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ABSTRACT
Graph sparsification is a technique that approximates a given graph
by a sparse graph with a subset of vertices and/or edges. The goal
of an effective sparsification algorithm is to maintain specific graph
properties relevant to the downstream task while minimizing the
graph’s size. Graph algorithms often suffer from long execution
time due to the irregularity and the large real-world graph size.
Graph sparsification can be applied to greatly reduce the run time
of graph algorithms by substituting the full graph with a much
smaller sparsified graph, without significantly degrading the output
quality. However, the interaction between numerous sparsifiers and
graph properties is not widely explored, and the potential of graph
sparsification is not fully understood.

In this work, we cover 16 widely-used graph metrics, 12 repre-
sentative graph sparsification algorithms, and 14 real-world input
graphs spanning various categories, exhibiting diverse characteris-
tics, sizes, and densities. We developed a framework to extensively
assess the performance of these sparsification algorithms against
graph metrics, and provide insights to the results. Our study shows
that there is no one sparsifier that performs the best in preserving
all graph properties, e.g. sparsifiers that preserve distance-related
graph properties (eccentricity) struggle to perform well on Graph
Neural Networks (GNN). This paper presents a comprehensive
experimental study evaluating the performance of sparsification al-
gorithms in preserving essential graph metrics. The insights inform
future research in incorporating matching graph sparsification to
graph algorithms to maximize benefits while minimizing quality
degradation. Furthermore, we provide a framework to facilitate
the future evaluation of evolving sparsification algorithms, graph
metrics, and ever-growing graph data.
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1 INTRODUCTION
Graphs are ubiquitous because of their great expressiveness and
flexibility. Graphs can be used to represent complex relationships
between individuals (vertices in the graph) by making connections
(edges in the graph). Graphs are widely used to represent data
in various application domains, e.g. social networks [30], citation
and communication networks [50], chemical and biological net-
works [36], etc. Many algorithms are also developed to exploit the
abundant features that graphs provide, e.g. Dijkstra’s algorithm [22],
Ford-Fulkerson algorithm [29], Graph Neural Networks [38], etc.

Despite their usefulness, graphs are often inefficient to workwith
due to memory irregularity. Many works are proposed to tackle
the problem [17, 65, 71], however, most works develop dedicated
software or hardware solutions for a small set of graph algorithms,
which leads to a high design cost and limited applicability. In this
work, we investigate graph sparsification, a generally applicable
technique to reduce the amount of work in graph algorithms.

Graph sparsification is a technique to approximate a given graph
by a sparse graph that preserves certain properties of the graph.
This way we can execute the downstream task on the sparsified
graph to improve run time. An ideal sparsification algorithm needs
to achieve a high prune rate while keeping the behavior of the
downstream task as close to that of the original full graph.

There are many sparsification algorithms with different focuses
on the graph properties to be preserved, and of different complexity.
There are also many graph metrics that different graph-centric
algorithms rely on. However, with a large number of sparsification
algorithms and graph metrics, the connections between sparsifiers
and their performance in preserving the graph metrics are missing.

In this work, we extensively investigate 12 graph sparsification
algorithms and evaluate their performance in preserving 16 widely-
used graph metrics in mutiple groups. We also cover 14 real-world
graphs spanning various categories, with diverse characteristics,
sizes, and densities. Our findings reveal that no single sparsifier
does the best in preserving all graph properties, and it is important
to select appropriate sparsifiers based on the downstream task.

In summary, we make the following contributions in this work:

• We summarize the most widely-used graph metrics and the
most representative graph sparsification algorithms, and dig
into the algorithmic details for a better understanding.
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• We build a framework to perform graph sparsification, and
evaluate their performance on various graph metrics at differ-
ent prune rates. The framework is open-source and extendable
to future sparsification algorithms, graph metrics, and graphs.

• We perform N-to-N evaluation on the sparsification algorithms
and graph metric, give a comprehensive breakdown of the
performance, and provide insights with the results.

2 OVERVIEW
2.1 Preliminaries
In this section, we introduce the basic notions used in this paper.

Consider a graph 𝑮 = (V, E,𝒘), whereV and E denotes the set
of vertices and edges in 𝑮 respectively, and𝒘 denotes the weights of
the edges. A graph can be either directed or undirected. In a directed
graph, each edge has a source and a destination vertex, while an
undirected graph implies a bidirectional relationship. Furthermore,
a graph can be weighted or unweighted; in an unweighted graph,
all edges have a default weight of 1. |V|, |E | represent the number
of vertices and edges, respectively. A graph is considered connected
if a path exists between any pair of vertices [4]. We denote the
adjacency matrix by 𝑨, with the entries in 𝑨 defined as:

𝑨𝑖 𝑗 =

{︄
𝒘𝑖→𝑗 if 𝑒𝑖 𝑗 ∈ E,
0 otherwise.

We denote the graph Laplacian matrix by 𝑳 defined as follows:

𝑳𝑖 𝑗 = 𝑫 −𝑨 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑒𝑔(𝑣𝑖 ) if 𝑖 = 𝑗,

−𝒘𝑖→𝑗 if 𝑒𝑖 𝑗 ∈ E,
0 otherwise.

Note thatwe only consider Laplacianmatrices for undirected graphs,
thus the graph Laplacian is a positive semi-definite matrix. We now
present a formal definition of the graph sparsification problem.

Definition 1 (Graph Sparsification). Let 𝑮 = (V, E,𝒘) be a given
graph. A sparsified subgraph 𝑯 = (V, Ẽ, �̃�) is constructed such
that |Ẽ | = (1 − 𝜌) |E |. The function 𝑓 that creates 𝑯 from 𝑮 , 𝑯 =

𝑓 (𝑮), is called a graph sparsification algorithm (also referred to as
a sparsifier), while 𝜌 is defined as the prune rate.

In this study, our focus is solely on edge sparsification, implying
that we maintain the original vertex set while selecting a subset
of edges. This approach is adopted for several reasons: 1) the edge
set typically possesses a significantly larger size than the vertex set
and contains more redundant information, 2) the majority of spar-
sification algorithms focus on pruning edges rather than vertices,
and 3) most graph metrics require the complete set of vertices for
evaluating the performance of sparsification algorithms.

2.2 Graph Metrics
2.2.1 Basic Metrics.
This section introduces some fundamental graph metrics.

Degree Distribution. The degree of a vertex is defined as the
number of edges incident to it. The degree distribution provides
a comprehensive perspective on the graph’s structure, enabling
the classification of different types of graphs. For instance, a ran-
domly generated graph might exhibit a uniform degree distribution,
whereas a real-world social network has a power-law distribution.

Laplacian Quadratic Form. This is defined as 𝒙𝑇 𝑳𝒙 , where
𝑳 represents the graph Laplacian, and 𝒙 ∈ R |V | is an arbitrary
vector. The Laplacian quadratic form is a fundamental quantity in
graph theory [14], and it facilitates the analysis of various graph
properties, including connectivity and spectral characteristics [9].

2.2.2 Distance Metrics.
This section includes a collection of metrics associated with the
pairwise distances between vertices in graphs.

All Pairs Shortest Path (APSP). APSP measures the minimum
distance between any pair of source vertex 𝑢 and destination vertex
𝑣 . Breadth-First Search (BFS) and Dijkstra’s algorithm [22] are often
used to determine APSP. Distance captures the proximity between
two vertices. APSP are used in various domains such as data center
network design [18] and urban service system planning [59].

Diameter. The diameter of a graph 𝑮 is defined as the maximum
distance between any pair of vertices 𝑢 and 𝑣 . If 𝑮 is disconnected,
its diameter is considered infinite. The diameter is useful in various
applications, including transportation network planning [13] and
the analysis of routing and communication network quality [23].

Vertex Eccentricity. Vertex eccentricity is defined as the length
of the longest shortest path from a source vertex 𝑠 to all other ver-
tices in 𝑮 . Note that the minimum eccentricity is the graph radius,
and the maximum eccentricity is the graph diameter. Vertex ec-
centricity is infinite for disconnected graphs. It identifies vertices
located near the geometrical center of the graph. Vertex eccentricity
has practical applications in identifying network periphery in rout-
ing network [46, 70]. Or identifying proteins readily functionally
reachable by other components in protein networks. [54, 70].

2.2.3 Centrality Metrics.
Centrality measures are a set of metrics employed to assess the
significance or ranking of vertices in various manners.

Betweenness. Betweenness centrality for vertex 𝑣 is defined as

𝐶betweenness (𝑣) =
∑︂
𝑠≠𝑣≠𝑡

𝜎𝑠𝑡 (𝑣)
𝜎𝑠𝑡

.

Here, 𝜎𝑠𝑡 denotes the total number of shortest paths from vertex
𝑠 to 𝑡 , while 𝜎𝑠𝑡 (𝑣) refers to the number of shortest paths passing
through 𝑣 . The underlying intuition suggests that vertices appearing
on numerous shortest paths exhibit high betweenness centrality. It
can be employed to identify hubs in a transportation network [64]
or to identify important vertices (people) in social networks [16].

Closeness. Closeness centrality [10] of a vertex 𝑣 is defined as

𝐶closeness (𝑣) =
1∑︁

𝑢 𝑑 (𝑢, 𝑣)
.

Here, 𝑑 (𝑢, 𝑣) represents the shortest distance between vertices 𝑢
and 𝑣 . The underlying intuition is that vertices with a shorter aver-
age distance to all other reachable vertices exhibit high closeness
centrality. It can identify essential genes in protein-interaction net-
works [32] or crucial metabolites in metabolic networks [45].

Eigenvector. Eigenvector centrality of a vertex 𝑣 is defined as

𝐶eigenvector (𝑣) =
1
𝜆

∑︂
𝑢∈𝑁 (𝑣)

𝐶𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 (𝑢).

where 𝑁 (𝑣) is the neighbour of 𝑣 , and 𝜆 is the greatest eigenvalue
of the adjacency matrix 𝑨. Eigenvector centrality measures the
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influence of a vertex [6]. A high eigenvector score means that a
vertex is connected to many vertices whose eigenvector scores
are also high [51]. Google’s PageRank [53] and Katz centrality are
two variants of eigenvector centrality. We discuss Katz centrality
in the next paragraph and PageRank in Section 2.2.5. Eigenvector
centrality is useful for assessing opinion influence in sociology and
economics [58], or the firing rate of neurons in neuroscience [28].

Katz. Katz centrality quantifies the influence of a vertex by
considering the number of immediate neighbors and vertices con-
nected to those immediate neighbors [37]. Distant neighbors are
penalized by an attenuation factor 𝛼𝑘 , where 𝑘 represents the
hop distance from the central vertex. In this paper, we use 𝛼 =

1/(𝑚𝑎𝑥 (𝑑𝑒𝑔𝑟𝑒𝑒) + 1). The eigenvector centrality is defined as

𝐶𝐾𝑎𝑡𝑧 (𝑣) =
∑︂
𝑘

∑︂
𝑢

𝛼𝑘 (𝑨𝑘 )𝑢𝑣 .

2.2.4 Clustering Metrics.
Graph clustering groups vertices into communities, ensuring dense
connections within communities and sparse connections between
communities. This section covers graph clustering-related metrics.

Number of communities. The most basic metric in graph clus-
tering is the number of communities. For graphs with a known
number of communities 𝑘 , certain clustering algorithms, such as
k-means [43], can construct exactly 𝑘 communities. Alternatively,
some algorithms like agglomerative clustering [49] andDBSCAN [24]
can automatically determine the optimal number of clusters.

Local Clustering Coefficient (LCC). LCC of a vertex 𝑣 repre-
sents the proportion of pairs of neighbors of 𝑣 that are connected.
It evaluates the density of connections among the neighbors of a
vertex [3]. The LCC is defined as follows:

𝐿𝐶𝐶 (𝑣) =
|𝑒 𝑗𝑘 : 𝑗, 𝑘 ∈ 𝑁𝑣, 𝑒 𝑗𝑘 ∈ 𝐸 |

𝛼𝑘𝑣 (𝑘𝑣 − 1) .

where 𝑁𝑣 denotes the set of neighbors of the vertex 𝑣 , and 𝑘𝑣 is the
number of neighbors of vertex 𝑣 . Here, 𝛼 = 1 for directed graphs,
and 𝛼 = 0.5 for undirected graphs. LCC, originally proposed by
Watts and Strogatz, is used to determine whether a graph is a small-
world network [74].Mean clustering coefficient (MCC) is the
mean of the local clustering coefficient of all vertices.

Global Clustering Coefficient (GCC). GCC [44] measures the
fraction of closed triplets in all triplets. A triplet of nodes can consist
of two (open) or three (closed) undirected edges [3].

𝐺𝐶𝐶 (𝑣) = #𝐶𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

#𝐴𝑙𝑙 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
.

Clustering F1 score. The F1 score can be employed to assess the
similarity between a given clustering and a reference clustering [47].
Suppose we have 𝑘 clusters 𝐶𝑖 (𝑖 ∈ [1, 𝑘]) obtained from a specific
algorithm for graph G and 𝑠 reference clusters 𝑅 𝑗 ( 𝑗 ∈ [1, 𝑠]) that
we aim to compare with. Note that 𝑠 may not be equal to 𝑘 . The
following matrix illustrates the relationship between 𝐶𝑖 and 𝑅 𝑗 :

𝑹1 𝑹2 ... 𝑹𝒔

𝑪1 𝑎11 𝑎12 ... 𝑎1𝑠
𝑪2 𝑎21 𝑎22 ... 𝑎2𝑠
...
𝑪𝒌 𝑎𝑘1 𝑎𝑘2 ... 𝑎𝑘𝑠

In this matrix, 𝑎𝑖 𝑗 represents the number of vertices shared between
cluster 𝐶𝑖 and reference cluster 𝑅 𝑗 . The precision and recall of the

clustering are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑︁
𝑖∈[1,𝑘 ]𝑚𝑎𝑥 𝑗 {𝑎𝑖 𝑗 }∑︁
𝑖∈[1,𝑘 ]

∑︁
𝑗∈[1,𝑠 ] 𝑎𝑖 𝑗

, 𝑅𝑒𝑐𝑎𝑙𝑙 =

∑︁
𝑖∈[1,𝑘 ]𝑚𝑎𝑥 𝑗 {𝑎𝑖 𝑗 }

𝑛

Subsequently, the F1 score for clustering is defined as:

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The F1 score ranges from 0 to 1, where a higher value indicates
greater similarity between the clustering 𝑪 and the reference 𝑹.

Table 1: Metrics’ applicability to types of graphs.

Metric Directed Weighted Unconnected

Degree Dist. ✓ ●† ✓

Diameter ✓ ✓ ✓‡

Eccentricity ✓ ✓ ✓‡

APSP ✓ ✓ ✓‡
Betweenness Cent. ✓ ✓ ✓
Closeness Cent. ✓ ✓ ✓
Eigenvector Cent. ✓∗ ✓ ✓
Katz Cent. ✓ ✓ ✓
#Communities ✗ ✓ ✓

LCC ✓ ●† ✓

MCC ✓ ●† ✓

GCC ✓ ●† ✓
Clustering F1 Sim ✗ ✓ ✓
PageRank ✓ ✓ ✓

Min-cut/Max-flow ✓ ✓ ✓‡
GNN ✓ ✓ ✓

∗ For directed graphs, the left eigenvector is used. A left eigenvector is an
eigenvector satisfies 𝑋𝐿𝑨 = 𝜆𝐿𝑋𝐿 , where a right (by default) eigenvector
satisfies 𝑨𝑋𝑅 = 𝜆𝑅𝑋𝑅

†Weight not used, same as unweighted.
‡ In unconnected graphs, pair-wise distance can be infinite, and min-cut max-flow
can be zero if two terminals selected are in different communities. We exclude
these pairs in the evaluation.

2.2.5 Application-level Metrics.
In this section, we discuss metrics that are used in applications.

PageRank. PageRank, initially designed to rank web pages [53],
serves as a foundational algorithm for Google’s search engine. The
underlying concept suggests that pages linked by numerous im-
portant pages bear greater significance. PageRank computation
typically employs the power method. Each page (vertex) is assigned
an initial score and iteratively calculates a new score by adding
up 1/𝑘 of the scores of pages linked to it, where 𝑘 represents the
number of outgoing links from the source page. Eventually, the
computation converges, and the score of each page indicates its
importance within the network. The primary distinction between
PageRank and eigenvector centrality (§ 2.2.3) lies in PageRank’s
specificity for web-page ranking, incorporating 1/𝑘 factor and addi-
tional parameters like damping factor [15] for better robustness and
accuracy, while eigenvector centrality is more suitable for general
graph analysis, not necessarily involve directed or weighted graphs.

Min-cut and Max-flow. In graph theory, a cut refers to the
partitioning of a graph’s vertices into two disjoint subsets [5]. A
minimum 𝑠-𝑡 cut, or min-cut, represents the cut with the smallest
total weight of edges that disconnect the source vertex 𝑠 from
the sink vertex 𝑡 . The maximum flow, or max-flow, denotes the
maximum amount of flow that can traverse from the source vertex
𝑠 to the sink vertex 𝑡 , where the edge weight represents the flow
capacity. The max-flow and min-cut problems are equivalent, as
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the maximum flow a network can accommodate is constrained by
the network’s narrowest intersection, which is the min-cut. Min-
cut and max-flow can be applied to identify bottlenecks in water
networks, road networks, or electrical networks [7, 57].

Graph Neural Networks (GNNs). GNNs [63] are neural net-
works that operate on graphs. GNNs learn from the graph structure
by aggregating information from neighboring vertices or edges
and feeding the information to multi-layer perception (MLP) layers
for training. Some famous GNN models include Graph Convolu-
tional Network (GCN), Graph Attention Network (GAT), and Cheb-
Net [20, 38, 72]. GNN can be used for classification or prediction
on vertex level, edge level, or graph level tasks [21, 42, 78].

We summarize the graphmetrics discussed and their applicability
to different types of graphs in table 1.

2.3 Graph Sparsification Algorithms
In this section, we discuss graph sparsification algorithms evaluated
in this work; they constitute the most widely used and representa-
tive sparsification algorithms.

2.3.1 Random Sparsifier.
Arguably the simplest way to sparsify the graph is by randomly
sampling a subset of edges to keep in the sparsified graph. We refer
to this as the Random sparsifier. It samples all edges in the graph
with equal probability and thus can be used to preserve vertex-
relative (distribution-based and ranking-based) properties. Random
sparsifier is employed in GraphSAGE for neighbor sampling [34].

2.3.2 K-Neighbor Sparsifier.
K-Neighbor sparsifier [61] selects 𝑘 edges for each vertex, and if a
vertex has less than𝑘 vertices, all of its edges are included. The edges
are selected with probability proportional to their weights (uniform
for unweighted graphs). It can be used in Laplacian smoothing [61].
K-Neighbor guarantees each vertex has at least 𝑘 edges, so it can be
applied if the downstream task requires high graph connectivity.

2.3.3 Rank Degree Sparsifier.
Rank Degree sparsifier [73] starts with selecting a random set of
“seed” vertices. Subsequently, the vertices with edges to the seed
vertices are ranked according to their degree in descending order.
The edges connecting each seed vertex to its top-ranked neighbors
are selected and incorporated into the sparsified graph. The recently
added nodes in the graph serve as new seeds to search for additional
edges. This process continues until the target sparsification limit
is reached. Rank Degree biases to high-degree vertices, which are
considered the hub vertices in a graph, so it excels at keeping edges
incident to the important vertices in graphs.

2.3.4 Local Degree Sparsifier.
Similar to the Rank Degree sparsifier, the Local Degree sparsifier [33]
preserves edges incident to high-degree vertices, but in a determin-
istic manner. For each vertex, Local Degree incorporates edges to
the top 𝑑𝑒𝑔(𝑣)𝛼 neighbors ranked by their degree in descending or-
der, where 𝛼 ∈ [0, 1] controls the degree of sparsification. Another
difference compared to Rank Degree is that Local Degree sparsifier
makes sure each vertex will have at least 1 edge, so Local Degree
sparsifier is a good choice when one desires to keep both graph
connectivity and edges incident to important vertices.

2.3.5 Spanning Forest.
A spanning tree is a subgraph that constitutes a tree (a connected
graph without a cycle [2]) and includes all the vertices in the
graph [1]. A Spanning Forest consists of multiple spanning trees.
Kruskal’s algorithm [39] and Prim’s algorithm [56] can be used to
construct a Spanning Forest. Although it is not strictly a sparsifier,
as the prune rate cannot be controlled, we include Spanning Forest
because it reduces the size of graphs and is a fundamental notion
in graph theory. Spanning Forest is helpful when one strictly wants
to keep the graph connectivity the same as the original graph.

2.3.6 t-Spanner.
A spanner is a subgraph that approximates the pairwise distances
between vertices in the original graph. A t-Spanner is defined as
a subgraph such that any pairwise distance is at most 𝑡 times the
distance in the original graph, which can be formally expressed as:

∀𝑢, 𝑣 ∈ 𝑽 , 𝑑𝑯 (𝑢, 𝑣) ≤ 𝑡𝑑𝑮 (𝑢, 𝑣)
In this equation, 𝑡 (> 1) denotes the stretch factor. A greedy algo-
rithm [8] is employed for constructing t-spanners. This algorithm
starts with an empty edge set and then iteratively adds the edge 𝑒𝑢𝑣
if the distance 𝑑𝐻 (𝑢, 𝑣) between the vertices 𝑢 and 𝑣 in the current
graph exceeds t times the weight of 𝑒𝑢𝑣 . The process continues
until all edges have been considered. In addition to strictly keeping
the graph connectivity, t-Spanner also provides a better guarantee
on the pair-wise distances between vertices and is a better choice
than Spanning Forest when such property is desired.

2.3.7 Forest Fire.
The Forest Fire model is a generative model for graphs, originally
proposed by Leskovec et al. [40]. The concept involves constructing
the graph by adding one vertex at a time and forming edges to
certain subsets of the existing vertices. When a new vertex 𝑢 is
added to the graph, it connects to an existing vertex 𝑣 in the graph.
Subsequently, it “spreads” from 𝑣 to other vertices in the graph
with a certain predefined probability, creating edges between 𝑣 and
the newly discovered vertices. This process assembles “burning”
through edges probabilistically, hence the name Forest Fire [40].

2.3.8 Similarity-based sparsifiers.
Similarity-based sparsifiers constitute a group of sparsifiers based
on similarities between vertices measured by specific metrics.

Jaccard similarity [48] measures the similarity between two sets
by computing the portion of shared neighbors between two nodes
(𝑢 and 𝑣), as defined below:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑢, 𝑣) = |N (𝑢)⋂︁N(𝑣) |
|N (𝑢)⋃︁N(𝑣) |

The Jaccard score of an edge is the Jaccard similarity between two
constituent vertices of the edge. Once Jaccard scores are computed,
they can be used to perform similarity-based sparsifications.

Global Sparsifiers. Global sparsifiers select edges based on
similarity scores globally. global Jaccard sparsifier (G-Spar) sorts the
Jaccard scores globally and then selects the edges with the highest
similarity score. SCAN [76] uses structural similarity measures to
detect clusters, hubs, and outliers. The SCAN similarity score is a
modified version of the Jaccard score, defined as follows:

𝑆𝐶𝐴𝑁𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑢, 𝑣) = |N (𝑢)⋂︁N(𝑣) | + 1√︁
(𝑑𝑒𝑔(𝑢) + 1) (𝑑𝑒𝑔(𝑣) + 1)
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Table 2: Sparsifiers’ applicability to types of graphs, and characteristics. Note that all sparsifiers work for undirected, un-
weighted, and connected graphs because they are special cases of directed, weighted, and unconnected graphs, so are not listed.
Deterministic means whether the sparsifier generates the same sub-graph every time.

Sparsifier Directed? Weighted? Unconnected? PRC§ Weight Change Deterministic? Complexity∗∗
Random (RN) ✓ ✓ ✓ ✓ ✗ ✗ O(𝜌 | E | )
K-Neighbor (KN) ✓∗ ✓ ✓ ✓‡ ✗ ✗ O( | E | )
Rank Degree (RD) ✓∗ ✓ ✓ ✓‡ ✗ ✗ O(𝜌 | E | ) − O(𝜌 | E | )𝑙𝑜𝑔 (𝜌 | E | )
Local Degree (LD) ✓∗ ✓ ✓ ✓‡ ✗ ✓ O( | E | ) − O( | E |𝑙𝑜𝑔 ( | E | ) )
Spanning Forest (SF) ✗ ✓ ✓ ✗ ✗ ✓ O( | E |𝑙𝑜𝑔 ( |V | ) )
t-Spanner (SP-t) ✗ ✓ ✓ ✗ ✗ ✓ O( |V |2𝑙𝑜𝑔 ( |V | ) )
Forest Fire (FF) ✓ ✓ ✓† ✓‡ ✗ ✗ O(𝑟 | E | )
L-Spar (LS) ✓∗ ✓ ✓ ✓‡ ✗ ✓ O(𝑘 | E | )
G-Spar (GS) ✓∗ ✓ ✓ ✓ ✗ ✓ O(𝑘 | E | )
Local Similarity (LSim) ✓∗ ✓ ✓ ✓‡ ✗ ✓ O( | E | )
SCAN ✓∗ ✓ ✓ ✓ ✗ ✓ O( | E | )
ER ✗ ✓ ✓ ✓ ✓ ✗ O( | E |𝑙𝑜𝑔 ( |V | )3 )
§ Prune Rate Control. Whether the sparsifier has fine-grain, coarse-grain, or no control over the prune rate.
∗ Need to specify using in-degree or out-degree, in this work, we use out-degree.
∗∗ |V | =#Vertices, | E | =#Edges, 𝜌 =prune rate, 𝑟 =burnt ratio, 𝑘 =#minwise hash. It can be a range for some sparsifiers due to different optimal algorithms can
be used according to graph properties.
† Seeds are randomly selected, thus edges from communities with fewer vertices are less likely to be included.
‡ Subject to constraint. Indirect or coarser grain control, or has an upper limit for prune rate.

Once the scores are computed, the edges in the sparsified graph are
included from high-score edges to low-score edges.

Local Sparsifiers. Similarity scores can also be used to select
edges in a local way. The local Jaccard similarity sparsifier (L-
Spar) [62] includes𝑑𝑐 edges with the highest Jaccard scores incident
to each vertex locally, where 𝑐 is a parameter. The Local Similarity
sparsifier works similarly to L-Spar , but it further ranks edges us-
ing the Jaccard score and computes 𝑙𝑜𝑔(𝑟𝑎𝑛𝑘 (𝑒𝑑𝑔𝑒))/𝑙𝑜𝑔(𝑑𝑒𝑔(𝑣))
as the similarity score. Finally, Local Similarity sparsifier selects
edges with the highest similarity scores.

The L-Spar and Local Similarity sparsifiers are particularly useful
for preserving local structure in the graph such as clustering. They
can be applied to social network analysis and recommendation
systems. By focusing on local similarities between vertices, these
sparsifiers provide a more accurate representation of the original
graph’s local properties compared to other sparsifiers.

2.3.9 Effective Resistance (ER) Sparsifier.
The concept of Effective Resistance (ER) is derived from the analogy
of an electrical circuit and applied to a graph. In this context, edges
represent resistors, and the effective resistance of an edge corre-
sponds to the potential difference generated when a unit current is
introduced at one end of the edge and withdrawn from the other.

We refer readers to [67] for the details of how ER is calculated.
Once the effective resistance is calculated, a sparsified subgraph can
be constructed by selecting edges with a probability proportional to
their effective resistances. Notably, Spielman and Srivastava further
proved that the quadratic form for Laplacian of such sparsified
graphs is close to that of the original graph. Then the following
inequality holds for the sparsified subgraph with high probability:

∀𝒙 ∈ R |V | (1 − 𝜖)𝒙𝑇 𝑳𝒙 ≤ 𝒙𝑇 �̃�𝒙 ≤ (1 + 𝜖)𝒙𝑇 𝑳𝒙

where �̃� is the Laplacian of the sparsified graph, and 𝜖 > 0 is a small
number. The insight is that ER reflects the significance of an edge.
ER is a spectral sparsifier, and it aims to preserve quadratic form of
the graph Laplacian. It can be applied to applications that rely on the
quadratic form of graph Laplacian, for example, min-cut/max-flow.

We list the sparsifiers discussed in the section and their applica-
bility to types of graphs, features, and time complexity in table 2.

2.4 Datasets
Table 3 lists the graph datasets used in this work, we select graphs
from various categories that have different characteristics, sizes,
and densities to ensure the diversity of graphs.

3 EXPERIMENTAL SETUP
3.1 Graph Preparation
The graphs employed in this study are sourced from multiple graph
dataset suites. We carry out essential pre-processing steps on all
graphs to ensure their proper preparation for sparsifier execution
and metric evaluation. The process can be summarized as follows:
(1) We remove vertices with no edge incidence (i.e., isolated ver-

tices), as they do not contribute to graph information and can
induce noise inmetric evaluations. Then vertices are re-indexed
to be zero-based and continuous.

(2) For each directed graph, an undirected version is generated by
symmetrizing each edge (i.e., adding a [dst, src] edge to the
graph if it does not already exist). This ensures that sparsifiers
that only operate on undirected graphs can function properly.
Other sparsifiers are still applied to the original directed graphs.

3.2 Graph Sparsification
In this section, we cover additional information regarding the graph
sparsifiers. When applying sparsifiers:
(1) We sweep the prune rate from 0.1 to 0.9, with a step of 0.1.

Some sparsifiers have a coarser prune rate granularity (e.g.,
K-Neighbor , L-Spar), and we attempt to align them with the
specified prune rate. Some sparsifiers have a maximum prune
rate (e.g., Local Degree, K-Neighbor), so we sweep up to their
maximum prune rate. Certain sparsifiers have no control over
the prune rate and only support a single prune rate (e.g., Span-
ning Forest, t-Spanner), and we retain them as is.

431



Table 3: Graph datasets information.

Category Name Directed? Weighted? Connected? #Nodes #Edges Density source

Social Network ego-Facebook ✗ ✗ ✓ 4,039 88,234 1.08E-02 snap [41]
ego-Twitter ✓ ✗ ✗ 81,306 1,768,149 2.67E-04 snap [41]

gene human_gene2 ✗ ✓ ✗ 14,340 9,041,364 8.79E-02 SuiteSparse [19]
Community
Network

com-DBLP ✗ ✗ ✓ 317,080 1,049,866 2.09E-05 snap [41]
com-Amazon ✗ ✗ ✓ 334,863 925,872 1.65E-05 snap [41]

communication email-Enron ✗ ✗ ✗ 36,692 183,831 2.73E-04 snap [41]

collaboration ca-AstroPh ✗ ✗ ✗ 18,772 198,110 1.12E-03 snap [41]
ca-HepPh ✗ ✗ ✗ 12,008 118,521 1.64E-03 snap [41]

web

web-BerkStan ✓ ✗ ✗ 685,230 7,600,595 1.62E-05 snap [41]
web-Google ✓ ✗ ✗ 875,713 5,105,039 6.66E-06 snap [41]

web-NotreDame ✓ ✗ ✗ 325,729 1,497,134 1.41E-05 snap [41]
web-Stanford ✓ ✗ ✗ 281,903 2,312,497 2.91E-05 snap [41]

GNN Reddit ✗ ✗ ✓ 232,965 57,307,946 2.11E-03 pyg [34]
ogbn-proteins ✗ ✗ ✓ 132,534 39,561,252 4.50E-03 ogb [35, 69]

(2) For non-deterministic sparsifiers, the inherent randomness in
the algorithm produces different sub-graphs in each run. In
such cases, we generate 10 graphs at each prune rate, measure
graph metrics using the mean value, and indicate their stan-
dard deviation in the results. For deterministic sparsifiers, we
generate a single graph at each prune rate.

(3) For the Effective Resistance sparsifier, since it is the only one
that modifies edge weights, we consider two variants denoted
as ER-weighted and ER-unweighted, respectively.

3.3 Graph Metrics
In this section, we cover additional information regarding the mea-
surement of sparsifiers’ quality on graph metrics.

3.3.1 Basic Metrics.
Graph connectivity. To measure graph connectivity, we employ
the source-destination pair unreachable ratio and the vertex isolated
ratio. The former represents the fraction of vertex pairs that do not
have a path connecting them. The latter signifies the proportion of
vertices that are isolated, meaning no edges are incident to them.
Both of these ratios provide insights into the overall connectivity of
a graph when assessing the effectiveness of sparsification methods.

Degree Distribution.We assess how closely the similarity of
the degree distribution of the sparsified graphs and that of the
original graph using the Bhattacharyya distance [11], defined as:

𝐵𝑑 (𝑃,𝑄) = −𝑙𝑛
(︄ ∑︂
𝑥∈X

√︁
𝑃 (𝑥)𝑄 (𝑥)

)︄
where 𝑃 and 𝑄 are two distributions. A value closer to 0 indicates
a higher similarity in distribution. We evenly divide the discrete
degree distribution into 100 bins for all graphs.

Quadratic Form Similarity. To evaluate this, we generate 100
vectors 𝒙 with random entries. Next, we compute the quadratic
form 𝒙𝑇 𝑳𝒙 for the original and the sparsified graphs. Then we use
the mean quadratic form ratio to assess the sparsification quality.

3.3.2 Distance Metrics.
APSP and Eccentricity. The computation of the All-Pair-Shortest-
Path (APSP) is time-consuming for large graphs. Therefore, we
resort to randomly sampling 100,000 source-destination pairs, re-
ferred to as Some-Pair-Shortest-Path (SPSP), and report the average
stretch factor, which is defined as the distance ratio between the
same pair in the sparsified and the original graph. We exclude pairs

belonging to different communities. Similarly, we randomly select
1000 vertices to represent the eccentricity of all vertices.

Diameter. Computing the true diameter requires performing
APSP, which is impractical on large graphs. We employ an approxi-
mate diameter algorithm [22]. The algorithm starts with a randomly
chosen source vertex, identifies a target vertex farthest from it, and
iteratively repeats the process using the target vertex as the new
source vertex. We validated the approximate diameter against the
true diameter on small graphs and verified that they are closely
aligned. To minimize potential bias introduced by the initial source
vertex selection, each graph is assessed using 10 different randomly
chosen seed vertices to obtain the mean diameter.

3.3.3 Centrality Metrics.
We employ the top-k precision to evaluate the quality of central-
ity metrics. First, vertices are ranked according to their centrality
scores. Then the top-k vertices in the sparsified graphs are com-
pared with those in the full graph. The proportion of overlapping
vertices is referred to as the top-k precision. In this paper, we set k
to 100 because typically only a small subset of vertices in graphs
are critical and accurately ranking them is more important.

Betweenness Centrality. Actual betweenness centrality cal-
culation also requires computing APSP. In this paper, we adopt an
approximate betweenness centrality algorithm proposed by Geis-
berger et al. [31]. The algorithm is sampling-based, and a higher
sampling number achieves better estimation quality. We use a sam-
pling number of 500 and compare it with exact betweenness on a
set of small graphs, confirming the results are closely aligned.

3.3.4 Application-level Metrics.
Min-cut/Max-flow.We randomly sample 100,000 src-dst pairs and
measure the min-cut/max-flow on both the original and sparsified
graphs. Then we use the mean stretch factor between the sparsified
and the original graph to evaluate the sparsification quality.

GNN. For GNNs, we evaluate two models: GraphSAGE and Clus-
terGCN. The quality is measured in test accuracy or Area Under the
Receiver Operating Characteristics [25] (AUROC). AUROC ranges
from 0.5 to 1. A higher accuracy or AUROC indicates better GNN
performance. For both GNN models, we train the network with
sparsified graph and test on the full graph, because 1) training is
the most time-consuming part and is the most meaningful to apply
sparsification, 2) testing on the full graph reveals how well the
sparsified graph captures full graph’s characteristics.
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3.4 Software Framework
Our software evaluation framework integrates several open-source
libraries and our custom implementations. We use NetworKit[68]
for multiple sparsifiers and Laplacians.jl[66] for the effective
resistance sparsifier. We also implemented the K-Neighbor , Rank
Degree, L-Spar , and t-Spanner algorithms.

For the evaluation metrics, we employ both NetworKit [68]
and graph-tool [55] for implementations of several discussed dis-
tance, centrality, clustering, and min-cut/max-flow metrics. We use
PyG [26] to implement the graph neural networks. Additionally, we
implemented degree distribution and quadratic form evaluation.

The framework is open-sourced and extendable to incorporate
more sparsification algorithms and graph metrics.

3.5 Hardware Platform
The experiments in this paper are performed on a server with an
Intel Xeon Platinum 8380 CPU, with 1 TB memory. The graph
neural networks run on an Nvidia A40 GPU with 48 GB memory.

4 RESULTS
In this section, we evaluate the impact of various sparsifiers on
the quality of graph metrics at different prune rates. We perform
comprehensive experiments on all sparsifiers, graph metrics, and
datasets discussed in this paper. Due to the extensive nature of the
experiments we conducted (over 30,000 data points), we can only
show a subset of performance results in the figures. The full results
are available with the artifact. We adhere to the following rules to
present the results without bias: (1) for readability, we only show a
representative subset of sparsifiers for each graph metric, including
those that perform well or poorly and those that yield interesting
outcomes; (2) we always include Random as it serves as a naive
sparsifier for comparison; (3) we select at least one representative
graph for each graph metric and discuss any discrepancies observed
in other graphs. We then compare sparsification times and briefly
discuss the overhead associated with sparsification. Finally, We
summarize the results and provide insights.

4.1 Basic Metrics
Figures 1a and 1b show the source-destination pair unreachable
ratio and vertex isolated ratio, respectively. As the prune rate in-
creases, the graph becomes more disconnected, leading to an in-
crease in isolated vertices. K-Neighbor excels at preserving graph
connectivity because it ensures that each vertex retains at least
𝑘 edges. Two local sparsifiers, Local Degree and Local Similarity,
also show strong performance since they both select edges to main-
tain locally, guaranteeing at least one edge for each vertex. ER
performs well by retaining high-resistance edges, which are the
low-redundancy edges crucial for maintaining graph connectivity.
Spanning Forest and t-Spanners preserve the same level of connec-
tivity as the original graph, as ensured by the algorithms. Random
does not effectively preserve graph connectivity because it does
not attempt to maintain edges critical for connectivity. G-Spar and
SCAN retain edges connecting similar vertices on a global scale, and
these edges are often intra-community edges that are not crucial for
preserving connectivity, resulting in the poorest performance. The
acceptable unreachable/isolated ratio can be customized according
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Figure 1: Graph Connectivity on ca-AstroPh.

to specific applications. In this paper, we consider an increase of 20%
or more in the unreachable/isolated ratio compared to the original
graph as excessive (shown as the grey area in Figures 1a and 1b).
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Figure 2: Degree distribution comparison on ogbn-proteins.
Lower is better. Random performs the best, Local Degree and
Forest Fire do not do well in preserving degree distribution.

Degree Distribution. Figure 2 illustrates the degree distribu-
tion on ogbn-proteins. A lower Bhattacharyya distance signifies
a more similar degree distribution to the original graph. Random
demonstrates the best performance in preserving the degree dis-
tribution. This is due to Random treats all edges without bias, thus
maintaining the same proportion of edges for all vertices and keep-
ing a similar degree distribution. Given that most graphs exhibit a
power-law degree distribution, some sparsifiers struggle to preserve
degree distribution. For instance, Local Degree and Rank Degree
tend to retain edges connected to high-degree vertices. Conversely,
K-Neighbor maintains up to K edges for all vertices, eliminating
surplus edges from high-degree vertices. These biases negatively
impact the preservation of the degree distribution. Among all sparsi-
fiers, Random consistently performs well across all graphs, while Lo-
cal Degree, Rank Degree, K-Neighbor , and Forest Fire under-perform
on most graphs. The performance of other sparsifiers moderately
fluctuates across graphs due to different graph characteristics.

Laplacian Quadratic Form. Figure 3 displays the Laplacian
quadratic form similarity on com-Amazon. A value closer to 1 in-
dicates better quality. From the figure, ER-weighted emerges as the

433



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

0.2

0.4

0.6

0.8

1.0
Q

ua
dr

at
ic

Fo
rm

S
im

ila
rit

y

Random ER-weighted

Figure 3: Laplacian quadratic form comparison of different
sparsifiers on com-Amazon. Closer to 1 is better. ER-weighted
performs the best. Random and other sparsifiers do not pre-
serve Laplacian quadratic form.

clear winner. This is because the Laplacian quadratic form is the
specific attribute ER-weighted is designed to preserve. Note that
only ER-weighted possesses this property. ER-unweighted, along
with other sparsifiers, exhibits no capability to preserve Laplacian
quadratic form similarity at all, and they show the same pattern
as Random. The pattern observed on com-Amazon is consistent
across other undirected graphs. For directed graphs (not shown due
to space limit), the Laplacian quadratic form ratio for ER-weighted
is no longer guaranteed to be close to 1, this is because the sym-
metrization process deviates the graph’s spectral property from that
of the original directed graph. However, ER-weighted still maintains
a constant ratio and offers a better guarantee than other sparsifiers.

4.2 Distance Metrics
SPSP. A practical sparsifier should keep the mean stretch factor
close to 1 while keeping the unreachable ratio relatively low. Fig-
ure 4a shows the mean stretch factor of 100,000 sampled source-
destination pairs, with the constraint that the unreachable ratio
is <20% over that in the original graph (white area in figure 1a).
This allows for a comparison of the mean stretch factor without
a significant increase in the number of unreachable pairs. Local
Degree and Rank Degree demonstrate the best performance in pre-
serving distances while maintaining a low unreachable ratio. This
is because both of them are biased towards preserving edges of
high-degree vertices, which are typically hub vertices in the graph
and often lie along many shortest paths. L-Spar , ER-unweighted,
Forest Fire, and K-Neighbor also exhibit strong performance due
to their ability to maintain graph connectivity. Conversely, G-Spar
and SCAN perform poorly as they rapidly increase the unreachable
ratio and have a higher stretch factor. Although Spanning Forest and
t-Spanners have a relatively high stretch factor, they guarantee the
connectivity of the original graph, allowing them to maintain the
unreachable ratio. t-Spanners fulfill the guarantee that the stretch
factor is at most t but empirically show a higher mean stretch fac-
tor than Local Degree. t-Spanners is useful when connectivity is
paramount and a slightly higher stretch factor is tolerable.

Eccentricity. Figure 4b presents the performance of sparsifiers
with the vertex isolation ratio is <20% higher than that in the orig-
inal graph (white area in figure 1b). Local Degree and Rank De-
gree perform the best in preserving eccentricity while keeping
the unreachable ratio low. L-Spar , ER-unweighted, Forest Fire, and
K-Neighbor also show strong performance due to their ability to

maintain graph connectivity. G-Spar and SCAN perform poorly
compared to other sparsifiers. Spanning Forest and t-Spanners have
a relatively high stretch factor but guarantee the graph connectivity.
Additionally, t-Spanners provide a theoretical upper bound on the
stretch factor, making them suitable for certain scenarios.

Diameter. Figure 4c presents the diameters of various sparsified
graphs at various prune rates. The green dashed line (8) indicates the
diameter measured on the full graph as ground truth. We observe
that Local Degree and Rank Degree perform the best, consistent with
their strong performance in preserving distance. G-Spar , SCAN ,
and Local Similarity perform poorly compared to other sparsifiers.

In general, distance-related metrics are consistent across graphs.
Some graphs (e.g., com-Amazon) have a lower average degree,
causing the unreachable ratio or vertex isolation ratio to increase
more quickly than in other graphs. Local Degree and Rank Degree
consistently demonstrate the best performance for all distance-
related metrics; however, Local Degree more effectively maintains
the connectivity. G-Spar and SCAN always under-perform because
they both tend to keep intra-community edges. This leads to a more
disconnected graph and a high unreachable/isolation ratio.

4.3 Centrality Metrics
Betweenness and Closeness Centrality. Figure 5a and 5b display
the top-100 precision of betweenness centrality on com-DBLP and
closeness centrality on ca-AstroPh. Local Degree and Rank Degree
exhibit the best performance. This is because the top-scored vertices
are typically hub vertices, and as explained in § 4.2, both Local
Degree and Rank Degree preserve edges incident to high-degree
vertices, thus maintaining the betweenness and closeness ranking
of hub vertices. Random uniformly samples edges without bias,
and preserves the relative ranking to some extent. G-Spar and
SCAN do not perform well as they aggressively disconnect graphs.
We consistently observe Local Degree, Rank Degree, and Random
perform well, and G-Spar and SCAN perform poorly across graphs.

Eigenvector Centrality. Figure 6 presents the top-100 precision
of eigenvector centrality on email-Enron. Rank Degree achieves the
best performance because it retains edges connected to high-degree
vertices. Although eigenvector centrality is not directly linked to
degree, high-degree vertices have a higher probability of being
directly or indirectly (via n-hop neighbors) connected to important
vertices. In comparison, Local Degree performs worse than Rank
Degree since it only considers the degree of immediate neighbors
and may disconnect vertices from vital vertices located more than
1-hop away. Random shows strong performance due to its unbiased
nature, which helps preserve relative ranking. Both Forest Fire and
K-Neighbor under-perform in preserving eigenvector centrality.

Katz Centrality. Figure 7 illustrates the top-100 precision of
Katz centrality on ego-Twitter. Random demonstrates the most
effective performance. This is due to that Random proportionally
maintains the number of edges relative to the original degree for all
vertices. Thus, the graph’s hop structure closely resembles its origi-
nal state. Empirically, K-Neighbor and ER-unweighted also exhibit
strong performance. Local Degree and Rank Degree do not perform
well since they solely focus on degree, thereby only accounting for
immediate neighbors. Therefore, vertices with low-degree immedi-
ate neighbors but high k-hop (k>1) neighbors are severely penalized.
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Figure 4: (a) Adjusted SPSP stretch factor of sparsifiers on ca-AstroPh with the constraint of acceptable pair unreachable ratio.
(b) Adjusted eccentricity stretch factor of sparsifiers on ca-AstroPh with the constraint of acceptable vertex isolated ratio. (c)
Diameter comparison on ego-Facebook. For stretch factor, closer to 1 is better. For graph diameter, closer to ground truth
(green line) is better. Rank Degree and Local Degree have the best performance. G-Spar and SCAN do not perform well.
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Figure 5: Top-100 precision for Betweenness and Closeness
centrality. Higher is better. (a) Betweenness centrality on
com-DBLP. (b) Closeness centrality on ca-AstroPh. Local
Degree, Rank Degree, and Random have the best performance.
L-Spar, G-Spar, SCAN , and Forest Fire do not perform well.
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Figure 6: Eigenvector centrality top-100 precision compari-
son on email-Enron. Higher is better. Rank Degree and Ran-
dom have the best performance. Forest Fire and K-Neighbor
do not perform well.

Minor fluctuations in sparsifiers’ relative performance on certain
graphs can be attributed to the variation in the attenuation factor
𝛼 . Overall, the performance is consistent across graphs.
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Figure 7: Katz centrality top-100 precision comparison of
different sparsifiers on ego-Twitter. Higher is better.Random
has the best performance. Forest Fire does not perform well.

In summary, Local Degree, Rank Degree, and Random consistently
excel in centrality-related metrics. This is because Local Degree and
Rank Degree retain edges connected to hub vertices, and centrality
metrics seek important vertices in the graph, which often corre-
spond to hub vertices. Conversely, Randommaintains edges without
bias, thus effectively preserving the relative vertex ranking.

4.4 Clustering Metrics

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prune Rate

102

103

104

105

N
um

be
ro

fC
om

m
un

iti
es RN

KN
LD
RD
SF
SP-3
SP-5
SP-7
GS

Figure 8: Number of communities comparison on com-DBLP.
Closer to the green line is better. Local Degree, Spanning
Forest, and t-Spanners have the best performance. G-Spar,
Rank Degree, and Random do not perform well.

Number of Communities. We employ the widely recognized
Louvain method [12] for community detection, assuming the num-
ber of communities is unknown, and use the number detected in
the original graph as the ground truth. Figure 8 presents a com-
parison of community numbers on com-DBLP, with the green
dashed line representing the ground truth; the closer to it, the bet-
ter. As the prune rate increases, the graph becomes increasingly
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disconnected, and the number of communities consistently rises.
Local Degree and K-Neighbor excel in maintaining the community
number relatively close to the ground truth because it preserves
the connectivity. Spanning Forest and t-Spanners also demonstrate
strong performance, surpassing Local Degree at equivalent prune
rates, as they ensure connectivity remains identical to the original
graph. Unlike Local Degree, Rank Degree struggles to preserve the
community number because it sparsifies globally without providing
guarantees on connectivity preservation. In various graphs, Local
Degree, Spanning Forest, and t-Spanners consistently outperform.
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(a) Mean clustering coefficient.
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Figure 9: Clustering coefficients comparison. Closer to the
green line is better. (a) shows the MCC on com-Amazon (b)
shows the GCC on human_gene2. No sparsifier is effective
in preserving the clustering coefficient.

Clustering Coefficient. Figure 9 compares clustering coeffi-
cients on com-Amazon and human_gene2. We use the mean clus-
tering coefficient (MCC) to evaluate the local clustering coefficient
(LCC), as it represents the average LCC of all vertices. The green
dashed lines indicate the MCC and GCC of the original graph. Gen-
erally, most sparsifiers exhibit decreasing MCC and GCC as the
prune rate rises, with only Local Similarity, SCAN , and G-Spar
exhibiting slight increases in MCC at lower prune rates. None of
the sparsifiers demonstrate outstanding performance in preserving
MCC andGCC, as they all degrade linearly with respect to the prune
rate. Spanning Forest and t-Spanners consistently have an MCC of
0 due to the absence of loops in the graph. Clustering coefficient
results vary across different graphs, with graph categories and di-
rectedness significantly impacting sparsifier performance. Overall,
no sparsifier proves effective in preserving clustering coefficients.

Clustering F1 Similarity. Relying solely on the number of com-
munities to evaluate clustering quality is insufficient, therefore, we
employ the clustering F1 score to measure clustering similarity (see
§ 2.2.4). Figure 10 shows the clustering F1 similarity comparison
on ca-HepPh, with F1 similarity ranging from 0 (worst) to 1 (best).
The green dashed line represents the clustering F1 similarity when
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Figure 10: Clustering F1 similarity comparison of different
sparsifiers on ca-HepPh. Higher is better. ER-unweighted,
ER-weighted,K-Neighbor, Local Degree, L-Spar, and Local Sim-
ilarity perform the best. SCAN and G-Spar underperform.

applying clustering algorithms twice on the original graph; it is not
1 due to the inherent randomness in the clustering algorithm. For
all sparsifiers, F1 similarity decreases as the prune rate increases.
K-Neighbor exhibits the best overall performance, while Local Sim-
ilarity, Local Degree, and L-Spar also demonstrate strong results.
These sparsifiers share a focus on local edges, and locally similar
vertices more likely to belong to the same community. Empirically,
we also observe that ER-weighted and ER-unweighted perform well,
potentially due to ER’s preservation of low-redundant edges, which
are often crucial in clustering algorithms. In contrast, G-Spar and
SCAN display poor performance in preserving clustering similarity.
Across graphs, K-Neighbor , Local Degree, Local Similarity, L-Spar ,
ER-unweighted, and ER-weighted consistently rank as top perform-
ers, while G-Spar and SCAN persistently underperform.

4.5 High-level Metrics
PageRank. Figures 11a and 11b present the top-100 precision of
PageRank on web-Google and ego-Facebook, respectively. Note
that web-Google is a directed graph and ER only supports undi-
rected graphs. Thus, we symmetrize the graph before performing
ER. Sparsifiers that work on directed graphs are applied directly.

As illustrated in Figure 11a, ER-unweighted and ER-weighted
demonstrate high precision and consistency at various prune rates.
On all web networks (web-NotreDame,web-BerkStan,web-Google,
web-Stanford) the performance of ER remains similar in that preci-
sion is almost constant at different prune rates. However, ER does
not always achieve the best performance at low prune rates. For
some graphs, the precision of ER remains constant but at a lower
level. This can be due to the symmetrizing process altering the orig-
inal graph’s information. The more symmetrical the original graph
is, the less influence will be introduced. K-Neighbor also shows
good performance at low prune rates. In contrast, G-Spar , SCAN ,
and Local Degree fail to preserve PageRank effectively.

Figure 11b reveals ER sparsifier’s performance on unweighted
graphs, using ego-Facebook as an example. Rank Degree, Local
Degree, Random, K-Neighbor , ER-unweighted, and ER-weighted all
exhibit similar performance in preserving PageRank. G-Spar and
SCAN continue to underperform. In comparison to directed graphs,
ER no longer exhibits almost constant precision at varying prune
rates on undirected graphs. Rank Degree and K-Neighbor consis-
tently perform well on both directed and undirected graphs. Local
Degree displays a significant discrepancy in performance between
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(a) PageRank Centrality on web-Google
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(b) PageRank Centrality on ego-Facebook

Figure 11: PageRank centrality. Higher precision is better. (a)
PageRank centrality on web-Google. K-Neighbor and Ran-
dom perform the best at a low prune rate, ER-weighted and
ER-unweighted perform the best at a high prune rate. Local
Degree, G-Spar, and SCAN do not perform well. (b) PageRank
centrality on ego-Facebook. Rank Degree has the best perfor-
mance. G-Spar and SCAN underperform.

directed and undirected graphs, excelling in undirected graphs but
consistently underperforming in directed ones. G-Spar and SCAN
show poor performance consistently.
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Figure 12: Adjusted Mean Stretch Factor for min-cut/max-
flow with the constraint of acceptable unreachable ratio on
ca-HepPh. Closer to 1 is better. ER-weighted has the best
performance.

Min-cut/Max-flow. Figure 12 presents the mean stretch fac-
tor on ca-HepPh, with the constraint that the unreachable ratio
remains <20% higher than in the original graph. A mean stretch
factor closer to 1 means better performance. ER-weighted shows
the best performance. This can be attributed to ER being a spectral
sparsifier, which preserves the spectral properties of graphs [67].
Min-cut/max-flow methods are also closely related to the graph
spectrum. Flow-based graph partitioning [52] employs the Fiedler
vector [27] (eigenvector corresponding to the second smallest eigen-
value of the graph Laplacian). One can intuitively think of ER
as retaining high-resistance (low-redundant) edges in the graph,
which are typically found in the critical (narrowest) section of the

max-flow problem. ER-weighted significantly outperforms its un-
weighted counterpart ER-unweighted, as ER-weighted effectively
compensates for the weights of other edges when removing edges.
K-Neighbor and Forest Fire show good empirical performance as
well. In contrast, G-Spar and SCAN underperform, and other spar-
sifiers exhibit similarly mediocre results. The outcomes for min-
cut/max-flow are consistent across graphs, with ER-weighted as the
top performer, followed by K-Neighbor and Forest Fire.

GNN. Figures 13a and 13b show the performance of sparsifiers
on two distinct GNN models. GNN performance is measured using
AUROC and/or vertex classification accuracy. The green dashed
line represents performance on the full graph, while the red dashed
line represents performance on the empty graph (a graph with
no edges). We include the empty graph to demonstrate the per-
formance of GNN models based solely on vertex features without
any graph structural information. On the GraphSAGE model, Ran-
dom and Local Similarity perform the best; G-Spar and SCAN show
good performance at low prune rates but deteriorate rapidly at
higher rates. However, on the CluterGCN model, G-Spar and SCAN
performwell at all prune rates. Local Degree and Rank Degree consis-
tently underperform compared to other sparsifiers on both models.
Due to the complexity of GNN algorithms, it is challenging to draw
straightforward conclusions. Overall, the performance of sparsifiers
on GNNs differs from model to model, which may be due to the
inherent characteristics of GNN workloads.

4.6 Sparsification Time
Figure 14 shows the sparsification time of different sparsifiers at
different prune levels. For all sparsifiers, sparsification time de-
creases as the prune rate increases, this is expected because the
higher the prune rate, the fewer edges need to be picked. Across
sparsifiers, the sparsification time is also different. Random and
K-Neighbor are the sparsifiers with the lowest overhead due to their
low algorithmic complexity. L-Spar , G-Spar , Local Degree, SCAN ,
Local Similarity, Forest Fire, and Rank Degree show similar latency.
ER is the most complex algorithm. In the figure, the time for ER is
only for sampling. We do not include the computation time of the
effective resistance because it is a one-time cost. The computation
of effective resistance takes 990 seconds for ogbn-proteins. and the
execution time of ER is approximately an order of magnitude higher
than that of other sparsifiers. However, depending on the applica-
tion, a high-cost sparsifier like ER can still be useful if it preserves
the desired graph properties, and the sparsification overhead is less
than the time that can be saved in performing the downstream task
on the sparsified graph.

4.7 Summary of Results and Insights
Overall, The performance of all sparsifiers degrades as the prune
rate increases. Usually, we observe that the relative performance
of sparsifiers is consistent across prune rates, meaning superior
sparsifiers at low prune rates will remain superior at high prune
rates, and the performance gap between the superiors and inferiors
will be larger. On some occasions, the performance of a sparsifier
have an elbow point, beyond which the performance drops sharply.
This is due to some sparsifiers unable to maintain certain property
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(a) GraphSAGE comparison of different sparsifiers on ogbn-proteins
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(b) ClusterGCN comparison of different sparsifiers on Reddit

Figure 13: GNN comparison of different sparsifiers. Higher AUROC and accuracy are better. The green line represents the
inference results on the model trained by the full graph. The red line represents the inference results on the model trained with
no graph (MLP only). (a) is evaluated with the GraphSAGE on ogbn-proteins. (b) is evaluated with the ClusterGCN on Reddit.
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Figure 14: Sparsification time comparison on ogbn-proteins

beyond a the elbow prune rate. For example, in figure 6, the per-
formance of Local Degree dropped abruptly when increasing the
prune rate from 0.8 to 0.9, because the number of edge is so low
that it cannot maintain the graph connectivity anymore.

To make sparsification effective, the selection of the sparsifica-
tion algorithm should preserve the graph property/properties on
which the downstream application is based. We summarize the
what each sparsifier preserve below.

• Random: preserves relative (distribution-based or ranking-
based) properties, for example, degree distribution, and top
centrality rankings. It struggles to preserve absolute (valued-
based) properties, for example, number of communities, clus-
tering coefficient, and min-cut/max-flow.

• K-Neighbor , Spanning Forest, and t-Spanners: preserves
graph connectivity; keeps pair unreachable ratio and vertex
isolated ratio low.

• Rank Degree and Local Degree: preserves graph connectiv-
ity and edges to high-degree vertices (hub vertices). Perform
well on distance metrics (APSP, eccentricity, diameter) and
centrality metrics.

• Forest Fire: simulates the evolution of graphs and does not
strictly stick to the original graph. Empirically it does not excel
at any metrics evaluated.

• G-Spar and SCAN : Empirically perform well in preserving
ClusterGCN accuracy.

• L-Spar and Local Similarity: preserves the edge to similar
vertices, thus preserves clustering similarity.

• ER: preserves the spectral properties of the graph, specifically
the quadratic form of the graph Laplacian. It perform well in
preserving min-cut/max-flow results.

5 RELATEDWORK
ML-based sparsifiers are a group of sparsifiers that use machine
learning-related techniques to sparsify graphs. SparRL [75] pro-
poses a graph sparsification framework enabled by deep reinforce-
ment learning. NeuralSparse [77] presents a supervised graph spar-
sification technique to improve performance in graph neural net-
works (GNN). Instead of focusing on saving execution time by
performing graph sparsification, NeuralSparse aims to remove task-
irrelevant edges from the graph, and thus improve the accuracy
of the downstream GNNs. DropEdge [60] presents a method very
close to the random sparsifier, but samples a random set of edges
for each training epoch in graph convolutional network (GCN),
the goal is both to reduce message passing overhead and reduce
over-fitting with the full graph input.

6 CONCLUSION
This study provides a comprehensive evaluation of 12 graph sparsi-
fication algorithms, analyzing their performance in preserving 16
essential graph metrics across 14 real-world graphs with diverse
characteristics. Our findings revealed that no single sparsifier ex-
cels in preserving all graph properties, and it is important to select
appropriate sparsification algorithms based on the downstream
task. This study contributes to the broader understanding of graph
sparsification algorithms, and we provided insights to guide fu-
ture work in effectively integrating graph sparsification into graph
algorithms to optimize computational efficiency without signifi-
cantly compromising output quality. Our open-source framework
offers a valuable resource for ongoing evaluations of emerging
sparsification algorithms, graph metrics, and growing graph data.
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