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ABSTRACT

The popularity of heterogeneous CPU-GPU processing has in-
creased considerably in recent years. To efficiently utilize heteroge-
neous resources, data processing systems depend on an appropriate
workload placement strategy to assign the right amount of com-
pute to the right processor. However, finding an optimal placement
strategy is not trivial due to various complex and conflicting trade-
offs related to the characteristics of processors, the nature of the
workload, and data locality. In addition, placement decisions impact
workload runtime and performance cost, and also depend on the
availability of potentially different implementations for CPUs and
GPUs, which adds extra complexity in such heterogeneous envi-
ronments. In this tutorial, we review and compare state-of-the-art
strategies for workload placement on heterogeneous CPU-GPU
architectures, along with runtime prediction techniques and meth-
ods to support multi-device code. We also discuss open issues and
identify potentially promising future research directions.
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1 INTRODUCTION AND MOTIVATION

In the last decade, graphic processing units (GPUs) have gained
popularity in applications across diverse research domains, such as
Data Science, Artificial Intelligence, or HPC. GPUs provide a high
level of parallel processing power to accelerate applications, but
they also present three core limitations: (i) Data transfer bottleneck:
data must be moved between CPUs and GPUs, typically, over a low-
bandwidth system bus which adds a communication overhead (ii)
Limited memory size: Although the GPU memory has a considerable
greater bandwidth, its size is much smaller than the main memory
available for CPUs, preventing the processing of high volumes of
data on GPUs; and (iii) CPUs and GPUs are designed for different
purposes: CPUs excel at processing low-latency operations with low
degree of thread parallelism, while GPUs process best operations
with a high degree of thread parallelism.

Hence, heterogeneous CPU-GPU architectures have emerged
as a strategy to alleviate the drawbacks of GPUs and exploit the
benefits of both CPUs and GPUs. Optimizing the utilization of het-
erogeneous CPU-GPU systems is a challenging research problem
that requires (a) finding the optimal workload placement strategy

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685845

4241

Oscar Romero
UPC

oscar.romero@upc.edu

Anna Queralt
UPC, BSC
anna.queralt@upc.edu

(i.e., on what processor, CPU or GPU, to run part of the computa-
tion of an application), (b) estimating runtime costs over different
hardware architectures, and (c) managing multi-device code [25].
Determining the most efficient placement strategy is a complex
task, which requires balancing the trade-off between optimal exe-
cution (i.e., assign a workload to a processor) and mitigated data
transfers (i.e., employ a single processor to avoid data move) [29].
However, the large space of non-linear execution parameters (a.k.a.
factors) involved in the design process and the lack of concrete
guidelines often result in subpar placement decisions that cause
load imbalance, waste resources, and amplify the data transfer bot-
tleneck. For estimating runtime costs, current works consider a
blend of techniques based on heuristics, cost models, and learn
models. For managing heterogeneous CPU-GPU code, kernel tem-
plates, compilers, and raw kernels are the typical alternatives.
Although a significant body of research has been accumulated in
recent years, a comprehensive study of the related work and current
best practices is missing. Past surveys provide an excellent overview
of the problem, but do not delve into the specifics of the CPU-GPU
workload placement challenges and techniques [32, 37]. As this is
a truly interdisciplinary topic, we believe it would be of interest to
the research community to be informed about the advances on this
hot problem in areas such as systems, HPC, and data management.

2 TUTORIAL SCOPE AND COVERAGE

In this tutorial, we present and compare the state-of-the-art solu-
tions for workload placement on heterogeneous CPU-GPU systems,
and answer the following questions: (a) what have we learned about
workload placement on such architectures and what is still miss-
ing, (b) how placement strategies balance choosing processors and
data locality, (c) what are the techniques used to estimate costs and
support placement decisions, and (d) what are the alternatives to
manage heterogeneous CPU-GPU code. Here, the term ‘workload’
covers a variety of data processing functions, including database
queries, data flows/pipelines, or general apps and programs.
Duration. We propose a 90-min tutorial structured as follows:

(1) Introduction and motivation [~10’]

(2) A taxonomy for CPU-GPU workload placement [~10’]

(3) Workload placement strategies [~24]

(4) Estimating costs for placement decisions [~18’]

(5) Managing heterogeneous CPU-GPU code [~18’]

(6) Open issues and research directions [~10’]
Tutorial scope. The literature about heterogeneous CPU-GPU
processing is wide and several approaches have explored different
GPU usage, i.e., primary processor, accelerator, or heterogeneous
CPU-GPU processing, and GPU integration, i.e., integrated GPU
(iGPU) or dedicated GPU (dGPU, or hereafter, simply referred as
GPU) [18]. In this tutorial, we focus on heterogeneous CPU-dGPU
processing solution approaches as this is the most popular setting in
both server and high performance computing infrastructures [35].
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3 THE CPU-GPU LANDSCAPE

GPU usage. Applications using GPUs, either as a primary proces-
sor or as an accelerator, typically assume that the workload place-
ment decision is done beforehand (static placement) [e.g., 4, 6, 23].
Most practical applications, however, require dynamic (and often,
adaptive) workload placement, which is a challenging problem [32].
GPU integration and data transfer bottleneck. iGPUs have lim-
ited memory bandwidth (they share the main memory with CPUs)
and reduced processing capacity compared to dGPUs. However,
iGPUs are more energy efficient and do not face a data transfer bot-
tleneck. Hence, iGPUs are popular in fine-grained workloads (e.g.,
stream processing or processing in edge devices) [32]. On the other
hand, dGPUs have limited memory size and deal with a data trans-
fer bottleneck as their memory is decoupled from the main memory,
hence, requiring data transfer over a low-bandwidth interconnect.
However, their high bandwidth memory and processing capacity
make dGPUs ideal to process coarse-grained and compute-intensive
workloads (e.g., machine learning, numeric algorithms) [32]. The
size limitation of dGPUs memory is being gradually mitigated (e.g.,
NVIDIA H200 offers 141GB memory [38]); still, it remains much
smaller than the system main memory, which can be in the order
of terabytes in modern servers. Price-wise, GPU memory (GDDR6)
current $/GB ratio (100$/GB) resembles the price per GB of DRAM
a decade ago (60$/GB) and it is steadily improving [24].

Data transfer techniques and workload placement. Several
software/hardware solutions aim at mitigating the CPU-GPU data
transfer bottleneck [32]. For example, data locality-based solutions
avoid data transfer by placing workloads on processors where the
input data is already located [8, 12, 13, 26, 34]. Such solutions use off-
chip caching policies to avoid slow disk accesses, and are typically
used in placement strategies that consider data locality [32]. Other
placement strategies ignore data locality and focus on placing work-
loads on the processor that results in faster runtime, potentially at
the cost of most expensive CPU-GPU data transfer.

3.1 A Taxonomy of Solutions

We studied 77 papers on workload placement on heterogeneous
CPU-GPU systems, spanning a period of 15 years (2009-2024). In
our analysis, a number of factors consistently stand out in all papers.
Based on these, we classify the state of the art using the follow-
ing dimensions: (a) placement strategy, (b) off-chip cache policy,
(c) placement granularity, (d) placement time, (e) placement deci-
sion, (f) placement prediction model, (g) monitored metrics, and
(h) GPU programming method. For space considerations, we do
not list all 77 papers here. Figure 1 shows an abridged taxonomy
indicating representative works' for each dimension and also how
many papers consider the said dimension (the #papers row —e.g., 9
papers employ function shipping).

3.1.1  Workload placement strategies. Workload placement and
scheduling are similar concepts, but they have different design
purposes. While placement strategies decide where to run a work-
load (CPU or GPU processor), scheduling strategies decide where
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(specific CPU core or GPU device) and when (the execution or-
der considering resource utilization) to run a workload. In general,
placement strategies work on an optimization layer providing hints
to schedulers about the ideal processor type to run workloads.

Placement strategy. Early approaches focused on data shipping [e.g.

18, 19, 28, 30], where functions (i.e., applications or fractions of an
application) are first assigned to the most suitable processors (i.e.,
those that result in smallest estimated costs) and then data is placed
on the processors where functions have been assigned at the cost of
increasing the data movement overhead. Conversely, function ship-
ping [e.g., 8, 13, 26] places functions where data is already located
to reduce data transfer at the cost of not always placing functions
on the most fit processor. Selecting the best approach is not trivial
and highly depends on the application and resources.

Off-chip cache policy. Function shipping approaches typically
employ cache to keep a subset of data on off-chip memory (i.e.,
host main memory for CPU or device global memory for GPU)
and reduce data movement costs [8, 26]. GPU cache has higher
bandwidth but smaller size than CPU cache. Thus, besides finding a
cache policy that selects a subset of data to fit into the limited cache
size, choosing a cache type is also a challenge. Popular cache policies
include frequency-based [e.g., 10, 24, 26], greedy-based [e.g., 12, 15,
16], and semantic-aware [e.g., 1, 8, 13] that attempt to cache the data
with the most impact on task execution. No off-chip caching [e.g.,
5, 20, 28, 40] is commonly used in data shipping approaches.
Placement granularity. Job-level granularity [e.g., 31] comprises a
set of applications to be placed together on CPUs or GPUs, whereas
application-level granularity [e.g., 4, 5, 24] involves the placement
of a single application. Applications can be partitioned logically
and/or physically into tasks [e.g., 12, 18, 20, 33]. In logical partition-
ing, portions of code of the application are identified as tasks and
placed on CPUs or GPUs. In physical partitioning the input data of
an application is divided into blocks and processed as multiple in-
dependent tasks. Tasks can be grouped and placed in pipelines [e.g.,
13, 21, 23], logically partitioned on functions [e.g., 14, 29] or physi-
cally partitioned on segments (i.e., groups of task input data) [e.g., 8]
or bits (i.e., the finest granularity of task input data) [39]. Coarser
granularity allows placement decisions to generalize to multiple
applications, whilst finer granularity involves application-specific
factors (e.g., kernel-level). Most approaches however opt for a bal-
anced granularity, considering task-level placement.

Placement time. Runtime (a.k.a. dynamic or local) placement [e.g.,
7,17, 26, 33] performs placement decision at workload execution
based on runtime factors (e.g., current load, memory usage). This
strategy deals better with unforeseen events (e.g., out-of-memory
errors, heap contention). However, the choice of factors to con-
sider is limited, which often leads to sub-optimal placement [28].
Compilation time (a.k.a. static or global) placement [e.g., 2, 4, 5, 23]
decides placement before workload execution and typically, it does
not handle well unforeseen events. This strategy relies on complex
placement algorithms that achieve more robust performance at
the cost of a higher implementation effort and computational over-
head. A typical limitation includes the estimation of runtime factors
(e.g., query cardinality), which oftentimes is not accurate [28]. Hy-
brid placement strategies combining runtime and compilation time
placement have also been considered [e.g., 14, 21, 22, 30, 34].
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Karnagel et al. [28] X X X X X X X X X
Robust CoGaDB [26] X X X X X X X
HetCache [13] X X X X X X X X
RateupDB [24] X X X X X X X X X
Parla [12] X X X X X X X X X X X
Wen and O'Boyle [40] X X X X X X X X X
Ravi et al. [31] X X X X X X X X X
Compressed Crystal [5] | X X X X X X X X X
HetExchange [21] X X X X X X X X X
Carvalho et al. [18] X X X X X X X X
HERO [29] X X X X X X X X
Mordred [8] X X X X X X X X X
Pirk [39] X X X X X X X X
Li etal. [33] X X X X X X X X
MCL Schedulers [2] X X X X X X X X X X X
CGgraph [9] X X X X X X X X
DBD [30] X X X X X X X X
CoTrain [34] X X X X X X X X X X
TensorFlow [16] X X X X X X X X X X
Gowanlock et al. [17] X X X X X X X X X
GaccO [1] X X X X X X X X
READYS [20] X X X X X X X X X
Placeto [23] X X X X X X X X
Lutz et al. [11] X X X X X X X X X
Sigmoid [7] X X X X X X X X X
Crystal [4] X X X X X X X X X X
Lee and Park [36] X X X X X X X X
Xekalaki et al. [19] X X X X X X X X
GFlink [10] X X X X X X X X

Figure 1: Abridged taxonomy for workload placement on CPU-GPU systems (representative papers are marked with x)

Placement decision. Automatic approaches [e.g., 7, 13, 21, 24,
30] usually rely on cost models or heuristics. Semi-automatic ap-
proaches [e.g., 8, 23, 34] rely on human interaction for tuning, but
automate the placement decision. Manual placement [e.g., 10, 16, 18,
36] relies on the developer’s guidance based on extensive profiling.

3.1.2  Estimating costs for placement decisions. Several metrics have
been proposed to estimate the costs of placement decisions.

Placement prediction model. Cost-based placement [e.g., 4,7, 8,
17] relies on performance cost estimates (e.g., latency, throughput,
power, energy consumption). This strategy builds a quantitative
performance formulation considering factors such as CPU-GPU
architectural differences, workload characteristics, and CPU-GPU
data transfers. Oftentimes, cost-based placement results in ad-hoc
designs tailored for specific settings, and hence non-transferable
to different architectures and configurations. Heuristic-based ap-
proaches [e.g., 1, 13, 30, 39] are based on pre-defined rules. A com-
mon heuristic is to offload workloads with a low (high) degree of
thread parallelism to CPUs (GPUs). Learn-based approaches [e.g.,
14, 20, 23, 26] perform placement based on cost prediction at run-
time, using historical execution logs for training. Such techniques
exploit transfer learning to generalize placement decisions to other
settings. The usual drawbacks include expensive training (e.g., train-
ing data size, training time, energy footprint) and extra care to
avoid catastrophic forgetting. Most approaches though are heuristic-
based (see Figure 1).

Monitored metrics. Various metrics have been proposed to influ-
ence CPU-GPU placement. Latency (workload execution time) is the
most popular [e.g., 23, 26, 30, 40]. Other metrics include through-
put [e.g., 1, 11, 16, 34], energy consumption [7], and monetary
price [4]. Comparing placement strategies opting for optimizing
such different metrics is an additional design challenge.
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3.1.3  Managing heterogeneous CPU-GPU code. Specialized pro-
gramming abstractions and coding paradigms are needed to enable
routinely placing workload on mixed CPU and GPU environments.
GPU programming method. Some approaches use kernel tem-
plates [e.g., 8, 17, 18, 36] that offer pre-defined GPU-accelerated
algorithms via public libraries. These offer a high degree of GPU
programming abstraction, but they lack capabilities for fine-tuned
optimization. Typical options include NVIDIA CUDA-X, CuPy,
RAPIDS (e.g., cuML, cuDF, cuGraph), Intel HDK, Crystal [4], etc.
Other approaches employ compilers [e.g., 13, 19, 21, 40] that enable
the implementation of user-defined function kernels using high-
level sequential code. Since the kernel is customizable, it allows
some flexibility for performance optimization. Popular compilers in-
clude Numba, CUDA Python, PyCUDA, PyOpenCL, NVPTX, AMD
Aparapi, DaCe [27], etc. Finally, another option is to use raw ker-
nels [e.g., 9-11, 30] that constitute the most fine-grained method to
program GPUs and hence, to achieve high performance optimiza-
tion on GPUs. Efficient programming with raw kernels requires
insights about the GPU hardware internals. Typical options include
CUDA (NVIDIA), HIP (AMD), SYCL (Intel), and the general purpose
OpenCL and OpenACC. Choosing the right method is a fine balance
between productivity (programming abstraction) and performance
(fine-grained GPU optimization) [3].

The tutorial will cover these technologies with code examples
and provide a comparison (w.r.t. effort, usability, expressiveness)
with appropriate references to the relevant papers.

4 OPEN ISSUES AND RESEARCH DIRECTIONS

Open issues. Pain points include: (1) high complexity to predict
performance metrics, (2) non-linear, conflicting correlation of fac-
tors, (3) load imbalance due to a plethora of relevant factors, (4)



expensive training for learn-based models, (5) expensive and energy-
intensive infrastructure, (6) lack of automation in optimization and
fine-tuning strategies, and (7) different software and hardware of-
ferings requiring specialized treatment.

Research Directions. There are several research directions worth
pursuing: (1) automated placement strategies to optimize the trade-
off between processor choice and data transfer, (2) multi-objective
placement strategies to account for contradicting cost metrics (e.g.,
latency and energy), (3) multi-dimensional placement strategies
(most current works consider only a few of the dimensions/features
listed in Figure 1), (4) automated fine-tuning of execution parame-
ters, (5) adaptive cache-aware workload placement using learning,
(6) suitable benchmarks (data, workloads) and simulators to provide
a standard means for comparing different strategies.

5 TARGET AUDIENCE, LEARNING OUTPUT

Material. The tutorial will be example-driven showcasing the
strengths and limitations of the state of the art. The tutorial material
will be publicly available.

Audience. The tutorial targets students, academics, researchers,
and practitioners interested in developing efficient data analysis
workflows taking advantage of heterogeneous CPU-GPU systems.
No prior knowledge is needed on GPU programming, but we assume
understanding of basic concepts about parallel processing.
Output. The learning output includes: (a) An overview of the state-
of-the-art practices and techniques for efficient workload placement
on heterogeneous CPU-GPU architectures. (b) Identification of the
most critical factors related to the performance implications of
workload placement. (c) Understanding the technical limitations
and the trade-offs between design choices and achieved goals. And
(d) exposure to challenges and opportunities for the new generation
of heterogeneous CPU-GPU systems.

6 PRESENTERS
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Alkis Simitsis [url] is a Research Director at Athena RC. He has
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papers, and frequently serves in the PC’s of top-tier conferences.

Anna Queralt [url] is a Serra Huanter fellow at UPC and Estab-
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