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ABSTRACT

Data preparation is an essential step in every data-related effort,
from scientific projects in academia to data-driven decision-making
in industry. Typically, data preparation is not an interesting piece of
a project — it transforms raw data into a format that enables further
innovative work. Because such scripts are never intended to be
interesting, are project-specific, and are written in general-purpose
languages, they can be tedious to understand and difficult to verify.
As a result, data preparation scripts can easily become a breeding
ground for poor engineering and statistical practices. Ideally, data
preparation scripts are “admirably boring” — they should serve the
project, but otherwise be as simple and as standard as possible. We
propose a bottom-up script standardization framework that takes a
user’s data preparation script and transforms it into a simpler, more
standardized version of itself. Our framework takes the user’s script
not as an unchangeable definition of correctness, but as a sketch of
the user’s intent. We embedded this framework in a system called
LucidScript.
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1 INTRODUCTION

Data preparation is pivotal across various domains, from academic
research to corporate decision-making. Custom data preparation
programs are often essential parts of data pipelines, transforming
raw data into a usable format for further innovation. However,
data preparation is frequently overlooked, with analysts rarely
detailing the process or its significance. These “uninteresting" data
preparation scripts serve solely to support downstream innovative
efforts. Unfortunately, these qualities make these scripts dangerous
“attractive nuisances" from the perspective of reproducibility and
reliability. Being project-specific and written in general-purpose
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(a) Red shows the removed steps.

(b) Blue shows added steps that are com-

monly used in script corpus.

Figure 1: Input in Example 1 (a); output in Example 2 (b).

languages, they are difficult for others to comprehend without
substantial effort. Consequently, data preparation scripts can foster
poor engineering and statistical practices. For example, variability
in data preparation has been identified as a major contribution to
the high rate of false positive results in biomedical research [7],
despite the widespread use of standard datasets.

We argue that data preparation scripts should be admirably
boring. The ideal data preparation script should perform its task
without surprises, striving for standardization and predictability.
Efforts within our community to standardize data preparation
have largely taken a top-down approach, proposing new rules or
paradigms [13, 15]. However, given the project- or data-specific
knowledge involved, analysts continue to rely on general-purpose
languages like Python. To this end, we developed a bottom-up script
standardization system called LucidScript, in which the user inputs
a sketch script and gets a modified script. This output script aims to
obtain the same overall goal as the input script but is simpler and
more standard. The following example illustrates how bottom-up
standardization facilitates data preparation for analysts:

Example 1. Alex, a data scientist assisting a medical research
team, is crafting a data preparation script (Figure 1a) to prepare a
patient dataset for training a diabetes prediction model for young
adult women. She explores numerous data preparation scripts on
Kaggle from various medical projects. Initially, Alex addresses miss-
ing values and removes outliers based on her expertise (lines 3-4).
Next, she filters patient records relevant to the objective (line 5).
Alex tried to find useful insights from the historical scripts but
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was discouraged by the volume and the required domain knowl-
edge to understand them. Unfortunately, Alex’s script implements
data-cleaning rules (lines 3-4) that are specific to diabetes in North
America. When the script is applied to a region with different pa-
tient demographics, these rules will yield a misleading dataset. □

In an ideal scenario, Alex would leverage historical scripts to
enhance her own by identifying standardized processes used in
other scripts, requiring minimal customization to align with her
modeling objective. Consider Alex using LucidScript:

Example 2. Once again, Alex is writing a script from scratch.
She puts down some data preparation steps based on her knowledge.
Then she configures LucidScript to obtain code changes that yield
only a modest change to the downstream model’s performance and
runs the system. LucidScript responds with a standardized script
(Figure 1b). It identifies the uncommon transformations in Alex’s
sketch and replaces them with lines 3-4, which are applicable to
more countries, and thus more commonly seen in relevant data pro-
cessing scripts. The script selects only the relevant records (line 5)
since Alex provides a threshold that indicates her intent. Lucid-
Script also augments the script with lines 6-7, which frequently
appear in historical scripts. Alex sees her script now detects out-
liers and normalizes numerical features, which were steps overseen
previously. She is pleased as her prediction accuracy has increased
due to applying the additional transformations. □

LucidScript takes an input draft script as a sketch of the user
intent. It changes the semantics of the new program in service of
two goals: its degree of “standardness” and its degree of “agreement
with user intent”. Intuitively, a script is more standard if it uses
data preparation steps similar to the script corpus — a collection
of historical data preparation scripts. Standardization is measured
by the relative entropy of the data preparation step distribution
between the input draft script and the script corpus.

For bottom-up script standardization, a search-based strategy is
necessary to satisfy the multiple constraints we must place on a
huge search space. But an exhaustive search is intractable, and even
a greedy approach poses problems. We, therefore, developed an
efficient framework that operates in two phases. In the offline phase,
we calculate the corpus distribution and curate the search space. In
the online phase, we employ a search algorithm to standardize the
input script w.r.t. user intent. We developed multiple optimizations
to explore sufficient search spacewhile being efficient and satisfying
the constraints. This work presents LucidScript usability and its
suitability for end-to-end deployment.

Related Work. Automating data preparation pipelines can be
achieved by recommending the next preparation step [12, 18]. Ex-
isting solutions often utilize available scripts, and learning mod-
els [18] to generate recommendations and predict user intent. Re-
searchers have also explored multi-step automation for data prepa-
ration [5, 6, 19]. Although multi-step recommendations can be an
application of LucidScript, our goal is different. Instead of rec-
ommending a sequence of steps for a given user intent, we take
the user’s input script merely as a sketch and tweak the semantics
within a threshold to improve script standardness.

Program synthesis automates code generation based on user
intent. Studies have shown that data preparation can be automated

using programming by example techniques [4, 17]. Large language
models like OpenAI Codex [8] have gained popularity for pro-
gram synthesis. This technology powers applications like Github
Copilot [2], which provides real-time code suggestions to save pro-
grammers’ time. Our approach differs in that it allows user intent
to guide the process, offering flexibility to refine it. This enables
analysts to integrate collective knowledge embedded in the script
corpus. In program synthesis, the semantics and functionality of
the program should not deviate from user intent.

A related line of work is AutoML. AutoML is used to automate
the process of training and tuning ML models, allowing users to
easily generate accurate models with less effort. Tools such as Auto-
sklearn [9], and DeepLine [11] focus on automating ML model
selection, model building, and optimization. We are situated up-
stream in the ML building pipeline, helping analysts prepare their
datasets before feeding them into ML models.

2 TECHNICAL BACKGROUND

2.1 Problem Formulation

A data preparation script is a sequence of lines of code that process
some dataset for a downstream task, such as an ML model or vi-
sualizations. Let S={𝑠1, . . ., 𝑠𝑛} be a corpus of 𝑛 scripts, and 𝑠𝑢 is
an input script provided by the user. We assume that all scripts in
S as well as 𝑠𝑢 process the same (or similar) dataset 𝐷𝐼𝑁 . Apply-
ing a script 𝑠 to 𝐷𝐼𝑁 yields an output dataset 𝐷𝑠

𝑂𝑈𝑇
. LucidScript

modifies 𝑠𝑢 to yield a new script 𝑠𝑢̂ s.t.: (1) Both scripts compute a
"similar" result. (2) 𝑠𝑢̂ is a more conventional program than 𝑠𝑢 ,
according to statistics computed on the corpus S.

Measuring Goal One: Output Similarity Finding the semantic sim-
ilarity of two scripts is an extensively studied topic [20].Wemeasure
whether two scripts are semantically similar by looking at their
outputs, or the outputs of their downstream application. We use
these measures to assess how well 𝑠𝑢̂ preserves the user’s origi-
nal intent embodied in 𝑠𝑢 . LucidScript supports various distance
measures, including the Jaccard index, earth mover distance, and
Jenson-Shannon distance, which all assess structured dataset out-
puts. It can also consider downstream application performance,
suitable for tasks with measurable quality metrics like accuracy.

Measuring Goal Two: Standardization Our goal is to create a
new version of the input script that is as standard and conven-
tional as possible. We use relative entropy to measure how standard
a script is. Relative entropy is a non-negative statistical distance
of how one probability distribution 𝑃 (𝑥) is different from a refer-
ence distribution 𝑄 (𝑥). We adapt the notation of relative entropy
to measure script standardness. Intuitively, 𝑃 (𝑥) is the probability
distribution of the preparation steps in script 𝑠𝑢 , while 𝑄 (𝑥) is the
probability distribution of the preparation steps in the corpus S.
A large distance between 𝑃 (𝑥) and 𝑄 (𝑥) means that 𝑠𝑢uses many
data preparation steps that are not commonly used in S.

Problem Definition: The user provides the following: (1) A script

corpus S, (2) An input script 𝑠𝑢 , (3) An input dataset 𝐷𝐼𝑁 , and
(4) User-intent parameters Δ(𝐷𝑠𝑢

𝑂𝑈𝑇
, 𝐷

𝑠𝑢
𝑂𝑈𝑇

)≤𝜏 , where the user
specifies a distance metric Δ and a threshold 𝜏 . LucidScript then
outputs a new program 𝑠𝑢̂ that maximizes the program standard-
ization as measured by 𝑅𝐸 (𝑠𝑢̂ ,S), while ensuring that the resulting
program’s output is executable and within 𝜏 of the original.

4318



Figure 2: LucidScript Overview.

2.2 Script Representation

We considered several representations. Free text is less optimal
since it does not recognize the syntactic constructs. Abstract syntax
trees (AST) resolve the syntactic problems but do not explicitly
indicate data flows and do not separate data variables and function
operators. DAGs are another common script representation. Follow-
ing previous work [10], we introduce a tailored DAG representation
for our context. We face a multifold challenge: to represent an arbi-
trary script and explore legal changes efficiently. This requires a
format that enables efficient computation of standardization statis-
tics, enumeration of legal changes, and abstraction of non-essential
syntactic differences. Bottom-up standardization also necessitates
retaining sufficient information for translating the DAG back to
a script. In our DAG representation, nodes represent operation
invocations and edges represent data flows.

Next, we describe how to compute the probability of observing
a particular script 𝑠 . Derived from the DAG, each data preparation
step is broken into atoms set 𝐴 and the edges between atoms 𝐸.
An atom 𝑎∈𝐴 consists of one invocation node and its parents that
are not an invocation node. We use atoms and edges to compute
𝑅𝐸 (𝑠𝑢̂ ,S). Transformations are the actions we perform to change
a DAG. We support two transformation types, add and delete. A
transformation is defined by its type, what to change (i.e., an atom
and its necessary edges), and where to change (i.e., line number).
We use transformations to make changes to function invocations in
a script by adding and deleting atoms from its DAG representation.

2.3 The LucidScript System

As depicted in Fig. 2, LucidScript comprises a UI (shown in Fig.
3) and two main components. The user submits an input sketch
script 𝑠𝑢 . In the offline phase, LucidScript processes the corpus to
calculate the corpus distribution. In the online phase, it employs an
optimized search algorithm to find a series of transformations for
𝑠𝑢 . It then outputs the standardized, modified script 𝑠𝑢̂ to the user.

Offline Phase. During the offline phase, we construct atom and
edge vocabularies to obtain the corpus distribution from the scripts
in the provided corpus. These components serve as inputs for the
search framework in the online phase. To obtain the atom vocab-
ulary V𝐴 and edge vocabulary V𝐸 from the corpus S, we parse
each script 𝑠𝑖∈S into its corresponding DAG, then compute the
probability distribution 𝑄 (𝒙) from the edge vocabularyV𝐸 .

We address semantically equivalent data preparation steps by
leveraging NLP techniques, static code lemmatization, research
on semantic similarity assessment between scripts (e.g., [20]), and

Table 1: Examined datasets.

Statistics Titanic House NLP Spaceship Medical Sales

Scripts 62 49 24 38 47 26
Data files 3 4 3 3 1 6
Data tuples 2,613 4,381 744,302 22,701 17,250 769
Data features 25 163 11 29 9 18
Avg # code lines 64 43 19 44 30 39

LLMs like GPT-4 [14], known for excelling in such tasks. These
techniques help reduce vocabulary size and improve efficiency

Online Phase. The next goal is to find a sequence of transforma-
tions that standardizes the script 𝑠𝑢 while satisfying the constraints.
We first configure a set of candidate transformations. To generate all
possible transformations, we enumerate the combination of which
atom to change and where to apply the change.

Given the set of configured transformations, we have two chal-
lenges when deciding which sequence of transformation to choose:
(1) the search space is large due to the exponential number of pos-
sible sequences and the large number of atoms in S; (2) the validity
of the execution and user-intent constraints of a sequence is diffi-
cult to estimate during the search. A simple greedy approach faces
two challenges. First, the optimal sequence may not always score
the best during the search process. Discarding all but the best in-
progress sequence may eliminate many potentially good candidates.
Second, the output script must satisfy the constraints, and checking
for the constraints only at the end may result in invalid sequences
(e.g., execution errors, failure to satisfy user-intent constraints).

To this end, we propose an optimized search algorithm that over-
comes the limitations. Our optimizations enable LucidScript to
find high-quality sequences of transformations efficiently. These
optimizations are summarized as follows: (1) Monotonicity: A
transformation sequence cannot go back and make changes to an
earlier portion of the script. This ensures that once a script be-
comes non-executable, no further transformation would make it
executable again; (2) Sampling:When the dataset 𝐷𝐼𝑁 is large, we
apply random sampling on the tuples; (3) Checking strategies for
constraints:We have two constraints: (a) For the execution con-
straint, we remove candidate sequences that lead to non-executable
scripts after every transformation is applied. (b) We check the user-
intent constraint at the end. These strategies ensure our approach
always finds valid sequences while keeping runtime in check; (4)
Beam search:We keep 𝐾 beams rather than a single best, which
retains multiple best options during the search; (5) Diversity: Beam
search drawback is that the top-ranked next transformations can
be similar. Thus, we prioritize sufficiently different transformations
to explore diverse parts of the search space.

3 DEMONSTRATION

We implemented LucidScript using Python and Streamlit [16].
LucidScript was written in 3,000 lines of Python source code and
currently supports straight-line Python scripts available at [1].

We demonstrate the operation of LucidScript over six datasets
from various domains, which are associated with multiple scripts
extracted from Kaggle. Statistics on the obtained corpora are given
in Table 1: Titanic: predicting survival; Sales: forecasting future
sales; House: predicting house prices; NLP: distinguishing real
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Figure 3: UI of LucidScript (example usability for anomalous step detection).

vs. fake Tweets; Spaceship Titanic: predicting passengers from a
spaceship, and Medical: predicting diabetes in patients.

The participants will play the role of data analysts, attempting to
improve their data preparation script. The demonstration begins by
allowing attendees to select the dataset to investigate. The audience
then engages with LucidScript via the following scenarios:

Script Standardization: To illustrate the usability of LucidScript
and for the sake of demonstration, the audience will be exposed
to an end-to-end operation of LucidScript. The participants will
select a random script from the relevant corpus to be improved.
The audience would then examine the script and its output (e.g.,
predication accuracy), and will be asked to set a threshold on the
user intent parameter (see upper part of Fig. 3). By clicking on
the Standardize my sketch button, LucidScript will generate
an improved version of the script, highlighting the recommended
transformations (see the lines marked by >>> or <<<). The partic-
ipant will then run the modified script to ensure the output script
is executable and maintains its initial intent. The audience will be
invited to compare the output with scripts generated by existing
solutions such as GPT [14] and Sourcery [3]. This comparison is
intended to showcase that, while ML-based solutions are trained
on numerous publicly available scripts, they lack the ability to stan-
dardize input scripts with a focus on domain-specific knowledge.

Anomalous Step Detection: Participantswill explore LucidScript’s
versatility beyond script standardization, focusing on its capabil-
ity to assist inspectors in identifying anomalous data preparation
steps. Script standardization entails removing unconventional steps
from the input script and incorporating missing common practices.
Attendees will insert anomalous steps into a provided script (e.g.,
dropping columns/rows, randomly adding noise) and input it into
LucidScript. Upon clicking the Standardize my sketch button,
LucidScript will standardize the input by detecting and eliminat-
ing the anomalous steps. While the classification accuracy for the
Titanic dataset declined (Figure 3), note that the deceptive steps
involving the replication of the outcome variable Survived were
excluded (the lines marked by >>>).

Looking under the hood: Our demonstration invites participants
to explore LucidScript. This includes adjusting parameters such
as corpus size and sequence lengths. LucidScript can generate
high-quality scripts even with the presence of a small corpus size or,
alternatively, is highly efficient even if the corpus contains hundreds
of scripts, which showcases the robustness and effectiveness of
LucidScript across diverse scenarios.
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