Looking Deeply into the Magic Mirror:
An Interactive Analysis of Database Index Selection Approaches

Jan Kossmann
Snowflake Inc.
Berlin, Germany

Stefan Halfpap
BIFOLD, TU Berlin
Berlin, Germany
halfpap@tu-berlin.de

ABSTRACT

Indexes are important data structures for database tuning. However,
finding the best indexes for a given workload is challenging. In
this demonstration, we present our extensible open-source index
selection evaluation platform and the corresponding interactive
result analysis tool. The platform provides an automatic setup of the
database, workload, and cost evaluation, which is otherwise often
tedious work when evaluating index selection approaches. Users
can also connect the platform to their own existing database and
evaluate indexes for custom workloads. Our platform comprises
multiple state-of-the-art index selection approaches, which can
be used as baselines for new index selection proposals. Further,
we present an application for thoroughly analyzing the selected
database indexes. One can observe which indexes are used for which
queries and their effect on processing costs. Also, it is possible to
adapt the resulting index selections (i.e., add, remove, or change an
index) and observe the impact. In this process, the application helps
to understand the effects of indexes, improve index selections, and
craft new index selection approaches.

PVLDB Reference Format:

Stefan Halfpap, Jan Kossmann, Rainer Schlosser, and Volker Markl.
Looking Deeply into the Magic Mirror: An Interactive Analysis of Database
Index Selection Approaches. PVLDB, 17(12): 4301 - 4304, 2024.

doi:10.14778/3685800.3685860

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/klauck/index_analysis.

1 INTRODUCTION

Indexes are commonly used to speed up database workloads. How-
ever, indexes consume storage and cause (usually) maintenance
overhead when the underlying data changes due to inserts, updates,
or deletes. Thus, selecting the best database indexes, i.e., the in-
dexes that minimize the workload cost under given constraints, is
essential for database systems running on-premise or in the cloud.

Challenges of the index selection problem. Complex workloads
on large schemas make choosing suitable indexes challenging for
various, well-known reasons [8]: First, the set of relevant index

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685860

jan.kossmann@snowflake.com rainer.schlosser@hpi.de

4301

Volker Markl
BIFOLD, TU Berlin, DFKI
Berlin, Germany
volker.markl@tu-berlin.de

Rainer Schlosser
Hasso Plattner Institute
Potsdam, Germany

Summary for different approaches

and storage budgets Index benefits per query

Analyze the used indexes per query and index sizes

Interactively adapt index configurations and inspect the effects

Figure 1: Demo summary: Evaluating database index selec-
tion approaches and analyzing the chosen indexes.

candidates is usually huge because indexes can be defined on arbi-
trary subsets of table attributes. Further, indexes interact with each
other, i.e., the benefit of an index can depend on the existence of
other indexes. Thus, we cannot determine the benefit of an index
independently.

Moreover, efficiently determining workload costs under vari-
ous index subsets (given the previously described interaction) is
challenging. The naive solution of physically creating indexes and
executing queries is usually impractical because it is too time-
consuming and costly. Instead, we usually estimate workload cost
under a given index set. Naturally, such estimations come with
potential inaccuracies [1]. When conducting cost estimations, state-
of-the-art approaches include the database optimizer because the
theoretically best index is worth nothing if it is not used during
query processing. However, because optimizer invocations are rel-
atively costly, this approach limits the number of tractable cost
estimations and, thus, index candidates, which can be considered
during the selection process.

Besides, dynamic environments (e.g., changing data and work-
loads) and selection robustness (i.e., the workload cost under the
given index configuration does not degrade much if the workload
changes) pose further challenges for the index selection problem.

Index Selection Approaches. Diverse index selection approaches,
which automatically choose indexes, have been proposed since
the 1970s. These various approaches differ in underlying solution
approaches and complexity. Conceptually, imperative approaches

https://doi.org/10.14778/3685800.3685860
https://github.com/klauck/index_analysis
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685860
https://www.acm.org/publications/policies/artifact-review-and-badging-current

either start with an empty index set and extend their selection suc-
cessively or start with a large candidate set that is reduced continu-
ously. But there are also declarative approaches, for example, using
integer linear programming, which formalizes the problem with
an optimization function and a set of (in)equalities as constraints.
There are also machine learning-powered [12] and specifically rein-
forcement learning (RL)-based approaches, which define the index
selection problem as Markov decision problem (MDP) via reward
functions, states (chosen indexes), and admissible actions.

Demonstration Proposal. In this demonstration, we present our
extensible open-source index selection evaluation platform that can
evaluate various index selection approaches for different workloads.
The platform can be connected to an existing database and used
on custom workloads, but it also provides an automatic setup of
the database, pre-defined workloads, and cost evaluation, which
is otherwise often tedious work when running index selection ap-
proaches. Further, it comprises multiple index selection approaches,
which can be used as baselines for new index selection proposals.
The platform currently supports running eight different selection
algorithms, namely the Drop Heuristic [14], AutoAdmin’s index se-
lection [4], DB2 Advisor [13], Relaxation [2], CoPhy [5], Dexter [7],
Extend [11], and DTA Anytime [3]. All algorithms can be run with
different parameter settings using the standardized TPC-H and
TPC-DS workloads, the Join Order Benchmark, and user-defined
workloads. In this demonstration, we let users (1) conduct a fully
automated setup and evaluation of index selection approaches and
(2) evaluate indexes for custom workloads on an existing database.

To analyze the results, we built an interactive web application on
top of it (see Figure 1). The application summarizes the benchmark
results for index selection approaches depending on the storage
consumption of the deployed indexes as a starting point for a deeper
analysis. For every approach and the indexes’ overall storage con-
sumption, the application enables analyzing the selected indexes
and the index benefit per query. Finally, we allow the user to adapt
the index selection and investigate the impact on processing costs
and index sizes.

This application enables comparing and evaluating diverse index
selection approaches for various settings. By doing so, we can derive
the strengths and weaknesses of individual approaches. Further,
we can understand how specific indexes improve the estimated
query costs. This knowledge helps in understanding the usage
of indexes in general and developing new approaches [6, 9] that
combine the most valuable concepts and also consider robustness,
e.g., concerning workload uncertainty [10, 15].

Contributions. Our demonstration can be summarized as follows:

o We evaluate index selection approaches for pre-defined and
custom workloads while the setup is fully automated.

e We analyze high-level results (i.e., which approach performs
best for which workload and parameters) and details (i.e.,
the benefit and applied indexes per query).

e We observe the effects when manually modifying the cur-
rent index selection.

e Our platform and application are open source and can be
extended for further selection approaches and functionality.

4302

2 INDEX SELECTION EVALUATION

Evaluating new or comparing existing index selection approaches
from scratch is tedious because it does not only require implement-
ing the selection algorithms. It also includes setting up the database
and loading the data. Further, cost evaluation capabilities must be
integrated into the selection algorithms so that they can, for exam-
ple, use the optimizer’s cost estimates or actual processing times.
Moreover, it is desirable to automate the running of approaches
for various parameter settings (e.g., storage budget or number of
attributes per index) and different workloads. Finally, benchmark
results need to be measured, collected, and evaluated. In the end,
the evaluation work often takes more time than implementing the
actual index selection approach.

To facilitate the development and evaluation of index selection
approaches, we developed an evaluation platform [8]. The plat-
form supports the automatic setup of databases and evaluation
of approaches for different workloads, including the standardized
benchmarks TPC-H, TPC-DS, and the Join Order Benchmark. Users
can also connect the platform to an existing database and evaluate
indexes for custom workloads. Further, the platform includes im-
plementations of eight state-of-the-art approaches for comparison.
The platform is open source! and can be extended for additional
workloads, approaches, and database systems (see GitHub page).

To run an evaluation, we only have to specify a single (JSON)
configuration file. Listing 1 shows a valid configuration file for
conducting an evaluation with our platform.

{ "database_system": "postgres",
"benchmark_name": "tpch",

10,
4, 5,

"scale_factor":
[1,
"algorithms": [
{ "name" :
"parameters": {

"queries": 7, 9, 12, 13,

"auto_admin",

"max_indexes": [3,
"max_index_width":

b

{ "name": "db2advis",
"parameters": {
"max_index_width":
"budget_MB": [2500,

2,
50007,

}

Listing 1: Example configuration for running an index
selection evaluation in PostgreSQL.

In this case, we would use PostgreSQL with the TPC-H dataset
(scale factor 10) and a workload consisting of nine TPC-H queries.
Two different parametrized approaches, namely AutoAdmin and
the DB2 Advisor, would create index configurations. Overall, there
would be six index selection runs: Three for AutoAdmin, which
select 3, 4, and 5 indexes (parameter max_indexes), each with a max-
imum of two attributes (max_index_width = 2); two for DB2Advis,
which select indexes with an overall maximum storage consump-
tion of 2.5 and 5 GB (parameter budget_MB) and the same index
width as above.

Uhttp://git.io/index_selection_evaluation

http://git.io/index_selection_evaluation

2 index Analysis Workioad: TPC-H (SF=10) -

Solution Summary: Cost Relative to Processing without Indexes.

[anytime [auto_admin [db2advis [__] dexter [__] drop [__] extend [__] relaxation

relative workload cost

0,80 _]
= -
0,75 =
]
0,70 + T
T
0,65
0 2 4 6 8 10 12 14 16
index storage consumption (GB)
extend * auto_admin x
Parameters: { *max_index_width": 2, "budget_MB": 1000 ... } Parameters: { "max_index_width": 2, "max_indexes": 3 ...}
96.2% 0.99GB 0.23s 716 % 4.94GB 055s
Workload Cost Storage Consumption Algorithm Run Time Workload Cost Storage Consumption Algorithm Run Time
Estimated Index Sizes . Estimated Index Sizes
@ 040 g 3,0
= 035 525
g 3
g 030 E 20
5 025 §
§ 020 8 15
§’ 0,15 g 10
g 5
% 0,10 % 05
X 005 3
3 O € 0
3
2 o £ Lorderkey o_orderkey
o custiey o orderkey ps_suppkey Luppiey o orepriorty
index (attributes) index (attributes)
Attributes per Index Queries Attributes per Index Queries
o_oustkey 22 Lorderkey 41821
e | o Loatey Lootey [T 8o
ps_suppkey n o_orderkey o_orderpriority 912,21

Estimated processing cost per query
no indexes [extend [auto_admin [extend [db2advis
7.000.000
6.000.000
5.000.000

4.000.000

3.000.000

PostgreSQL query cost

2.000.000

1.000.000 ” |
. m
.

AN AL

1 3 5) 7 8 9 10 1 12 13 14 15 16 18 19 21 22
query id
extend % db2advis x
Parameters: { "max_index_width": 2, "budget_MB": 10000 ... } Parameters: { "max_index_width": 2, "budget_MB": 8000 ... }
68.9% 7.38GB 150s 80.5% 231GB 0.08s

Workload Cost Storage Consumption Algorithm Run Time Workload Cost Storage Consumption Algorithm Run Time

Estimated Index Sizes

15

10

% m Bl
0 — —

Estimated Index Sizes

NN .

index storage consumption (GB)
index storage consumption (GB)

R A yﬁ* o e o o e
EI A W ot R P
index (attributes) index (attributes)
Attributes per Index Queries Attributes per Index Queries
c_custkey m 13 Lorderkey 48,21
Lty m 218,21 Ey—— 2
Lohrae 14 ps_partkey m 9
ps_suppkey n c_mitsegment c_custeey (R 3
Lpartkey |_suppkey 8919 c_nationkey c_custkey 8
o_custiey o_orderkey [N 713,22

o_orderkey o_orderpriority |[EXEENGINENS
add index ~

Figure 2: Result analysis. Top left: summary graph. Top right: cost per query. Bottom: selected index configuration information.

The evaluation is started with a single command, e.g., "python -m
selection config.json". The platform first sets up the database,
e.g., generating and loading TPC-H data, if not existing yet. It then
runs the configured approaches for the specified workload. The
result data of an evaluation run is stored in CSV files per approach
and is the basis for the analysis. The CSV files contain one line
per index selection run and consist of, e.g., the determined index
configuration, the runtime for determining it, and the cost of every
query given the configuration.

3 RESULT ANALYSIS

Figure 2 shows a screenshot of our result analysis application?, in
this case for comparing index selection approaches for a TPC-H
workload. We can choose between analyzing different workload
results via the navigation bar at the top.

Summary Graph. The graph in the top left part is visible right
from the application start and displays a result summary for the
selected workload. It shows the workload cost for every (poten-
tially parametrized) approach per storage consumption of the so-
lutions’ index selection. In the example, it visualizes the results

Zhttps://github.com/klauck/index_analysis

of 7 approaches. An individual data point corresponds to a sin-
gle index selection run with a fixed approach and parameters,
e.g., running the AutoAdmin approach with max_indexes=4 and
max_index_width=2.

With this graph, we can analyze approaches on a high level.
For example, we can see how much workloads benefit in general
from indexes and which approach finds the best indexes for which
storage budget. In our example, AutoAdmin finds the best indexes
for the selected workload for storage budgets of 5 GB and above.

However, the summary graph hides detailed information about
the index selection (e.g., which indexes have been selected) that
could be used for a more detailed understanding. Individual data
points (corresponding to parametrized approaches) can be selected
via click for a deeper analysis. Selected data points are then included
in the graph that visualizes the cost per query, and their details are
added to the area below; both are described below in more detail.

Cost per Query. The graph in the top right shows the cost per
query without indexes (as baseline) and for every selected data
point. In the example, four data points are selected. Data points
for the same base approach have the same border color. The color
intensity corresponds to the storage consumption.

Using this graph, we can inspect the most costly queries and how
much the individual queries benefit from the current indexes. At

4303

https://github.com/klauck/index_analysis

the same time, the most expensive queries may be good candidates
for additional tuning. In our example workload, query 19 and 21
have the highest cost but also strongly benefit from indexes.

Selection Details. The area below the summary and cost-per-query
graph shows details for user-selected data points. First, it states the
approach and the applied parameters as well as key metrics, i.e.,
(1) the relative workload cost of the selection based on the workload
cost without indexes, (2) the storage consumption of the current
index selection, and (3) the calculation time of the selection run.

Below, we can inspect the selected indexes: first, a chart visualizes
the storage consumption per index; second, we can inspect the
attributes per index and which queries benefit from the index.

In our example workload, the AutoAdmin approach currently
has three indexes. The single-attribute index on the 1_orderkey
attribute has an estimated storage consumption of about 1.5 GB
and is used in query 4, 18, and 21.

Interactivity. This view also allows to adapt the current index
selection interactively. Thereby, we can tune index configurations
and directly observe the impact on storage and workload cost. We
can adapt existing indexes, i.e., remove individual attributes by
clicking on them or appending an attribute (to the end) of the index
using the drop-down menu next to the index. In addition, we can
remove an existing index by removing all of its attributes. Further,
we can also add an arbitrary index to the selection. In this process,
we first add a single-attribute index using the drop-down menu at
the bottom of the index overview. Afterward, we can add additional
attributes to the single-attribute index to obtain the desired multi-
attribute index.

Each individual adaption triggers a re-evaluation of the new
index selection, and the results are visualized in the storage con-
sumption, queries benefitting, and cost per query. Because index
adaptions only affect subsets of the queries and the platform caches
cost estimates, the number of cost estimations in the database sys-
tem for this re-evaluation is usually low.

The detailed information of individual approaches is beneficial
when comparing multiple approaches and in interplay with the cost
per query graph. Having multiple selected parametrized approaches,
we can compare their selected indexes. Using the cost per query, we
can detect possibilities to improve the current selection. Further, we
can interactively try various adaptions and see whether they have
the desired effects. While specific approaches often try out slight
(single-attribute or single-index) adaption during their selection
process, it is often too costly to try every adaption of adding multiple
multi-attribute indexes, which is possible with our application.

4 DEMO EXPERIENCE

We present how to configure an index selection evaluation and
conduct an exemplary run. Users can then inspect the results and
adapt the index selections on their own with our guidance. For ex-
ample, together with the attendee, we want to improve the current
index configuration and find another beneficial index by interact-
ing with our application. In the demo, users can also analyze and
adapt evaluation results for TPC-H, TPC-DS, and the Join Order
Benchmark. Providing pre-computed results is useful because the
index selection for larger workloads and specific approach settings
may take over an hour [9]. Further, attendees can define custom

4304

workloads and try to find the best indexes for them. Finally, we
show how to implement new selection approaches and explain how
the platform can be extended for further database systems.

5 CONCLUSIONS

We present our index selection evaluation platform and the interac-
tive result analysis tool. Using these applications, we can evaluate
indexes for custom workloads on an existing database. Further,
our platform enables the automatic evaluation of index selection
approaches for databases. The automatic evaluation facilitates im-
proving existing index selection approaches and crafting new ones
because it provides the database, workload, cost evaluation, and
baseline implementation, which otherwise often makes up a dom-
inant share of the development time. On top of the evaluation
platform, we built an interactive analysis tool to compare results
on a high level, deeply inspect the selected indexes, and adapt the
current selection. Besides gaining insights about specific index se-
lection approaches, our tool also helps in understanding the usage
of indexes in general.

REFERENCES

[1] Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. 2012. Automated
physical designers: what you see is (not) what you get. In Proceedings of the
International Workshop on Testing Database Systems (DBTEST). 9:1-9:6.

Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning:
A Relaxation-based Approach. In Proceedings of the International Conference on
Management of Data (SIGMOD). 227-238.

Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algo-
rithm of Database Tuning Advisor for Microsoft SQL Server. (2020).
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-
database- tuning-advisor-for-microsoft-sql-server, accessed: July 17, 2024.
Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In Proceedings of the International
Conference on Very Large Databases (VLDB). 146-155.

Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A Scal-
able, Portable, and Interactive Index Advisor for Large Workloads. Proceedings
of the VLDB Endowment 4, 6 (2011), 362-372.

Stefan Halfpap. 2023. Hybrid Index Selection Using Integer Linear Programming
Based on Cached Cost Estimates of Heuristic Approaches. In Proceedings of the
1st Workshop on Simplicity in Management of Data, (SiMoD) @ SIGMOD. 5:1-5:4.
Andrew Kane. 2017. Introducing Dexter, the Automatic Indexer for Post-
gres. https://medium.com/@ankane/introducing- dexter- the-automatic-indexer-
for-postgres-5f8fa8b28f27, accessed: July 17, 2024.

Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation
of Index Selection Algorithms. Proceedings of the VLDB Endowment 13, 11 (2020),
2382-2395.

Jan Kossmann, Alexander Kastius, and Rainer Schlosser. 2022. SWIRL: Selection
of Workload-aware Indexes using Reinforcement Learning. In Proceedings of the
International Conference on Extending Database Technology (EDBT). 2:155-2:168.
Rainer Schlosser and Stefan Halfpap. 2020. A Decomposition Approach for
Risk-Averse Index Selection. In Proceedings of the International Conference on
Scientific and Statistical Database Management (SSDBM). 16:1-16:4.

Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-Attribute Index Selection Using Recursive Strategies. In Proceedings of the
International Conference on Data Engineering (ICDE). 1238—-1249.

Tarique Siddiqui and Wentao Wu. 2024. ML-Powered Index Tuning: An Overview
of Recent Progress and Open Challenges. SIGMOD Rec. 52, 4 (2024), 19-30.
Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. 2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its
Own Indexes. In Proceedings of the International Conference on Data Engineering
(ICDE). 101-110.

Kyu-Young Whang. 1985. Index Selection in Relational Databases. In Proceedings
of the International Conference on Foundations of Data Organization (FoDO). 487-
500.

Wei Zhou, Chen Lin, Xuanhe Zhou, Guoliang Li, and Tianging Wang. 2023.
Demonstration of ViTA: Visualizing, Testing and Analyzing Index Advisors.
In Proceedings of the International Conference on Information and Knowledge
Management (CIKM). 5133-5137.

[2]

[10

(1]

[12

(13]

[15]

https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27

	Abstract
	1 Introduction
	2 Index Selection Evaluation
	3 Result Analysis
	4 Demo Experience
	5 Conclusions
	References

