
ImputeVIS: An Interactive Evaluator to Benchmark Imputation
Techniques for Time Series Data

Mourad Khayati
University of Fribourg

Switzerland
mourad.khayati@unifr.ch

Quentin Nater
University of Fribourg

Switzerland
quentin.nater@unifr.ch

Jacques Pasquier
University of Fribourg

Switzerland
jacques.pasquier@unifr.ch

ABSTRACT
With the emergence of The Internet of Things (IoT), smart sensors
have become abundant in our daily lives. Failures are very com-
mon in those devices, leaving the recorded time series with missing
blocks of consecutive values. A cottage industry of imputation al-
gorithms exists, each with different performance tradeoffs. The
diversity in time series features, missingness patterns, and algo-
rithms’ categories makes it challenging to select the best algorithm.

In this demonstration, we showcase ImputeVIS, an analytical
tool for benchmarking imputation algorithms. ImputeVIS provides
an optimal configuration of those algorithms by implementing var-
ious AutoML parameterization strategies. Moreover, it uncovers
the behavior of imputation algorithms by explaining the interplay
between time series features and the imputation results. Its inter-
active web browser interface allows users to simulate real-world
sensor malfunctions by contaminating time series with different
missing block scenarios, deploy their imputation algorithms, and
compare them against various popular imputation families.

PVLDB Reference Format:
Mourad Khayati, Quentin Nater, and Jacques Pasquier. ImputeVIS: An
Interactive Evaluator to Benchmark Imputation Techniques for Time Series
Data. PVLDB, 17(12): 4329 - 4332, 2024.
doi:10.14778/3685800.3685867

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/eXascaleInfolab/ImputeVIS.

1 INTRODUCTION
The Internet of Things (IoT) has revolutionized various industries by
connecting smart devices to collect and exchange data in real-time.
The recording sensors are often prone to several failures due to
power loss, interference, occlusion, etc, leaving the time series with
missing blocks of consecutive values. Processing these faulty time
series is known to compromise the quality of real-time analytics
and yield wrong results [2, 13].

Several imputation algorithms exist to recover the missing blocks
in time series data and restore their ability to be properly pro-
cessed [1, 6, 9, 12, 15]. These algorithms take a faulty time series
and, based on various surrogate strategies, suggest replacement

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685867

values for the missing data portions. The trade-offs those imputa-
tion algorithms make have a paramount impact on their ability to
restore incomplete time series. The diversity in imputation mech-
anisms, time series features, and missing block patterns makes it
strenuous to compare and understand the relative performance of
existing imputation algorithms.

To fill this gap, we have proposed ImputeBench [7], a compre-
hensive benchmark for imputation algorithms for time series. Im-
puteBench introduces a modular evaluation platform that includes
(i) curated time series datasets, (ii) a unified test-bed for comparing
efficacy and efficiency, and (iii) a reusable code framework for im-
plementing several families of imputation. ImputeBench adopts a
plug-and-play strategy where users plug their benchmark-agnostic
code and the benchmark creates missing patterns in a systematic
way. Then, it generates a human-readable performance report that
serves as a guide to navigating the choice of available algorithms.
ImputeBench’s evaluation framework has been adopted by several
recent imputation works, for example [1, 4, 6], to cite a few.

In this demonstration, we showcase ImputeBench through a
graphical tool, coined ImputeVIS, that allows users to compare
different imputation algorithms in an interactive dashboard. Im-
puteVIS integrates all ImputeBench’s features and complements
it with unique features, including (i) Data profiling using feature
extraction tailored to imputation, (ii) Parameterizable and com-
posable missing value patterns for customized benchmarking, and
(iii) Imputation optimizer to fine-tune imputation algorithms using
advanced AutoML techniques.

Through its interactive frontend, ImputeVIS provides a data
science pipeline for explainable time series data repair. We aim to
show how ImputeBench improves the experience in designing time
series imputation techniques. We make ImputeVIS available as an
open-source toolkit to the database community to reproduce and
complement the results of our previous work.

The rest of this paper is organized as follows. Section 2 provides
an overview and necessary background on ImputeBench. Then,
in Section 3, we present ImputeVIS, detailing its architecture and
functionalities. Finally, in Section 4, we introduce demonstration
scenarios enabled by ImputeVIS that the attendees will play.

2 IMPUTEBENCH OVERVIEW

Datasets. ImputeBench curates seven real-world datasets from
various applications. Each dataset holds several time series that
cover a wide range of characteristics and sizes. This variety allows
us to evaluate the interplay between the imputation algorithms and
the time series properties. Table 1 displays a sample time series
from each dataset as well as their size.

4329

https://doi.org/10.14778/3685800.3685867
https://github.com/eXascaleInfolab/ImputeVIS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685867
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Table 1: Description of the used time series.

Dataset TS Sample TS Length TS Nbr.

Air 1k 10
Chlorine 1k 50
Gas 1k 100

Climate 5k 10

Electricity 5k 20

Temperature 5k 50
MeteoSwiss 10k 10
BAFU 50k 10

Evaluation Framework. ImputeBench includes a unified bench-
marking framework for imputation algorithms tailored to time
series data. It implements various advanced algorithms covering
most state-of-the-art imputation mechanisms using the same code
base. The algorithms are evaluated for effectiveness and efficiency
using a well-defined set of patterns and metrics. As algorithms, two
families of imputation are considered. The first category includes
matrix completion techniques, which replace missing values with
surrogate candidates obtained by decomposing an input matrix of
time series. The second category implements pattern-based tech-
niques, which impute the missing values using a matching query
pattern in the historical data. All the algorithms are re-implemented
with a common code infrastructure using the same advanced linear
algebra operations and are manually parameterized.

The framework evaluates the algorithms in a systematic way by
creating different realistic patterns of missing data. The intuition
is that different shapes of missing blocks may require different
imputation algorithms, even if occurring on the same time series.
ImputeBench explores missing block sizes ranging from 10 to 80% of
a given time series, as well as missing blocks occurring in different
series. The position of the missing blocks also varies in different
patterns, and four sensor malfunction scenarios are simulated: over-
lapping, disjoint, missing completely at random, and blackout when
all sensors go silent simultaneously. All those missingness patterns
are described in detail in [7].

Once the time series are contaminated with those patterns, Im-
puteBench evaluates the reconstruction quality of each algorithm
against the ground truth using two metric categories. The first
category computes the distance between the original block and
the recovered one using the Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE). The two metrics weigh the reconstruc-
tion error differently depending on the existence of outliers. The
second category computes the shape between the original series and
the reconstructed one using the Pearson correlation—for aligned
recovery—and the Spearman correlations—for shifted recovery. For
computational performance, the elapsed runtime (wall clock) of the
recovery is measured by varying the size of the missing blocks and
the sequence length and number.

3 IMPUTEVIS TOOLKIT
In this section, we present the architecture, the user interface, and
the features of ImputeVIS. The backend of the tool is implemented
in Python, while the front end is in Vue.js. A demo version is
deployed on our web server, offering all features of ImputeVIS. The
code and datasets of ImputeVIS are accessible at https://github.com/
eXascaleInfolab/imputevis. Any other application can easily embed
ImputeVIS, thus enabling time series imputation benchmarking.

3.1 Architecture
Figure 1 depicts the overall structure of ImputeVIS. Our proposed
system consists of a web-based frontend and a backend to contami-
nate time series with missing values and decontaminate them. The
interaction with the system starts by selecting a dataset of complete
time series. A broad palette of missingness patterns, borrowed from
ImputeBench, is simulated by activating the data contamination
module. ImputeVIS allows creating missing block sizes of a given
time series as well as missing blocks occurring in different series.
Once the time series are contaminated, the tenants can select the
imputation technique(s) to impute the missing values. The user-
run configuration {time_series, imputation_algorithm} will be sent
through the API to the backend. The server side processes client re-
quests and launches the imputation optimizer. ImputeVIS executes
the imputation, sends the results back to the frontend, and presents
them in an interactive dashboard. Using the imputation results, the
explainer module enables extracting the series’ features that impact
the imputation process and shows them in a dashboard.

Figure 1: Architecture of ImputeVIS.

3.2 Imputation Optimizer
The optimizer module aims to relieve users of the time-consuming
and error-prone task of manually configuring the parameters of
imputation algorithms. It provides an optimal parameterization
that strikes a balance between effectiveness and efficiency. Impute-
VIS implements three advanced Auto Machine Learning (AutoML)
strategies and recommends the best one on a metric basis.

Successive Halving (SH) [8] is the first optimization method
supported by ImputeVIS. It resorts to a pruning-based strategy that
identifies the optimal configuration of parameters by allocating a
budget (e.g., number of iterations) to a set of configurations. At
each iteration, it allocates exponentially more resources to more
promising configurations and prunes out the worst half until one
configuration survives.

The second technique is Bayesian Optimization (BO) [3]. BO
operates on a small subset of parameters and time series and in-
crementally expands the search space by increasing the number

4330

https://github.com/eXascaleInfolab/imputevis
https://github.com/eXascaleInfolab/imputevis


of parameters and the data size. The search mechanism constructs
a surrogate probabilistic model of an objective function, which
represents the (imputation) algorithms and updates it by integrat-
ing uncertainty. It does so by selecting the point that maximizes
the objective function, evaluates it, and augments the data with
additional data points to fit the built model.

The third method that ImputeVIS implements, called Particle
Swarm Optimization (PSO) [5], relies on the assumption that the
set of parameter solutions co-exists and cooperates simultaneously.
It uses multiple particles, each representing a candidate solution,
to simulate how a swarm of particles explores the search space
of parameters. Each particle’s movement is influenced by its local,
currently best-known position, and guided toward best-known
positions in the search space. The search space is updated based
on the discoveries found by other particles, as this is expected to
move the swarm towards the best solutions. This method aims to
balance the exploration and exploitation of the search space.

3.3 Explainer
Once the incomplete time series are recovered, ImputeVIS allows
the user to explore the features in the data that impact the result.
This is achieved by computing the contribution of time series fea-
tures in the imputation. We employ the popular Shapely Additive
exPlanations (SHAP) [11], adopted from the field of game theory,
which measures the average impact of each feature on the imputa-
tion by assigning a weight.

To attribute a meaningful interpretation of the SHAP results,
ImputeVIS groups the extracted features into four categories: geom-
etry, transformation, correlation, and trend. Each of those categories
exposes a discriminative aspect of the time series and explains the
behavior of the imputation algorithms to recover a given missing
pattern on a time series.

3.4 User Interface
Figure 2 depicts the interaction between the user and ImputeVIS. As
input, users can A select the dataset to recover from the preloaded
datasets or by uploading a new dataset. By default, the system visu-
alizes the raw data of the selected dataset. Users can also visualize
the data at various granularities by normalizing all of the time
series or a subset of them. Upon display, ImputeVIS allows B to
inject synthetic missing patterns while choosing the missing blocks’
type, position, and size. Once the missing patterns are created, the
system presents the list of imputation techniques and optimization
methods. Users can C visualize on-the-fly the result of using a
given optimization method or manually varying the values of the
algorithms’ parameters.

After specifying the imputation configuration, the recovery pro-
cess can be triggered by clicking on the “Impute” button D . Im-
puteVIS finds the optimal parameterization, displays both the im-
putation result and the ground truth, and ranks the imputation
techniques according to various performance metrics. To explain
the imputation results, users can select a specific time series and
click on the “Explain” button E . The explanation consists of the
features—with the highest SHAP values—that impact the imputa-
tion most. The features will be grouped according to the family to
which they belong. We use the features provided by Catch22 [10].

4 DEMONSTRATION PLAN
This demonstration will showcase the capabilities of ImputeVIS.
We begin the demonstration with an introduction to imputation
mechanisms and the different missing patterns in time series data.
Attendees will interact with the web interface to (i) simulate real-
world missing values scenarios in IoT devices, (ii) upload imputation
algorithms and evaluate them on new datasets, and (iii) analyze the
interplay between the imputation process and dataset properties.

Scenario 1: Missing Blocks Creation and Recovery. We will
start by stimulating a malfunctioning sensor in a real-world envi-
ronment and repair it using ImputeVIS. Users will upload a dataset
to the tool using the UI from a list of eight real-world time series
datasets. Should the user wish, over 100 new datasets can be added
using the “upload” functionality. Once the dataset is loaded, atten-
dees will be invited to specify the missingness configuration from
the pattern builder by configuring the size, position, and number
of the missing blocks. Upon missing values creation, users will
be invited to click on the “Impute” button, which will display the
recovery of the imputation techniques and rank them according
to various metrics. The imputation techniques can be parameter-
ized using two modes: i) manual tuning by assessing on-the-fly the
impact of varying the parameters on imputation or ii) automated
tuning using the Optimizer module.

Scenario 2: Explaining Imputation Results. ImputeVIS provides
a systematic way to inspect dataset features that impact the impu-
tation results. To compare the selected datasets, their main features
will be displayed side-by-side. By clicking on the “Explain” button,
users will invoke SHAP to attribute a weight to the subset of fea-
tures that contribute the most to the recovery. Users shall observe
the interplay between the properties of the imputation algorithms
and those of the datasets. For example, high statistical values impact
the matrix-based algorithms, while high topological values impact
the pattern-based techniques. Using this functionality, imputation
practitioners can identify the time series features that hinder the
performance of their algorithms.

Scenario 3: Imputation Algorithms Deployment. In this sce-
nario, users will experience the performance evaluation of new
imputation algorithms with the assistance of ImputeVIS. Atten-
dees can deploy two additional categories of imputation techniques:
proximity-based techniques [9, 15] and Deep Neural Networks-
based techniques [1, 14]. They shall observe the cases where those
techniques outperform ImputeBench’s built-in algorithms. Basic
statistical methods such as MeanImpute or kNNImpute can also
be seamlessly deployed. Alternatively, users can import their own
imputation algorithms and compare their performance against the
provided ones using several metrics.

These demonstrations will highlight the importance of imputing
missing values in time series data and the diversity of existing algo-
rithms. They will also identify the cases where novel algorithms are
expected. We hope the variety of imputation families we implement
will serve as a working basis for time series practitioners.

ACKNOWLEDGMENTS
We would like to thank Brian Schweigler for his early contribution
in designing and building the tool.

4331



Figure 2: ImputeVIS provides a GUI that allows users to (A) visualize time series at different granularity and (B) simulate
real-world malfunctions by contaminating one or multiple time series with missing blocks while specifying their type and rate.
Users can (C) select a parameterization technique, and the tool (D) compares the performance of a set of imputation techniques
using several metrics and recommends the optimal imputation. The tool implements (E) a utility that enables extracting, from
the time series, the main features that impact the imputation.

REFERENCES
[1] Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. 2021. Missing

Value Imputation on Multidimensional Time Series. Proc. VLDB Endow. 14, 11
(2021), 2533–2545. https://doi.org/10.14778/3476249.3476300

[2] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. 2017.
Query Optimization for Dynamic Imputation. Proc. VLDB Endow. 10, 11 (2017),
1310–1321. https://doi.org/10.14778/3137628.3137641

[3] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018 (Proceedings of Machine Learning Research), Jennifer G. Dy
and Andreas Krause (Eds.), Vol. 80. PMLR, 1436–1445.

[4] Sofia Fernandes, Mário Antunes, Diogo Gomes, and Rui L Aguiar. 2021. Misalign-
ment problem in matrix decomposition with missing values. Machine Learning
110, 11 (2021), 3157–3175.

[5] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of International Conference on Neural Networks (ICNN’95), Perth, WA,
Australia, November 27 - December 1, 1995. IEEE, 1942–1948. https://doi.org/10.
1109/ICNN.1995.488968

[6] Mourad Khayati, Ines Arous, Zakhar Tymchenko, and Philippe Cudré-Mauroux.
2020. ORBITS: Online Recovery of Missing Values in Multiple Time Series
Streams. Proc. VLDB Endow. 14, 3 (2020), 294–306. https://doi.org/10.5555/
3430915.3442429

[7] Mourad Khayati, Alberto Lerner, Zakhar Tymchenko, and Philippe Cudré-
Mauroux. 2020. Mind the Gap: An Experimental Evaluation of Imputation
of Missing Values Techniques in Time Series. Proc. VLDB Endow. 13, 5 (2020),
768–782. https://doi.org/10.14778/3377369.3377383

[8] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to Hyperparameter

Optimization. J. Mach. Learn. Res. 18 (2017), 185:1–185:52.
[9] Xiao Li, Huan Li, Hua Lu, Christian S. Jensen, Varun Pandey, and Volker Mark.

2023. Missing Value Imputation for Multi-attribute Sensor Data Streams via
Message Propagation. In Proceedings of the VLDB Endowment, Vol. 17. 345–358.

[10] Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and
Nick S Jones. 2019. catch22: CAnonical Time-series CHaracteristics: Selected
through highly comparative time-series analysis. Data Mining and Knowledge
Discovery 33, 6 (2019), 1821–1852.

[11] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA. 4765–4774.

[12] Xiaobin Ren, Kaiqi Zhao, Patricia J. Riddle, Katerina Taskova, Qingyi Pan, and
Lianyan Li. 2023. DAMR: Dynamic Adjacency Matrix Representation Learning
for Multivariate Time Series Imputation. Proc. ACM Manag. Data 1, 2 (2023),
188:1–188:25. https://doi.org/10.1145/3589333

[13] Shaoxu Song and Aoqian Zhang. 2020. IoT Data Quality. In CIKM ’20: The
29th ACM International Conference on Information and Knowledge Management,
Virtual Event, Ireland, October 19-23, 2020, Mathieu d’Aquin, StefanDietze, Claudia
Hauff, Edward Curry, and Philippe Cudré-Mauroux (Eds.). ACM, 3517–3518.
https://doi.org/10.1145/3340531.3412173

[14] Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. 2019. Estimating
Missing Data in Temporal Data Streams Using Multi-Directional Recurrent
Neural Networks. IEEE Trans. Biomed. Engineering 66, 5 (2019), 1477–1490.
https://doi.org/10.1109/TBME.2018.2874712

[15] Aoqian Zhang, Shaoxu Song, Yu Sun, and Jianmin Wang. 2019. Learning
Individual Models for Imputation. In 35th IEEE International Conference on
Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 160–171.
https://doi.org/10.1109/ICDE.2019.00023

4332

https://doi.org/10.14778/3476249.3476300
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.5555/3430915.3442429
https://doi.org/10.5555/3430915.3442429
https://doi.org/10.14778/3377369.3377383
https://doi.org/10.1145/3589333
https://doi.org/10.1145/3340531.3412173
https://doi.org/10.1109/TBME.2018.2874712
https://doi.org/10.1109/ICDE.2019.00023

	Abstract
	1 Introduction
	2 ImputeBench Overview
	3 ImputeVIS Toolkit
	3.1 Architecture
	3.2 Imputation Optimizer
	3.3 Explainer
	3.4 User Interface

	4 Demonstration Plan
	Acknowledgments
	References

