
Demonstration of DB-GPT: Next Generation Data Interaction
System Empowered by Large Language Models
Siqiao Xue

siqiao.xsq@alibaba-inc.com
Ant Group

Danrui Qi
dqi@sfu.ca

Simon Fraser University

Caigao Jiang
cjiangad@connect.ust.hk

HKUST

Fangyin Cheng
staneyffer@gmail.com

JD Group

Keting Chen
ariesketing@gmail.com

Ant Group

Zhiping Zhang
xiaoping0501@gmail.com

Alibaba Group

Hongyang Zhang
1750410339@qq.com

SWUFE

Ganglin Wei
weiganglin.wgl@antgroup.com

Ant Group

Wang Zhao
zhaowanghappy@alu.ruc.edu.cn

RUC

Fan Zhou
hanlian.zf@antgroup.com

Ant Group

Hong Yi
zouzou0208@gmail.com

VMware

Shaodong Liu
liushaodong.china@gmail.com

Meituan

Hongjun Yang
yhjun1026@gmail.com

Ant Group

Faqiang Chen
faqiang.cfq@antgroup.com

Ant Group

ABSTRACT
The recent breakthroughs in large language models (LLMs) are
positioned to transition many areas of software. In this paper, we
present DB-GPT, a revolutionary and product-ready Python library
that integrates LLMs into traditional data interaction tasks to en-
hance user experience and accessibility. DB-GPT is designed to
understand data interaction tasks described by natural language
and provide context-aware responses powered by LLMs, making
it an indispensable tool for users ranging from novice to expert.
Its system design supports deployment across local, distributed,
and cloud environments. Beyond handling basic data interaction
tasks like Text-to-SQL with LLMs, it can handle complex tasks like
generative data analysis through a Multi-Agents framework and
the Agentic Workflow Expression Language (AWEL). The Service-
oriented Multi-model Management Framework (SMMF) ensures
data privacy and security, enabling users to employ DB-GPT with
private LLMs. Additionally, DB-GPT offers a series of product-ready
features designed to enable users to integrate DB-GPT within their
product environments easily. The code of DB-GPT is available at
Github.

PVLDB Reference Format:
Siqiao Xue, Danrui Qi, Caigao Jiang, Fangyin Cheng, Keting Chen,Zhiping
Zhang, Hongyang Zhang, Ganglin Wei, Wang Zhao, Fan Zhou, Hong Yi,
Shaodong Liu, Hongjun Yang, Faqiang Chen. Demonstration of DB-GPT:
Next Generation Data Interaction System Empowered by Large Language
Models. PVLDB, 17(12): 4365 - 4368, 2024.
doi:10.14778/3685800.3685876

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/eosphoros-ai/DB-GPT.

1 INTRODUCTION
Large language models (LLMs) such as ChatGPT and GPT-4 have
showcased their remarkable capabilities in engaging in human-like
communication and understanding complex queries, bringing a
trend of incorporating LLMs in various fields. Data interaction,
which aims to let users engage with and understand their data,
enabling the retrieval, analysis, manipulation, and visualization of
data to derive insights or make decisions. In the realm of interacting
with data, LLMs pave the way for natural language interfaces, en-
abling users to express their data interaction tasks through natural
language and leading to more natural data interactions.

Nonetheless, how to enhance the data interaction tasks with
LLMs to provide users reliable understanding and insights to their
data still remains an open question. One straightforward approach
is to directly provide commonly used LLMs, such as GPT-4, with in-
structions on how to interact via few-shot prompting or in-context
learning. Moreover, to further facilitate the intelligent interactions
with data, many works [1, 7, 9] have incorporated the LLM-powered
automated reasoning and decision process (a.k.a., multi-agents
frameworks) into the data interaction process. However, thesemulti-
agents frameworks are usually task-specific instead of task-agnostic,
limiting their usage to a broad range of tasks. Meanwhile, the inter-
action with data includes a variety of tasks in practice. For example,
it includes the Text-to-SQL / SQL-to-Text tasks, the generation of

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685876

4365

https://doi.org/10.14778/3685800.3685876
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/eosphoros-ai/DB-GPT
https://doi.org/10.14778/3685800.3685876
https://www.acm.org/publications/policies/artifact-review-and-badging-current


data analytics, the generation of enterprise report analysis and busi-
ness insights, etc. It is necessary for users to arrange the workflow
of multi-agents according to their own needs. The existing effort [1]
does not consider abundant data interaction needs. Finally, though
being important, the privacy-sensitive setup for LLM-empowered
data interaction is under-investigated. The previous efforts [3, 8]
are not designed for data interaction tasks.

To overcome these limitations, our key idea is to propose an open-
sourced Python library DB-GPT supporting data interaction by
using multi-agents with flexible arrangement and privacy-sensitive
setup. This idea, however, introduces three main challenges, the
first challenge (C1) is the design of multi-agents framework for
supporting database interaction. The second challenge (C2) is the
declarative expression supporting arrange multi-agents flexibly.
The third challenge (C3) focuses on the design of private LLM-
empowered data interaction.

To solve C1, we propose the Multi-Agents framework in DB-GPT
which automates the database interaction tasks. Once users have
entered their final goals, the Multi-Agents framework can free their
hands, autonomously generate the planning of tasks and execute
particular tasks. To solve C2, we proposes a declarative language
called Agentic Workflow Expression Language (AWEL) in DB-GPT .
With AWEL, users can implement their execution plan for multi-
agents with simple expression (i.e. few lines of code). Furthermore,
to make users more code-free,DB-GPT also provides an interface for
users constructing their Agentic Workflow with only drag and drop.
To solve C3, we propose Service-oriented Multi-model Management
Framework (SMMF) in DB-GPT to support users to run DB-GPT
with their private LLMs in their own execution environment. All
the interactions among users, LLMs and data are performed locally,
which definitely promises users’ privacy.

Additionally, the DB-GPT community extends its support be-
yond basic functionalities, offering a suite of product-ready fea-
tures designed to enhance data interaction capabilities. These in-
clude advanced knowledge extraction from diverse data sources for
more accurate answers to users’ queries, specialized fine-tuning
of Text-to-SQL Large Language Models (LLMs) to facilitate seam-
less database queries, and a user-friendly front-end interface for
more convenient interaction. Furthermore, DB-GPT supports mul-
tilingual functionality, accommodating both English and Chinese,
thereby broadening its applicability and ease of use across differ-
ent linguistic contexts. With these comprehensive, product-ready
considerations, DB-GPT is equipped to handle intricate data in-
teraction tasks, such as generative data analysis, enabling users
to seamlessly integrate and leverage its powerful functionalities
within their product environments. This holistic approach ensures
that DB-GPT is not just a library, but a complete solution for devel-
opers and businesses aiming to harness the full potential of AI in
the process of interacting with data.

To summarize, we make the following contributions: 1) we pro-
pose DB-GPT , an open-sourced and product-ready library support-
ing an end-to-end interactionwith data. 2) we proposeMulti-Agents
Framework in DB-GPT for solving complex data interaction tasks
like generative data analysis. 3) we propose Agentic Workflow Ex-
pression Language (AWEL) to enhance the practicability and flexi-
bility of Multi-Agents in DB-GPT . 4) we propose Service-oriented
Multi-model Management Framework (SMMF) to promise the users’

Figure 1: System Design of DB-GPT

privacy from the model perspective in DB-GPT . 5) we deploy DB-
GPT as an application with user-friendly interface and demonstrate
its utility. We also open-sourced the implementation of DB-GPT on
Github, which already has over 11k stars.

2 SYSTEM DESIGN
The overall system design of DB-GPT is depicted in Figure 1. DB-
GPT includes four layers, i.e. the protocol layer, the module layer,
the server layer and the application layer. In this section, we delin-
eate the design of each phase with a top-down manner. There are
also other layers making DB-GPT product-ready. We also introduce
the design of these layers in this section.

2.1 The Application Layer
The application layer encompasses the array of data interaction
functionalities supported by DB-GPT. These include, but are not
limited to, Text-to-SQL/SQL-to-Text, chat-to-database interactions
(chat2db), chat-to-data queries (chat2data), chat-to-Excel operations
(chat2excel), chat-to-visualization commands (chat2visualization),
generative data analysis, and question answering based on knowl-
edge bases. These functionalities include the majority of founda-
tional tasks associated with data interaction, illustrating the com-
prehensive capabilities of the DB-GPT framework.

2.2 The Server Layer
The server layer in DB-GPT is an optional component that man-
ages external inputs, such as HTTP requests, by integrating them
with domain knowledge to guide lower-tier layers, i.e. the Module
Layer. This layer’s optional status allows for direct communication
between the application layer and the module layer in simple sce-
narios. In contexts that necessitate external inputs, the server layer
acts as a supplementary intermediary, underscoring its utility in
supporting a wider range of applications.

4366



Table 1: Comparasion between DB-GPT and other tools.

LangChain [1] LlamaIndex [7] PrivateGPT [8] ChatDB [5] DB-GPT

System Components

Multi-Agents Framework ✓ ✓ ✗ ✗ ✓

Multi-LLMs Support ✓ ✓ ✗ ✓ ✓

RAG from Multiple Data Sources ✓ ✓ ✗ ✗ ✓

Agent Workflow Expression Language ✗ ✗ ✗ ✗ ✓

Fine-tuned Text-to-SQL Model ✗ ✓ ✗ ✗ ✓

Data Interaction
Functionalities

Text-to-SQL / SQL-to-Text ✓ ✓ ✗ ✓ ✓

Chat2DB / Chat2Data / Chat2Excel ✓ ✓ ✗ ✓ ✓

Data Privacy and Security ✗ ✗ ✓ ✗ ✓

Multilingual Interactions ✗ ✗ ✗ ✓ ✓

Generative Data Analysis ✗ ✗ ✗ ✗ ✓

2.3 The Module Layer
The module layer of DB-GPT is composed by Service-oriented Multi-
model Management Framework (SMMF), Retrieval-Augmented Gener-
ation (RAG) from Multiple Data Source andMulti-Agents Framework.
The three parts of the module layer are most important to support
users’ interaction with their data, shown in the Application Layer.
SMMF. SMMF in the context of DB-GPT aims at facilitating model
adaptation, enhancing deployment efficiency, and optimizing per-
formance. SMMF offers a streamlined platform for the deployment
and inference of Multi-LLMs, enabling local execution of LLMs to
ensure data privacy and security.

SMMF is underpinned by two core components: the model in-
ference layer and the model deployment layer. The inference layer
supports various LLM inference frameworks, enhancing the frame-
work’s flexibility. The deployment layer connects inference mecha-
nisms with model serving capabilities, incorporating an API server
and a model handler for robust functionality. At its core, the model
controller manages metadata, integrating the deployment process,
while the model worker establishes connectivity with inference
and infrastructure, ensuring efficient model operation. Through
SMMF, DB-GPT provides an efficient approach to deploying models
in a cloud environment, highlighting the framework’s potential in
improving adaptability and data security in MaaS applications.
RAG fromMultiple Data Source.While LLMs are usually trained
on enormous bodies of open sourced or other parties’ proprietary
data, RAG [6] is a technique for augmenting LLMs’ knowledge
with additional and often private data. Shown in Figure 2, our
RAG pipeline consists of three stages: knowledge construction,
knowledge retrieval and adaptive ICL [2] strategies.

For knowledge construction, DB-GPT constructs a knowledge
base according to multiple data sources provided by users. Con-
tents in each data source are segmented into paragraphs, with each
paragraph encoded into a multidimensional vector using a neu-
ral encoder. Notably, DB-GPT enhances traditional vector-based
knowledge representation by integrating inverted index and graph
index methods, facilitating precise context-relevant data retrieval.
For knowledge retrieval, upon receiving a query 𝑥 , it is transformed
into a query vector 𝑞. DB-GPT then identifies the top-𝑘 paragraphs
within the knowledge base that are most relevant to 𝑞. DB-GPT
employs diverse retrieval strategies for prioritizing relevant docu-
ments, including ordering based on the cosine similarity of their
embedded vectors, as well as categorization according to keyword

similarity. In the adaptive iterative contextualization phase, DB-
GPT employs Interactive Contextual Learning (ICL) for generating
responses. ICL enhances DB-GPT’s response by integrating knowl-
edge retrieval results during LLMs’ inference. It incorporates them
into a predefined prompt template to get response from LLM. The
efficacy of ICL depends on specific configurations such as prompt
templates. Our system provides various strategies for prompt for-
mulation and incorporates privacy measures to protect information.
See [11] for the full details.
Multi-Agents Framework. When dealing with challenging data
interaction tasks such as generative data analysis, DB-GPT proposes
its own Multi-Agent framework. The proposed framework lever-
ages the specialized capabilities and communicative interactions of
multiple agents to effectively address multifaceted challenges. For
example, consider the task of constructing detailed sales reports
from at least three distinct dimensions. The Multi-Agent framework
initiates this process by deploying a planning agent to devise a com-
prehensive strategy, which includes the creation of: 1) a donut chart
for the analysis of total sales by product category, 2) a bar chart for
examining sales data from the perspective of user demographics,
and 3) an area chart for evaluating monthly sales trends. Subse-
quent to the planning phase, dedicated chart-generating agents are
tasked with the production of these visual representations, which
are then aggregated by the planner and presented to users.

Compared to MetaGPT [4] and AutoGen [10], DB-GPT’s Multi-
Agent framework archives the entire communication history among
its agents within a local storage system, thereby significantly en-
hancing the reliability of the generated content of agents. Further-
more, in contrast to the LlamaIndex framework, which prescribes
a set of constrained behaviours tailored to specific use cases, DB-
GPT’s framework offers flexibility which allows users to custom-
define agents tailored to their specific data interaction tasks, thus
affording a broader applicability across various domains.

2.4 The Protocol Layer
The protocol layer in DB-GPT mainly includes Agentic Workflow
Expression Language (AWEL), which adopts the big data processing
concepts of Apache Airflow. By leveraging Directed Acyclic Graphs
(DAGs), AWEL orchestrates workflows, aligning with Apache Air-
flow’s mission to efficiently define, schedule, and oversee complex
data pipelines and workflows. In Apache Airflow, the core com-
ponents of these workflows are operators, where each operator
represents a discrete task or operation capable of executing defined
actions. Reflecting this approach, DB-GPT ’s AWEL models each

4367



Figure 2: The RAG architecture in DB-GPT

Figure 3: Demonstration of DB-GPT

agent as a distinct operator, thus enabling users to intricately design
their agent-based workflows.

2.5 Other Layers
Visualization Layer. The visualization layer aims to display the
answers returned by DB-GPT to the users with elegance. For sce-
narios involving purely textual question-and-answer formats, this
layer exhibits the textual outputs generated by DB-GPT.
Text-to-SQL Fine-Tuning. Although LLMs,.e.g., CodeX and Chat-
GPT, have shown successful results for Text-to-SQL, they still have
a gap with the fine-tuned alternatives in specific application scenar-
ios. Consequently, tailoring LLMs to domain-specific Text-to-SQL
datasets emerges as a crucial step towards enhancing their com-
prehension of prompts and facilitating superior outcomes. Within
DB-GPT, we have introduced a component, termed DB-GPT-Hub,
which encapsulates the Text-to-SQL fine-tuning process.
Execution Environments.DB-GPT is capable of operating within
distributed environments through the employment of the distributed
framework Ray, as well as within cloud ecosystems and private
cloud configurations maintained by users.

3 DEMONSTRATION
The demonstration setup includes a table need to be standardized
and a laptop. The laptop must connect to the Internet for visitors
can use DB-GPT smoothly with OpenAI’s GPT service. Visitors can
also choose local models such as Qwen and GLM. If the conference
Internet fails, a mobile hotspot (established via cell phone) can also
be used for running DB-GPT. Figure 3 illustrates the capability of
DB-GPT to perform generative data analysis. When users are faced

with a data interaction task, they initiate the process by starting a
new chat session (area 1) and entering a command such as "Build
sales reports and analyze user orders from at least three distinct
dimensions" (area 2). DB-GPT undertakes this task utilizing its
Multi-Agent framework, which begins with invoking a planner to
generate a four-step strategy tailored to the task (area 3). Then, three
specialized agents, designated for the creation of data analytics
charts, proceed to generate sales reports (area 4). These report
takes into account various dimensions, including product category,
user name and month. Another agent, dedicated to aggregating
these charts, collects, organizes, and presents them on the front-
end interface (area 5). The interface allows users to interact with
the displayed charts, offering the flexibility to alter chart types
according to their preferences (area 6). If users need further data
interaction tasks to be performed, they can continue to engage with
their data through natural language inputs (area 7)

REFERENCES
[1] Harrison Chase. 2022. LangChain. https://github.com/hwchase17/langchain
[2] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu

Sun, Jingjing Xu, and Zhifang Sui. 2022. A Survey on In-context Learning.
[3] H2O.ai. 2023. H2OGPT. https://github.com/h2oai/h2ogpt
[4] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao

Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, and Chenglin Wu. 2023. MetaGPT: Meta Programming for Multi-
Agent Collaborative Framework.

[5] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao.
2023. ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory.
arXiv:2306.03901 [cs.AI]

[6] Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kuttler, Mike Lewis, Wen tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. ArXiv abs/2005.11401 (2020).

[7] Jerry Liu. 2022. LlamaIndex. https://doi.org/10.5281/zenodo.1234
[8] Iván Martínez, Daniel Gallego Vico, and Pablo Orgaz. 2023. PrivateGPT. https:

//github.com/imartinez/privateGPT
[9] Toran Bruce Richards. 2022. AutoGPT. https://github.com/Significant-Gravitas/

AutoGPT
[10] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang

Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. AutoGen:
Enabling Next-Gen LLM Applications via Multi-Agent Conversation Frame-
work. CoRR abs/2308.08155 (2023). https://doi.org/10.48550/ARXIV.2308.08155
arXiv:2308.08155

[11] Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun
Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, Wang Zhao,
Fan Zhou, Danrui Qi, Hong Yi, Shaodong Liu, and Faqiang Chen. 2023. DB-GPT:
Empowering Database Interactions with Private Large Language Models. arXiv
preprint arXiv:2312.17449 (2023). https://arxiv.org/abs/2312.17449

4368

https://github.com/hwchase17/langchain
https://github.com/h2oai/h2ogpt
https://arxiv.org/abs/2306.03901
https://doi.org/10.5281/zenodo.1234
https://github.com/imartinez/privateGPT
https://github.com/imartinez/privateGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://doi.org/10.48550/ARXIV.2308.08155
https://arxiv.org/abs/2312.17449

	Abstract
	1 Introduction
	2 System Design
	2.1 The Application Layer
	2.2 The Server Layer
	2.3 The Module Layer
	2.4 The Protocol Layer
	2.5 Other Layers

	3 Demonstration
	References

