑃𝐼 = 1.0 (i.e., ℎ4, ℎ5 and ℎ7), host provides them with zero influence.

Based on the above, we define a variant problem calledHOST
PROFIT MAXIMIZATIONWITH MERCHANT INFLUENCE
BALANCE, which aims to balance the distribution of adoptions

among merchants without largely reducing the host profit. Algo-

rithm 5 and Algorithm 6 are designed to solve this problem.

4.2 Merchant-Driven Multi-Round Search
Our OBO approach is presented in Algorithm 5. In each selection

iteration, we utilize ROI-Greedy algorithm [25] to select the seeds

for the merchants one-by-one based on the decreasing order of BPI.

Once all merchants have been assigned one seed, we proceed to

the next iteration. This process ensures that each merchant has

an equal opportunity to be assigned seeds. Specifically, We first

initialize an empty seed set for each merchant (Line 1) and assign

𝛾𝑟 (Line 2). Subsequently, since it is trivial to see that merchants

with larger BPI contribute higher profit to the host, we sort the

merchants in decreasing order of their BPIs (Line 3). Then, for each

merchant ℎ𝑖 ∈ H , we select user 𝑣 who has not been assigned

to any merchant yet and can best increase the profit of ℎ𝑖 (i.e.,

maximizing ( 𝐵𝑖/𝐼𝑖 ·𝛾𝑖 ·𝜎 (𝑢 |𝑆𝑖 )
𝑐 (𝑢 ) ) (Lines 5–6), then add 𝑣 into 𝑆𝑖 if the

profit marginal gain of 𝑣 is positive (Lines 7–8). Otherwise, we

discard ℎ𝑖 fromH as there exist no user can yield positive profit

marginal gain to ℎ𝑖 (Lines 9). Next, if influence spread of 𝑆𝑖 after

inserting user 𝑣 exceeds ℎ𝑖 ’s threshold 𝐼𝑖 , we set 𝛾𝑖 = 𝛾𝑟 (Lines 10).

The process terminates when 𝑉 orH is empty.
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Algorithm 6 Profit-Influence Iterative Search (ITER)

Input: H,𝑉 , 𝛾𝑟 , 𝛾𝑝 , B𝑃 , B𝐼
Output: S = {𝑆1, 𝑆2, ..., 𝑆 |H| }
1: Initialize S = {∅1, ∅2, ..., ∅|H| }, H′ = ∅
2: Assign each merchant 𝛾𝑖 = 𝛾𝑝

3: M′ ← {(𝑣, 𝑖 ) : (𝑣, 𝑖 ) ∈ 𝑉 × [ |H| ] }
4: whileM′ ≠ ∅ do
5: for 𝜉 ← 1 to B𝑃 do // Profit Batch

6: (𝑢, 𝑡 ) ← arg max(𝑣,𝑖 ) ∈M′
𝐵𝑖
𝐼𝑖

𝛾𝑖 ·𝜎 (𝑣 |S)
𝑐 (𝑣)

7: M′ ← M′ − { (𝑢, 𝑡 ) }
8: if 𝑢 ∈ ⋃𝑖∈ [|H|] 𝑆𝑖 then continue;

9: if 𝐵𝑡
𝐼𝑡
𝛾𝑡𝜎 (𝑢 |S) − 𝑐 (𝑢 ) ≤ 0 then continue;

10: 𝑆𝑡 ← 𝑆𝑡 ∪ {𝑢}
11: if 𝜎 (𝑆𝑡 ) ≥ 𝐼𝑡 then 𝛾𝑡 = 𝛾𝑟

12: for𝜓 ← 1 to B𝐼 do // Influence Batch
13: for ℎ 𝑗 := ℎ1 to ℎ |H| do
14: if 𝜎 (𝑆 𝑗 ) < 𝐼 𝑗 then H′ ← H′ ∪ {ℎ 𝑗 }
15: if H′ ≠ ∅ then
16: ℎ𝑘 ← arg minℎ 𝑗 ∈H (𝜎 (𝑆 𝑗 )/𝐼 𝑗 )
17: 𝑤 ← arg max𝑣∈𝑉 \S 𝜎 (𝑣 |𝑆𝑘 )
18: else B𝐼 ← 0, break;
19: M′ ← M′ − { (𝑤,𝑘 ) }
20: if 𝐵𝑘

𝐼𝑘
𝛾𝑘𝜎 (𝑤 |𝑆𝑘 ) − 𝑐 (𝑤 ) > 0 then 𝑆𝑘 ← 𝑆𝑘 ∪ {𝑤}

21: Return S = {𝑆1, 𝑆2, ..., 𝑆 |H| }

4.3 Profit-Influence Iterative Search
In the Algorithm 6 (ITER), we tackle the issue that Algorithm 3 only

focuses on maximizing profit (Profit Batch). ITER introduces an

additional component called Influence Batch, to identify merchants

whose influence fall below the desired thresholds. Subsequently,

the traditional IM greedy [28] is applied to select seeds and then

preferentially assigned to the merchant whose influence is the

farthest below the threshold. Then alternately execute the Influence

Batch and Profit Batch. We first initialize an empty seed set S and
an empty set H ′ including merchants whose demands have not

been satisfied (Line 1). Next, we assign 𝛾𝑟 to each merchant (Line 2)

and construct a setM′ ⊆ 𝑉 × [|H |] of (user, merchant) candidate

pairs (Line 3). Then, the framework alternatively selects element

(user, merchant) that user can best increase the profit of merchant

in Profit Batch (Lines 5–11), and user can increase influence of

merchant most in Influence Batch (Lines 12–20). The Profit Batch

is the same as Lines 5–11 of Algorithm 1. In Influence Batch, we

first insert merchant whose influence has not reached its threshold

intoH ′ (Lines 13–14). IfH ′ is not empty, we select merchant ℎ𝑘
with minimum influence satisfied ratio (Line 16), then pick user𝑤

that maximizes influence of ℎ𝑘 (Line 17) and add 𝑤 into 𝑆𝑘 if the

profit marginal gain of (𝑤,𝑘) is positive (Lines 19). If all merchants’

influence have been satisfied (i.e., H ′ is empty), we set B𝐼 = 0

and exit Influence Batch (Line 18–19). After no user yield positive

marginal profit gain orM′ is empty, return S (Line 21).

5 EXPERIMENTS
We empirically evaluate our algorithms and baselines on four real-

world social networks. All methods are implemented in C++ and

Table 2: Datasets

Dataset 𝑛 𝑚 Type Avg.deg

NetHEPT 15.2K 62.8K undirected 4.18

Epinions 75.9K 509K directed 6.71

DBLP 317K 2.1M undirected 6.62

LiveJournal 4.8M 69.0M directed 14.2

Table 3: Parameter Settings

Parameter Values

|H | 1, 3, 5, 10, 15
𝜖 0.1, 0.15, 0.2, 0.25, 0.3
𝜇 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
𝛼 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2
𝛾𝑟 0, 0.1, 0.2, 0.3, 0.4, 0.5
𝛾𝑝 0.2, 0.6, 1.0, 1.4, 1.8

run on an Intel i7 2.90GHz CPU and 64GB RAM server. In each of

our experiments, we independently conduct each method 10 times

and report the average result.

5.1 Experimental Settings
Datasets. Table 2 presents the basic statistics of four real-world
social networks in our evaluations. (1) NetHEPT [14] is an academic

collaboration network. (2) Epinions [31] is awho-trust-whomonline

social network of a general consumer review site. (3) DBLP [31] is

a collaborative network where each node indicates an author and

edges indicate co-authorship. (4) LiveJournal [31] is a free online
community where users can explicitly declare their friendship.

Models. We use the Weighted-Cascade model [28] to set the propa-

gation probability 𝑝 (𝑢, 𝑣) of each edge in 𝐺 , i.e., 𝑝 (𝑢, 𝑣) is equal to
the reverse of the number of 𝑣 ’s in-neighbors. In addition, follow-

ing prior works [22, 25, 51], we adopt the Degree-Proportional Cost
Model for cost function. In specific, the cost 𝑐 (𝑣) of node 𝑣 in 𝐺 is

proportional to its out-degree 𝑑out (𝑣): 𝑐 (𝑣) = 𝜇 ·𝑑out (𝑣)𝛼 , where 𝜇
and 𝛼 are two input parameters. When 𝑑out (𝑣) = 0, we set 𝑐 (𝑣) = 1.

Algorithms. To our best knowledge, this is the first work studying
Host Profit Maximization problem leveraging performance incen-

tives and user flexibility while providing theoretical guarantee in

large social graphs. Hence, except for the three methods (MPM,

OBO and ITER) proposed in this paper, we extend twowidely-used
existing algorithms Simple-Greedy (SIM) [37, 61] and Distorted-
Greedy (DIS) [21] designed for maximizing the profit of a single

merchant, such that it could address our problem. We also compare

the HighDegree (HD) method, it selects highest degree nodes as

seeds and allocate them to the merchants at random [49, 50]. Note

that OBO and ITER can balance the distribution of adoption among

merchants, and MPM can provide an approximation guarantee.

Parameters. We summarize the key parameters and their ranges

in Table 3. The default values are marked in bold.

(1) Merchant’s Influence Threshold 𝑰 . Following the similar

setting in [59], the influence threshold of each merchant is

generated based on 𝐼𝑖 =
⌊
𝜔 ·𝐼

⌋
, where 𝐼 = ⌊𝑛/|H |⌋ and 𝜔 is

a factor randomly chosen from 0.5 to 1.5 to simulate different

merchant’s demand. We assume that the sum of all merchants’

influence thresholds does not exceed the number of nodes.
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Figure 5: Total incentivized cost with varying |H |
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Figure 6: Total profit with varying 𝜇
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Figure 7: Total incentivized cost with varying 𝜇

(2) Merchant’s Budget 𝑩. We follow a widely adopted experiment

setting in marketing studies [3, 5, 20] that each merchant’s

budget is proportional to its influence threshold: 𝐵𝑖 = ⌊𝜅 ·𝐼𝑖 ⌋,
where 𝜅 is a factor randomly selected from {1.0, 1.2, 1.5} to
simulate a various budget.

(3) Values of Profit Batch B𝑃 and Influence Batch B𝐼 . We set

B𝑃 = 10 and B𝐼 = 5 in Algorithm 6 as default values since we

conducted experiments with various values of B𝑃 and B𝐼 and
observed that the effectiveness results did not vary significantly.

(4) Reward Ratio 𝜸𝒓 . We set 𝛾𝑟 no larger than 0.5 since the addi-

tional influence spread not always be important. At one extreme

(i.e., 𝛾𝑟 = 0), the host receives no payment reward if the mer-

chant’s required influence is satisfied.

(5) Penalty Ratio 𝜸𝒑 . we set 𝛾𝑝 to a default value of 1.0, which is

the same as CPE model [3, 4, 20]. 𝛾𝑝 < 1 depicts a minimum

revenue clause between merchant and host [34, 45], while 𝛾𝑝 >

1 represent harsh earn-out provision.

In all the experiments, we set the failure probability as 𝛿 = 1/𝑛, the
sampling error 𝜖 = 0.2 for the NetHEPT and Epinions datasets, and
𝜖 = 0.3 for DBLP and LiveJournal as default, following [20, 25]. We

estimate the profit of the algorithms by using 2
4×10

5 RR sets [20, 25],
generated independently of the considered algorithms.

5.2 Effectiveness Analyses
Varying |H |. Since OBO and ITER are proposed to balance the

distribution of influence spread among multiple merchants, we do

not consider them in one merchant case. As shown in Figure 4,

MPM attains higher profits than those of all competitors on all

datasets. When |H | = 1, the profit of MPM is much higher than

that of other competitors, which is consistent with what is reported

in [25]. When |H | > 1, the profits of all methods decrease as |H |
increases, this is because the influence demands per merchant be-

come lower, and thus easier to satisfy, and then the merchants with

higher BPI change 𝛾𝑝 to 𝛾𝑟 (𝛾𝑝 >𝛾𝑟 ), resulting in the seeds carrying
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Figure 8: Total profit with varying 𝛼
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Figure 9: Total incentivized cost with varying 𝛼
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Figure 10: Total profit with varying 𝛾𝑟
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Figure 11: Total incentivized cost with varying 𝛾𝑟

higher marginal profit gains cannot be selected into seed set of

these merchants. Figure 5 shows the total incentivized cost of MPM

is always lower than the cost of other methods while maintaining

much higher profit overall. The second observation is that when

|H |>1, the cost of all methods remains almost stable when |H | in-
creases, since the joint set of seeds of all merchants for each method

in a graph is almost the same when varying |H |. Moreover, the

cost of HD on DBLP is much higher than the other methods while

generating very negative profit, due to the number of high-degree

nodes in DBLP is numerous and according to our cost function, the

cost of the high-degree nodes selected by HD is also large.

Varying 𝜇. We explore the effect of 𝜇, which controls the factor

of the cost model. In Figure 6, MPM gains the highest profit under

all settings on four datasets compared to all competitors, we also

observe that HD perform worse when 𝜇 increases higher with

negative profits produced. This is because under such a setting, HD

selects seeds with the highest degrees, and the high-degree nodes

also have large costs. When 𝜇 increases, the profits of all methods

decrease since the cost of every node increase with larger 𝜇, as

illustrated in Figure 7. We also observe that the cost of MPM is

always lower than those of all competitors over the four datasets.

Varying 𝛼 . We investigate the effect of 𝛼 that controls the index of

the degree of the cost model. Figure 8 demonstrates that our MPM

almost produces the highest profit under all settings, compared

to other competitors. The profits of all methods decrease when

𝛼 grows. The reason is that the costs of all nodes ascend when

𝛼 increases, as presented in Figure 9. In addition, we observe the

incentivized cost of MPM is almost the lowest in Figure 9. Par-

ticularly, Figure 9 shows that the cost ascends when 𝛼 ≤ 0.6 on

𝐷𝐵𝐿𝑃 , but drops when 𝛼 > 0.6. The reason behind this is that when

𝛼 > 0.6, the costs of nodes are greatly increasing as 𝛼 grows, and

thus more nodes are filtered by the requirement that the marginal

profit gain of this node should be positive, which leads to fewer

seeds contributing lower incentivized costs.

Varying 𝛾𝑟 . Figure 10 presents the profits when varying reward

ratio 𝛾𝑟 . It can be observed that MPM achieves the highest profit
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Figure 12: Total profit with varying 𝛾𝑝
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Figure 13: Total incentivized cost with varying 𝛾𝑝
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Figure 14: Total running time with varying |H |
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Figure 15: The impact of 𝜖 on total profit and running time

over all datasets under all settings. As 𝛾𝑟 increases, the total profits
of all methods ascend. The reason is that when 𝛾𝑟 grows, the host

obtains more reward payments from merchants whose influence

spread she provided exceeds their thresholds. In Figure 11, the total

seeding cost of all methods is not significantly affected as 𝛾𝑟 varies,

due to that the overall seeds for all merchants of each method are

almost the same when varying 𝛾𝑟 . We can also observe that MPM

achieves high profit by paying a relatively low cost in most cases.

Varying 𝛾𝑝 . We demonstrate the impact of penalty ratio 𝛾𝑝 , and

only report the results of NetHEPT and Epinions due to space limits.

In Figure 12, the total profit of MPM is consistently higher than that

of all competitors. Another observation is that the overall profits

of all methods descend as 𝛾𝑝 increases, this is because when 𝛾𝑝
grows, the host is punished more by the merchant for those partial

influence spread that does not reach the threshold when she cannot

satisfy merchant’ request, leading to lower profit. Figure 13 plots

that the cost of all algorithms increases as 𝛾𝑝 grows. When 𝛾𝑝
ascends, nodes with higher cost have more chances to be selected

into seed sets since they are more likely to satisfy the requirement

of positive marginal profit gain, resulting in higher costs.

5.3 Efficiency Analyses
We present the running time results of |H | and 𝜖 on all datasets.

Since other parameters do not affect running time significantly, we

omit the results due to the space limit.

Varying |H |. In Figure 14, it can be observed that the running

time of MPM, SIM, DIS and ITER increase when |H | ascends. The
reason is that when |H | increases, the number of candidate pairs

(i.e., |M|) grows, leading to more candidate pairs and higher compu-

tation overhead. In addition, we observe that MPM runs faster than

SIM, DIS and ITER in most cases because MPM prunes the search

space using Algorithm 2, and does not have Influence Batch which

consumes much time compared to ITER. Moreover, HD and OBO

run faster since OBO selects seeds for merchants in a one-by-one

manner, which reduces to a sequence of simple single merchant

seed selection processes, and the running time of HD is not affected

by the number of merchants (i.e., |H |) as its time consumption

is mainly dominated by the seed selection process, whose time

complexity is equivalent to that of a sorting algorithm.

Varying 𝜖 . We evaluate the effect of 𝜖 , the sampling error factor

built within the approximation guarantee of MPM (Theorem 5).

Since only MPM provides a theoretical guarantee, we compare the

total profit (i.e., effectiveness) and running time (i.e., efficiency) of

MPM by varying 𝜖 , and for each graph, we use the number of nodes

in the graph as the initial number of RR sets in Algorithm 3. Fig-

ure 15 presents that the profit does not vary much over the range of

values of 𝜖 , due to that the approximate guarantee of MPM depicts

the worst-case performance and the actual performance of MPM

in real-world cases could be empirically good. Hence, the experi-

ment demonstrates MPM’s profit performance is quite robust to the

variation of 𝜖 . In addition, the result shows that the running time

decreases when 𝜖 increases due to the early termination of MPM

as 𝜖 grows (Lines 6–9 of Algorithm 3), which leads to a decrease

in the number of generated RR sets. According to Theorem 6, the

computation overhead of MPM is dominated by the cost of RR set

generation, and thus the running time of MPM descends.
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Table 4: Distribution of Influence on Epinions

Merchant Budget Threshold BPI Influence Ratio
MPM SIM DIS HD OBO ITER MPM SIM DIS HD OBO ITER

ℎ1 9000 7500 1.20 7066.79 4463.84 4761.09 707.01 3699.03 2655.29 94.22% 59.52% 63.48% 9.43% 49.32% 35.40%

ℎ2 9000 6000 1.50 7112.21 7780.74 7538.97 1096.08 5045.46 9271.46 118.54% 129.68% 125.65% 18.27% 84.09% 154.52%

ℎ3 7500 5000 1.50 9269.50 4420.21 6997.80 2473.46 4644.57 7798.49 185.39% 88.40% 139.96% 49.47% 92.89% 155.97%

ℎ4 6000 6000 1.00 0.00 0.00 0.00 167.63 3641.64 274.38 0.00% 0.00% 0.00% 2.79% 60.69% 4.57%

ℎ5 7500 7500 1.00 0.00 0.00 0.00 977.46 3622.48 344.70 0.00% 0.00% 0.00% 13.03% 48.30% 4.60%

ℎ6 12000 8000 1.50 16070.80 13773.00 10073.70 2171.87 3895.77 11295.30 200.89% 172.16% 125.92% 27.15% 48.70% 141.19%

ℎ7 9000 9000 1.00 0.00 0.00 0.00 733.51 3630.82 407.20 0.00% 0.00% 0.00% 8.15% 40.34% 4.52%

ℎ8 6000 5000 1.20 7038.82 4708.19 4689.65 647.83 3702.83 2608.27 140.78% 94.16% 93.79% 12.96% 74.06% 52.17%

ℎ9 7200 6000 1.20 7065.52 4549.88 4804.17 807.87 3716.03 2611.65 117.76% 75.83% 80.07% 13.46% 61.93% 43.53%

ℎ10 6000 5000 1.20 7144.88 4406.71 4815.38 1580.68 3717.38 2526.19 142.90% 88.13% 96.31% 31.61% 74.35% 50.52%

5.4 Distribution of Influence
We investigate the distribution of influence provided by the host

under all methods. Table 4 shows the supplied influence spread of

10 merchants of the implemented algorithms on Epinions graph.
We also list the requests of all merchants, which include influence

thresholds, budgets, and corresponding BPIs (i.e., budget/influence).

The result reports that MPM, SIM and DIS prefer to satisfy those

merchants with higher BPI (i.e., 1.5), and the influence of those

merchants with BPI = 1.0 are provided with 0 influence. However,

HD, OBO and ITER effectively balance the distribution of influence

spread among merchants. In particular, OBO shows the best balanc-

ing distribution, the reason is that OBO ensures that each merchant

has an equal opportunity to be assigned seeds. ITER optimizes the

extreme cases of MPM and presents a similar distribution to MPM.

For instance, the influence of merchants ℎ4, ℎ5 and ℎ7 are 0 under

MPM, while under ITER, the influence values of these merchants

are 274.38, 344.70, and 407.2, respectively. This is because ITER adds

the Influence Batch selection process, in which it selects nodes to

best increase the influence of merchants whose requirements are far

from being reached. The results on other datasets are qualitatively

similar and hence are omitted due to space constraints.

6 RELATEDWORK
Influence Maximization. The Influence Maximization (IM) prob-

lem was first formulated as a discrete optimization problem by

Kempe et al. [28], focusing on two fundamental propagation models

(IC and LT model). The IM problem is proved to be NP-hard under

both models. The (1−1/𝑒)-approximation greedy can be applied to

solve IM problem as it is monotone, non-negative, and submodular.
Then considerable follow-up research worked on developing more

efficient and scalable IM algorithms [2, 18, 19, 22, 33, 41, 48, 52, 53].

Viral Marketing. Viral marketing in online social networks has

emerged as an effective way to promote the sales of products and

the propagation of information. Yang et al. [57] discussed how the

merchant offers discounts to users to maximize influence cascading.

Recent research studies variants of the IM problem from the perspec-

tive of the host (i.e., the owner of the social network), covering both

complementary and competitive settings. Complementary viral

marketing [5, 36, 40] launches products that tend to be purchased

together, while in competitive viral marketing [3, 4, 20, 35, 54],

products promoted on social platforms competes with each other.

Lu et al. [35] studied the fair seed allocation problem. Han et al. [20]

revisited the revenue maximization problem [3, 29] from a fresh

perspective and developed novel efficient approximation algorithms

with stronger theoretical guarantee. Banerjee et al. studied the com-

plementary [5] and competitive [6] social welfare maximization

problem by introducing the concept of utility. [4, 59] investigated

the regret minimization problem, which leads to a win-win between

the host and the merchants. Other variants with specific constraints

are also widely explored in [13, 27, 38, 44, 47, 54, 56].

Profit Maximization. Numerous studies tackled profit maximiza-

tion assuming that there is a single merchant [21, 25, 37, 50, 51, 61].

Our problem settings have significant differences from prior re-

search: (1) Model-wise, [43, 60] simply adopt the K-LT model as

we have compared in §2.1, without allowing users to change their

mind after activation. To our knowledge, we are the first to model

the users’ choices changing in influence diffusion to capture the

“comparative shopping” behavior [12, 46, 55] from an economic per-

spective. (2) Problem-wise, [60] treats the revenue part as profit,

without considering the cost of incentivizing seed users as propaga-

tion source. In addition, they adopt a fixed seed set size constraint.

And in [43], for each merchant, the revenue function is a constant

value (i.e., budget). If the influence supplied by the host satisfies the

merchant’s demand (i.e., threshold), the host will earn the budget,

and obtains nothing otherwise. We introduce penalty and reward

ratios to simulate a more practical real-world demand.

7 CONCLUSION
In this paper, we study a novel host profit maximization problem

for multiple competing products. Each merchant declares campaign

proposal including a desired influence demand and corresponding

budget, and then the host manages to satisfy the requirements of

multiple merchants, aiming to obtain as much profit as possible.

A novel information propagation model is proposed to capture

the “comparative shopping” behavior from an economic perspective.

An effective greedy method and its scalable version, both with

approximation guarantees, are devised to tackle our problem. In

addition, we propose two heuristics to balance the distribution of

influence amongmerchants without significant loss of overall profit.

Extensive experiments on four datasets demonstrate the superiority

of our algorithms in both effectiveness and efficiency.
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