Swift: A Data-Driven Flight Planning System at Scale

Chang Gao Tianlong Zhang Yuxiang Zeng
SKLCCSE Lab, Beihang University SKLCCSE Lab, Beihang University SKLCCSE Lab, Beihang University
gc021129@buaa.edu.cn tianlong@buaa.edu.cn yxzeng@buaa.edu.cn
Yi Xu Shuyuan Li Yuanyuan Zhang
SKLCCSE Lab, Beihang University SKLCCSE Lab, Beihang University North China Institute of Computing
xuy@buaa.edu.cn lishuyuan@buaa.edu.cn Technology

ABSTRACT

Flight planning, a pivotal challenge in the airline industry, strives
to achieve economic and flexible scheduling of airplanes to serve
designated flight itineraries. As the demand for air transportation
soars, traditional planning methods can be inefficient in managing
large-scale flights. Thus, we introduce Swift, a data-driven system
tailored to enhance the scalability and effectiveness of flight plan-
ning. Swift primarily employs the bipartite graph model to derive
optimal and economic flight plans for airlines. Our method not
only minimizes the number of required planes but also ensures a
balanced workload across these planes. Furthermore, Swift offers
the capability of dynamic updates to flight plans in response to
unexpected incidents at airports, such as bad weather conditions.
Besides, Swift incorporates other functionalities like predicting
future flight demand and monitoring real-time flight trajectories.
Conference participants can interact with this system and explore
our flight planning solution in real-world scenarios.

PVLDB Reference Format:

Chang Gao, Tianlong Zhang, Yuxiang Zeng, Yi Xu, Shuyuan Li, and
Yuanyuan Zhang. Swift: A Data-Driven Flight Planning System at Scale.
PVLDB, 17(12): 4465 - 4468, 2024.

doi:10.14778/3685800.3685901

1 INTRODUCTION

Airplanes are probably the most convenient mode of long-distance
transportation in daily life. The International Air Transport As-
sociation predicts a new high in air passenger volume, reaching 4
billion in 2024. As demand grows, the scalability and complexity
of wisely planning appropriate airplanes to cover scheduled flights
(referred to as "flight planning") are also increasing. Thus, it’s a
fundamental challenge for airlines to devise cost-effective, flexible
flight plans for large-scale demands.

Traditional solutions, such as linear programming, branch-and-
bound, and heuristic search, are primarily effective for medium-
scale data [5]. However, as the data size of flight itineraries in-
creases to large-scale, these solutions can become inefficient and,
therefore, no longer suitable for meeting the real-world situation.
Consequently, in recent years, both industry and academia focus

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685901

4465

zyy-buaa@buaa.edu.cn

on designing spatio temporal data driven approaches to effectively
solve large-scale planning problems.

Recently, the databases community has proposed several so-
lutions for large-scale spatio-temporal planning, including route
planning in ride-sharing [3, 4], vehicle delivery planning in urban
logistics [7], and trip planning for travel recommendation [6]. These
studies prioritize minimizing travel distance or maximizing revenue.
Nevertheless, they cannot effectively manage flight planning due to
the following differences that originate from real-world scenarios:

(1) Airlines have their own primary concern. To efficiently
serve all the anticipated itineraries, airlines must acquire sufficient
airplanes, which is a principal operational expense. They also seek
to evenly distribute usage to prolong airplanes service life. There-
fore, flight planning objectives are twofold: (a) minimizing aircraft
numbers and (b) balancing the workload across each plane.

(2) Planned airplane routes may still undergo dynamic up-
dates. Bad weather is probably the most common factor that leads
to dynamic updates in pre-planned airplane routes. Moreover, a de-
layed flight can cause a ripple effect throughout the entire schedule,
which hurts passengers’ experience. Thus, a flight planning system

should be flexible to accommodate dynamic adjustments.
Thus, we are motivated to build a prototype system called Swift

for large-scale flight planning. Swift is composed of three core
modules: itinerary demand prediction, flight graph matching, and
dynamic plan update. Specifically, we first collect various types of
spatiotemporal data, such as historical ticket booking records and
weather data, to predict the future demand for flight itineraries.
Then, we aim to decide the minimum number of required planes
to cover the predicted flights and assign a subset of flights with a
balanced workload to each plane. To optimize both objectives, we
have reduced this planning problem to a bipartite graph matching
problem, solved it using maximum cardinality bipartite matching
optimized for time efficiency and workload balance. Additionally,
we have designed flexible strategies to handle dynamic updates to re-
plan routes for planes that encounter delayed flights by minimizing
the total latency. Finally, all these modules have been integrated
into a user-friendly web client, and this client enables users or
airlines to visualize, monitor, and manage flight plans in real time.

2 SYSTEM OVERVIEW
2.1 Basic Concepts in Flight Planning System

We introduce the basic concepts related to our Swift system.

Flight Table. Flight table is a collection of flight itineraries (“flights”
as short). Each flight in the table is mainly composed of spatio tem-
poral data, such as its departure airport, arrival airport, departure


https://doi.org/10.14778/3685800.3685901
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685901

time, and arrival time. It also includes other attributes, such as the
type designator of the assigned flight.

Flight Plan Result. A flight plan result (“flight plan” as short)
represents the outcome of a flight planning method. The result is
expressed as a collection of tuples, where each tuple consists of two
elements: the required airplane and its assigned flights. These flights,
retrievable from the flight table, are arranged in a pre-defined order,
indicating the designated schedule for the assigned airplane.
Flight Plan Update. In practice, a flight plan assigned to an air-
plane can be dynamically changed due to external factors, such
as bad weather conditions. Therefore, the update of a flight plan
is also an important consideration. Specifically, an update on the
pre-scheduled flight plan mainly includes two solutions: canceling
and delaying. For instance, suppose an airplane’s planis A — B —
C — D — A. It means this airplane will serve the flights from A to
B, from B to C, from C to D, and so on. If the city B experiences a
rainstorm, the airline could delay the trip from A to B, which may
inevitably result in delays for subsequent trips (i.e., the ripple effect
as aforementioned). Alternatively, the airline could opt to cancel
two trips A — B and B — C, and instead have the airplane fly
directly to the city C from its current location, the city A.

Our Goal: Flight Planning at Scale. Based on the previous con-
cepts, we now introduce our ultimate goal: flight planning at scale.
Specifically, given a flight table with massive flights, we aim to com-
pute an optimal flight plan that minimizes the number of required
airplanes and balances the workloads among these airplanes. This
flight plan needs to encompass all the flights and adhere to their
designated time arrangements. Furthermore, we also strive to offer
a flexible and real-time solution to flight plan updates by minimizing
the overall delay to the unserved and impacted flights.

2.2 System Architecture

To achieve this goal, we have built four core components within our
system: itinerary demand prediction, flight graph matching, dynamic
plan update, and flight plan visualization, as shown in Fig. 1.
Itinerary Demand Prediction. To create an effective flight plan,
the initial task for an airline is to accurately predict the itinerary
demand between cities. This forecasting helps optimize resource
management and boost operational efficiency. Therefore, this mod-
ule is designed to forecast itinerary demand using historical data
and external factors like weather and aircraft capacity, ultimately
generating a potential flight table, serving as main inputs for the
subsequent modules.

Flight Graph Matching. This module serves as the core of the
flight planning process, receiving the flight table as its primary in-
put and subsequently computing an initial flight plan. To attain this
objective, we have designed a novel bipartite graph matching-based
algorithm to make a flight plan for large-scale datasets. The algo-
rithm details will be deferred in Sec. 3.2. This algorithm guarantees
that the flight plan requires the minimum number of airplanes and
ensures that their flight workloads are as balanced as possible.
Dynamic Plan Update. Leveraging the initial flight plan generated
by the preceding module, this module dynamically adjusts the
overall plan in response to factors like bad weather and air traffic
control. When such unexpected occurrences happen, an airline
must decide whether to delay or cancel specific flights in real-time.
Thus, this module computes the possible changes to the original

4466

Figure 1: Architecture of our Swift system

flight plan, provides a comprehensive analysis of the total delay,
and enables the airline to make a proper decision.

Flight Plan Visualization. This module functions as an interac-
tive interface tailored for airlines’ needs. Leveraging a front-end
interface, users can access and visualize the predicted flights and
flight plan results. Moreover, it also allows users to customize the
local conditions (e.g., weather) of the airports and provides real-time
updates on the flight plan accordingly.

3 PROTOTYPE IMPLEMENTATION

3.1 Itinerary Demand Prediction Module

This module aims to predict the air transportation demands of
passengers for a certain time period and subsequently generate a
flight table based on the predicted flights.

To achieve this objective, we initially collect relevant data from
the Internet. Specifically, we have developed a web crawler to gather
98,158 flight records from the WebXML website [1], serving as
our historical flight dataset. This large-scale dataset offers rich
information about all existing flights in China in 2023, including
their departure/arrival airports, departure/arrival time, total travel
duration, ticket prices, etc. Moreover, it involves a diverse range
of 52 airplane types operated by 29 Chinese airlines. Similarly, we
have also crawled seasonal weather data, flight delay data, and
airport event data from the internet.

After collecting sufficient data, we proceed to tackle the air traffic
demand problem, drawing inspiration from existing research on
the spatio temporal graph neural network model, ST-MGCN [2].
Originally, ST-MGCN was proposed to forecast the demand for
ride-hailing services between any two different regions. Similarly,
we treat each airport as a spatial region in this model. We also
create a transportation connectivity graph as the average flight
time between cities and an airport similarity graph that captures
their resemblance in terms of weather and event data representation
embeddings. By using ST-MGCN, we can effectively predict the
future flight demand for a certain time period (e.g., the next season).

Predicted flights are derived from air transportation demands
based on historical flight records and maintained in a flight table.

3.2 Flight Graph Matching Module

This module produces the initial flight plan by a bipartite graph
matching-based method with two steps: matching and optimizing.



Figure 2: Illustration of bipartite graph matching

Matching. To minimize the number of required airplanes, we in-
troduce a bipartite graph matching algorithm to generate the initial
flight plan, as illustrated in Fig. 2. In this bipartite graph, a right-
hand vertex R; represents a departure airport, while its opposite
left-hand vertex L; represents the corresponding arrival airport for
the same flight. Besides, if the arrival airport of the jth flight is also
the departure airport of the ith flight, and there is sufficient airplane
maintenance time between the arrival of the jth flight and the de-
parture of the ith flight, an edge is established between vertices L;
and R;. This edge indicates that a single plane can consecutively
serve both flights. Thus, by finding the maximum cardinality bipar-
tite matching, this method minimizes the number of required planes
by enabling a single plane to serve as many flights as possible.
Optimizing. A naive implementation of maximum cardinality bi-
partite matching suffers from inefficiency under large-scale datasets,
e.g., the classic Hungarian algorithm takes cubic time complexity
and quadratic space complexity. To improve the scalability, we com-
press the adjacency list into a hash index, where each hash bucket
denotes an arrival airport. Then, for each arrival airport, we retrieve
its adjacent right-hand vertices by using a time window query over
the departure time of the corresponding airport. Moreover, to bal-
ance the airplanes’ workload, we use an optimization method called
swap. This operation tries to exchange some consecutive flights
between the plans of two airplanes. If a swap can result in a more
balanced workload, we will adopt the new flight plan. The swap
operation is designed to converge at a Pure Nash Equilibrium state,
ensuring the effectiveness of balancing the workloads.

Due to the page limitation, please refer to our full paper [9] for
formal proofs on the optimality of this flight planning algorithm.

3.3 Dynamic Plan Update Module

This module is implemented to promptly respond to dynamic up-
dates regarding flight situations, thus mitigating the ripple effects
of delays. In general, delays are categorized into three levels: mild,
moderate, and severe, based on the total late duration of the affected
flights and their subsequent ones. These categories enable us to
tailor the update strategies according to the severity of the delay:

(1) Mild delays usually require no immediate change;

(2) For severe delays, the system prompts the skipping of the
affected flights and moving on to the subsequent ones;

(3) Moderate delays often require personalized decision-making
by the airline. In such cases, we provide necessary delay information
to assist the airline in making informed decisions.

Moreover, to reflect the latest flight situation, we also update the
bipartite graph and its underlying hash index whenever there are
changes in the flights. Finally, once a decision has been made re-
garding whether to retain or cancel the affected flights, this module
seamlessly integrates the changes into the current flight plan.

4467

3.4 Flight Plan Visualization Module

This module leverages the JavaScript visualization library, Apache
ECharts, to build a robust web client and achieve these objectives:

(1) It can visualize diverse types of relevant data, such as spa-
tiotemporal information of airports, historical flight itineraries,
predicted flights, and the status of the served airplanes.

(2) It can simulate the intricate process of flight planning algo-
rithms, including their initial plans and dynamic updates;

(3) It can analyze the performance of existing flight planning
solutions, including two baselines from our previous work [8] based
on Hungarian and Greedy respectively, and an optimized algorithm
with implementation details in our full paper [9].

This module also employs several different ways to show the
algorithm performance, such as heat maps, radar charts, and bar
charts. Moreover, interactive functionality allows users to click
on the map, change the status of airports (e.g., delays due to bad
weathers), and observe dynamic updates to the current flight plan.

4 DEMONSTRATION SCENARIO
4.1 Demonstrations of Flight Planning Methods

The first demonstration scenario will showcase to the audience the
performance comparisons of different flight planning methods.
Visualizations of Prediction Flights. The interface in Fig. 3
provides users access to the predicted flight flows and generated
flight table. Specifically, in Fig. 3 (a), users have the option to select
different flight planning algorithms (e.g., Hungarian, Greedy, and
our method), and filter out predicted flights based on the selected
departure airports or specific airplane types (e.g., A319). Depending
on the users’ selections, Fig. 3 (b) reflects the predicted itinerary
demand, and Fig. 3 (e) displays the distributions of the overall flight
table through heatmaps.
Comparisons of Flight Planning Algorithms. Furthermore,
based on the chosen flight planning algorithm, Fig. 3 (c) draws a
radar chart that evaluates its performance across five dimensions:
the total number of (required) airplanes, workload balanced score, op-
erating cost assessment (i.e., The cost of leasing the required airplane
by the airline), time efficiency, and space efficiency. Accordingly, this
enables a comprehensive comparison between existing methods [8]
and our new method [9] (see Fig. 3 (f)). Our new method requires
33% less airplanes than the Greedy baseline [8] and achieves more
balanced workload than the classic Hungarian. Moreover, this new
method is up to two orders of magnitude faster than Hungarian.
Fig. 3 (d) also depicts the flight workload assigned to each required
airplane in a bar chart.

Overall, this scenario provides a comprehensive and interactive
way for users to explore our prediction results and compare different
flight planning methods when processing large-scale datasets.

4.2 Monitoring Dynamic Flight Plan Updates

In this demonstration scenario, audiences can monitor live flight
trajectories, make real-time adjustments to flights, and observe the
corresponding immediate updates accordingly.

Simulating Real-time Airplane Scheduling. The map displays
real-time flight trajectories corresponding to the current time pe-
riod, such as 2020/12/02 09:15 as illustrated in Fig. 4 (a). The simula-
tion progresses in batches every 5 minutes, with flight trajectories



Figure 3: Visualization of predicted flights and comparisons of flight planning algorithms in our Swift system

Figure 4: Simulating and monitoring dynamic plan updates in our Swift system

dynamically updating on the map. Additionally, Fig. 4 (b) demon-
strates real-time flight status, with each progress bar representing
the completion rate of a certain flight itinerary. For example, the
flight itinerary from the city Mangshi to the city Kunming has been
fully completed, resulting in a completion rate of 100%. Similarly,
for the flight from Xi’an to Linzhi, the completion rate is 97%, indi-
cating that the airplane is almost arriving at Linzhi airport. Users
also have the flexibility to pause the simulator at any desired time
in Fig. 4 (a), enabling them to observe the global status of airplanes.
Monitoring Dynamic Flight Updates. In this scenario, users
can simulate unexpected flight incidents caused by bad weather
and make accordingly adjustments to the current flight plan. As
shown in Fig. 4 (c), if Beijing airport is temporarily closed due to a
rainstorm, users can click on the marker of Beijing airport on the
map, causing it to change color from black to red. Subsequently,
flights scheduled to land in Beijing will be re-routed to the nearest
available airport, while those scheduled to take off will be canceled.
The completion rate displayed in Fig. 4 (b) will also adjust accord-
ingly. Moreover, this incident will result in an increasing number
of airports highlighted in red, indicating severe delays for departing
flights. As depicted in Fig. 4 (c), an airline may decide to cancel
some severely delayed flights involving the Beijing airport and
promptly update the original flight plan for certain airplanes, in
order to mitigate the ripple effect of flight delays.

4468

ACKNOWLEDGMENT

This work was supported by National Key Research and Develop-
ment Program of China under Grant No. 2023YFF0725103, National
Science Foundation of China (Grant Nos. 62076017, U21A20516,
62336003) and Beijing Natural Science Foundation (Z230001), the
Basic Research Funding in Beihang University No.YWF-22-L-531,
and Didi Collaborative Research Program NO2231122-00047. Yuxi-
ang Zeng and Yi Xu are the corresponding authors in this paper.

REFERENCES

2024. WebXML. http://www.webxml.com.cn/webservices.

Xu Geng, Yaguang Li, Leye Wang, et al. 2019. Spatiotemporal Multi-Graph Con-
volution Network for Ride-Hailing Demand Forecasting. In AAAL 3656-3663.
James Pan, Guoliang Li, and Yong Wang. 2020. Evaluating Ridesharing Algorithms
using the Jargo Real-Time Stochastic Simulator. PVLDB 13 (2020), 2905-2908.
Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen. 2016. Online
mobile Micro-Task Allocation in spatial crowdsourcing. In ICDE. 49-60.

Paolo Toth and Daniele Vigo. 2002. The vehicle routing problem. SIAM.

Sheng Wang, Mingzhao Li, Yipeng Zhang, et al. 2018. Trip Planning by An
Integrated Search Paradigm. In SIGMOD. 1673-1676.

Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2019. Last-Mile Delivery Made
Practical: An Efficient Route Planning Framework with Theoretical Guarantees.
PVLDB 13, 3 (2019), 320-333.

Yuxiang Zeng, Yongxin Tong, Yuguang Song, et al. 2020. The Simpler The Better:
An Indexing Approach for Shared-Route Planning Queries. PVLDB 13 (2020),
3517-3530.

Tianlong Zhang, Chang Gao, Yuxiang Zeng, et al. 2024. Flight Planning at Scale:
A Bipartite Matching based Approach. https://github.com/Cecelia-cc/Flight-
Planning


http://www.webxml.com.cn/webservices
https://github.com/Cecelia-cc/Flight-Planning
https://github.com/Cecelia-cc/Flight-Planning

	Abstract
	1 Introduction
	2 System Overview
	2.1 Basic Concepts in Flight Planning System
	2.2 System Architecture

	3 Prototype Implementation
	3.1 Itinerary Demand Prediction Module
	3.2 Flight Graph Matching Module
	3.3 Dynamic Plan Update Module
	3.4 Flight Plan Visualization Module

	4 Demonstration Scenario
	4.1 Demonstrations of Flight Planning Methods
	4.2 Monitoring Dynamic Flight Plan Updates

	References

