
VQFT: A VisualQuery Approach Based on Full-Text Search for
Knowledge Graphs

Zhaozhuo Li
Tianjin University
Tianjin, China

lizhaozhuo@tju.edu.cn

Xin Wang
Tianjin University
Tianjin, China

wangx@tju.edu.cn

Meng Wang
Tongji University
Shanghai, China

mengwangtj@tongji.edu.cn

Yajun Yang
Tianjin University
Tianjin, China

yjyang@tju.edu.cn

Bohan Li
Nanjing University of Aeronautics

and Astronautics
Nanjing, China

bhli@nuaa.edu.cn

Dong Han
Tianjin Academy of Fine Arts

Tianjin, China
handong@tjarts.edu.cn

ABSTRACT
Existing knowledge graph query approaches, whether traditional
textual query languages or visual query languages, have steep learn-
ing curves that are unfriendly for non-expert users. This demonstra-
tion presents a Visual Query approach based on Full-Text search
for knowledge graphs, called VQFT, which simplifies the process of
querying knowledge graphs for users. Inspired by full-text search
techniques, VQFT aims to combine the user-friendliness of visual
query with the intuitiveness of full-text search, enabling users to
query knowledge graphs as straightforward as using a search en-
gine. Faceted full-text indexes, visual query constructor, and an in-
teractive user interface are designed to achieve this goal. User tests
and surveys have demonstrated that VQFT is more user-friendly
and easier to learn than existing methods, which simplifies the
construction of knowledge graph queries for non-expert users.

PVLDB Reference Format:
Zhaozhuo Li, Xin Wang, Meng Wang, Yajun Yang, Bohan Li, and Dong
Han. VQFT: A Visual Query Approach Based on Full-Text Search for
Knowledge Graphs. PVLDB, 17(12): 4397 - 4400, 2024.
doi:10.14778/3685800.3685884

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Lzz1027/VQFT

1 INTRODUCTION
Complex KG queries: barrier for non-expert users. Knowledge
graphs (KGs) represent real-world entities and their relationships
in a semi-structured graph form. Large-scale and cross-domain KGs
constructed by leading companies and academic institutions have
become valuable data resources, attracting many non-expert users
who are not familiar with KGs. SPARQL [5] and Cypher [2] are
two mainstream textual query methods for retrieving information
from KGs. However, mastering these complex query languages

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685884

requires a significant amount of time and effort. Meanwhile, it is
difficult for large language models, such as ChatGPT and Claude,
to understand the non-textual topological structures and schema
semantics in KGs. These models face difficulties in constructing
accurate structured queries even with sufficient example prompts.
Consequently, non-expert users face significant challenges when
searching KGs.

Visual query has limited effect. Visual querying is a strategy
for reducing the complexity of text-based queries. Visual query
languages, such as ViziQuer [1], QueryVOWL [3], and KGVQL [4],
attempt to increase the user-friendliness of graph queries by map-
ping syntactic symbols to visual elements. The recent KGNav [6]
method proposes a navigational-based approach for visually brows-
ing KGs. However, since the essence of existing methods is to map
symbols in textual syntax onto visual elements, the complexity
of constructing queries has not been actually reduced, thus the
learning curve for non-expert users remains steep. Therefore, while
current visual query methods have made progress in terms of us-
ability, it is still difficult for non-expert users to query KGs.

Full-Text search can help. Full-Text search, a well-established
method, is the core approach used by search engines to retrieve
unstructured data. It builds an inverted index, which allows users to
quickly search documents using keywords. As this method matches
users’ intuitive search behavior, it is highly suitable for non-expert
users. Given the semi-structured and weak schema nature of KGs,
constructing graph queries is inherently difficult. Full-Text search,
however, requires users to enter only keywords to easily query
entities, attributes, and their relationships. For users, this approach
eliminates the need to understand complex query languages or KG
schemas, making it easier for non-experts to learn and use.

Our approach. As it is infeasible to build KG queries with a
single search box as in search engines, we propose VQFT, which
combines the ease of use of full-text search with the intuitiveness
of visual query to satisfy users’ KG query needs. We design visual
query elements that are as simple as possible and combine multiple
full-text searches into faceted queries. Our approach covers the
core functionality of graph queries, including basic graph schema
matching, entity/relation attribute processing, and complex graph
schema querying, where hints and suggestions can be used to re-
spectively reduce difficulty and improve the quality of queries. Our
approach has no restrictions on schemas or domains of KGs and

4397

https://doi.org/10.14778/3685800.3685884
https://github.com/Lzz1027/VQFT
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685884
https://www.acm.org/publications/policies/artifact-review-and-badging-current

can significantly reduce the complexity for non-expert users in
constructing KG queries.

Demonstration. Conference participants will have the oppor-
tunities to experience the user-friendly interface of VQFT and build
visual queries over the real-world data fromWikidata1. Participants
can access our system and interact with the demonstration through
our website at http://www.tjudb.cn/vqft/.

2 VQFT OVERVIEW
Figure 1 illustrates the architecture and the four main components
of VQFT, i.e., KGFI, VQC, GUI, and VQR, which will be introduced
in this section one by one.

2.1 Knowledge Graph Full-Text Indexes (KGFI)
Due to its semi-structured and weak schema nature, a KG can be
considered as a collection of unstructured data entities. Based on
this idea, we provide a formal conceptual framework of KGFI.

A knowledge graph 𝐾𝐺 can be represented as 𝐾𝐺 = {𝐸, 𝑅,𝑇 },
where 𝐸 is the set of entities (or nodes), 𝑅 is the set of relationships
(or edges), and 𝑇 represents the set of textual descriptions which
are related to the elements in 𝐸 or 𝑅. Each entity 𝑒 ∈ 𝐸 or relation
𝑟 ∈ 𝑅 in the KG can be associated with its corresponding sets𝑇𝑒 and
𝑇𝑟 , which include names or other attributes. This forms a KG with
semi-structure, which can be viewed as a collection of unstructured
data,𝑈 = (∪𝑒∈𝐸𝑇𝑒) ∪ (∪𝑟 ∈𝑅𝑇𝑟). Each piece of unstructured data is
an aggregation of textual descriptions for entities and relationships
in the KG. Consequently, all these unstructured data collectively
form the knowledge graph.

An inverted index 𝐼 for a KG full-text search can be represented
as 𝐼 : 𝑡 → {𝑒 | 𝑡 ∈ 𝑇𝑒 } ∪ {𝑟 | 𝑡 ∈ 𝑇𝑟 }, which maps terms 𝑡
found within the textual descriptions𝑇 to entities 𝑒 or relationships
𝑟 . Term 𝑡 is obtained by a disambiguation process on the textual
description 𝑇 , which accurately corresponds to the content in 𝑇 .

Faceted full-text search 𝐹 is defined as 𝐹 = {𝐹1, 𝐹2, . . . , 𝐹𝑚},
where each facet 𝐹𝑖 represents a specific dimension (e.g., entity type,
relationship type, or entity attributes) within 𝐾𝐺 . Thus, a faceted
full-text search query 𝑄 on facet 𝐹𝑖 for term 𝑡 can be expressed as:
𝑄 (𝐹𝑖 , 𝑡) = {𝑥 | 𝑥 ∈ 𝐸 ∪ 𝑅, 𝑡 ∈ 𝑇𝑥 , 𝑥 satisfies 𝐹𝑖 }. Where, 𝑥 denotes
an entity 𝑒 ∈ 𝐸 or a relationship 𝑟 ∈ 𝑅, and “𝑥 satisfies 𝐹𝑖” means
that 𝑥 conforms to or is part of the specific dimension or category
defined by facet 𝐹𝑖 .

2.2 Visual Query Constructor (VQC)
For users, the most intuitive form of a KG is a graph structure
consisting of nodes and edges. Therefore, we define the fundamental
elements of visual queries as nodes and edges, representing entities
and relationships in KGs, respectively. A set of logical operators is
also provided to construct complex graph pattern queries.

Nodes: Let 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑘 } represent the set of nodes in a
KG 𝐺 ., where each node 𝑛𝑖 corresponds to an entity in 𝐺 .

Edges: Let 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑙 } represent the set of edges in 𝐺 ,
where each edge 𝑒 𝑗 corresponds to a relationship between entities
in 𝐺 . An edge can be formally defined as a tuple 𝑒 𝑗 = (𝑛𝑎, 𝑛𝑏),
indicating a relationship from node 𝑛𝑎 to node 𝑛𝑏 .

1https://www.wikidata.org

Figure 1: The architecture of VQFT

Operators: The operators for logical operations in visual queries
are defined as a set 𝑂 = {𝐴𝑁𝐷,𝑂𝑅, 𝑁𝑂𝑇 }, where

• 𝐴𝑁𝐷 indicates a logical conjunction, requiring that all the
relationships with the operator must be satisfied.

• 𝑂𝑅 indicates a logical disjunction, requiring that at least one
of the relationships with the operator needs to be satisfied.

• 𝑁𝑂𝑇 indicates a logical negation, the relationship with the
operator is not satisfied.

In summary, all these elements are constructed by VQC, which
combines and processes the operators, and finally renders visual
elements on the GUI for user interaction.

2.3 VQFT Graphical User Interface (GUI)
Given its direct interaction with users, the VQFT GUI is critical to
the effectiveness of the entire method. As shown in Figure 2, the
core of the GUI is the I. Query Construction Canvas, with secondary
focus areas including the II. Preview Panel on the left, the III. Toolbar
at the top, and the IV. Result Panel at the bottom.

As we can see, users construct queries on the query construction
canvas through the GUI using VQC. To ease the learning process,
the GUI provides only two types of nodes: Result Nodes, which
represent the final query targets, and Auxiliary Nodes, which are
used to assist in the query construction process. In addition, handles
provided on both sides of nodes allow users to draw connections,
thereby forming relationships between two entities.

In addition to the visualization elements with graph structure, the
core search interaction is accomplished with full-text search filters
both on nodes and edges. All these filters combine together and form
an intuitive and user-friendly faceted search. As the query is entered,
KGFI provides real-time input suggestions. The addition of filters
alters the badge number in the top right corner of a node, directly
reflecting the effect of filtering. A real-time preview of filtering
results for current node is displayed in the right preview panel,
allowing users to refine their queries based on preview information.
All these interactive behaviors enhance the effectiveness of user
queries and reduce the likelihood of constructing ineffective queries.

4398

http://www.tjudb.cn/vqft/
https://www.wikidata.org

Figure 2: VQFT user interface and demonstration scenarios.

Once the query construction is completed, users can run the
query by clicking the “RUN” button on the toolbar. The querywill be
executed by VQR, and the results can be presented in three formats
on the results panel, i.e., graph, table, and raw data, respectively.

As shown above, VQFT has provided an intuitive, reliable, and
easy-to-learn interface for non-expert users, which greatly reduces
the complexity of querying KGs.

2.4 Visual Query Runner (VQR)
As aforementioned, after the query is constructed, the visual el-
ements on the canvas are integrated into the query language by
VQR. Multiple full-text search filters are combined into a faceted
full-text search using logical operators. Then, VQR will execute the
query in the backend KG database and retrieve the results which
will be displayed in the result panel in Figure 2.

Overall, visual query construction and background query pro-
cessing are performed and integrated by VQR in this step. The
visual query constructed by the user is transformed into a query
statement, which can be executed in the database. Also, intuitive
query results are obtained in this step. It makes the entire query
process more comprehensive and perceptive, further reducing the
complexity of querying for non-expert users.

3 DEMONSTRATION
We have developed the GUI of VQFT using Vue framework. The
data used for the demonstration, which is extracted from Wikidata,
includes pre-built full-text indexes constructed by KGFI. The full-
text search functionality and database operations are managed by
a Node.js backend. We will present some demonstration scenarios
that cover most use cases, guiding participants to understand the
operation of VQFT, thus experiencing the demo system of VQFT.

Single node query. For users who are not familiar with KGs,
building a basic query should be as easy as using a search engine.
Keeping this in mind, we demonstrate a scenario where a user
constructs a query for a single node.

1 To add a “Result Node” to the VQFT canvas, simply right-click
on the desired location of the canvas. This will create a new node
with a label (i.e., type) filter and an attribute filter constructor.

2 The label filter enables users to select and filter according to
their type, and it also supports multi-selection for labels.

3 The attribute filter constructor allows the user to select at-
tributes and operators. Keywords can be entered in the search box,
which is similar to a traditional search engine. The filter can then
be added to the query by clicking the “PLUS” button.

4 To add more attribute filters and build faceted queries, users
can repeat Step 3. Once completed, click the “Run” button on the
toolbar to execute the query and get the results.

When a type filter is added to a node, the attribute filter con-
structor changes to return only relevant attributes. Users are pro-
vided with input hints and suggestions during both selection and
search process, respectively. All operations are accompanied by
the mechanism of real-time preview feedback. These techniques
can significantly improve the efficiency of users while constructing
queries. For non-experts users, these operations are fully intuitive
and easy to learn.

Simple query. For users with a basic understanding of KG, the
following process can be used to quickly construct a query that
matches a basic graph pattern.

1 Right-click on the canvas to add nodes. Use “Result Node”
for the results intended to be queried, whereas “Auxiliary Node”
should be employed for nodes that do not need output.

4399

Figure 3: User test results

2 For each node on the canvas, the full-text search construction
can be similar to the construction of a “Single Node Query.”

3 Connections between nodes are facilitated by handles, with
a flow animation showing the direction of the line. Each line has
an optional label search bar. Nodes and edges can be removed with
the backspace key or the context menu.

4 Once a query construction is complete, the query will be
executed to retrieve the results.

For users with a simple understanding of the KG schema, the
process is both simple and intuitive.

Complex query. While this demonstration primarily targets
non-expert users, for those who need to build complex graph
queries, the logical operators 𝐴𝑁𝐷 , 𝑂𝑅, and 𝑁𝑂𝑇 are available.
As shown in Figure 2, this scenario describes a query to find in-
dividuals whose fathers are named “Stark” or whose mothers are
named “Targaryen”, along with their enemies. One possible equiva-
lent SPARQL query is as follows.

SELECT ?person ?enemy WHERE {
{
?person rel:hasFather ?father .
?father foaf:name ?fatherName .
FILTER(CONTAINS(LCASE(?fatherName), "stark"))

} UNION {
?person rel:hasMother ?mother .
?mother foaf:name ?motherName .
FILTER(CONTAINS(LCASE(?motherName), "targaryen"))

}.
OPTIONAL { ?person rel:hasEnemy ?enemy .}

}

The steps to build this query with VQFT are as follows.
1 Add Result Nodes for outputting results and their enemies,

connect them, and then add the enemy relationship.
2 Right-click on the canvas to add an OR operator and connect

it to the Result Node. After that, construct two Auxiliary Nodes to
connect with the OR operator.

3 Add an attribute filter to the auxiliary node and add father
relationship and mother relationship to the edges connected to the
OR operator, respectively.

Figure 4: User research results in radar chart

In this way, users can construct queries without having to learn
complex syntax or understand the knowledge graph schema.

Demonstration engagement. The existing benchmarks for
evaluating KG query approaches focus primarily on the execution
speed and the ability to construct complex queries, lacking an as-
sessment of the complexity of constructing the queries. VQFT is
evaluated with user testing and questionnaires. Ten testers without
relevant knowledge are convened to complete ten query tasks with
increasing complexity. We provide brief training about VQFT, Viz-
iQuer, SPARQL, and Cypher for testers. The number of completed
tasks within a given time for each query approach, which is shown
in Figure 3, shows that the completed tasks of VQFT outperform
other approaches, proving its ease of learning. The survey results
of testers in Figure 4 also reveal that, compared with textual query
languages, traditional visual query methods, such as ViziQuer, do
not considerably reduce the learning complexity for users. In con-
trast, VQFT, which is more aligned with user intuition, presents a
lower learning curve and is easier to use. This demonstrates that
VQFT is an efficient and useful tool in assisting non-expert users to
quickly become proficient in KG queries.

ACKNOWLEDGMENTS
This work is supported by HUAWEI. XinWang is the corresponding
author of this paper.

REFERENCES
[1] Kārlis Čerāns, Agris Šostaks, Uldis Bojārs, Jūlija Ovčin, n, ikova, Lelde Lāce, Mikus

Grasmanis, Aiga Romāne, Artūrs Sprog̀is, and Juris Bārzdin, š. 2018. ViziQuer: a
web-based tool for visual diagrammatic queries over RDF data. In The Semantic
Web: ESWC 2018. 158–163.

[2] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-
drés Taylor. 2018. Cypher: An evolving query language for property graphs. In
Proceedings of the 2018 international conference on management of data. 1433–1445.

[3] Florian Haag, Steffen Lohmann, Stephan Siek, and Thomas Ertl. 2015.
QueryVOWL: A visual query notation for linked data. In The Semantic Web:
ESWC 2015. Springer, 387–402.

[4] Pengkai Liu, XinWang, Qiang Fu, Yajun Yang, Yuan-Fang Li, and Qingpeng Zhang.
2022. KGVQL: A knowledge graph visual query language with bidirectional
transformations. Knowledge-Based Systems 250 (2022), 108870.

[5] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and com-
plexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009).

[6] Xiang Wang, Xin Wang, Zhaozhuo Li, and Dong Han. 2023. KGNav: A Knowledge
Graph Navigational Visual Query System. Proceedings of the VLDB Endowment
16, 12 (2023), 3946–3949.

4400

	Abstract
	1 Introduction
	2 VQFT OVERVIEW
	2.1 Knowledge Graph Full-Text Indexes (KGFI)
	2.2 Visual Query Constructor (VQC)
	2.3 VQFT Graphical User Interface (GUI)
	2.4 Visual Query Runner (VQR)

	3 DEMONSTRATION
	Acknowledgments
	References

