DOP-SQL: A General-purpose, High-utility, and Extensible
Private SQL System

Jianzhe Yu

Wei Dong"

Juanru Fang

Hong Kong University of Science and Hong Kong University of Science and Hong Kong University of Science and

Technology
jyuca@cse.ust.hk

Dajun Sun

Technology
wdongac@cse.ust.hk

Technology
jfangad@cse.ust.hk

Ke Yi

Hong Kong University of Science and Hong Kong University of Science and

Technology
dsunad@cse.ust.hk

ABSTRACT

Differential privacy (DP) has garnered significant attention from
both academia and industry due to its potential in offering robust
privacy protection for individual data during analysis. With the
increasing volume of sensitive information being collected by or-
ganizations and analyzed through SQL queries, the development
of a general-purpose query engine that is capable of supporting a
broad range of SQLs while maintaining DP has become the holy
grail in privacy-preserving query release.

In this demonstration, we present DOP-SQL, a DP SQL system
that can answer a broad class of queries consisting of the selection,
projection, aggregation, join, and group by operators. DOP-SQL has
integrated a suite of down-neighborhood optimal DP mechanisms,
thus achieving state-of-the-art utility. The current implementation
of DOP-SQL is based on PostgreSQL, but its extensible feature
allows it to be used in conjunction with any standard SQL engine.

PVLDB Reference Format:

Jianzhe Yu, Wei Dong, Juanru Fang, Dajun Sun, and Ke Yi. DOP-SQL: A
General-purpose, High-utility, and Extensible Private SQL System. PVLDB,
17(12): 4385 - 4388, 2024.

doi:10.14778/3685800.3685881

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hkustDB/DPSQL.

1 INTRODUCTION

As more personal data has been collected by companies, organi-
zations, and governments, privacy concerns have become a major
issue when it comes to how such data shall be used. Among the
many privacy notions, differential privacy (DP) [7] has become the
de facto standard that is now widely adopted in both government
agencies and the industry. However, most existing DP systems only

“Wei Dong is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685881

4385

Technology
yike@ust.hk

support reporting some simple aggregates over data stored in a sin-
gle table (the notable example is the privatized aggregates published
by the US Census Bureau). This severely limits the application sce-
narios of DP; ideally, data analysts would like to ask complicated,
ad hoc analytical queries over personal data stored in a relational
database using SQL. This would not only significantly broaden the
scope of differential privacy, but also allows organizations to easily
integrate this technology into their existing data systems, as SQL
is still the dominant query language for data analytics with a large
amount of legacy code.

The research community have studied the problem of how to an-
swer general SQL queries under differential privacy extensively, but
the existing DP SQL engines are not satisfactory. Table 1 provides
a brief summary of existing systems, in comparison to DOP-SQL,
which is our new DP SQL system to be demonstrated at the confer-
ence.

Level of privacy protection. Two DP policies for relational databases
have been proposed, namely, tuple-DP and user-DP. As the names
suggest, tuple-DP protects the privacy of tuples, while the latter pro-
tects the privacy of users. When each user possesses just one tuple,
the two policies coincide, but in general, user-DP offers stronger
privacy protection than tuple-DP. This is also the reason why most
recent DP SQL systems, including DOP-SQL, have adopted user-DP.
We provide more details on the DP policy in Section 2.1.

Query class. DOP-SQL supports any Selection-Projection-Join-
Aggregation (SPJA) query, possibly with group-by, without any
restrictions on the join type. The aggregation functions supported
include all the standard ones such as COUNT, COUNT DISTINCT,
MAX/MIN, SUM, and QUANTILE. In particular, the query class sup-
ported by DOP-SQL is a superset of all those supported by previous
systems. Note that a query must have aggregations, as returning
any original tuples from the database cannot possibly satisfy DP.
Please see Section 2.2 for the detailed query syntax of DOP-SQL.

Utility. The last but most important aspect of DP SQL systems is
utility, i.e., how close the privatized query answers are to the true
answers. This is where DOP-SQL truly shines, as it is built under the
framework of Down-neighborhood Optimal differentially Private
mechanisms (hence the name DOP-SQL), which we detail in Section
2.4. Prior work [2, 4, 9] has conducted extensive experimentally
evaluations comparing these DOP mechanisms with previous ones,

https://doi.org/10.14778/3685800.3685881
https://github.com/hkustDB/DPSQL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685881
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Comparison with other DP SQL systems.

DP policy Query class .
System Privacy level pPrimary relation Aggregation Join Utility
PINQ [13] Tuple-DP / Count PK-FK Join Low
FLEX [10] Tuple-DP / Count Unrestricted | Low
RS [5] Tuple-DP / Count Self-join free | Low
PrivateSQL [11] User-DP Single Count Self-join free | Low
ZetaSQL [14] User-DP Single (Distinct)Count/Sum/Max/Quantile | Self-join free | Low
DOP-SQL (ours) User-DP Multiple (Distinct)Count/Sum/Max/Quantile | Unrestricted | High

showing significant improvement in terms of utility, sometimes
even by orders of magnitude. DOP-SQL has integrated these state-
of-the-art mechanisms into one system, and automatically chooses
the appropriate mechanism depending the query.

Extensibility. DOP-SQL is designed to be extensible. It can be
integrated with any relational database supporting standard SQL,
although we will be using PostgreSQL for our demonstration.

2 SYSTEM OVERVIEW

DOP-SQL consists of four components: (i) data is store in any rela-
tional database supporting standard SQL, which can either be local
or hosted in the cloud; (ii) a query parser that checks the type of
the input query, rewrites it appropriately, and then submits it to the
SQL database for evaluation; (iii) a DP engine that takes the out-
put of the rewritten query and produces privatized query answers
using an appropriate down-neighborhood optimal DP mechanism;
and (iv) a user interface that facilitates the interaction with the
system, including setting privacy configurations. An illustration of
our system can be viewed in Figure 1.

2.1 Privacy policy

A key concept in differential privacy is that of neighboring instances.
While DP guarantees that the difference between any two neighbor-
ing cannot be confidently detected by the adversary, it is up to the
application scenario to determine which instances are neighbors. In
a single table where each individual user contributes just one tuple,
the natural definition is that two instances that differ by one tuple
are neighboring. This DP policy is known as tuple-DP, as the adver-
sary cannot tell whether any particular tuple exists in the instance.
This policy can be extended to the multi-relational model easily, i.e.,
two database instances are neighbors if they differ by one tuple in
one of the relations. Indeed, all the early DP SQL systems adopted
this DP policy. However, as pointed out in [11], this simple DP policy
does not provide enough protection for relational databases since
the relational model aims at capturing complicated relationships
among different entities, so tuples in different relations shall not be
treated equally. Consider the TPC-H database for instance, which
consists of relations Customer, Order, and Lineitems, among oth-
ers. Under tuple-DP, two neighboring instance may only differ by,
say, one lineitem. If we remove one customer’s data, which includes
not only the corresponding tuple in Customers, but also all the
associated tuples in Orders and Lineitems, then this would result
in two instances that are not neighbors under tuple-DP, i.e., the
customer’s privacy is not protected. To accommodate this higher

4386

level of privacy protection, the user-DP policy has been formulated
[11], which has been adopted by most subsequent DP SQL engines.
Under user-DP, one or more relations are designated as primary
private relations, which correspond to the “users” whose privacy
we wish to protect, such as Customer. Another relation is called
secondary private relation if it has a foreign-key referencing,
directly or indirectly, a primary private relation, such as Order and
Lineitems. Two instances are neighbors if one can be obtained
from the other by removing one tuple ¢ from a primary private
relation and all the tuples in the secondary private relations that
reference (directly or indirectly) t. Note that the user-DP policy
is flexible enough to incorporate two commonly used DP policies
over graph data. We can store a graph using the schema Node (ID),
Edge(src, dst). Then by specifying Node as the primary private
relation, user-DP degenerates into the node-DP policy; specifying
Edge as the primary private relation corresponds to the edge-DP
policy.

Additionally, when the database contains different types of “users”,
whose privacy should all be protected, multiple primary private
relations shall be designated. Again consider the TPC-H data. If the
privacy of the customers and suppliers should both be protected,
then one may set both Customer and Supplier as primary private
relations. Note that, however, additionally setting Order as a pri-
mary private relation would not be necessary, since the protection
level brought by Order is subsumed by that of Customer. In general,
a secondary private relation’s privacy is automatically protected
by the primary private relation its foreign key refers to. While the
previous DP SQL systems only support a single primary private re-
lation, DOP-SQL supports any number of relations to be designated
as primary private relations.

2.2 Query syntax
DOP-SQL supports queries conforming to the following syntax:

SELECT < aggregation function >

FROM {tables, ...}

{ JOIN < tables > on < bool expression > }
[WHERE { bool expression, ...}]

[GROUP BY { tables.field / expression, ... }]

Explanations on the notation:

e Square brackets [] indicate optional expressions with 0 or
1 appearance.

e Curly brackets {} indicate required expressions with 1 or
multiple appearances.

User Interface

Parser

Privacy Engine Database

7Y Query

SELECT COUNT(*)
FROM lineitem

[auery type

SIA/SPIA/... Query

FROM lineitem
JOIN

rewritten
query

SELECT count(*), lineitem.LK]

DP Mechanism

R2T/... algorithms.

!

Privatized
Result

Data

(L

®

-\m

—

Figure 1: An overview of our system architecture with examples.

e Angle brackets <> indicate required expression with exact
one appearance.

The aggregation function can be one of the following:

(1) count(*) or count(DISTINCT *): This counts the number
of (distinct) records in the results.

sum(expression): This returns the sum of an expression
of some numerical columns.

max (expression, k): This returns the k-th largest value
of an expression. Note that by setting an appropriate value
for k, this function can be used to obtain the max, min, or
any quantile.

(2)
®)

All expressions follow the same syntax as standard SQL. DOP-
SQL accepts both implicit joins (i.e., state the join conditions in
the WHERE clause) or explicit joins (i.e., use JOIN keyword). As in
standard SQL, table aliases can be created using the AS keyword to
support self-joins.

2.3 Parser

DOP-SQL uses a parser modified from that of PostgreSQL. It de-
termines the query type based on the abstract syntax so that an
appropriate DP mechanism can be invoked by the DP engine; see
Section 2.4 for more details.

Another important job of the parser is to rewrite the query. Many
queries, such as the one below, when evaluated alone do not return
the relationship between the query results (before aggregation) and
the users, which is needed by the query engine. For such queries, the
parser will complete the query following the PK-FK relationships
until the primary private relations have been added. For example,
the following query

SELECT sum(l_quantity) FROM Lineitems

will be written into the following query (assuming Customers is
the primary private relation:

SELECT sum(l_quantity) FROM Lineitems
JOIN Orders on Lineitems.OK = Orders.OK
JOIN Customers on Orders.CK = Customers.CK

The SQL parser will also unpack the aggregation and include the
PKs of the private relations into a reporting query, which will also
be needed by the privacy engine. Thus, the final rewritten query
will be:

SELECT 1_quantity, Customers.CK FROM Lineitems
JOIN Orders on Lineitems.OK = Orders.OK
JOIN Customers on Orders.CK = Customers.CK

4387

2.4 DP engine

The DP engine will automatically select an appropriate DP mecha-
nism based on the query type. It takes the output of the rewritten
query and produces a privatized answer. Currently, we have imple-
mented the following mechanisms in the DP engine of DOP-SQL:

For COUNT and SUM queries without self-joins, it uses the
mechanism in [6].

For COUNT and SUM queries with self-joins, it uses R2T [2].
For COUNT and SUM queries with self-joins, the user may also
choose an algorithm with a better optimality ratio (This
algorithm will appear in the TODS version of [2]). It offers
better utility but requires more time to execute.

For MAX/MIN/QUANTILE queries without self-joins, it uses
the exponential mechanism [12].

For MAX/MIN/QUANTILE queries with self-joins, it uses the
Shifted Inverse mechanism[9].

For COUNT DISTINCT queries, it uses R2T.

For COUNT and SUM queries with GROUP-BY, it uses the
mechanism in [4] for answering multiple SJA queries.

For other aggregation functions with GROUP-BY, it uses
ShiftedInverse with basic composition (for pure DP) or
advanced composition (for approximate DP).

2.5 User interface

DOP-SQL provides a web-based interface for users to customize
the database connection, and write SQL queries as shown in Fig-
ure 2a. The interface will also display all the relations available
in the provided database where users can select private relations
interactively. User can also set the configuration of the required
parameters in DP mechanism for their desired privacy guarantees
interactively as shown in 2b. Among all the required parameters
in DOP-SQL, epsilon (privacy budget) is the most important one,
which can determine privacy guarantee and accuracy. The impact
of other parameters on privacy guarantee and accuracy is relatively
minor. In addition, users can see the acyclic view of the database
scheme where all the protected relation are colored. In this acyclic
view, red nodes indicate primary private relations chosen by the
users, and yellow nodes indicate secondary private relations which
will also be protected in the results. Finally, user can see the pri-
vatized result from the query engine in a bar chart as shown in
2c.

input query

The input query is a multiSJA query

1, SELECT sum((1l_extendedprice * (1 - 1_discount)) /
2 FROM ids AS idl, ids AS id2, supplier, lineitem, o
3 WHERE supplier.s_suppkey = lineitem.l_suppkey

4 AND lineitem.l_orderkey = orders.o_orderkey Global Parameter
5 AND orders.o_custkey = customer.c_custkey

6 AND customer.c_nationkey = nation.n_nationkey

7 AND nation.n_nationkey = supplier.s_nationkey

8 AND idl.i_id = supplier.s_id

9 AND id2.i_id = customer.c_id

0 GROUP BY n_name

beta 0.1

epsion 1
1
privacy budget

(a) Users can input a query.

(b) Users can customize privacy guarantee.

(c) The visualization of the privatized re-
sult.

Algorithm Parameter

delta 0.000001

Figure 2: Major interfaces of DOP-SQL.

3 DEMONSTRATION PLAN

During the demonstration, we will provide an interactive experi-
ence for audiences to get a better understanding of our system.

Step 1. The audience should first set up the database configura-
tion. For ease of demonstration, we offer two local databases, one
using the TPC-H benchmark and the other modeling a graph. Users
can also choose to use their own schema by providing the server
address and access account of the remote PostgreSQL database.

Step 2. After connecting to the database, audience need to submit
a SQL query on the Query input component. For each of demon-
stration, we have prepared a large collection of SQL queries for
the audience to choose from; they can of course write their own
queries as well, following the syntax in the Section 2.2. Meanwhile,
the audience can also set any subset of the relation in the schema as
primary private relations that they want to protect in the database.
If the user selects a pre-defined query, the primary private relations
will be selected automatically using the default one. The SQL query
will then be sent to the server.

Step 3. The query type and required parameter will be displayed
in the interface. The audience can adjust the required parameters for
the selected DP mechanism to meet their desired privacy guarantee.
The audience can check the annotations next to the input box of
parameters for simple explanation.

Step 4. After the query has been evaluated, the audience will
get both the privatized result and the true results displayed in the
Result display component using a bar chart. The audience can check
the error level between privatized results and the true results in this
chart. Detailed numerical result can be shown by moving cursor
inside the bar chart. The processing time will also be displayed.

4 FUTURE WORK

As future work, we plan to extend the query class supported by
DOP-SQL, such as sub-queries and recursion. Another interesting
direction is to answer queries under updates. This is known as
differentially private continue observation [8]. Earlier work has
only studied the COUNT function over a single table. Recently, some
progress has been made on answering SQL queries in this setting
[1, 3], and we plan to include these mechanisms into DOP-SQL.

ACKNOWLEDGMENTS

This work has been supported by HKRGC under projects 16205420,
16205422, and 16204223.

4388

REFERENCES

[1] Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. 2024. Continual
Observation of Joins under Differential Privacy. Proc. ACM Manag. Data 2, 3,
Article 128 (may 2024), 27 pages. https://doi.org/10.1145/3654931

Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2022.
R2T: Instance-optimal Truncation for Differentially Private Query Evaluation
with Foreign Keys. In Proceedings of the 2022 International Conference on Man-
agement of Data (Philadelphia, PA, USA) (SIGMOD °22). ACM, New York, NY,
USA, 759-772. https://doi.org/10.1145/3514221.3517844

Wei Dong, Qiyao Luo, and Ke Yi. 2023. Continual Observation under User-level
Differential Privacy. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 2190-2207. https://doi.org/10.1109/
SP46215.2023.10179466

Wei Dong, Dajun Sun, and Ke Yi. 2023. Better than Composition: How to Answer
Multiple Relational Queries under Differential Privacy. Proc. ACM Manag. Data
1, 2, Article 123 (jun 2023), 26 pages. https://doi.org/10.1145/3589268

Wei Dong and Ke Yi. 2021. Residual Sensitivity for Differentially Private Multi-
Way Joins. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD °21). ACM, New York, NY, USA, 432-444.
https://doi.org/10.1145/3448016.3452813

Wei Dong and Ke Yi. 2023. Universal Private Estimators. In Proceedings of the
42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS °23). ACM, New York, NY, USA, 195-206. https://doi.org/10.1145/3584372.
3588669

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
265-284.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. 2010. Differ-
ential privacy under continual observation. In Proceedings of the Forty-Second
ACM Symposium on Theory of Computing (Cambridge, Massachusetts, USA)
(STOC °10). ACM, New York, NY, USA, 715-724. https://doi.org/10.1145/1806689.
1806787

Juanru Fang, Wei Dong, and Ke Yi. 2022. Shifted Inverse: A General Mechanism
for Monotonic Functions under User Differential Privacy. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security (Los
Angeles, CA, USA) (CCS °22). ACM, New York, NY, USA, 1009-1022. https:
//doi.org/10.1145/3548606.3560567

Noah Johnson, Joseph P. Near, and Dawn Song. 2018. Towards practical dif-
ferential privacy for SQL queries. Proc. VLDB Endow. 11, 5 (oct 2018), 526—539.
https://doi.org/10.1145/3177732.3177733

Tos Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-
jjhala, Michael Hay, and Gerome Miklau. 2019. PrivateSQL: a differentially
private SQL query engine. Proc. VLDB Endow. 12, 11 (jul 2019), 1371-1384.
https://doi.org/10.14778/3342263.3342274

Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential
Privacy. In Proceedings - Annual IEEE Symposium on Foundations of Computer
Science, FOCS. 94-103. https://doi.org/10.1109/FOCS.2007.66

Frank D. McSherry. 2009. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (Providence, Rhode Island, USA)
(SIGMOD °09). ACM, New York, NY, USA, 19-30. https://doi.org/10.1145/1559845.
1559850

Royce Wilson, Celia Zhang, William Lam, Damien Desfontaines, Daniel Simmons-
Marengo, and Bryant Gipson. 2020. Differentially Private SQL with Bounded
User Contribution. Proceedings on Privacy Enhancing Technologies 2020 (04 2020),
230-250. https://doi.org/10.2478/popets-2020-0025

[2]

3

[o

[10

[11

[14]

https://doi.org/10.1145/3654931
https://doi.org/10.1145/3514221.3517844
https://doi.org/10.1109/SP46215.2023.10179466
https://doi.org/10.1109/SP46215.2023.10179466
https://doi.org/10.1145/3589268
https://doi.org/10.1145/3448016.3452813
https://doi.org/10.1145/3584372.3588669
https://doi.org/10.1145/3584372.3588669
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1145/3548606.3560567
https://doi.org/10.1145/3548606.3560567
https://doi.org/10.1145/3177732.3177733
https://doi.org/10.14778/3342263.3342274
https://doi.org/10.1109/FOCS.2007.66
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.2478/popets-2020-0025

	Abstract
	1 INTRODUCTION
	2 SYSTEM OVERVIEW
	2.1 Privacy policy
	2.2 Query syntax
	2.3 Parser
	2.4 DP engine
	2.5 User interface

	3 DEMONSTRATION PLAN
	4 Future Work
	Acknowledgments
	References

