
IsoVista: Black-box Checking Database Isolation Guarantees
Long Gu

State Key Laboratory for

Novel Software Technology

Nanjing University

502023320005@smail.nju.edu.cn

Si Liu

ETH Zurich

si.liu@inf.ethz.ch

Tiancheng Xing

State Key Laboratory for

Novel Software Technology

Nanjing University

xtc1207445468@outlook.com

Hengfeng Wei
∗

State Key Laboratory for

Novel Software Technology

Nanjing University

hfwei@nju.edu.cn

Yuxing Chen

Tencent Inc.

axingguchen@tencent.com

David Basin

ETH Zurich

basin@inf.ethz.ch

ABSTRACT
Transactional isolation is critical to the functional correctness of

database management systems (DBMSs). Much effort has recently

been devoted to finding isolation bugs and validating isolation

fulfilment in production DBMSs. However, there are still challenges

that existing isolation checkers have not yet fully addressed. For

instance, they may overlook bugs, incur high checking overhead,

and return hard-to-understand counterexamples.

We present IsoVista, the first black-box isolation checking system

that encompasses all the following features. It builds on faithful

characterizations of a range of isolation levels, ensuring the absence

of both false positives and missed bugs in collected DBMS execution

histories. IsoVista exhibits superior checking efficiency, compared to

the state-of-the-art, and visualizes violation scenarios, facilitating

the understanding of bugs found. It also supports profiling and

benchmarking the performance of isolation checkers under various

workloads, assisting developers of both DBMSs and checkers. We

showcase all these features through user-friendly interfaces.

PVLDB Reference Format:
Long Gu, Si Liu, Tiancheng Xing, Hengfeng Wei, Yuxing Chen, and David

Basin. IsoVista: Black-box Checking Database Isolation Guarantees. PVLDB,

17(12): 4325 - 4328, 2024. doi:10.14778/3685800.3685866

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/hengxin/IsoVista.

1 INTRODUCTION
Database management systems (DBMSs) are the backbone of nu-

merous software systems and applications. Transactional isolation
is one of the most crucial functional correctness properties. To bal-

ance data consistency and performance, DBMSs provide a spectrum

of isolation levels (or guarantees), including weak levels like read

committed, the “sweet spot” transactional causal consistency

that is the highest level achievable in always-available systems, and

the gold standard serializability.

∗
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.

doi:10.14778/3685800.3685866

Despite being mature and extensively tested, numerous isola-

tion bugs have been found in many production DBMSs, including

PostgreSQL and MariaDB, during a recent testing campaign [2, 4–

6]. This raises the concern of whether existing DBMSs effectively

uphold the promised isolation guarantees in practice.

Recent years have witnessed a torrent of isolation checkers [2, 4–

6, 8, 9] for testing database isolation guarantees. The de facto ap-
proach adopted by these checkers is randomized black-box testing.
This approach stresses DBMSs with large, concurrent workloads,

serving a dual purpose: increasing the likelihood of triggering iso-

lation bugs and gaining confidence in their absence.

There are still challenges that existing isolation checkers have

not yet fully addressed. First, many checkers fail to detect some crit-

ical bugs due to their incomplete characterizations of the isolation

levels in question. Second, existing checkers often incur signifi-

cant checking overhead when searching for cycles (or anomalies)

in a transactional dependency graph. When utilizing SMT (Satis-

fiability Modulo Theories) solvers to check isolation guarantees,

encoding and solving transactional dependency constraints may

still be expensive. These overheads become more pronounced un-

der workloads of higher concurrency. Third, most checkers return

hard-to-understand counterexamples, such as unsatisfied clauses.

This makes understanding and debugging the violations found

hard. Fourth, an ideal checking system would encompass a range

of isolation levels, catering for various checking requirements.

We present IsoVista, the first black-box isolation checking sys-

tem that has addressed all these challenges. IsoVista substantially

expands our prior work PolySI [4], which is an efficient and com-

plete checker for snapshot isolation (SI), and incorporates our

recent advance in checking weak isolation levels [6]. Overall, it

exhibits the following key features.

Many Levels Supported. In addition to SI, IsoVista supports check-
ing a wide spectrum of isolation levels. These include the gold stan-

dard serializability (SER), the default level read committed (RC)

for most SQL databases, repeatable read (RR) favorable for read-

only transactions, and more recent levels, such as read atomicity

(RA) and transactional causal consistency (TCC), catering for

various modern database applications such as social media [7].

Complete and Efficient Checking. IsoVista builds on our sound

and complete formal characterizations of all six isolation levels.

This guarantees the absence of both false positives and missed

bugs in collected DBMS execution histories. IsoVista also demon-

strates superior checking performance by leveraging various design

4325

https://doi.org/10.14778/3685800.3685866
https://github.com/hengxin/IsoVista
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685866
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: The architecture of IsoVista.

choices and optimization techniques. These include compact and

efficient SMT encoding for stronger isolation levels such as SER

and SI, as well as efficient data structures for storing and traversing

transactional dependency graphs in weaker levels like TCC.

Informative Bug Visualization. Upon detecting an isolation bug,

IsoVista reconstructs the full violating scenario by identifying the

core participating transactions and their dependencies, rather than

reporting a plain cycle or unsatisfied clauses (if an SMT solver is

in use). Such detailed counterexamples could assist developers in

comprehending the bugs and pinpointing their causes.

Benchmarking Isolation Checkers. IsoVista facilitates monitor-

ing a checker’s runtime information, such as CPU and memory

utilization. It also supports profiling checking statistics across pa-

rameterized workloads. This provides comprehensive insights into

tools’ performance, such as detecting sudden increases in checking

time with a high number of clients, and allows exploration of the

tool design space with new optimizations.

2 BACKGROUND
Black-box checking of isolation guarantees proceeds as follows.

Clients initiate transactional requests, produced by a randomized

workload generator, to a DBMS. Each client session records the

requests it sends, along with the corresponding results provided

by the DBMS. These records from all clients are combined into a

unified history, which is then passed on to the isolation checker.

Finally, the checker checks whether the history meets the specified

isolation level. Specifically, the checker constructs a certain kind

of transactional dependency graph [1–3] (also see below) from the

history, and employs graph traversal algorithms or SMT solvers to

search for specific cycles, which represent different isolation bugs.

Upon finding a bug, some checkers also provide a counterexample.

We base our formal specification of isolation levels on the ax-

iomatic frameworks in [2, 3]. Compared to Adya’s formalization [1],

these frameworks allow us to unify the characterizations of both

SQL-92 standardized isolation levels and more recent ones such as

RA and TCC. Moreover, they are suitable for black-box checking

over histories, as transactional dependencies can be straightfor-

wardly derived or effectively inferred. In addition, Adya’s formal-

ization relies on transactions’ start and commit timestamps for

defining isolation levels like SI. Databases, such as MongoDB and

TiDB, may not expose such information as in our black-box setting.

A transactional dependency graph typically captures four types

of dependencies (or relations) between the transactions in a his-

tory. The SO relation enforces a strict total order between the

transactions within the same session. The WR relation associates a

transaction that reads a value with the one that writes this value.

The WW relation enforces a strict total order (also known as the

version order [1]) between transactions that update the same key.

The RW relation is derived from WR and WW relations, relating a

transaction that reads a value to the one that overwrites this value.

Isolation levels can be characterized by dependency graphs with

specific cycles. For example, SER is characterized by acyclic depen-

dency graphs [1], while SI is characterized by dependency graphs

that contain only cycles with at least two adjacent RW edges [3].

3 ISOVISTA DESIGN AND IMPLEMENTATION
We present an overview of IsoVista. Figure 1 depicts its architecture:

a backend that extends PolySI by integrating all key features, and a

frontend facilitating developers’ interaction with these features.

3.1 IsoVista Backend
3.1.1 Isolation Checker. At the core of IsoVista’s backend lies an

isolation checker implemented in Java, which comprises six check-

ing components, one for each isolation level. For stronger isola-

tion levels (i.e., SI and SER) with substantial checking complexity,

IsoVista employs generalized polygraphs [4] to compactly encode

transactional dependency constraints. It integrates the advanced

SMT solver MonoSAT, specialized in verifying graph properties like

acyclicity. Moreover, IsoVista leverages efficient constraint pruning

optimizations to accelerate SMT solving.

For the remaining polynomial-time checkable weaker isolation

levels, IsoVista employs graph traversals, instead of SMT solving

that specializes in resolving uncertain transactional dependencies

such as the order of concurrent writes. Moreover, IsoVista lever-

ages a novel combination of vectors and tree clocks to efficiently

capture transitive dependencies and accelerate graph traversals for

both reachability checking and cycle detection [6]. This substan-

tially extends our original PolySI design. Consequently, IsoVista

can efficiently validate millions of transactions under weaker isola-

tion levels like TCC in a few minutes. Additionally, IsoVista offers

developers an interface to integrate their own checkers.

3.1.2 History Loader and Collector. Developers can upload pre-

collectedDBMS execution histories through IsoVista’s history loader.
IsoVista currently supports histories of both read-write registers,

compatible with all existing checkers, and list-append operations,

which enable efficient inference of version orders [5].

Moreover, IsoVista incorporates a parameterized workload gen-

erator within its history collector. When developers check isolation

levels of a DBMS using IsoVista, the workload generator produces

transaction workloads (currently limited to read-write registers)

in memory based on specified parameters (Section 3.2). The his-

tory collector then simulates client interactions with the tested

4326

B

C

E

①

⑥

③ ④

A

②

⑤
⑦

D

Figure 2: IsoVista’s GUI.

DBMS using the generated workloads and collects the transactional

requests along with their corresponding outcomes.

3.1.3 Web Server. IsoVista incorporates a Python-based web server,
bridging the above components and the frontend. For example, it

orchestrates the history collector and isolation checker based on

the frontend configuration, while caching the runtime data, e.g.,

checking time and detected bugs, for delivery to the frontend.

3.2 IsoVista Frontend GUI
Developers interact with IsoVista through its GUI, illustrated in

Figure 2, which is implemented as a web service.

3.2.1 Configuration. IsoVista offers developers a modular inter-

face to configure their experiments, shown in Figure 2A. This in-

terface contains three modules. First, Database Setting includes

information about the tested DBMS, its isolation levels, and the

JDBC connection. Second, Workload Setting includes parameters

for the workload generator, such as the number of sessions and

the read/write ratio. IsoVista also supports batched workloads. For

example, #sess=[5,10,15,20] will generate four workloads, each with

a progressively larger number of sessions. This is useful for bench-

marking checker performance. Alternatively, developers can upload

their pre-collected histories in the format of either read-write reg-

isters or list-append operations by enabling Skip Generator. Third,

Checker Setting includes the checking components for different

isolation levels. In addition to the built-in six components, custom

checkers that have been integrated into IsoVista are also displayed.

3.2.2 Task Tracing. After configuration, the developer can submit

a task, potentially amounting to multiple DBMS runs. The web

server queues the task for execution. IsoVista displays all history

runs in a table, one row for each run, as shown in Figure 2B. Each

run has one of four statuses: Healthy (successful validation without

isolation bugs), Buggy (isolation bug detected), Running (displaying

progress bar), or Pending (waiting for execution). Developers can

click the View button to access the runtime information of a task

and its checking statistics (Section 3.2.3).

Upon detecting an isolation bug, IsoVista adds the corresponding

task to the bug summary table, as shown in Figure 2C. It allows

developers to categorize each bug with a label (Open or Fixed) to

track its status. Additionally, developers can click the View button

to investigate the details of a bug (Section 3.2.4).

3.2.3 Runtime and Checking Statistics. IsoVista monitors a task’s

CPU and memory usage in real-time throughout its execution. This
allows developers to timely adjust their tasks like termination (Stop

shown in Figure 2B). Moreover, upon (sub-)task completion, addi-

tional details such as the average checking time and the maximum

memory usage for a batch of histories are also shown. For example,

4327

1○ and 2○ in Figure 2D present such statistics for varying num-

bers of sessions, where data are plotted gradually as the number of

sessions increases.

IsoVista additionally performs a decomposition analysis that

breaks down the checking time into stages. For solver-based check-

ing components like SI, the stages involve constructing the depen-

dency graph, encoding and pruning constraints, and the solving

process, as shown in 3○. For checking components not based on

solving, the stages involve both constructing and traversing the

graph. For example, IsoVista incurs less traversal overhead than Elle

for checking TCC, as depicted in 4○. These statistics are displayed

side-by-side, offering developers a comprehensive and detailed per-

spective on the performance of the compared checkers.

Furthermore, developers can hover over a chart to view the

specific value at a particular point. They can also click the Download

button to save these charts for further analysis or record-keeping.

3.2.4 Bug Visualization. IsoVista visualizes detected bugs to aid

developers in diagnosing their causes. As shown in Figure 2E, a

bug is displayed as a transactional dependency graph. IsoVista

distinguishes different types of edges by colors. Note that, for solver-

based checking components, IsoVista constructs such a graph from

the unsatisfied clauses returned by MonoSAT. We develop this

feature based on PolySI’s interpretation algorithm [4].

During the checking process, IsoVista also identifies additional

transactions and the associated dependencies that contribute to the

reported bug. Developers can expand the highlighted cycle in the

initially returned graph, such as 6○, to reconstruct a comprehensive

violating scenario, as shown in 7○. These additional details elucidate

how the core dependencies in the cycle are inferred. Moreover,

IsoVista enriches the graph with explanatory details. For instance,

hovering over a node reveals the transaction’s operations, such as

the read operation id1 retrieving value 0 for key 2.

IsoVista enables developers to manipulate the graph by dragging

nodes, marking/removing nodes and edges, resizing, and perform-

ing undo/redo actions. Additionally, the graph can be downloaded

in formats like PNG, TikZ, and DOT.

4 DEMONSTRATION
We showcase IsoVista’s key features in three scenarios, highlighting

the comprehension of identified bugs, benchmarking checkers, and

efficient checking of weak isolation levels.

4.1 Unserializable Transactions in PostgreSQL
Configuration. PostgreSQL (v12.3) is tested under SER. The work-

load is generated by IsoVista: #sess=20, #txn/sess=1, #ops/txn=2,

read proportion=50%, #key=10, and distribution=uniform.

Counterexample. IsoVista rediscovers this bug using its SER

checker with a workload of read-write registers, as shown in 6○.

This bug was previously found by Elle with list-append operations.

IsoVista presents the counterexample as a transactional dependency

graph, highlighting a cycle of two RW edges.

The remaining part of the graph restored by IsoVista explains

how these two RW edges are inferred, as shown in 7○. For instance,

the RW(k2) edge from Txn(id17) to Txn(id11) is derived from the

WW(k2) edge from Txn(id0) to Txn(id11) and theWR(k2) edge from

Txn(id0) to Txn(id17); the other possibility of the WW dependency

between Txn(id0) and Txn(id11), depicted as a yellow dashed arrow

from Txn(id11) to Txn(id0) is pruned due to the presence of the

WR(k10) edge from Txn(id0) to Txn(id11). The rationale for the

RW(k10) edge from Txn(id11) to Txn(id17) is similar.

4.2 Comparing SI Checkers
Configuration. Histories are obtained from MySQL (v8.3) under

SER using IsoVista (#sess=[5,10,15,20], #txns/sess=100, #ops/txn=5,

#key=1000, read proportion=50%, distribution=uniform).

Performance Comparison. We have developed PolySI+ that en-

hances our previous PolySI checker with heuristic pruning. We

have incorporated it into IsoVista, which allows us to compare the

performance of these two checkers, along with Viper [9], a state-of-

the-art SI checker released concurrently with PolySI. The plots 1○
and 2○ in Figure 2D show their performance with varying number

of sessions. Overall, PolySI+ outperforms the other two checkers

with less checking time and lower memory overhead. Moreover,

IsoVista’s decomposition analysis reveals that the performance im-

provement of PolySI+ primarily originates from the solving stage,

as shown in 3○. This validates our optimization which prunes a

significant number of constraints before solving.

4.3 Profiling IsoVista’s Weak Isolation Checkers
Configuration. Histories are obtained from PostgreSQL (v15.2)

under SER using IsoVista (#sess=100, #txns/sess=10k, #ops/txn=50,

#key=100 million, read proportion=50%, distribution=uniform).

Performance Results. To evaluate IsoVista’s scalability in check-

ing weaker isolation levels, including RC, RA, and TCC, we generate

large workloads comprising one million transactions and 50 million

operations. These experiments involve varying read proportions.

IsoVista completes all checking tasks within three minutes (5○).

Together with the decomposition analysis result shown in 4○, this

demonstrates the effectiveness of IsoVista’s optimized graph traver-

sals via vectors and tree clocks for checking weak isolation levels.

ACKNOWLEDGMENTS
Si Liu was supported by an ETH Zurich Career Seed Award.

REFERENCES
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Im-

plementations for Distributed Transactions. Ph. D. Dissertation. Massachusetts

Institute of Technology.

[2] Ranadeep Biswas and Constantin Enea. 2019. On the Complexity of Checking

Transactional Consistency. Proc. ACM Program. Lang. 3, OOPSLA, Article 165
(Oct 2019), 28 pages.

[3] Andrea Cerone and Alexey Gotsman. 2018. Analysing Snapshot Isolation. J. ACM
65, 2, Article 11 (Jan 2018), 41 pages.

[4] Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei, David A. Basin, Haixiang Li,

and Anqun Pan. 2023. Efficient Black-box Checking of Snapshot Isolation in

Databases. Proc. VLDB Endow. 16, 6 (Feb 2023), 1264–1276.
[5] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies from

Experimental Observations. Proc. VLDB Endow. 14, 3 (Nov 2020), 268–280.
[6] Si Liu, Long Gu, Hengfeng Wei, and David Basin. 2024. Plume: Efficient and

Complete Black-box Checking of Weak Isolation Levels. Technical Report. https:
//github.com/dracoooooo/Plume.

[7] Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin. 2024. NOC-NOC:

Towards Performance-optimal Distributed Transactions. Proc. ACM Manag. Data
2, 1, Article 9 (Mar 2024), 25 pages.

[8] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. Cobra:

Making Transactional Key-Value Stores Verifiably Serializable. In OSDI ’20. 63–80.
[9] Jian Zhang, Ye Ji, Shuai Mu, and Cheng Tan. 2023. Viper: A Fast Snapshot Isolation

Checker. In EuroSys ’23. 654–671.

4328

https://github.com/dracoooooo/Plume
https://github.com/dracoooooo/Plume

	Abstract
	1 Introduction
	2 Background
	3 IsoVista Design and Implementation
	3.1 IsoVista Backend
	3.2 IsoVista Frontend GUI

	4 Demonstration
	4.1 Unserializable Transactions in PostgreSQL
	4.2 Comparing SI Checkers
	4.3 Profiling IsoVista's Weak Isolation Checkers

	Acknowledgments
	References

