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ABSTRACT
Schema discovery and data loading is a crucial step in any data
analysis pipeline. While this used to be a rare task, in the highly
dynamic �eld of machine learning and modern business intelli-
gence on top of data lakes, today it has become a frequent, but
often underestimated, activity. Existing tools often focus on single
�les, presume prior knowledge of the data on the user’s side or a
signi�cant amount of manual labor.

In this paper, we improve the process of mapping a “chaotic”
set of �les to an initial database schema that can then be itera-
tively re�ned and loaded. The idea is to take the previously tedious
parts of this process and automate them through the use of Large
Language Models (LLMs) while leaving already well-understood
problems such as constraint discovery to existing algorithms. We
thus carefully orchestrate the use of LLMs for the “soft” problems
and traditional algorithms for the “hard” problems. This creates a
more seamless schema discovery and data loading experience that
minimizes the time to �rst insight for users. We show this vision
on modern schema discovery and data loading in our web-based
prototype called DataLoom that serves as our demonstration.
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1 INTRODUCTION
Motivation. Before data scientists can create insights or machine
learning algorithms can start training, the underlying data needs
to be prepared. This usually involves �nding the data, creating a
schema, doing some cleaning and, �nally, loading it into a database
system. This process can often be tedious and time-consuming,
yet it is extremely important because the quality of the results of
the later stages largely depends on the quality of the input data (in
short: garbage in, garbage out). Lowering the time to �rst insight, i.e.,
the time it takes from starting a project to getting the �rst results,
is crucial in a fast-paced environment, such as data science. More
precisely, we de�ne the problem of schema discovery as follows:
Given a set of �les, create a schema �tting the contained data.
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Existing Approaches. While there exists a number of algorithms
for schema discovery (cf. Section 3), we found that they are falling
short in a number of ways: Tools from academia [11] usually focus
on an algorithmically complex or interesting part of schema dis-
covery, such as deriving constraints on a given table or �nding join
keys on a set of tables. Industry-based solutions are often tied to a
speci�c database product, are not extensible, and still require signif-
icant manual work, especially in the early stages where data needs
to be discovered. In contrast, the goal of this work is to showcase
an end-to-end approach with as little work of the user as possible.
DataLoom. Our approach, called DataLoom, presents a vision on
how manual e�ort can be reduced for schema discovery, re�ne-
ment, and loading of small to medium sized datasets (i.e., hun-
dreds of tables). It combines existing algorithms from academia
to solve the algorithmically well de�ned problems and leverages
Large Language Models (LLMs) to solve the soft problems that used
to require manual labor. For instance, constraint discovery is a well-
de�ned problem and can be left to traditional algorithms. Mapping
a “chaotic” set of �les to a database schema, can be seen as a “soft”
problem as it requires domain knowledge and intuition that tradi-
tional algorithms lack. The novelty in our approach comes from
introducing LLMs into the process and integrating everything into
an end-to-end solution to demonstrate how seamless data loading
could work. We show that LLMs are e�ective in creating an initial
�le to table mapping, allow users to easily perform incremental
update on the schema in a safe fashion, and aid in �xing problems
during the data ingestion process.
Example Scenario. The motivation for DataLoom arose during
the practical part of a Master’s course on data engineering at our
university. Students were given a directory of �les containing log-
ging information in csv �les and were asked to explore the data
and analyze the logs. We observed students struggling to import
data into a database for analysis and many falling back to manually
typing SQL schema �les (i.e., create table [...]). To show how
DataLoom solves this problem, we include the exact same exercise
as one of our demonstration scenarios (see Section 4).

2 SYSTEM DESCRIPTION
DataLoom is divided into three phases: (1) an automatic, initial
schema discovery, (2) a user-driven re�nement, and (3) the data
loading itself. The goal is to have a fast and seamless process that
minimizes tedious work and the time to �rst insight for users. In
the following, we describe these three phases, alongside a running
example (see Figure 1) that shows an overview of the process with
some sample data.

2.1 Phase 1: Schema Discovery
Initial State. At the beginning of the schema discovery process,
we have a directory �lled with potential table �les on a local or
remote drive (e.g., a data lake such as Amazon S3). This is depicted
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some-data-directory 
├── README.md 
├── customer.csv 
├── lineitem 
│   ├── part0.csv 
│   ├── part1000000.csv 
│   ├── part2000000.csv 
│   ├── part3000000.csv 
│   ├── part4000000.csv 
│   ├── part5000000.csv 
│   └── part6000000.csv 
├── nation.csv 
├── orders0.csv 
├── orders1000000.csv 
├── orders500000.csv 
...

PostgreSQL

DuckDB

…

tables: [{ 
  name: "orders", 
  files: [ 
     "/orders500000.csv", 
     "/orders1000000.csv", 
     "/orders0.csv"], 
  attributes: [ 
     {name: "order_id", 
      type: "integer", 
      null: false}, 
     …] 
} 
<!—- other tables !—->

Refine Schema

‣Manual

‣ LLM

‣ Tools

1

2

3

Schema Draft

Load

List of Files on Disk Workable Schema Database

Figure 1: Work�ow: DataLoom takes a set of �les as input (left hand side) and creates an initial schema draft (middle) using classical inference
techniques combined with LLMs. Next, the user can inspect the schema in our graphical user interface and incrementally re�ne manually, with
the help of LLMs, or classical algorithms for constraint discovery and data cleaning. Finally, the data can be loaded into a database system (right
hand side) and further analyzed and re�ned.

on the left hand side of Figure 1; in this case DataLoom is faced with
a somewhat irregular version of TPC-H [9]. DataLoom supports
comma separated value (CSV) �les, but the system design allows to
easily extend to other �le formats such as Parquet1 or JSON.
Files!Tables.As a �rst step, DataLoommaps the given set of �les
to table names. With the unknown and potentially chaotic structure
of the input directory layout, we leverage an out-of-the-box Large
Language Model (LLM) (namely ChatGPT 3.5 turbo2) to obtain an
initial mapping from �les to tables. In the running example, the
LLM associated all order-�les with an orders table. Files that can
not be mapped to a table are discarded, this is currently done by the
LLM, but in the future we could pre-�lter common non-relational
�les (e.g., README.md).
Column Types. Given the initial set of tables with their associated
�les, DataLoom now infers possible data types for each column.
This is done by sampling rows from each �le mapped to a given
table. For each column we pick the most restrictive type that can
represent all sampled values. If there is a mismatch in the number
of columns, we drop the o�ending �le and add it to the list of
discarded �les. Whenever data types across �les for a single table
do not match they are generalized to the most common type, in the
worst case this would be varchar, as all data can be stored as text.
Column Names. Lastly, if the input �les for a table do not contain
a header row that speci�es the column names, DataLoom automat-
ically infers the column names for that table. To do this, we ask the
LLM to generate column names, given the table name, the column
types, and a sample of the data. In the example, the LLM inferred
the �rst column name of the orders table as order_id, which is
similar to l_orderkey, the column’s actual name in TPC-H.
Bias. Obviously, there might be a slight bias towards the TPC-H
schema, as the LLM likely saw TPC-H in its training data. However,
the LLM likely saw most common column names for many typical

1github.com/apache/parquet-format [Accessed: 2024-07-17]
2platform.openai.com/docs/models/gpt-3-5-turbo [Accessed: 2024-07-17]

tables that are being used at companies, hence this form of over-
�tting it not necessarily an issue. In our demonstration, we will
also show some lesser known datasets to show that the LLM is not
simply memorizing TPC-H. However, a well-known dataset makes
for a good example in this presentation.
Fuzziness. None of the steps described so far necessarily lead to
a correct or optimal schema. The goal of this phase of DataLoom
is to provide the user with an initial schema draft upon which to
iterate. We argue that an initial, even non-perfect schema, can be
greatly bene�cial in getting started with large unknown datasets.

2.2 Phase 2: Schema Re�nement
Overview. Having an initial schema draft, we now describe how
DataLoom can be used to re�ne the schema and correct errors.
Figure 2 shows a screenshot of DataLoom’s dashboard. The area
marked with A has a list of the inferred tables. It shows the number
of �les associated with the table, how many attributes where dis-
covered, and an estimated certainty of the inference process. We
calculate the certainty, as a combination of the LLM’s con�dence
in the �le to table mapping, the attribute naming, and the attribute
type inference. Table details are shown on the right side (area B).
A user can interactively re�ne the table either manually, by use of
the LLM, or with traditional algorithms.
Manual Re�nement. First and foremost, DataLoom allows the
user to manually update the underlying schema. While this has no
scienti�c novelty, it is an important part of the demonstration, as it
gives direct control to the user. We include all standard tasks a user
might need, like modifying table names, column names and types,
altering the �le mapping, or inspecting table �les.
LLM Re�nement. Next, DataLoom allows the user to modify the
schema using the LLM (area C). This is especially helpful for users
less familiar with SQL or for doing larger modi�cations quickly.
To prevent unwanted changes, we allow to limit the scope for
LLM inquiries to either a single table or the whole schema. In
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Figure 2: DataLoom Dashboard: A screenshot of the main dashboard of DataLoom. The user can see the discovered tables, associated �les, and
attributes. Further, they can use the UI to incrementally re�ne the schema.

addition, we implemented a read-only mode, where the user can
ask questions about the schema. In the backend, the user’s question
is sent to the LLM together with the selected part of the schema. If
the LLM’s con�dence in the answer is below a threshold, the user
is presented with a di� between the original state and the LLM’s
proposed updates, which can then be accepted or rejected.
Constraint Inference. Lastly, DataLoom implements an inter-
face to traditional algorithms for constraint discovery. Here we
mainly build on the work of Naumann et al. [6, 7], who maintain
an extensive library of constraint discovery algorithms with a com-
mon interface. In DataLoom, users can utilize these algorithms to
add constraints to their schema, such as unique constraints, check
constraints, or foreign key constraints.

2.3 Phase 3: Data Loading
Once a user has inspected, validated, and re�ned a table, they can
�ag it as “reviewed”, which unlocks the data loading phase for that
table. To load a table, we generate SQL code, which can be inspected
and then send to a database on our backend. We implemented the
connection to the database with psql, allowing for easy extensibility
to other database systems3. We continue our theme of LLM-aided
data loading, by using the LLM to �x errors that might occur during
the loading process: Loading errors are sent to the LLM together
with the loading query and table’s schema. Using prompt engineer-
ing, we generate a helpful comment with concrete changes to the

3Adding new database backends might also require to adopt our SQL code generator
to the speci�c SQL dialect.

SQL statement. The user can inspect the proposed changes before
resubmitting the query.

2.4 Scaling
DataLoom’s interactions (i.e., the prompts that are sent) with the
LLM are limited in size or can be partitioned: Column name infer-
ence is limited to a single table and thus depends on the number of
columns. Similar, the initial �le to table mapping depends on the
number of �les/tables in the dataset. In both cases, we can split the
input data (the list of �les, of columns) into multiple requests and
then merge the results.

2.5 Summary
We have shown how DataLoom can interweave LLMs, manual
re�nement, and classical algorithms to enhance the schema dis-
covery and data loading process. The idea is to utilize LLMs to
support users with the “soft” tasks that are traditionally done by
humans and leave the “hard” problems (constraint discovery, num-
ber crunching) to traditional algorithms. In summary, we explained
how LLMs can be used to map �les to tables, infer column names,
help with schema re�nement, and �x loading problems. We present
this vision of seamless data loading in our prototype, DataLoom.

3 RELATED SYSTEMS AND NOVELTY
Schema discovery and data loading are both well studied problems.
In this section, we summarize the most relevant works for this
paper. We distinguish ourselves from these existing techniques by
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adding LLMs to previous pain-points and by combining existing
approaches into one end-to-end solution.
Academia. Nargesian et al. [5] summarize important problems in
the �eld of schema and constraint discovery, data loading, and data
cleaning for data lakes. For constraint discovery, the Metanome plat-
form [7], by Neumann et al. [6], provides a common platform with
a generic interface to compare and evaluate competing algorithms.
Notably, it ships with a large library of state-of-the-art algorithms,
allowing researchers to easily compare results. To aid the user with
data cleaning, the Wrangler [3] project explores graphical solu-
tions to specify data transformation rules. In schema discovery,
Trummer et al. [10] started exploring the applicability of LLMs
for �nding column correlations. The JOSIE system [11] uses set
similarity search to discover possible join columns in data lakes.
Our DataLoom demonstration shows how these point solutions
can be combined into a seamless end-to-end solution. An example
of a more user-focused approach is the Data Civilizer [2], which
implements an end-to-end solution for discovery, governance, and
processing on very large schemas. DataLoom, in contrast, improves
parts of this process by aiding the user with the use of LLMs.
Industry. Given of the importance of schema discovery and data
loading, many companies have developed tools to aid in this process.
For instance, Amazon, representing cloud platforms, o�ers AWS
Glue4, which is an umbrella application covering various data engi-
neering tasks with a focus on exchanging data between products
from the AWS ecosystem. AWS DataBrew5, as part of AWS Glue,
takes care of analyzing and cleaning data. However, it works on
one table at a time and requires manual dataset de�nitions. Another
relevant tool is AWS DataZone6, which catalogs data from various
sources and manages governance. In contrast to those industry
solutions, DataLoom shows how many of the manual steps can be
aided by using LLMs. Modern database systems, like Snow�ake [1]
and DuckDB [8], already allow users to directly query or import
CSV �les without prior explicit schema de�nition. However, users
still have to map CSV �les to tables, need to perform data cleaning,
and manually �x errors during the loading process. In DataLoom
we show how these steps can be aided by LLMs, and data cleaning
and constraint discovery can be done with state-of-the-art algo-
rithms. Lastly, Starburst7 allows users to import multiple tables
at a time from a directory. However, the �le to table mapping is
done statically and expects a �xed schema on disk. In contrast,
DataLoom implements an iterative work�ow with an LLM backend
that captures human intuition and intent.

4 DEMONSTRATION
In the following we describe how users can interact with DataLoom
during the demonstration (for user interface details please refer
to Section 2). Users can either explore the schema discovery and
data loading process freely on their own or with a guided set of
instructions. Either way, they will move through the three phases of
DataLoom: schema discovery, schema re�nement, and data loading.
They will be able to iteratively re�ne the schema, load and reload

4AWS Glue https://aws.amazon.com/glue/ [Accessed: 2024-07-17]
5AWS DataBrew aws.amazon.com/glue/features/databrew/ [Accessed: 2024-07-17]
6AWS DataZone aws.amazon.com/datazone/ [Accessed: 2024-07-17]
7Starburst Loading docs.starburst.io/starburst-galaxy/working-with-data/explore-
data/schema-discovery.html [Accessed: 2024-07-17]

the data. To facility the demonstration of various scenarios covered
by DataLoom, we have prepared a number of data sets. Users will
be allowed to compare their experience with DuckDB.
Familiar Dataset. To allow users to test various features we have
prepared TPC-H as a datasets most attendees are familiar with. Here
users can see how DataLoom seamlessly maps �les to tables, infers
column names and types, and loads data, allowing for a running
start. Using a familiar datasets allows users to compare the results
of DataLoom with their own knowledge of the dataset.
Unknown Dataset. In this scenario, users will be able to try
DataLoom with two unfamiliar datasets. First, we prepared the
SciSciNet dataset [4], which consists of 22 tables and represents
a database of scienti�c publications. And, second, we revisit the
dataset that motivated this (cf. Section 1) from a course at our
university, where students where tasked to explore a dataset.
Risk Management. To avoid networking issues or potential prob-
lemswith unexpected changes of LLM endpoints, we have an option
for DataLoom to work on cached results completely o�ine. This
will assure that we can have a successful demonstration.
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