
GPU Database Systems Characterization and Optimization
Jiashen Cao∗
Georgia Tech

jiashenc@gatech.edu

Rathijit Sen
Microsoft GSL

rathijit.sen@microsoft.com

Matteo Interlandi
Microsoft GSL

matteo.interlandi@microsoft.com

Joy Arulraj
Georgia Tech

arulraj@gatech.edu

Hyesoon Kim
Georgia Tech

hyesoon@cc.gatech.edu

ABSTRACT

GPUs offermassive parallelism and high-bandwidthmemory access,
making them an attractive option for accelerating data analytics
in database systems. However, while modern GPUs possess more
resources than ever before (e.g., higher DRAM bandwidth), effi-
cient system implementations and judicious resource allocations
for query processing are still necessary for optimal performance.
Database systems can save GPU runtime costs through just-enough
resource allocation or improve query throughput with concurrent
query processing by leveraging new GPU resource-allocation capa-
bilities, such as Multi-Instance GPU (MIG).

In this paper, we do a cross-stack performance and resource-
utilization analysis of four GPU database systems, including Crys-
tal (the state-of-the-art GPU database, performance-wise) and TQP
(the latest entry in the GPU database space). We evaluate the bottle-
necks of each system through an in-depth microarchitectural study
and identify resource underutilization by leveraging the classic
roofline model. Based on the insights gained from our investiga-
tion, we propose optimizations for both system implementation
and resource allocation, using which we are able to achieve 1.9×
lower latency for single-query execution and up to 6.5× throughput
improvement for concurrent query execution.

PVLDB Reference Format:

Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim.
GPU Database Systems Characterization and Optimization. PVLDB, 17(3):
441-454, 2023.
doi:10.14778/3632093.3632107

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/jiashenC/gpudb-char-and-opt.

1 INTRODUCTION

Graphics Processing Units (GPUs) have attracted significant in-
terest in the realm of accelerating data analytics due to their po-
tential for massively parallel computing, high-bandwidth memory
access capability, and ease of programming as an accelerator. In
recent years, a number of GPU database management systems

∗Work done during an internship at Microsoft Gray Systems Lab.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:10.14778/3632093.3632107

(DBMSs) have been developed in both academic and industrial set-
tings [10, 11, 16, 17, 21–23, 28, 29, 50, 57, 59, 67]. Recent advances
in interconnect [1–4] and GPU architecture have made GPUs more
attractive as accelerators for data analytics. As a result, we antici-
pate a rise in the popularity of GPU DBMSs and a proliferation of
research into improving their efficiency in the future.

Several factors contribute to query performance in GPU DBMSs,
including (1) the resource capacity (including both compute and
memory resources) of the GPU; (2) the implementation of theDBMS;
(3) the characteristics of the query; and (4) the size of the database. A
deeper understanding of GPU resource utilization and encountered
bottlenecks is crucial in designing better GPU DBMSs.

Prior Work. While previous studies (e.g., [19, 21, 62]) have com-
pared query performance across GPUDBMSs, a cross-stack analysis
that connects query performance with the GPU resource utilization
along with microarchitectural metrics is lacking. In contrast, simi-
lar studies [5, 54, 55, 61] exist for CPU DBMSs. We aim to address
this gap by conducting both resource-utilization and performance-
bottleneck analysis for GPU DBMSs. Based on the findings from
our studies, we propose optimizations to improve both the system
implementations and GPU resource allocations.

With several GPU instance types now available, each with dif-
ferent performance and cost trade-offs, choosing the most suitable
GPU for a particular workload can be challenging. For example, a
T4 GPU can run the TPC-H benchmark 20% slower compared to
a P100, but at 1

5 th of the cost [21]. To complicate things further,
starting from the Ampere generation, NVIDIA now allows different
resource-allocation mechanisms through the Multi-Instance GPU
(MIG) capability [41]. This new capability allows partitioning GPU
hardware resources to increase concurrency by sharing the GPU.
Developers are now faced with several choices on how to schedule
their workloads over GPUs, which requires a deep understanding
of both workload characteristics and hardware properties.

Characterization. In this paper, we conduct an in-depth study
on both GPU resource utilization and performance bottlenecks.
We build on the roofline model [65] to identify the underutilized
resources in GPUs. Our findings indicate that many queries un-
derutilize either DRAM or L2 cache bandwidth, even in highly-
optimized systems. Since GPU resource utilization is dependent
on the implementation of each system, we conduct a GPU execu-
tion performance bottleneck study by profiling microarchitectural
performance counters to fully comprehend the reasons for the un-
derutilization of resources in each system. The study reveals that
several systems still have opportunities for further optimization
due to a lack of kernel fusion, inefficient threads termination, and

441

https://doi.org/10.14778/3632093.3632107
 https://github.com/jiashenC/gpudb-char-and-opt
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632107
https://www.acm.org/publications/policies/artifact-review-and-badging-current

cache underutilization. Our approach can be readily adopted by
other systems to identify and address potential performance issues.

Optimization. Based on the insights we gained, we propose reme-
dies to improve the queries’ performance. Our strategy focuses on
two aspects: efficient system implementation and optimal resource
allocation. To optimize system implementations, we improve termi-
nations of idle threads and cache hit rates for the best-performing
(academic) GPU database (Crystal). To improve resource allocation,
we employ an analytical model to determine the ideal resources
to allocate so that more query executions can be concurrently ac-
commodated by the same GPU. This approach improves the overall
throughput without modifying any system implementation. As far
as we know, we are the first to show how MIG and MPS technology
can be used to improve GPU databases throughput.

Contributions. The contributions of this work are as follows:
• Characterization of GPUDBMSs (§4 and §5): To close the gap

in GPUDBMS characterizations, we conduct two original studies:
(1) GPU resource-utilization analysis, and (2) GPU DBMS bot-
tleneck analysis based on GPU microarchitectural metrics. Our
studies show that many GPU DBMSs underutilize GPU resources.
Additionally, we discover previously unknown performance bot-
tlenecks (e.g., inefficient memory bandwidth utilization) existing
in the State-of-the-Art (SotA) GPU DBMSs.

• Performance optimization of GPU DBMSs (§6 and §7): To
demonstrate that the analyses are useful for guiding optimiza-
tions, we showcase implementation optimizations on Crystal,
resulting in an improved single-query execution performance
with an average speedup of 1.9×. This, we believe, makes it the
fastest open-source1 implementation of SSB queries on GPUs.
Furthermore, we demonstrate GPU resource allocation optimiza-
tions guided by our proposed analytical model. The analytical
model can reason about GPU resource utilization, while con-
currently running multiple queries with up to 6.5× throughput
improvement. This tool provides system administrators with
effective guidelines on how to allocate GPU resources to queries.

Outline.We introduce the background information and exper-
imental setup in §2 and §3. In §4, we compare the performance
among various GPU DBMSs. Motivated by the performance gap
between different GPU DBMSs, we use the roofline model to un-
derstand the GPU resource utilization of those systems. Then, to
understand the causes of GPU resource underutilization, we profile
GPU microarchitectural metrics to understand existing bottlenecks
in §5. Finally, we showcase our proposed optimizations in §6 and §7
to address our identified performance bottlenecks.

2 BACKGROUND

We first discuss GPU architectures and existing GPU resource-
allocation mechanisms in §2.1. We provide information about the
roofline performance analysis model in §2.2. We then present an
overview of existing GPU database systems in §2.3.

2.1 GPU Architecture

In this section, we provide an overview of the memory hierarchy
and available resource-allocation mechanisms in NVIDIA GPUs.
1Profiling commands to obtain characterization results and codes for proposed opti-
mizations are released at https://github.com/jiashenC/gpudb-char-and-opt.

Kernel

Shared
Memory

L1 Cache

L2 Cache

DRAM

(a) GPUMemory hi-

erarchy.

Client 2Client 1

GPU

SM SM SM SM

SM SM SM SM

SM SM SM SM

L2 Cache

DRAM

(b)MIG – resource partition-
ing for multi-instance GPU.

Client 2Client 1

GPU

SM SM SM SM

SM SM SM SM

SM SM SM SM

Scheduler

L2 Cache

DRAM

(c) MPS – resource partition-
ing in multi-process service.

Figure 1: GPU background and concurrency mechanisms – NVIDIA
GPUs memory hierarchy, and supported concurrency mechanisms.

As Figure 1a shows, kernel execution can access data stored either
in the shared memory or in the L1 cache. Shared memory is fully
managed by the user, whereas the L1 cache is managed by the
hardware. Each GPU Streaming Multiprocessor (SM) has a private
L1 cache and shared memory region, but the L2 cache and DRAM
are shared across all GPU SMs. The memory hierarchy is consis-
tent for all NVIDIA GPUs, but the specific values for capacity and
bandwidth vary across GPUs. NVIDIA GPUs support two ways for
allocating resources on the GPU, and providing concurrent GPU ex-
ecution capability to processes: Multi-Instance GPU (MIG [42]) and
Multi-Process Service (MPS [40]). MIG is a new feature supported
only on the A100, A30, and H100 GPUs [41].

MIG.MIG enables physical partitioning of GPU resources—SMs, L2
cache, DRAM capacity, and bandwidth—which creates full isolation
between concurrent processes. Figure 1b shows an example of
resource allocation through MIG to support two concurrent clients
with equal allocation (12 GPU resources) in this example. MIG also
supports heterogeneous resource partitions to meet the varying
needs of different clients. At its finest granularity, MIG currently
supports up to seven concurrent clients: each partition gets about 1

8
of compute and memory resources, while nearly 1

8 of the resources
is reserved for the MIG controller. MIG currently offers a total of
18 choices for resource partitions on the A100.

MPS. MPS employs a logical resource partitioning to support con-
current execution. In previous GPU generations, MPS allows only
time-sharing of the GPU. Since Volta, MPS allows concurrent ex-
ecution through lightweight partitioning of SMs. In MPS, the L2
cache and DRAM are still unified resources without any isolation.
When MPS starts, the GPU creates a scheduler to manage resource
allocation among different CUDA applications, ensuring that each
application receives the requested resources. MPS also allows spec-
ifying memory capability limits since CUDA 11.5 [7].

2.2 Roofline Performance Modeling

The roofline model [65] is a well-known performance-modeling
method to study resource bottlenecks for existing algorithms. The
roofline model assumes that any execution on specific hardware is
bounded either by its memory resources or by its compute resources.
Visually, as shown in Figure 2, the model contains two lines to
indicate the peak memory bandwidth (𝛼) and the peak compute
bandwidth (𝛽). Any execution on this hardware will correspond to
a point within the space bounded by these lines—those two lines are
considered the performance ceilings for that hardware. The X-axis
represents the arithmetic intensity (AI), calculated by dividing the

442

1/41/2 1 2 4 8 16 32 64128
����������
�������������������

256

512

1024

2048

4096

8192

16384
��

��
��
��

��
��
��

��
��
��

�	
��

��
��

�

Pe
ak
 D
RA
M
Ba
 d
wi
dth

 ((
)

Peak Compute Ba dwidth ())

Memory-Bou d
(Saturated)
Compute-Bou d
(Saturated)
Memory-Bou d
Compute-Bou d

β/α

Figure 2: Roofline model with different resource bounds.

Table 1: Qualitative comparison of GPU database systems – We con-
sider the following characteristics.Coverage: whether the system is general
purpose or only specific queries are supported. Data Format: formats for
data input to the system. Backend: how data operators are compiled for
execution. Open Source: if the system is publicly available.

System Crystal HeavyDB BlazingSQL TQP

Coverage SSB [47] only General
purpose

General
purpose

General
purpose

Data

Format

Binary
array

CSV
Parquet

CSV, DF
Parquet

CSV, DF
Parquet

Backend

Hardcoded
CUDA

LLVM
to PTX

Thrust
cuDF PyTorch

Open Source Yes Yes Yes No

number of operations (e.g., integer or floating-point operations) by
the number of bytes read during execution. The Y-axis indicates
the achieved throughput, calculated as the operations per second.

Conventionally, a query could be either memory-bound (AI < 𝛽
𝛼),

or compute-bound (AI > 𝛽
𝛼) [46]. The performance of algorithms

that already saturate the bandwidth of either of the resources will be
impacted by changes in the allocation of the corresponding resource
(e.g., memory-bound saturated or compute-bound saturated in Fig-
ure 2). Algorithmic or compiler inefficiencies will increase the AI
and make an otherwise memory-bound execution compute-bound,
causing the query to take more time to complete.

2.3 GPU Database Systems

Table 1 summarizes the key characteristics of four database systems.

Crystal. Crystal [57] is a recently proposed SotA GPU database
system that delivers superior query-execution performance com-
pared to other systems. It currently supports only queries from the
Star Schema Benchmark (SSB) [47]. All the queries are written in
CUDA and have hard-coded parameters for the size of the hash
table, the number of groups, and the size of the output table [56].
While this is feasible for these queries in SSB, it is not feasible to
predetermine these parameters for arbitrary SQL queries. Crystal
also assumes that each column is a binary array generated after
preprocessing. String columns in Crystal are converted to binary
arrays using dictionary encoding on the CPU.

HeavyDB. HeavyDB [22] is a widely used GPU database system
that supports many types of SQL queries. Besides the query ex-
ecutor, it contains other components like query parser and query
optimizer. HeavyDB takes various data formats as input, such as
CSV and Parquet. Data in HeavyDB is grouped into fragments and
transferred to the GPU using different CUDA streams. Internally,

Tuple 2

Tuple 1

Tuple N

Tuple 3

… …

Tuple 4

Tuple 5

Warp
1

Warp
2

Warp
N/2

… …

2
tu
pl
es
 p
er
 w
ar
p

(a) Bulk execution model.

Tuple 2

Tuple 1

Tuple N

Tuple 3

… …

Tuple 4

Tuple 5

Warp
1

Warp
2

… … N/
2
tu
pl
es
 p
er

wa
rp

(b) Warp execution model.

Figure 3: Query execution models – Data mapping for query execution.

it uses LLVM [30] to generate PTX [44] code for query execution.
Additionally, HeavyDB leverages a custom LLVM pass for more
flexible and optimized execution strategies.

BlazingSQL. BlazingSQL [11] is another open-source GPU data-
base system. Similar to HeavyDB, BlazingSQL is also very flex-
ible and handles different types of queries. Unlike HeavyDB, it
uses Thrust [45] and cuDF [64] as its backend for query execution.
Reusing the APIs of Thrust and cuDF has both pros and cons. While
less engineering is needed to support various operations, certain
operators cannot be implemented in an efficient way (e.g., cannot
avoid the unnecessary generation of intermediate results) due to
the limited functionalities of existing APIs. BlazingSQL also sup-
ports different input data formats, while data moves between CPU
and GPU through different CUDA streams.

TQP. TQP [21] is a recently-presented GPU database system from
Microsoft. It is designed to be general-purpose (e.g., it supports
the full TPC-H benchmark). The interesting aspect of TQP is that
internally it uses the PyTorch [48] framework as its backend for exe-
cuting relational operations. This design choice allows it to quickly
support many different operations with existing GPU kernels that
are already optimized. As the PyTorch framework already supports
various hardware platforms (e.g., NVIDIA GPUs, AMD GPUs), TQP
inherits the portability and extensibility of the PyTorch framework.

2.3.1 Query Optimizations. All of these systems have query opti-
mization and query compilation phases except for Crystal, where
the query plans are hard-coded and predetermined based on the
selectivity of each operator (i.e., selective operators are executed
earlier). HeavyDB and BlazingSQL rely on the Apache Calcite
framework for query optimization. HeavyDB also uses LLVM to
further optimize the physical execution of GPU code. TQP utilizes
SparkSQL [6] to optimize the SQL queries and then translates the
Spark SQL physical plans to an intermediate representation (IR).
Based on the IR, TQP assembles a PyTorch program as a composi-
tion of predefined tensor programs, one for each operator in the IR.
The implementation is later optimized by the PyTorch compiler.

2.3.2 Query Executions. There are two common execution models,
as shown in Figure 3. The bulk execution model (Figure 3a) has a
fixed number of tuples per warp. The GPU will launch a variable
number of warps to accommodate different data sizes. Crystal,
BlazingSQL, and TQP all adopt this execution model. On the other
hand, HeavyDB uses a warp execution model, in which the GPU
always launches a fixed number of warps (2 as shown in Figure 3b).
Consequently, each warp gets a variable number of tuples to process
based on the total amount of work. Those two different execution
models can also have an impact on GPU memory efficiency.

443

Table 2: Qualitative summary of the queries from SSB – Key character-
istics of queries in SSB: Number of Joins, the Aggregation type, whether
they require Sorting, and query Selectivity.

Query Group

Group 1 Group 2 Group 3 Group 4

Q11 Q12 Q13 Q21 Q22 Q23 Q31 Q32 Q33 Q34 Q41 Q42 Q43

Joins 1 3 3 4
Aggregation Sum Group By Group By Group By
Sorting No Yes Yes Yes

Selectivity

1.9
e-
2

6.5
e-
4

7.5
e-
5

8e
-3

1.6
e-
3

2e
-4

3.4
e-
2

1.4
e-
3

5.5
e-
5

7.6
e-
7

1.6
e-
2

4.6
e-
3

9.1
e-
5

3 EXPERIMENTAL SETUP

We discuss the hardware, query workloads, and profiling toolchains
used in this paper in §3.1, §3.2, and §3.3, respectively. We then
describe the two execution scenarios that we consider in §3.4.

3.1 Hardware

We use an NVIDIA A100 GPU [39] with the Ampere architecture,
40GB of GPU memory, and 108 SMs on a dual-socket AMD EPYC
7313 machine with 16 physical (32 logical) cores per socket and 3
GHz base clock frequency. Each SM can schedule up to 64 warps.
A warp is the basic execution unit of the NVIDIA GPU. A warp
consists of 32 threads scheduled and executing in a single instruction,
multiple threads (SIMT) fashion (i.e., each thread executes the same
instruction on different data but allows divergence between threads).
The A100 GPU supports newer features like MIG and MPS, as
introduced in §3.1. The GPU is connected to the CPU via PCI-e 4
protocol, which provides up to 32GB/s of bandwidth. For consistent
performance, we set the GPU clock frequency to be 1410MHz.

3.2 Workloads

Since Crystal currently only supports SSB [47], in our experiments
we decided to evaluate SSB queries over the four different GPU
database systems. Even if SSB is simpler than other benchmarks
like TPC-H and TPC-DS, its queries are complex enough that sys-
tem characterization on this benchmark enables us to find several
interesting insights. We are confident that these insights generalize
to other workloads as well.

Table 2 presents a summary of the queries in SSB. Queries in
group 1 have only one join, and the results are aggregated into a
single scalar value. All the other queries have multiple joins (up to
4), and the final results are aggregated into a table with multiple
groups. Based on our profiling, we found that 16 is the largest scale
factor on which all DBMSs can run queries without moving data
back and forth between GPUs and CPUs or encountering out-of-
memory issues on the GPU. So, we present results for most of the
experiments with a scale factor of 16 unless specifically mentioned.

3.3 Profiling Toolchains

Weextensively useNVIDIANsight System [43], Nsight Compute [43],
and nvidia-smi [38] tools built with CUDA11.6. The NSight System
provides system-wide time breakdown, including time spent on
data transfer, memory allocation, kernel execution, etc. We also use
Nsight Compute to obtain detailed kernel execution metrics, which
include achieved instruction per cycle, cache utilization, etc.

0 100 200 300 400 500 600
Time (ms)

Compute HtoD DtoH Compilation Other

Figure 4: Cold execution characterization over Q21 at SF=16 in

HeavyDB – We split the end-to-end performance of cold query execution
into six components: Compute time, Host-to-Device data transfer (HtoD),
Device-to-Host data transfer (DtoH), Compilation time, and Other CUDA
context setup and memory management time. Similar results apply to other
queries and database systems.

3.4 Warm vs. Cold Execution Scenarios

In the warm scenario, we assume that the data has already been
loaded (or cached) in GPU memory, the device has warmed up,
and the query has been parsed, optimized, and compiled (e.g., the
physical plan is available in the plan cache). In the cold scenario,
we assume that the data resides in CPU memory and needs to be
transferred to the device, and all the other overheads associated
with query parsing, optimization, and compilation are considered.

Cold Execution Overhead. In this paper, our focus is on warm
query execution, where the majority of the time is spent on GPU
computations. However, here we briefly report the timing break-
down for cold query execution to provide an overview of where
time is typically spent. With cold query execution, there are several
non-negligible overheads from both query optimization and com-
pilation, as well as from data transfer. Figure 4 shows that these
overheads are always greater than the actual query execution time
(Compute). Data needs to be moved to the GPU before query execu-
tion, and this incurs significant overhead. Data transfer and kernel
computation can be overlapped, but the time saving is small due
to data transfer overhead being the dominant bottleneck. During
data transfer, most systems copy only the columns needed for the
query to the GPU to reduce the host-to-device (HtoD) data transfer
overhead. HtoD overhead in Figure 4 reflects the time spent on
copying the required columns.

Systems also need to move results from the device back to the
host. However, as all the queries compute aggregated results that
are very small, the device-to-host (DtoH) overhead is generally
minimal. Query plan optimization and compilation also introduce
non-trivial overhead. This is unavoidable when the system receives
a query for the first time. Most systems implement plan caching,
so recurrent queries do not have the same overhead.

4 PERFORMANCE AND RESOURCE ANALYSIS

In this section, we first provide a high-level overview of execution
time for both end-to-end and GPU computation, in all systems,
in §4.1. We then conduct a resource-utilization analysis to reason
about performance differences between systems in §4.2.

4.1 Query Execution Performance

We present the end-to-end warm query execution performance
in Figure 5 2. The most notable observation is that Crystal repre-
sents the upper bound in execution performance among all consid-
ered systems. Both HeavyDB and TQP are on average 8× slower
than Crystal. BlazingSQL is even slower, being 30× slower than
2Most systems can successfully execute SSB queries except BlazingSQL, which cannot
run Q41, Q42, and Q43 due to errors during dataframe encodings.

444

Q11 Q12 Q13 Q21 Q22 Q23 Q31 Q32 Q33 Q34 Q41 Q42 Q43 Avg.

100

101

102

Ti
m

e
(m

s)

Crystal HeavyDB BlazingSQL TQP

Figure 5: Warm execution characterization – End-to-end query execution time and GPU execution time for all queries (BlazingSQL does not support
queries in group 4; those queries are skipped when calculating the average.). The hatched area represents time spent besides the actual GPU execution.

Crystal. Next, we provide our analysis of how time is spent on
each system by using the time breakdown information.

Crystal and TQP. For both of these systems, the end-to-end
time mostly represents the actual GPU compute time, with some
small overheads besides GPU execution. In Crystal, each CUDA
source file implements one query from SSB. Once the source file is
compiled, there is no additional compilation overhead associated
with the query. Unlike Crystal, TQP is a general-purpose system
that supports a wider range of SQL queries. In TQP, the workflow
for executing queries is done in two phases: the input query is
first parsed, optimized, and compiled into a PyTorch model object;
then, the already-compiled model is executed over the input data.
Because of this workflow, the query execution time does not contain
optimization and compilation time. In addition, TQP lazily caches
the query results in the GPU until they are requested. This approach
is beneficial for reducing end-to-end query execution times if the
results are not immediately required, or if there is a subsequent
query executing on the previously generated output results.

HeavyDB and BlazingSQL. For HeavyDB and BlazingSQL,
their end-to-end time consists not only of the GPU compute time
but also of other overheads. For example, HeavyDB uses Calcite
for query plan optimization, and LLVM to compile the query into
executable code. Although HeavyDB implements a plan cache, it
still has non-negligible overhead for query parsing and GPU setup.
Similar to HeavyDB, BlazingSQL also has non-trivial overheads
beyond the GPU compute time. In practice, if the system is able to
look up the cached physical query plan without even parsing the
query, like TQP, then it can avoid many unnecessary overheads.

Next, we study each system’s GPU execution time and its ef-
ficiency. While some works benchmark different GPU database
systems [62], studies on only GPU execution efficiency have not
been done before. The GPU execution time of the studied systems
is shown in Figure 5 with non-hatched bars.

For GPU execution time, Crystal is still the fastest system. How-
ever, unlike the end-to-end query time, HeavyDB performance is
closer to Crystal (2× slowdown, as opposed to 8× slowdown, re-
ported in the end-to-end comparison). TQP is still 8× slower than
Crystal. BlazingSQL has the slowest performance among these
systems and is unable to run queries in group 4.

4.2 GPU Resource Utilization

The significant performance gap among different systems moti-
vates us to investigate the reasons behind it. In this section, we
attempt to visualize the resource utilization of each system and
rely on it to reason about the root causes of the performance gap.

Table 3: Profiled metrics to construct the roofline model.

Metric Name Description

DRAM

gpu__time_duration.sum Execution duration

dram__bytes.sum Total bytes from DRAM

smsp__sass_thread_inst_ Achieved compute
bandwidthexecuted_op_integer_pred_

on.sum.per_cycle_elapsed

sm__sass_thread_inst_ Peak compute
bandwidthexecuted_op_integer_pred_

on.sum.peak_sustained

L2 Cache

lts__t_requests_srcunit_ Total requests to L2 cachetex_op_read.sum

1/8 1/4 1/2 1 2 4 8 16 32 64 128256

����������
�������������������

256

512

1024

2048

4096

8192

16384

32768
��

��
��
��

��
��
��

��
��
��

�	
��

��
��

�

P
e
a
k
 D

R
A
M

 B
a
n
d
w

 d
th

Peak Compute

Bandw dth

Crystal

HeavyDB

Blaz ngSQL

TQP

Q11,Q12,Q13

Figure 6: DRAM roofline model – for SSB queries (SF=16).

During our investigation, we explain the reasons for GPU resource
underutilization by connecting them to query characteristics and
system implementations.

4.2.1 DRAMUtilization. We first present the DRAM-level resource
utilization for all systems. We obtain the metrics described in Ta-
ble 3, from which we derive the AI and the attainable bandwidth.
We use the theoretical GPU DRAM bandwidth [39] for the DRAM
bandwidth ceiling. We note that GPUs also have other functional
units like floating-point operation units. However, because most
OLAP queries require only integer operations, those functional
units are not needed for constructing the roofline model.

The challenge for this type of modeling is that each query con-
sists of multiple kernels. Our approach is to aggregate scalar metrics
such as the execution duration, total bytes, and total integer oper-
ation instructions. We then use the aggregated metrics to obtain
the required metrics for constructing the roofline model. Figure 6
shows where all 13 SSB queries are located with respect to the
roofline model, for each of the four GPU DBMSs.

Query Specific.We observe that most queries do not fully use
the provided DRAM bandwidth because they all have hash-join

445

operator causing many random accesses. Queries like Q11, which
have only one hash-join operator, are likely to have higher achieved
DRAM bandwidth.

Implementations Specific. Although query characteristics in-
fluence both AI and achieved bandwidth, they are also largely de-
pendent on the system implementations. As shown, the AIs of
Crystal, HeavyDB, and TQP are relatively low. Compared to the
other three systems, BlazingSQL is instead more compute inten-
sive. This shows that even simple OLAP queries can be compute
intensive depending on the query implementation in the DBMS.

Even the same queries have different achieved bandwidths in
different implementations. For example, three queries have already
saturated the peak GPU DRAM bandwidth in Crystal. This is
because Crystal implements the hash join as a filter for Q11, Q12,
and Q13 (§3.2). For those queries, the hash join is just a one-to-one
mapping between rows from the fact table and the dimension table.
Crystal pushes down the predicate selection from the dimension
table to the fact table, which skips the hash join and simply runs a
predicate selection (i.e., filter) on the fact table. As the filter operator
involves only running a table scan, it is feasible to saturate the GPU
DRAM bandwidth (unlike hash join). Even though this may not be
applicable to all queries, it is still an interesting optimization to do
from the resource-utilization perspective.

4.2.2 L2 Cache Utilization. Wealso discovered that the GPUDRAM
bandwidth is not the only resource constraint during query execu-
tion. Especially for optimized systems like Crystal and HeavyDB,
they are more likely to saturate the peak L2 cache bandwidth. This
motivates us to extend the roofline modeling methodology to the
L2 cache as well. In prior work, Ilic [26] also proposed to make the
roofline model cache-aware for CPUs.

Model Innovation. On top of the previous study, we find that
the AIs of different resources are very different. For example, when a
query has a good L2 cache hit rate, most of the memory requests are
handled by the L2 cache. So, the number of bytes loaded from the L2
cache are high. As a result, the AI relative to the L2 cache is low. On
the other hand, because there are fewer bytes loaded from the GPU
DRAM, the AI is high with a fixed number of integer operation
instructions. This requires us to have a separate roofline model to
characterize the same query for a different memory resource.

To construct the roofline model for the L2 cache, we reuse most
metrics profiled in Table 3 except for the total bytes read from
DRAM. To estimate the bytes read from the L2 cache, we profile
the number of L2 requests (shown in Table 3) that the kernel loads,
which can be used to calculate the total bytes loaded from the L2
cache by knowing that the cache line size is always 128 bytes. We
present our profiling results in Figure 7.

Query Specific. We first observe that the AI of queries on the
DRAM roofline model is higher than their corresponding AI on the
L2 cache roofline model. This is reasonable, especially in the case
in which queries have good utilization of the L2 cache bandwidth.
Because most memory requests are completed at the L2 cache
level, the GPU has less data to handle at the DRAM level. We also
observe that many of those queries have reached the peak L2 cache
bandwidth. We discover that queries with hash joins are more likely
to saturate the L2 cache bandwidth. Because SSB has relatively small

1/1
281/6

4
1/3

2
1/1

61/8 1/4 1/2 1 2 4 8 16 32 64 12
8

Arithmetic Intensity (ops/byte)

256

512

1024

2048

4096

8192

16384

32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Pe
ak

 L2
 C

ac
he

 B
an

dw
idt

h

Peak Compute
Bandwidth

Crystal
HeavyDB
BlazingSQL
TQP

Figure 7: L2 cache roofline model – for SSB queries (SF=16).

dimension tables that can fit into the L2 cache of a high-end GPU
(e.g., 40MB), queries may still exhibit good L2 cache utilization due
to the spatial locality of data accesses from the small working set
size even though hash joins involve random accesses. In Figure 6,
some queries saturate the peak DRAM bandwidth—queries with
simple filters are more likely to be bound by DRAM bandwidth.
Since there is minimal data reuse, most data is streamed to the
kernel, and cache utilization is lower. As a result, visually, those
queries move away from the peak L2 bandwidth ceiling.

Implementations Specific. Because Crystal and HeavyDB
are very optimized, their queries saturated the L2 cache bandwidth.
In BlazingSQL and TQP, the query implementations are far from
the peak L2 cache bandwidth ceiling. Those two systems now have
clearly separated clusters from the one fromCrystal andHeavyDB,
indicating lower cache efficiency in BlazingSQL and TQP.

5 BOTTLENECK INVESTIGATION

In §4, we provide an overview of the performance and resource
utilization of various GPU database systems. GPU resource under-
utilization can be caused by many different factors. Therefore, in
this section, we aim to examine the existing implementation bottle-
necks, by using hardware performance counters, and offer insights
into how to reduce those bottlenecks.

5.1 Operation and Data Efficiency

As mentioned in §2.2, the roofline model is derived from compute
operations and data load. Thus, we first study the operation and
data efficiency by profiling the following hardware counters: (1)
the number of integer operations, and (2) bytes loaded from DRAM.

5.1.1 Integer Operations and Bytes. First, we profile the total inte-
ger operations for the four systems, as shown in Figure 8 (top chart).
We find that HeavyDB performs slightly more integer operations
than Crystal. Conversely, BlazingSQL and TQP execute signifi-
cantly more integer operations compared toCrystal andHeavyDB.
We also examine the number of bytes each system reads from the
GPU DRAM (Figure 8, bottom chart). Similar to the number of
integer operations each system executes, Crystal and HeavyDB
read less data from the GPU DRAM than the other two systems. For
most queries besides Q43, Crystal reads slightly more data from
the GPU DRAM than HeavyDB due to its bulk execution model.
However, BlazingSQL and TQP read significantly more data from
the GPU DRAM in most cases. Queries Q32, Q33, and Q34 are ex-
ceptions where the amount of data loaded from the GPU DRAM by

446

108

1010

To
ta

l O
ps

Crystal HeavyDB BlazingSQL TQP

Q1
1

Q1
2

Q1
3

Q2
1

Q2
2

Q2
3

Q3
1

Q3
2

Q3
3

Q3
4

Q4
1

Q4
2

Q4
3

Av
g.

108

109

1010

To
ta

l B
yt

es

Figure 8: GPU execution efficiency – total integer operations (top) and
number of bytes from DRAM (bottom).

BlazingSQL is equal to or even lower than that by Crystal and
HeavyDB. Our investigation reveals that Crystal does not fully
avoid unnecessary data loading after predicates and joins.

GeneralPurpose.Most of the systems are designed to be general-
purpose, so they have additional operations other than the actual
algorithm. For example, even though HeavyDB is already very
close to the optimal, it still has GPU algorithms to calculate the
hash-table size for hash join on-the-fly, while Crystal has a hard-
coded hash-table size. Other systems have similar operations to set
up needed data structures and meta-data.

Algorithmic Complexities. Optimal implementations like
Crystal mostly operate with a bitmap vector. It marks the bit
to indicate whether the tuple satisfies predicates or joins without
materializing the data. In contrast, systems like BlazingSQL largely
depend on tuple indices. For example, it outputs the matched in-
dices of the two tables when it does a join. As a result, it must
materialize the tuple data again based on the indices. Additionally,
general-purpose systems implement more complicated algorithms,
such as MurmurHash for hashing operations. This is crucial to dis-
tribute data evenly, especially for an open-addressing linear hash
table. Instead, Crystal implements a perfect hash table, which does
not make it practical to handle general-purpose use cases.

Kernel Fusion. There are two general approaches for kernel
fusion. Systems like Crystal and HeavyDB write their own cus-
tomized execution engine, allowing them to do rigorous kernel
fusion. As a result, they can avoid many intermediate results, which
in turn avoid a large number of bytes read from DRAM. On the
other hand, BlazingSQL and TQP rely on existing third-party APIs
for query execution. Those APIs are designed to be modular but
are not customized for query execution. So, generating many inter-
mediate results is often not avoidable. It is also very challenging to
do rigorous kernel fusions if a system chooses to use this approach.

Extensibility. As previously mentioned, BlazingSQL and TQP
have performance overheads since they reuse functions from other
libraries to construct queries. Nevertheless, this approach allows the
system to be easily extensible and portable. For instance, TQP uses
PyTorch as its backend and can run on any hardware platforms that
PyTorch supports (e.g., NVIDIA and AMD GPUs), integrates with
ML tools [8], and supports multimodal and trainable queries [20].

Table 4: Summary of most time-consuming kernels – three most time-
consuming GPU kernels for executing query Q21 on all systems.

Top 1 Top 2 Top 3

Crystal Kernel probe_ht build_htp build_hts
Time (ms) 3.96 (99.35%) 0.01 (0.37%) 0.01 (0.37%)

HeavyDB Kernel multifrag fill_hj init_hj
Time (ms) 5.86 (91.78%) 0.51 (7.96%) 0.01 (0.19%)

BlazingSQL Kernel probe_ht comp_hj_output parallel_fn
Time (ms) 13.42 (38.26%) 12.27 (34.97%) 5.55 (15.83%)

TQP Kernel collect_fn idx_select gather_fn
Time (ms) 16.88 (40.88%) 9.55 (23.13%) 5.72 (13.86%)

5.1.2 Kernel Execution Time Breakdown (Q21). Following our ob-
servation, we study GPU compute-time breakdown for query Q21
over the four systems as a micro-benchmark. Although we only
report one query result, we find that the time breakdown between
different queries is very consistent. Due to space limitations, we
report only the three most time-consuming kernels. We note that
BlazingSQL and TQP run 172 and 190 kernels for Q21, respectively.
In contrast, both Crystal and HeavyDB run only four kernels.

Crystal and HeavyDB. These systems spend most of the query
execution time on only the top kernel. As shown in Table 4, more
than 90% of the total compute time is spent on the top kernel. As
discussed, this is because both systems implement kernel fusion,
through which they execute as many operators as possible in each
kernel to avoid the generation of intermediate results. Since only
the hash-join operation is a pipeline breaker [37] for this particular
query, they implement the hash-join build phase in a separate kernel
(e.g., build_htp and fill_hj).

BlazingSQL. In this case, one query is split into many kernels.
Among the different kernels, generated data (e.g., bitmap to identify
the selected rows) needs to be materialized in order to be visible to
other kernels. This causes higher overhead compared to the other
systems that do not need to materialize intermediate results. Results
show that even the hash-table probing phase already exceeds the
execution time of both Crystal and HeavyDB due to the algorithm
complexity issue mentioned above.

TQP. Similar to BlazingSQL, TQP executes many kernels to com-
plete one query, and in fact, it spends more time on intermediate
results materialization than on actual query execution due to the
limited functionalities of PyTorch. For example, PyTorch documen-
tation indicates that idx_select function (second kernel) indexes a
tensor to create a new tensor. It is used to create a new column after
a predicate evaluation, but its overhead is high compared to the
other kernels. The creation of intermediate results not only causes
storage overhead due to the limited GPU device memory space but
also incurs significant costs for the entire query execution.

5.2 Warp Execution Efficiency

Wehave quantified the number of operations and the amount of data
each system processes for each query. We now turn to analyzing
the impact of different implementations on execution efficiency by
presenting microarchitecture-level performance statistics.

447

Table 5: GPU scheduler statistics for different warp states – Active:
total warps allocated. Eligible: warps ready to issue instruction (includes
issued warps). Stalled: warps cannot issue instruction. Issued: warps
selected by the scheduler. Table units are average number of warps per
scheduler per cycle.

System Active Eligible Stalled Issued

Crystal 11.08 0.16 10.92 0.1
HeavyDB 7.94 0.16 7.78 0.14
BlazingSQL 8.33 1.97 6.36 0.72
TQP 12.52 0.45 12.07 0.18

Crystal

Mem LD Compute Mem Queue Full Branch Scheduler Full

79%

3%
17%

HeavyDB

93%

5%
2%

BlazingSQL

32%

35%

12%
21%

TQP

88%

10%

Figure 9: Warp stall causes breakdown – Q21 for all systems.

5.2.1 Warp Bottleneck. One advantage of GPUs is their ability to
hide different types of execution stalls with their massive paral-
lelism. If warp 𝑥 encounters any stopping event (e.g., waiting for
instruction fetch or waiting for compute resources to become free),
the GPU will quickly schedule other warps that are ready to be
executed and have available resources. This approach improves the
number of executed instructions per cycle. Table 5 presents the
average number of warps per scheduler per cycle in the GPU. For
NVIDIA GPUs, each scheduler issues one warp per cycle at its most
optimal state. Based on the table, we see that most systems have
enough occupancy (i.e., the GPU is occupied with enough warps).
However, most systems do not have enough warps that are ready
in time. For example, the eligible warp per cycle for Crystal is 0.16.
In other words, the scheduler does not have anything to schedule
for five out of six cycles. We conclude that since most systems are
issue-bound, computation resources after the issue stage are under-
utilized for OLAP queries. One exception is BlazingSQL, which
has a high number of both eligible and issued warps.

5.2.2 Warp Stall Breakdown. We then attempt to reason about
warp stalls by presenting a breakdown of their causes. The most
notable observation, based on Figure 9, is that most systems have
the majority of stalls on memory load requests. For HeavyDB and
TQP, they have a small fraction of stalls on computation, meaning
that the compute unit is saturated for very few operations. However,
for BlazingSQL, due to its compute-intensive nature, it becomes
more bottlenecked by the computing unit instead. For example, its
warps cannot be scheduled due to the busy compute backend and
also due to unavailable slots in the scheduler.

5.3 Memory Efficiency

The investigation in the last section shows that most systems are
bottlenecked by memory requests. Thus, we analyze the memory
efficiency of different systems. Our study focuses on Crystal and
HeavyDB since they represent the most optimal implementations.
Additionally, they have different execution approaches, so it is
insightful to understand their trade-offs on memory efficiency.

Table 6: GPU memory statistics - Register usage, cache hit rate and
number of cache requests for Crystal and HeavyDB.

System

R
e
g
i
s
t
e
r

p
e
r
T
h
r
e
a
d

L
1
C
a
c
h
e

H
i
t
(
%
)

L
1
C
a
c
h
e

R
e
q
.
(
M
)

L
2
C
a
c
h
e

H
i
t
(
%
)

L
2
C
a
c
h
e

R
e
q
.
(
M
)

Crystal 40 0.47 19 51.38 127
HeavyDB 64 17.47 66 89.54 397

Table 6 shows the register and cache usage of both systems.
The most notable observation is that the Crystal (bulk execution
model) has both worse L1 and L2 cache hit rates compared to
HeavyDB (warp execution model). Nevertheless, in theory, the bulk
execution model should have better memory efficiency because of
better memory coalescing and better temporal cache reuse. Our
study identifies that Crystal has two limitations that cause worse
memory efficiency. First, Crystal loads unnecessary data from
DRAM, which disrupts its cache locality. Secondly, for Crystal
(bulk execution model), it is also more favorable to not bypass the
L1 cache, so that data loaded together (i.e., a bulk or a tile) can be
reused temporally (Crystal chooses to bypass L1 cache).

6 IMPLEMENTATION OPTIMIZATION

In this section, we discuss optimizations that we have implemented
based on the insights gained from the previous analysis.

6.1 Inefficiencies and Optimizations

As mentioned in §2.3, Crystal uses a bulk execution model to
improve cache locality. A column is partitioned into multiple tiles,
with each tile containing four tuples. This yields the most optimal
query execution efficiency.

Extra Bytes and Operations. The original Crystal work
implements a tile-based data loading primitive that loads all tuples
for a tile from the GPU DRAM. After evaluating a predicate over
a column, it is common for many tuples to become unnecessary,
as they do not satisfy the predicate. In this case, the design of the
Crystal load primitive is suboptimal as it loads all tuples from the
GPU DRAM, even the ones that are not needed. Considering that
analytics query execution is mostly stalled due to memory load
(§5.2), the extra data loading can cause a performance slowdown.
Furthermore, as discussed in §3.1, GPU execution operates in warp
granularity, with all threads (i.e., 32) executing instructions in lock-
step. During query execution, many threads in a warp find that
not all of their assigned tuples satisfy predicates after evaluating a
few where clauses, especially for very selective predicates. Crystal
does not have any primitive to terminate those threads in time,
which causes unnecessary instruction execution on the GPU.

To address this issue, we implement two primitives in Crystal:
a predicated loading primitive (PredLoad) and a voluntary runtime
thread termination primitive (Term). Our primitives keep track of
valid tuples and idle threads for each tile using a bitmap. During
execution, our new primitive performs on-demand tuple loading
based on the validity of the tuple stored in the bitmap. In doing so,
we avoid loading tuples that have already been invalidated by pred-
icates on other columns. We also monitor the liveness of the thread
through the bitmap. If all tuples of a thread become invalid, the

448

Q1
1

Q1
2

Q1
3

Q2
1

Q2
2

Q2
3

Q3
1

Q3
2

Q3
3

Q3
4

Q4
1

Q4
2

Q4
3

Av
g.

0

2

4

Ti
m

e
(m

s)

Crystal Crystal-Opt

Figure 10: Crystal vs Crystal-Opt. query execution.

Table 7: Performance statistics of Crystal and Crystal-Opt for
Q21—Total bytes, total operations, cache hit rate, number of cache requests.

System

T
o
t
a
l

B
y
t
e
s
(
M
)

T
o
t
a
l

O
p
s
(
M
)

L
1
C
a
c
h
e

H
i
t
(
%
)

L
1
C
a
c
h
e

R
e
q
.
(
M
)

L
2
C
a
c
h
e

H
i
t
(
%
)

L
2
C
a
c
h
e

R
e
q
.
(
M
)

Crystal 1653 2704 0.47 18 51.49 127
Crystal-Opt 902 2291 41.31 14 67.48 66

execution chooses to end the thread immediately to avoid execut-
ing further instructions. This optimization is particularly beneficial
when the entire warp can be terminated early.

Cache Locality.Historically, GPU L1 caches have not been used
(L1 cache bypass) during execution because of their limited capacity,
particularly for workloads involving many random accesses. How-
ever, in our experiments, we discover that the increased L1 cache
capacity can bring additional performance benefits by improving
the temporal data locality. This is especially true since data in a tile
tends to be reused often in the bulk execution model. In contrast
to Crystal’s approach, we enable the L1 cache by adjusting the
compilation flag supported by CUDA GPUs.

6.2 Performance Speedup

We combine all proposed optimizations as Crystal-Opt. In Fig-
ure 10, we compare the query execution time of both Crystal and
Crystal-Opt. Crystal-Opt achieves an average speedup of 1.9×
over Crystal. The speedup is more significant for selective queries,
but not as prominent for less selective queries (e.g., Q31). We also
conduct a case study for Q21 to understand the reasons for the
speedup (shown in Table 7). First, we can see that by using the
newly introduced primitives, Crystal-Opt significantly reduces
the total bytes and operations compared to Crystal. As a result of
the reduced total data read from DRAM, the number of requests
to the cache system is also reduced. Second, by enabling the L1
cache, Crystal-Opt increases the cache hit rates for both L1 and
L2 caches. Due to the improved L1 cache hit rate, the total number
of requests to the L2 cache is also reduced.

We also investigate the impact of Crystal optimization on re-
source utilization of both DRAM and L2 cache. Figure 11 demon-
strates that the AI for GPU DRAM is increased because our op-
timization reduces unnecessary data brought from GPU DRAM.
As a result, the maximum possible attainable bandwidth is also
increased, especially for queries Q11, Q12, and Q13. For L2 cache
utilization, our optimization on cache locality also improves the
attainable bandwidth of queries that have hash join. Compared to
Crystal, Crystal-Opt now has more queries that fully saturate the
maximum L2 cache bandwidth. Even for queries that do not have

1/641/321/161/8 1/4 1/2 1 2 4 8 16 32 64
Arithmetic Intensity (ops/byte)

256

512

1024

2048

4096

8192

16384

32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Pe
ak

 L2
 Ca

ch
e B

an
dw

idt
h

Peak Compute
Bandwidth

Crystal Crystal-Opt

1/81/41/2 1 2 4 8 16 32 64
Arithmetic Intensity (ops/byte)

256
512

1024
2048
4096
8192

16384
32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Pe
ak

 D
RA

M Ba
nd

widt
h

Peak Compute
Bandwidth

(a) DRAM roofline Model.

1/6
4
1/3
2
1/1
61/81/41/2 1 2 4 8 16 32 64

����������
�������������������

256

512

1024

2048

4096

8192

16384

32768

��
��
��
��

��
��
��

��
��
��

�	
��

��
��

�

Pe
ak
 L2
 C
ac
he
 B
an
d
idt
h

Peak Compute
Band idth

(b) L2 roofline Model.
Figure 11: Resource utilization between Crystal and Crystal-Opt –
DRAM and L2 cache utilization.

hash join (the right-most three dots in Figure 11), their attainable
bandwidths are also improved by having better cache locality.

7 RESOURCE UTILIZATION OPTIMIZATION

Our characterization in §5 demonstrates that many queries in GPU
DBMSs do not fully saturate the existing GPU resources. As shown
in §6, one way to improve resource utilization is to optimize the
system implementation. However, with the resource-allocation fea-
tures in newer generation GPUs (e.g., MIG [41]), DBMSs can also
improve resource utilization by running multiple queries concur-
rently inside a single GPU, in an implementation-agnostic way.

One unsolved challenge of doing concurrent query execution
is that it does not always offer performance speedup, especially
when a GPU resource is already saturated. Therefore, we need an
analytical model to reason about performance improvements given
the available GPU resources. In this section, we demonstrate that
we can use the roofline model as a guideline to reason about per-
formance speedup when the allocated GPU resources are adjusted.

7.1 Model-Driven Resource Allocation

We show how to use the roofline model to estimate the GPU ex-
ecution performance changes with respect to resource allocation,
which can then be used to determine the optimal configuration. The
model uses runtime information, which can be obtained from prior
executions of recurring queries or from a representative workload.

We use GPU DRAM as the target resource for illustration. Let t
denote the query time under the current resource allocation and let
Bandwidth𝐷𝑅𝐴𝑀 ′ denote the new DRAM bandwidth. We predict the
new query GPU execution time t′ by using the following equation.

t′ = max
(
t,

of Int. Ops
AI𝐷𝑅𝐴𝑀 × Bandwidth𝐷𝑅𝐴𝑀 ′

)
This equation is proposed based on the observation that AI is deter-
mined by the implementation of the query and is unlikely to change
when the resource allocation changes. Our model picks the max-
imum among the two terms in the equation—the first term for
scenarios where bandwidth is not a bottleneck (and so, the time re-
mains unchanged), and the second for scenarios where the change
in memory bandwidth hurts performance. For the latter case, the
denominator in the fraction is the maximum throughput at the
given AI and allocated bandwidth. In this case, the query time is the
time to execute the total integer operations at that throughput. Fig-
ure 12 shows these two scenarios using representative queries

449

1/8 1/4 1/2 1 2 4 8 16 32
Arithmetic Intensity (ops/byte)

256

512

1024

2048

4096

8192

16384

32768
At

ta
in

ab
le

 B
an

dw
id

th
(G

op
s/

se
c)

Pea
k D

RA
M Ban

dw
idt

h

Peak Compute
Bandwidth

Crystal Q11 Crystal Q31

1/8 1/4 1/2 1 2 4 8 16 32
Arithmetic Intensity (ops/byte)

256
512

1024
2048
4096
8192

16384
32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Pe
ak

 DRA
M Ba

nd
widt

h

Peak Compute
Bandwidth

(a) Query performance, memory band-
width, and compute bandwidth of full
GPU resource (dashed line is projected
memory bandwidth of half GPU resource).

1/8 1/4 1/2 1 2 4 8 16 32
Arithmetic Intensity (ops/byte)

256
512

1024
2048
4096
8192

16384
32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Pe
ak

 DRA
M Ba

nd
widt

h (
Half

)

Peak Compute Bandwidth (Half)

(b) Query performance, memory band-
width, and compute bandwidth of half
GPU resource allocation.

Figure 12: Memory-bound queries – Performance impact on memory-
bound queries (Q11 and Q31) for Crystal.

2 4 8 16 32 64
Arithmetic Intensity (ops/byte)

1024

2048

4096

8192

16384

32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Pea
k D

RA
M Ban

dw
idt

hPeak Compute
Bandwidth

Attainable Compute
Bandwidth

(a) Query performance, memory band-
width, and compute bandwidth of full
GPU resource (dashed-dotted line projects
compute bandwidth of half GPU resource).

2 4 8 16 32 64
Arithmetic Intensity (ops/byte)

1024

2048

4096

8192

16384

32768

At
ta

in
ab

le
 B

an
dw

id
th

(G
op

s/
se

c)

Peak Compute
Bandwidth (Half)

Attainable Compute
Bandwidth (Half)

(b) Query performance, memory band-
width, and compute bandwidth of half
GPU resource allocation.

Figure 13: Compute-bound queries – Performance impact on compute-
bound queries (Q34 from BlazingSQL).

(Q11, Q31) from Crystal, and full→ half allocation change. Q31
underutilizes the DRAM bandwidth and has no performance im-
pact, whereas Q11 loses throughput (geometrically, the point shifts
downwards) since it saturates the bandwidth. Finally, we compute
Slowdown𝐷𝑅𝐴𝑀 = t′/t. Visually, in Figure 12, the green dot moves
down but not the yellow dot (no slowdown).

L2 Bandwidth. As previously discussed, the latest GPUs [39]
support both L2 and DRAM bandwidth partitioning. Similar to
the above method, we can estimate the execution time due to L2
resource allocation using the L2 roofline model. One challenge is
how to combine both the DRAM and L2 roofline models into a
unified model to estimate the query slowdown. We solve this by
using a max function to estimate the total slowdown as follows.

Slowdown = max (Slowdown𝐷𝑅𝐴𝑀 , Slowdown𝐿2𝐶𝑎𝑐ℎ𝑒) (1)

The rationale is that we empirically find that queries can rarely be
bottlenecked by both memory resources (L2 and DRAM). For example,
if a query has very high utilization of the L2 cache bandwidth (i.e.,
it is bottlenecked by the L2), it generates only minimal traffic to
DRAM, so it will not be affected by changes in DRAM bandwidth.
Hence, one of the estimated slowdown terms is likely to be 1 (no
slowdown). Thus, we only need to use the max function to get the
dominating slowdown value.

Compute-Bound. Next, we explain slowdown estimation for
compute-bound queries using BlazingSQL, because it has the most
compute-bound implementations compared to the other systems.

Figure 13 left shows Q34 attainable bandwidth (i.e., throughput)
and AI (2886.74 Gops/sec and 27.15 ops/byte respectively). The
peak compute bandwidth of the full GPU is 18247.00 Gops/sec and

that for half of the GPU resources is near 9123.50 Gops/sec (dashed
and dotted line in Figure 13 left). It is clear that even the peak
compute bandwidth for half of the GPU is beyond the attainable
bandwidth of Q34, so the traditional roofline model would predict
no performance slowdown. Nevertheless, this is not the case as
a result of the attainable compute bandwidth per SM being less
than its peak due to execution inefficiencies (e.g., memory stalls).
The overall compute bandwidth (attainable or peak) is the per-
SM value × the number of SMs. When the GPU allocates fewer
compute resources, it reduces the number of SMs allocated, but it
cannot improve the execution efficiency (i.e., attainable compute
bandwidth) of each SM. As a result, the overall attainable compute
bandwidth will decrease (Figure 13(b)). To estimate the resulting
slowdown, we can simply use the ratio of resource allocations
reduction as follows.

Slowdown𝐶𝑜𝑚𝑝𝑢𝑡𝑒 =
1

ComputeAllocationRatio
(2)

For example, if the GPU compute resources are halved, the attain-
able bandwidth can be calculated as half of the original attainable
bandwidth with full GPU resources.

Unified Model. Now that we have proposed two models for
estimating slowdowns with changing allocations—one for mem-
ory resources and one for compute resources, the last step is to
determine which model to use. We use a simple, commonly-used
heuristic [36, 46] to determine whether an application is compute-
or memory-bound. As shown below, we can determine if an applica-
tion tends to be compute-bound based on the AI and peak compute
and DRAM bandwidths of the GPU. The final Slowdown

=

{
(2), if AI𝐷𝑅𝐴𝑀 >

Bandwidth𝐶𝑜𝑚𝑝𝑢𝑡𝑒

Bandwidth𝐷𝑅𝐴𝑀
or AI𝐿2𝐶𝑎𝑐ℎ𝑒 >

Bandwidth𝐶𝑜𝑚𝑝𝑢𝑡𝑒

Bandwidth𝐿2𝐶𝑎𝑐ℎ𝑒

(1), otherwise

If the application is more compute-bound, then we use the model
to account for compute bandwidth reduction. Otherwise, we apply
the model for DRAM or L2 cache bandwidth reduction.

This approach can be more easily used to (1) estimate the GPU
execution performance impact of downsizing both memory and
compute resources, or (2) reason about the performance impact of
upsizing compute resources. However, it could have inaccurate esti-
mations for the performance impact of upsizing memory resources
when they are no longer a bottleneck.

7.2 Model-Driven Concurrent Scheduling

Next, we extend the model to estimate the end-to-end performance
impact for different degrees of concurrency. Using our analyti-
cal model, users can accurately predict the resulting end-to-end
performance when running queries concurrently on multiple GPU
partitions. Ourmodel assumes that the scheduler uses a round-robin
scheduling algorithm for load balancing.

CPU and Constant Overhead. To construct the model, we
first need to consider additional overheads for query executions.
For CPU overhead, our model includes the overhead of query opti-
mization and compilation. For some systems (e.g., HeavyDB, Blaz-
ingSQL), even though the same query has already been optimized
and compiled to binary form, each query invocation still intro-
duces some constant overhead on the CPU side. For all systems, we
also consider those overheads. Later, we show insights into how

450

1.0 1.5 2.0 2.5 3.0
Degree of Concurrency

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tu

al
 S

pe
ed

up

SF=2 SF=4 SF=8 SF=16

1 2 3 7
Degree of Concurrency

102

103

Q
ue

ry
 P

er
Se

co
nd

1 2 3 7
Degree of Concurrency

102

103

Q
ue

ry
 P

er
Se

co
nd

1 2 3 7
Degree of Concurrency

101

102

Q
ue

ry
 P

er
Se

co
nd

1 2 3 7
Degree of Concurrency

101

102

Q
ue

ry
 P

er
Se

co
nd

1 2 3 7
Degree of Concurrency

101

102

Q
ue

ry
 P

er
Se

co
nd

1 2 3 7
Degree of Concurrency

102

103

Q
ue

ry
 P

er
Se

co
nd

(a) Crystal

1 2 3 7
Degree of Concurrency

102

103

Q
ue

ry
 P

er
Se

co
nd

(b) Crystal-Opt

1 2 3 7
Degree of Concurrency

101

102

Q
ue

ry
 P

er
Se

co
nd

(c) HeavyDB

1 2 3 7
Degree of Concurrency

101

102

Q
ue

ry
 P

er
Se

co
nd

(d) BlazingSQL

1 2 3 7
Degree of Concurrency

101

102

Q
ue

ry
 P

er
Se

co
nd

(e) TQP

101 102 103

log(Actual QPS)

101

102

103

lo
g(

Es
ti

m
at

ed
 Q

PS
)

Ideal Estimation
Our Estimation

(f) Regression analysis

Figure 14: Throughput vs. degree of concurrency – Comparison between actual and estimated throughput of running queries concurrently (we omit data
points for BlazingSQL and TQP where they run into out-of-memory issues at larger scale factors). For sub-figures (a), (b), (c), (d), and (e), the top plot shows
the actual throughput whereas the bottom plot shows the estimated throughput.

concurrency is also beneficial to alleviate those overheads. We con-
sider two additional major overheads—GPU setup overhead, which
includes GPU context initialization and memory allocations, and
data transfer overhead. All systems cache tables on the GPU for
future query executions, so the data transfer overhead is also only
a one-time cost.

End-to-End Performance.We can now estimate the end-to-
end query execution time individually for each process. When the
system varies the resources, the model will adjust the query GPU
execution time. Other overheads will remain unchanged. Now, to
consider the time from multiple concurrent processes 𝑃 , we use a
max function because the longest-running process will determine
the end-to-end query execution time for concurrent executions.

ExecTime = max (ExecTime𝑃1, ExecTime𝑃2 ... ExecTime𝑃𝑛)

Our model can also be used to estimate query performance vs.
degree of concurrency for MPS (§2.1), excluding accounting for
interference in accessing the shared L2 cache and DRAM.

7.3 Resource Allocation Study

In this study, we focus on answering the following questions:
• RQ1 – How beneficial is concurrent query execution?

• RQ2 – How good is our model for estimating the query

execution performance vs. the degree of concurrency?
• RQ3 – What are the trade-offs between MIG and MPS?

RQ1 – Benefit of ConcurrentQuery Execution.We im-
plemented concurrent query execution on the four systems and
designed the following experiment to evaluate the benefits with
Degree of Concurrency (DoC) = 2, 3, and 7, over DoC=1 (no con-
currency), for SSB queries 3. We configured the GPU, through MIG,
to support the required DoC and started the corresponding number
of system instances, one on each GPU partition. We construct a
simple scheduler to dispatch SSB queries in a randomized sequence
to each system instance, repeated 1000 times. We then measure the
overall throughput (queries per second i.e., QPS) for the GPU.

3For A100 MIG partitions [42], compute resource has a total of 7 slices but memory
resource has a total of 8 slices. When the GPU is partitioned, some resources will
end up being idle because they cannot be evenly distributed. We choose the DoC that
minimizes the amount of idle GPU resources when partitioned.

Figure 14 (top) shows the actual (measured) throughput for dif-
ferent DoC. For large-scale factors (e.g., 8 and 16), we omit query
throughput for systems that run into out-of-memory issues. For
Crystal, the throughput initially increases by an average of 1.5× as
the DoC changes from 1 to 2. Because Crystal spends the majority
of the time on GPU execution, the performance speedup mostly
comes from the improved resource utilization of the GPU hardware.
However, as the DoC increases beyond 2, it does not gain further
speedup, because resources are already very close to being fully
saturated when running two processes concurrently. In fact, for
DoC=3, the throughput is lower than for DoC=2. A further reason
is that MIG cannot evenly divide the GPU resource into three parti-
tions. For instance, some of the GPU DRAM banks and L2 cache
slices are not being used at all when DoC=3.

Crystal-Opt achieves a 1.3× throughput improvement com-
pared to Crystal-Opt without MIG at scale factor 16, while it does
not gain better throughput at smaller scale factors. This is because
GPU execution time dominates other overheads for larger scale
factors. Increasing the DoC initially reduces GPU execution time,
but since GPU resource utilization is quickly saturated, a higher
DoC cannot further improve the overall throughput. In contrast,
other overheads like data and results movement dominate end-to-
end execution for smaller scale factors. Partitioning the GPU also
partitions the PCI-e bandwidth, so the overhead grows proportion-
ally as the DoC increases. We also observe that Crystal-Opt with
MIG has a 2.2× speedup over Crystalwith no MIG, while Crystal
only has a 1.5× speedup after enabling MIG. This demonstrates that
both system implementations and resource allocations are critical.

Concurrent execution provides sub-linear performance improve-
ment for both HeavyDB and BlazingSQL. For those two systems,
queries at small scale factors do not fully saturate resources. More
queries can finish within a fixed time with concurrent execution, so
the overall throughput increases. In contrast, queries are more eas-
ily affected by resource reduction at larger scale factors, leading to
a significant increase in query latency that overshadows the gains
of concurrent execution. However, concurrency is still able to hide
CPU latency overhead, leading to substantial throughput improve-
ments for SF=8 and SF=16, respectively, at DoC=7 (over DoC=1).
Concurrent query executions also provide sub-linear performance
speedup for TQP. TQP is shown to have low GPU utilization, so
most of the performance gain comes from better utilization.

451

1 2 3 7 10
Degree of Concurrency

0

1000

2000

3000

4000

Q
ue

ry
 P

er
Se

co
nd

MIG MPS

(a) SF=2

1 2 3 7 10
Degree of Concurrency

0

250

500

750

Q
ue

ry
 P

er
Se

co
nd

MIG MPS

(b) SF=16
Figure 15: Trade-offs between MIG and MPS – Throughput vs. degree
of concurrency with different mechanisms tested on Crystal-Opt.

RQ2 – Model Accuracy on Degree of Concurrency. Fig-
ure 14 (bottom) shows the estimated overall throughput vs. DoC
for the above experimental setting. Figure 14 (f) indicates the pre-
diction accuracy of the model compared to the ideal prediction
(estimated = actual). We use our models to estimate end-to-end
query execution time for all DoC using profiling data from a single
run of the query with full GPU allocation (DoC=1). Our estimated
throughputs are close to the actual, for both absolute values and
scaling trends. The correlation coefficient between actual and es-
timated throughput is 0.95, thereby indicating strong correlation.
The 50𝑡ℎ and 95𝑡ℎ percentile of relative errors (= |Actual−Estimated |

Actual)
are ≤ 0.11 and ≤ 0.46, while the average is 0.15. The evaluation
demonstrates that our model is able to help system administrators
determine how to allocate GPU resources and configure the level
of query execution concurrency to achieve the best performance.

RQ3 – MIG and MPS Trade-offs. We present an analysis (Fig-
ure 15) to compare the trade-offs of executing a batch of queries
between MIG and MPS on Crystal-Opt. For SF=2, MPS offers bet-
ter scalability than MIG. Since all clients share the same PCI-e
interconnect, MPS allows different processes to overlap compute
with data transfer with the full interconnect bandwidth, consider-
ing the fact that the bandwidth is not fully saturated temporally.
In contrast, the PCI-e bandwidth is partitioned among different
processes in MIG, and thus, each process gets reduced PCI-e band-
width. For SF=16, MIG and MPS show similar performance. This is
because compute overhead dominates at larger scale factors, and
thus the benefit of interleaving reduces. In general, MIG is favored
for scaling performance without interference between partitions,
especially when GPU execution time dominates. In contrast, MPS
provides better data and computation overlap when data movement
overhead dominates the end-to-end execution time.

8 RELATEDWORK

Suh et al. [62] is the most recent study to compare different GPU
database systems. They only focus on end-to-end execution time
comparison of different systems on different GPUs. However, our
paper shares more insights into the internals of GPU execution
efficiency. Yin and Yang [70] study GPU execution of SSB [52], and
present the time breakdown between kernels and data transfers,
but never examine the efficiency of each kernel. Pump up the Vol-
ume [33] and Triton join [34] study the performance impact from
newer CPU-GPU interconnects on out-of-GPU hash-join. GPL [50]
also observes that the GPU can be underutilized during query ex-
ecution. Furst et al. [19] study GPU kernel efficiency but only fo-
cus on comparing GPU occupancy vs. instruction types. Funke et
al. [17, 18] and Paul et al. [49] optimize JIT compilers for better

GPU execution efficiency through kernel fusions and thread diver-
gence elimination. Sioulas et al. [60] implement partitioned hash
join in GPU. Shanbhag et al. [58] also extend the Crystal library
for in-GPU compression. Instead, HippogriffDB [31] accelerates
query performance by supporting GPU execution on compressed
data. Mordred [68] and HetExchange [13] explore CPU-GPU query
executions. Rosenfeld et al. [53] provide an in-depth overview of
CPU-GPU database systems. GaccO [12] studies transactional query
processing on GPUs. MGJoin [51] andMaltenberger et al. [35] evalu-
ate join and sorting algorithms for multi-GPU systems. Doraiswamy
and Freire [15] propose using GPUs to process spatial data (e.g., geo-
metric objects) in database systems. Our work provides an in-depth
microarchitectural analysis of existing systems.

GPU performance modeling. Hong and Kim [25] model the
performance of early generation GPUs, where GPU caches were still
not mature, so the focus is on GPUDRAM and compute bandwidths.
Zhang et al. [71] provide performance optimization suggestions
to developers through GPU performance modeling with micro-
benchmarking profiling. Wu et al. [66] instead propose using a
machine learning approach to predict kernel performance, which
also requires profiling performance counters on real hardware.
Baghsorkhi et al. [9] use code analysis to consider the performance
impact from control flow divergence and memory bank conflicts.
Our approach of using the roofline models provides a simple way
to analyze the performance impact for different GPU resources
without requiring code analysis or machine learning models.

Gables [24] uses roofline models to study SoC platforms with
multiple accelerators. Ding et al. [14] and Lopes et al. [32] also
apply roofline models to GPUs. Ding et al. capture all instructions
for AI, which can lead to inaccurate estimations. Lopes et al. also
explore the cache-aware aspect but do not differentiate between AI
at the cache level and at the DRAM level, in contrast to our work.
Additionally, we extend and apply the roofline model to estimate
query performance for different resource allocations on the GPU.
This has not been explored in prior work.

Concurrent execution in GPUs. Yu et al. [69] have also sur-
veyed the trade-off between MIG and MPS. Their paper shares the
potential opportunities and use cases of using concurrent execution
in GPUs. Tan et al. [63] explore accelerating deep neural network
(DNN) inference by using MIG. Kass et al. [27] instead investigate
DNN training in MIG. In our work, we support relational query
operations in the form of concurrent execution, which is often
limited by the GPU memory resource. Instead, DNN inference is
more compute-bound. Our work uses simple models to estimate per-
formance with different GPU resource limits, whereas others [63]
require profiling the execution for different configurations.

9 CONCLUSIONS

In this work, we provide microarchitectural insights for existing
GPU database systems. We demonstrate how using our insights, we
can improve the performance of a state-of-the-art database system
by 1.9×. Additionally, we show how these insights can be further
leveraged into an analytical model—predicting resource utilization
under concurrent query execution—delivering up to a 6.5× better
throughput. We expect these contributions to drive further research
and development in the field of GPU-accelerated data analytics.

452

REFERENCES

[1] 2017. PCIe 4.0 specification finally out with 16 GT/s on tap. [Online] Avail-
able from: https://techreport.com/news/32064/pcie-4-0-specification-finally-
out-with-16-gts-on-tap/.

[2] 2019. PCI-SIG Achieves 32GT/s with New PCI Express 5.0 Specification. [Online]
Available from: https://www.businesswire.com/news/home/20190529005766/
en/PCI-SIG%C2%AE-Achieves-32GTs-with-New-PCI-Express%C2%AE-5.0-
Specification.

[3] 2022. PCI-SIG Announces PCI Express 7.0 Specification to Reach 128
GT/s. [Online] Available from: https://www.businesswire.com/news/home/
20220621005137/en.

[4] 2022. PCI-SIG Releases PCIe 6.0 Specification Delivering Record Per-
formance to Power Big Data Applications. [Online] Available from:
https://www.businesswire.com/news/home/20220111005011/en/PCI-
SIG%C2%AE-Releases-PCIe%C2%AE-6.0-Specification-Delivering-Record-
Performance-to-Power-Big-Data-Applications.

[5] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A Wood. 1999.
DBMSs On A Modern Processor: Where Does Time Go? PVLDB (1999).

[6] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.
1383–1394.

[7] Rob Armstrong, Arthy Sundaram, and Fred Oh. 2021. Revealing New Features in
the CUDA 11.5 Toolkit. [Online] Available from: https://developer.nvidia.com/
blog/revealing-new-features-in-the-cuda-11-5-toolkit/.

[8] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Dong He,
Vivek Gupta, Ehi Nosakhare, Dalitso Banda, Rathijit Sen, and Matteo Interlandi.
2022. Share the tensor tea: how databases can leverage the machine learning
ecosystem. PVLDB (2022), 3598–3601.

[9] Sara S Baghsorkhi, Matthieu Delahaye, Sanjay J Patel, William D Gropp, and
Wen-mei W Hwu. 2010. An Adaptive Performance Modeling Tool for GPU
Architectures. In PPoPP. 10.

[10] Peter Bakkum and Srimat Chakradhar. 2010. Efficient Data Management for
GPU Databases. https://github.com/bakks/virginian/.

[11] BlazingSQL. 2021. BlazingSQL. https://github.com/BlazingDB/blazingsql.
[12] Nils Boeschen and Carsten Binnig. 2022. GaccO - A GPU-accelerated OLTP

DBMS. In SIGMOD. 1003–1016.
[13] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia

Ailamaki. 2019. HetExchange: Encapsulating Heterogeneous CPU-GPU Paral-
lelism in JIT Compiled Engines. PVLDB (2019), 544–556.

[14] Nan Ding and Samuel Williams. 2019. An Instruction Roofline Model for GPUs.
In PBMS. 7–18.

[15] Harish Doraiswamy and Juliana Freire. 2020. A GPU-friendly Geometric Data
Model and Algebra for Spatial Queries. In SIGMOD. 1875–1885.

[16] Sofoklis Floratos, Mengbai Xiao, Hao Wang, Chengxin Guo, Yuan Yuan, Rubao
Lee, and Xiaodong Zhang. 2021. NestGPU: Nested Query Processing on GPU. In
ICDE. 1008–1019.

[17] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined Query Processing in Coprocessor Environments. In SIGMOD.
1603–1618.

[18] Henning Funke and Jens Teubner. 2020. Data-Parallel Query Processing on
Non-Uniform Data. PVLDB (2020), 884–897.

[19] Emily Furst, Mark Oskin, and Bill Howe. 2017. Profiling a GPU database im-
plementation: a holistic view of GPU resource utilization on TPC-H queries. In
DaMON. 1–6.

[20] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit
Sen, Carlo Curino, Jesús Camacho-Rodríguez, and Matteo Interlandi. 2022. The
Tensor Data Platform: Towards an AI-centric Database System. In CIDR.

[21] Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur,
Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karana-
sos, and Matteo Interlandi. 2022. Query Processing on Tensor Computation
Runtimes. PVLDB (2022), 2811–2825.

[22] HeavyDB. 2022. HeavyDB. https://github.com/heavyai/heavydb.
[23] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.

2013. Hardware-Oblivious Parallelism for in-Memory Column-Stores. PVLDB
(2013), 709–720.

[24] Mark Hill and Vijay Janapa Reddi. 2019. Gables: A Roofline Model for Mobile
SoCs. In HPCA. 317–330.

[25] Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a GPU Architec-
ture with Memory-Level and Thread-Level Parallelism Awareness. In ISCA.

[26] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. 2014. Cache-Aware Roofline
Model: Upgrading the Loft. IEEE CAL (2014), 21–24.

[27] Anders Friis Kaas, Stilyan Petrov Paleykov, Ties Robroek, and Pınar Tözün. 2022.
Deep Learning Training on Multi-Instance GPUs. arXiv:2209.06018 [cs.LG]

[28] KaiGai Kohei. 2022. PG-Strom. https://github.com/heterodb/pg-strom.
[29] Alexander Krolik, Clark Verbrugge, and Laurie Hendren. 2021. R3d3: Optimized

Query Compilation on GPUs. In CGO. 277–288.

[30] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In CGO. 75–88.

[31] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data
Analytics. PVLDB (2016), 1647–1658.

[32] André Lopes, Frederico Pratas, Leonel Sousa, and Aleksandar Ilic. 2017. Exploring
GPU Performance, Power and Energy-Efficiency Bounds with Cache-aware
Roofline Modeling. In ISPASS. 259–268.

[33] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Intercon-
nects. In SIGMOD. 1633–1649.

[34] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast
Interconnects. In SIGMOD. 1017–1032.

[35] Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, and Tilmann Rabl. 2022. Evaluating
Multi-GPU Sorting with Modern Interconnects. In SIGMOD. 1795–1809.

[36] Lei Mao. 2021. Math-Bound VS Memory-Bound Operations. https://leimao.
github.io/blog/Math-Bound-VS-Memory-Bound-Operations/.

[37] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB (2011), 539–550.

[38] NVIDIA. 2016. nvidia-smi Documentation. [Online] Available from: https://
developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf.

[39] NVIDIA. 2020. NVIDIA A100 TENSOR CORE GPU Unprecedented Acceleration
at Every Scale. [Online] Available from: https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-
2188504-web.pdf.

[40] NVIDIA. 2021. NVIDIA Multi-Process Service Introduction. [Online] Available
from: https://docs.nvidia.com/deploy/mps/index.html.

[41] NVIDIA. 2022. NVIDIA Multi-Instance GPU. [Online] Available from: https:
//www.nvidia.com/en-us/technologies/multi-instance-gpu/.

[42] NVIDIA. 2022. NVIDIA Multi-Instance GPU User Guide. [Online] Available
from: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/.

[43] NVIDIA. 2022. NVIDIA NSight Systems User Guide. [Online] Available from:
https://docs.nvidia.com/nsight-systems/UserGuide/index.html.

[44] NVIDIA. 2022. Parallel Thread Execution ISA Version 7.8. [Online] Available
from: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[45] NVIDIA. 2022. Thrust. [Online] Availble from: https://docs.nvidia.com/cuda/
thrust/index.html.

[46] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spampinato,
and Markus Püschel. 2014. Applying the Roofline Model. In ISPASS. 76–85.

[47] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The Star Schema Benchmark and Augmented Fact Table Indexing. In TPCTC.
237–252.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NeurIPS. 8024–8035.

[49] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improving
Execution Efficiency of Just-in-Time Compilation Based Query Processing on
GPUs. PVLDB (2020), 202–214.

[50] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based Pipelined
Query Processing Engine. In SIGMOD. 1935–1950.

[51] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. 2021. MG-Join:
A Scalable Join for Massively Parallel Multi-GPU Architectures. In SIGMOD.
1413–1425.

[52] Tilmann Rabl, Meikel Poess, Hans-Arno Jacobsen, Patrick O’Neil, and Elizabeth
O’Neil. 2013. Variations of the Star Schema Benchmark to Test the Effects of
Data Skew on Query Performance. In ICPE. 361.

[53] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2023. Query Processing on
Heterogeneous CPU/GPU Systems. Comput. Surveys (2023), 1–38.

[54] Rathijit Sen and Karthik Ramachandra. 2018. Characterizing resource sensitivity
of database workloads. In HPCA. 657–669.

[55] Rathijit Sen and Yuanyuan Tian. 2023. Microarchitectural Analysis of Graph BI
Queries on RDBMS. In DaMoN. 102–106.

[56] Anil Shanbhag. 2020. Crystal GPU Library. https://github.com/anilshanbhag/
crystal.

[57] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics.
In SIGMOD. 1617–1632.

[58] Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. 2022.
Tile-Based Lightweight Integer Compression in GPU. In SIGMOD. 1390–1403.

[59] Jian Shen, Ze Wang, David Wang, Jeremy Shi, and Steven Chen. 2019. AresDB.
https://github.com/uber/aresdb.

[60] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
2019. Hardware-Conscious Hash-Joins on GPUs. In ICDE. 698–709.

453

https://techreport.com/news/32064/pcie-4-0-specification-finally-out-with-16-gts-on-tap/
https://techreport.com/news/32064/pcie-4-0-specification-finally-out-with-16-gts-on-tap/
https://www.businesswire.com/news/home/20190529005766/en/PCI-SIG%C2%AE-Achieves-32GTs-with-New-PCI-Express%C2%AE-5.0-Specification
https://www.businesswire.com/news/home/20190529005766/en/PCI-SIG%C2%AE-Achieves-32GTs-with-New-PCI-Express%C2%AE-5.0-Specification
https://www.businesswire.com/news/home/20190529005766/en/PCI-SIG%C2%AE-Achieves-32GTs-with-New-PCI-Express%C2%AE-5.0-Specification
https://www.businesswire.com/news/home/20220621005137/en
https://www.businesswire.com/news/home/20220621005137/en
https://www.businesswire.com/news/home/20220111005011/en/PCI-SIG%C2%AE-Releases-PCIe%C2%AE-6.0-Specification-Delivering-Record-Performance-to-Power-Big-Data-Applications
https://www.businesswire.com/news/home/20220111005011/en/PCI-SIG%C2%AE-Releases-PCIe%C2%AE-6.0-Specification-Delivering-Record-Performance-to-Power-Big-Data-Applications
https://www.businesswire.com/news/home/20220111005011/en/PCI-SIG%C2%AE-Releases-PCIe%C2%AE-6.0-Specification-Delivering-Record-Performance-to-Power-Big-Data-Applications
https://developer.nvidia.com/blog/revealing-new-features-in-the-cuda-11-5-toolkit/
https://developer.nvidia.com/blog/revealing-new-features-in-the-cuda-11-5-toolkit/
https://github.com/bakks/virginian/
https://github.com/BlazingDB/blazingsql
https://github.com/heavyai/heavydb
https://arxiv.org/abs/2209.06018
https://github.com/heterodb/pg-strom
https://leimao.github.io/blog/Math-Bound-VS-Memory-Bound-Operations/
https://leimao.github.io/blog/Math-Bound-VS-Memory-Bound-Operations/
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://github.com/anilshanbhag/crystal
https://github.com/anilshanbhag/crystal
https://github.com/uber/aresdb

[61] Utku Sirin and Anastasia Ailamaki. 2020. Micro-Architectural Analysis of OLAP:
Limitations and Opportunities. PVLDB (2020), 840–853.

[62] Young-Kyoon Suh, Junyoung An, Byungchul Tak, and Gap-Joo Na. 2022. A
Comprehensive Empirical Study of Query Performance Across GPU DBMSes.
SIGMETRICS (2022), 1–29.

[63] Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo Zhu, and
Chuanxiong Guo. 2021. Serving DNN Models with Multi-Instance GPUs: A Case
of the Reconfigurable Machine Scheduling Problem. arXiv:2109.11067 [cs.DC]

[64] RAPIDS Development Team. 2018. RAPIDS: Collection of Libraries for End to
End GPU Data Science. https://rapids.ai

[65] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun.
ACM (2009), 65–76.

[66] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and
Derek Chiou. 2015. GPGPU Performance and Power Estimation Using Machine

Learning. In HPCA. 564–576.
[67] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael

Garland, and Sudhakar Yalamanchili. 2014. Red Fox: An Execution Environment
for Relational Query Processing on GPUs. In CGO. 44–54.

[68] Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating Data
Placement and Query Execution in Heterogeneous CPU-GPU DBMS. PVLDB
(2022), 2491–2503.

[69] Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Chenchen Liu, and
Xiang Chen. 2022. A Survey of Multi-Tenant Deep Learning Inference on GPU.
arXiv:2203.09040 [cs.DC]

[70] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Process-
ing Data Warehousing Queries on GPU Devices. PVLDB (2013), 817–828.

[71] Yao Zhang and John D. Owens. 2011. A Quantitative Performance Analysis
Model for GPU Architectures. In HCPA. 382–393.

454

https://arxiv.org/abs/2109.11067
https://rapids.ai
https://arxiv.org/abs/2203.09040

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 GPU Architecture
	2.2 Roofline Performance Modeling
	2.3 GPU Database Systems

	3 EXPERIMENTAL SETUP
	3.1 Hardware
	3.2 Workloads
	3.3 Profiling Toolchains
	3.4 Warm vs. Cold Execution Scenarios

	4 PERFORMANCE AND RESOURCE ANALYSIS
	4.1 Query Execution Performance
	4.2 GPU Resource Utilization

	5 BOTTLENECK INVESTIGATION
	5.1 Operation and Data Efficiency
	5.2 Warp Execution Efficiency
	5.3 Memory Efficiency

	6 IMPLEMENTATION OPTIMIZATION
	6.1 Inefficiencies and Optimizations
	6.2 Performance Speedup

	7 RESOURCE UTILIZATION OPTIMIZATION
	7.1 Model-Driven Resource Allocation
	7.2 Model-Driven Concurrent Scheduling
	7.3 Resource Allocation Study

	8 RELATED WORK
	9 CONCLUSIONS
	References

