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ABSTRACT

Large language models (LLMs) are being increasingly deployed as

part of pipelines that repeatedly process or generate data of some

sort. However, a common barrier to deployment are the frequent

and often unpredictable errors that plague LLMs. Acknowledging

the inevitability of these errors, we propose data quality assertions
to identify when LLMs may be making mistakes. We present spade,

a method for automatically synthesizing data quality assertions

that identify bad LLM outputs. We make the observation that de-

velopers often identify data quality issues during prototyping prior

to deployment, and attempt to address them by adding instructions

to the LLM prompt over time. spade therefore analyzes histories of

prompt versions over time to create candidate assertion functions

and then selects a minimal set that fulfills both coverage and accu-

racy requirements. In testing across nine different real-world LLM

pipelines, spade efficiently reduces the number of assertions by 14%

and decreases false failures by 21% when compared to simpler base-

lines. spade has been deployed as an offering within LangSmith,

LangChain’s LLM pipeline hub, and has been used to generate

data quality assertions for over 2000 pipelines across a spectrum of

industries.
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1 INTRODUCTION

There is a lot of excitement around the use of large language models

(LLMs) for processing, understanding, and generating data [16].

Without needing large labeled datasets, one can easily create an

LLM pipeline for any task on a collection of data items—simply by

crafting a natural language prompt that instructs the LLMonwhat to
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Figure 1: Before a developer deploys a prompt template to

production, spade analyzes the deltas (i.e., diffs) between

consecutive prompt templates to generate assertions. Then,

spade uses labeled pipeline inputs and outputs to filter out

redundant and inaccurate assertions, while maintaining cov-

erage of bad outputs.

do with each item. This could span traditional data processing tasks,

such as summarizing each document in a corpus, extracting entities

from each news article in a collection of articles, or even imputing

missing data for each tuple in a relation [34]. LLMs additionally

enable new and more complex data processing tasks that involve

generating data, e.g., an LLM could write an explanation for why

a product was recommended to a user, author emails to potential

sales leads, or draft blog posts for marketing and outreach. In all

of these data processing tasks, deploying these LLM pipelines at

scale—either offline, on each batch of data items, or online, as and

when new items arrive—presents significant challenges, due to data

quality errors made by LLMs seemingly at random [23]—with LLMs

often disregarding instructions, making mistakes with the output

format, or hallucinating facts [48, 63].

One approach to catch errors in deployed LLM pipelines is via

data quality assertions. Indeed, multiple recent papers [26, 41, 54]

and LLM pipeline authoring systems [21, 27, 31] provide mecha-

nisms to embed manually-provided or selected assertions as part of

LLM pipelines to catch errors during deployment. However, deter-

mining which assertions to add remains an open problem—and is a

big customer painpoint based on our experience at LangChain—a
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company that helps people build LLM pipelines. Developers often

find it difficult to determine the right set of assertions for their

custom tasks [38]. Challenges include predicting all possible LLM

failure modes, the time-consuming nature of writing assertions

with various specification methods (like Python functions or LLM

calls), the necessity for precision in assertions (especially those in-

volving LLM calls), and the fact that many LLM pipeline developers

lack software engineering expertise or coding experience [26, 63].

Moreover, if there are non-informative assertions or too many of

them, developers can get overwhelmed monitoring the results of

these assertions. While there is some work on automatically detect-

ing errors in traditional ML pipelines [4, 39, 46, 47], this line of work

operates on many structured records at a time, and doesn’t apply to

an unstructured setting. So, we target the following question: can
we identify data quality assertions for LLM pipelines with as little
effort from developers as possible?

Example LLM Pipeline. Consider an LLM pipeline for a movie

streaming platform, where the task is to generate a paragraph of

text explaining why a specific movie was recommended to a specific

user. A developer might write a prompt template like: “Given the fol-
lowing information about the user, {personal_info}, and information
about a movie, {movie_info}: write a personalized note for why the
user should watch this movie” to be executed for many user-movie

pairs. In theory, this prompt seems adequate, but the developer

might observe some data quality issues while testing it across dif-

ferent inputs: the LLM output might reference a movie the user

never watched, cite a sensitive attribute (e.g., race or ethnicity), or

even exhibit a basic issue by being too short. To fix these problems,

developers typically add instructions to the prompt to catch these

data quality issues, such as “Don’t reference race in your answer”.

However, the LLM may still violate these instructions in an unpre-

dictable manner for some data items, requiring assertions applied

to LLM outputs post-hoc, during deployment.

Analyzing Prompt Version Histories. To automatically syn-

thesize assertions for developers, our first insight is that we can

mine prompt version histories to identify assertion criteria for LLM

pipelines, since developers implicitly embed data quality require-

ments through changes to the prompt, or prompt deltas, over time.

In our example above, instructions such as “Make sure your re-

sponse is at least 3 sentences” or “Don’t reference race in your

answer” could each correspond to a candidate assertion. To under-

stand the types of prompt deltas in LLM pipelines and verify their

usefulness for data quality assertions, we present an analysis of

prompt version histories of 19 custom pipelines from LangChain

users. Using this analysis, we construct a taxonomy of prompt deltas

(Figure 2), which may be of independent interest for researchers

and practitioners studying how to best build LLM pipelines.

Redundancy in Data Quality Assertions. Our second insight

from analyzing these pipelines is that if we were to create candidate

assertions from prompt deltas, say, using an LLM, there may be

far too many assertions—often exceeding 50 for just a few prompt

deltas. Many of these assertions (or equivalently, prompt deltas)

are redundant, while some are too imprecise or ambiguous to be

useful (e.g., “return a concise response”). Reducing this redundancy

is nontrivial, even for engineers: assertions themselves can involve

LLM calls with varying accuracies, motivating an automated com-

ponent that can filter out bad candidates. One approach is to use a

small handful of developer-labeled LLM outputs to estimate each

data quality assertion’s false positive and false negative rate—but

collectively determining the right set of assertions that can catch

most errors, while incorrectly flagging as few outputs as possible,

is not straightforward.

spade: OurDataQuality AssertionGeneration Framework. In

this paper, we leverage these insights to develop spade (System for

Prompt Analysis and Delta-Based Evaluation, Figure 1)
1
. spade’s

goal is to select a set of boolean assertions with minimal over-

lap, while maximizing coverage of bad outputs and minimizing

false failures (correct outputs that are incorrectly flagged) for the

conjunction of selected assertions. We decompose spade into two

components: candidate assertion generation and filtering.

Component 1: Prompt Deltas for Candidate Assertion Generation. For
generating candidate assertions, instead of directly querying an

LLM to “write assertions for x prompt,” which causes the LLM to

miss certain portions of the prompt, we generate candidates from

each prompt delta, which typically indicate specific failure modes

of LLMs. spade leverages the aforementioned taxonomy of prompt

deltas we constructed by first automatically categorizing deltas

using the taxonomy, then synthesizing Python functions (that may

include LLM calls) as candidate assertions.With LangChain, we

publicly release this component of spade—which has been

subsequently used for over 2000 pipelines across more than

10 sectors like finance, medicine, and IT [51]. We present an

analysis of this usage in Section 2.4.

Component 2: Filtering Candidate Assertions with Limited Data. To
filter out incorrect and redundant candidate assertions, instead

of requiring cumbersome manual selection or even fine-tuning

of separate models [43, 57], we propose an automated approach

that only requires a small handful of labeled examples, which are

usually already present in most target applications. Using these

examples, we could estimate each assertion’s false failure rate (FFR),

i.e., how often an assertion incorrectly flags failures, and eliminate

individual assertions that exceed a given threshold. However, given

we are selecting a set of assertions, the set may still exceed the FFR

threshold and flag too many failures incorrectly, and redundancies

may persist. We show that selecting a small subset of assertions to

meet failure coverage and FFR criteria is NP-hard. That said, we

may express the problem as an integer linear program (ILP) and

use an ILP solver to identify a solution in a reasonable time given

the size of our problem (hundreds to thousands of variables).

In some cases, when there are limited developer-provided exam-

ples, we find that labeled LLM outputs may not cover all failure

modes, leading to omission of valuable data quality assertions. For

instance, in our movie recommendation scenario, an assertion that

correctly verifies if the output is under 200 words will get dis-

carded if all outputs in our developer-labeled sample respect this

limit. To expand coverage, active learning and weak supervision

approaches can be used to sample and label new LLM input-output

pairs for each candidate assertion [6, 40], but this may be expen-

sive or inaccessible for non-programmers. We introduce assertion

subsumption as a way of ensuring comprehensive coverage: if one

1
We called our framework spade since it helps users dig up or unearth useful assertions.
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Figure 2: Taxonomy of prompt deltas from 19 LLM pipelines.

assertion doesn’t encompass the failure modes of another, both may

be selected. As such, spade selects a minimal set of assertions that

respects failure coverage, accuracy, and subsumption constraints.

Overall, we make the following contributions:

• We identify prompt version history as a rich source for

LLM output correctness, creating a taxonomy of assertion

criteria from 19 diverse LLM pipelines (Section 2),

• We introduce spade, our system that automatically gener-

ates data quality assertions for LLM pipelines. In a public

release of spade’s candidate assertion generation compo-

nent
2
, we observe and analyze 2000+ deployments (Sec-

tion 2.4),

• We present a method to select a minimal set of assertions

while meeting coverage and accuracy requirements, used

by spade to reduce the number of assertions. For low-data

settings, we introduce assertion subsumption as a novel

proxy for coverage (Section 3), and

• We demonstrate spade’s effectiveness on nine real-world

LLM pipelines (eight of which we open-source). In our

low-data setting (approximately 75 inputs and outputs per

pipeline), our subsumption-based solution outperforms sim-

pler baselines that do not consider interactions between

assertions by reducing the number of assertions by 14% and

lowering the false failure rate by 21% (Section 4).

2 IDENTIFYING CANDIDATE ASSERTIONS

Our first goal is to generate a set of candidate assertions. We de-

scribe how prompt deltas can inform candidate assertions and ex-

plain how to derive candidate assertions from them.

2.1 Prompt Deltas

A single-step LLM pipeline consists of a prompt template P, which

is formatted with a serialized input tuple 𝑡 to derive a prompt

that is fed to an LLM, returning a response. There can be many

versions of P, depending on how a developer iterates on their

prompt template. Let P0 be the empty string, the 0th version, and

letP𝑖 be the ith version of a template. In the movie recommendation

example from the introduction, suppose there are 7 versions, where

P7 is the following: “Given the following information about the user,
{personal_info}, and information about a movie, {movie_info}: write a
personalized note for why the user should watch this movie. Ensure
the recommendation note is concise, not exceeding 100 words. Mention
the movie’s genre and any shared cast members between the {movie_-
name} and other movies the user has watched. Mention any awards or

2
https://spade-beta.streamlit.app

critical acclaim received by {movie_name}. Do not mention anything
related to the user’s race, ethnicity, or any other sensitive attributes.”

We define a prompt delta ΔP𝑖+1 to be the diff (or difference)

between P𝑖 and P𝑖+1. Concretely, a prompt delta ΔP is a set of

sentences, where each sentence is tagged as an addition (i.e., “+”) or

deletion (i.e., “-”). Table 1 shows the ΔPs for a number of versions

for our example. Each sentence in ΔP𝑖 is composed of additions

(i.e., new sentences in P𝑖 that didn’t exist in P𝑖−1) and deletions

(i.e., sentences in P𝑖−1 that don’t exist in P𝑖 ). A modification to a

sentence is represented by a deletion and addition. Each addition in

ΔP𝑖 indicates possible assertion criteria, as shown in the right-most

column of Table 1.

2.2 Prompt Delta Analysis

To understand what assertions developers may care about, we turn

to real-world LLM pipelines. We analyzed 19 LLM pipelines col-

lected from LangChain users, each of which consists of between

three and 11 historical prompt template versions. These pipelines

span various tasks across more than five domains (e.g., finance,

marketing, coding, education, health), from generating workout

summaries to a chatbot acting as a statistics tutor. Details of the

pipelines can be found in our tech report [50]. For each pipeline,

we categorized prompt deltas, i.e., ΔP𝑖 , into different types—for

example, instructing the LLM to include a new phrase in each re-

sponse (i.e., inclusion), or instructing the LLM to respond with

a certain tone (i.e., qualitative criteria). Two authors iterated on

the categories 4 times through a process of open and axial coding,

ultimately producing the taxonomy in Figure 2. The taxonomy-

annotated dataset of prompt versions can be found online
3
.

We divide deltas into two main high-level categories: Structural

and Content-Based. Around 35% categories identified across all

deltas in our dataset were Structural, and 65% were Content-Based.

Structural deltas indicate a minor restructuring of the prompt, with-

out changing any criteria of a good response (e.g., adding a newline

for readability), or specification of the intended output (e.g., JSON or

Markdown). Plausible assertion criteria based on structural deltas

would check if the LLM output adheres to the user-specified struc-

ture. On the other hand, content-based deltas indicate a change in

the meaning or definition of the task. Content-based deltas include

descriptions of the workflow steps that the LLM should perform

(e.g., “first, do X, then, come up with Y”), instructions of specific

phrases to include or exclude in responses, or qualitative indicators

of good responses (e.g., “maintain a professional tone”). The Data

Integration subcategory (under Content-Based deltas) concerns

adding new sources of context to the prompt—for example, adding

a new variable like “{movie_info}” to the prompt, indicating a new

type of information to be analyzed along with other content in

the prompt. For some illustrative examples of prompt deltas for

each category, we categorize the prompt deltas in Table 1, and in

Table 2, we show sample prompt deltas for each category in our

taxonomy. This taxonomy may be of independent interest to re-

searchers studying the process of prompt engineering, as well as

practitioners seeking to identify ways to improve their prompts for

production LLM pipelines.

3
https://github.com/shreyashankar/spade-experiments/blob/main/taxonomy_labels.

csv
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Table 1: Comparison of 7 prompt versions for an LLM pipeline to write personalized movie recommendations. In each ΔP𝑖 , a

sentence starts with “+” if it is a newly added sentence; a sentence starts with “-” if it is removed from P𝑖−1. For each ΔP𝑖 , we

list its category (using the taxonomy in Figure 2) and possible new assertion criteria.

Version 𝑖 ΔP𝑖 ΔP𝑖 Category Possible New Assertion Criteria

1 + Given the following information about the user, {per-

sonal_info}, and information about a movie, {movie_-

info}: write a personalized note for why the user should

watch this movie.

Inclusion Response should be personalized and relevant to the

given user information

2 + Include elements from the movie’s genre, cast, and

themes that align with the user’s interests.

Inclusion Response includes specific references to the user’s in-

terests related to the movie’s genre, cast, and themes

3 + Ensure the recommendation note is concise. Qualitative Assessment Response should be concise

4 - Ensure the recommendation note is concise. + Ensure

the recommendation note is concise, not exceeding 100

words.

Count Response should be within the 100 word limit

5 - Include elements from the movie’s genre, cast, and

themes that alignwith the user’s interests. +Mention the

movie’s genre and any shared cast members between the

{movie_name} and other movies the user has watched.

Inclusion Response shouldmention genre and verify castmembers

are accurate

6 + Mention any awards or critical acclaim received by

movie_name.

Inclusion Response should include references to awards or critical

acclaim of the movie

7 + Do not mention anything related to the user’s race,

ethnicity, or any other sensitive attributes.

Exclusion Response should not include references to sensitive per-

sonal attributes

Overall, our exercise in building this taxonomy reveals two key

findings. First, developers across diverse LLM pipelines iterate on

prompts in similar ways as encoded as nodes in the taxonomy,

many of which correspond to aspects that can be explicitly checked

via assertions. Second, we find that an automated approach to

synthesize data quality assertions may be promising, since our

taxonomy reveals several such instances where the prompt delta

could directly correspond to an assertion that captures the same

requirement. For example, many deltas correspond to instructions

to include or exclude specific phrases, indicating that developers

may benefit from assertions that explicitly verify the inclusion or

exclusion of such phrases in LLM outputs.

However, if we are to use an LLM to automatically generate asser-

tion criteria based on our taxonomy of deltas, we also need to test

whether LLMs can accurately identify the categories corresponding

to a delta. Therefore, we confirmed GPT-4’s correct categorization

of prompt deltas (as of October 2023): we assigned ground truth

categories to all prompt deltas from the 19 pipelines, and GPT-

4 achieved an F1 score of 0.8135. The prompt used for category

extraction from prompt deltas is detailed in our tech report [50].

2.3 From Taxonomy to Assertions

As we saw previously, prompt delta as categorized into nodes in

our taxonomy often correspond to meaningful assertion criteria.

Next, we need a method to automatically synthesize the data quality

assertions from the prompt deltas. A natural idea is to prompt an

LLM to generate assertion functions corresponding to relevant

categories in our taxonomy given the prompt deltas. We tried this

approach with GPT-4 in January 2024 and observed several omitted

assertions that clearly corresponded to categories in our taxonomy.

Therefore, we adopt a two-step prompting process in our approach,

as it has been demonstrated that breaking tasks into steps can

enhance LLM accuracy [20, 59, 61]. In the first step, we prompt

Table 2: Categories of prompt deltas.

Category Explanation Example Prompt Delta

Response Format In-

struction

Structure guidelines. “+ Start response with ‘You

might like...’.”

Example Demonstra-

tion

Illustrative example. “+ For example, here is a re-

sponse for sci-fi fans...”

Prompt Clarification Refines prompt/re-

moves ambiguity.

“- Discuss/+ Explain movie

fit...”

Workflow Description Describe “thinking”

process.

“+ First, analyze viewing his-

tory...”

Data Integration Adds placeholders. “+ Include user’s {genre} re-

views.”

Quantity Instruction Adds numerical con-

tent.

“+ Keep note under 100words.”

Inclusion Instruction Directs specific con-

tent.

“+ Mention movie awards/ac-

claim.”

Exclusion Instruction Advises on omissions. “+ Avoid movie plot spoilers.”

Qualitative Criteria Sets stylistic at-

tributes.

“+ Maintain friendly, positive

tone.”

GPT-4 for natural language descriptions of assertion criteria, and

in the second step, we prompt GPT-4 to generate Python functions

that implement such criteria.

More specifically, for each prompt delta ΔP𝑖 , we first prompt an

LLM to suggest as many criteria as possible for assertions—each

aligning with a taxonomy category from Figure 3. A criterion is

loosely defined as some natural language expression that operates

on a given output or example and evaluates to True or False (e.g.,

“check for conciseness”). Our method analyzes every ΔP𝑖 instead

of just the last prompt version for several reasons: developers often

remove instructions from prompts to reduce costs while expect-

ing the same behavior [38], prompts contain inherent ambiguities

and imply multiple ways of evaluating some criteria, and complex

prompts may lead to missed assertions if only one version is ana-

lyzed. Consequently, analyzing each ΔP𝑖 increases the likelihood

of generating relevant assertions.
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Construct ΔP5

“- Include elements from the movie’s genre, cast, and

themes that align with the user’s interests. + Men-

tion the movie’s genre and any shared cast members...”

Prompt LLM with ΔP5 to identify the delta type(s)

and assertion criteria based on our taxonomy

{"criterion": "The response should mention the movie 's genre.", "category":
↩→ "Inclusion", "source": "Mention the movie 's genre"},
{"concept": "The response should include shared cast members between the
↩→ specified movie and other movies the user has watched.", "category": "
↩→ Inclusion", "source": "any shared cast members between the {movie_name}
↩→ and other movies the user has watched"}

Synthesize Function(s)

def assert_mention_of_movie_genre(ex: dict , prompt: str , response: str):
expected_genre = ex.get('movie_genre ', '').lower()
return expected_genre in response.lower()

def assert_accurate_inclusion_of_shared_cast_members(prompt: str , response:
↩→ str):

# Formulate questions for the 'ask_llm ' function to check for presence
↩→ and accuracy
presence_question = "Does the response include shared cast members
↩→ between the specified movie and other movies?"
accuracy_question = "Are the shared cast members mentioned in the
↩→ response accurate and correctly representing those shared between
↩→ the specified movie and other movies?"

return ask_llm(prompt , response , presence_question) and ask_llm(prompt ,
↩→ response , accuracy_question)

Figure 3: Generating candidate assertions from a ΔP.

For each delta, our method collects the criteria identified and

prompts an LLM again to create Python assertion functions. The

synthesized functions can use external Python libraries or pose

binary queries to an LLM for complex criteria. For function synthe-

sis, the LLM is instructed that if the criterion is vaguely specified

or open to interpretation, such as “check for conciseness,” it can

generate multiple functions that each evaluate the criterion. In this

conciseness example, the LLM could return multiple functions—a

function that splits the response into sentences and ensures that

there are no more than, say, 3 sentences, a function that splits the

response into words and ensures that there are no more than, say,

25 words, or a function that sends the response to an LLM and asks

whether the response is concise. The overall outcome of this is a

multiset of candidate functions 𝐹 = {𝑓1, . . . , 𝑓𝑚}. The two prompts

for generating assertion criteria and functions can be found in our

tech report [50].

2.4 Initial Deployment

To assess the potential of our auto-generated assertions, in No-

vember 2023, we released an early prototype of spade’s candidate

assertion generation framework via a Streamlit application
4
. In the

Streamlit app, a developer can either paste their prompt template

that they want to generate assertions for, or they can point to their

LangChain Hub prompt template (which contains prompt version

4
https://spade-beta.streamlit.app/

histories via commits). The app then visualizes the identified tax-

onomy categories in the user’s prompt and displays the candidate

assertions, as shown in the screenshot in Figure 4.

Tool Usage Insights and Feedback. From the reception to our

Streamlit application, we found significant interest in auto-generated

data quality assertions for LLM pipelines: there have been over 2000
runs of the app for custom prompt templates (i.e., not the sample de-

fault prompt template in app). These runs span many fields, includ-

ing medicine, education, cooking, and finance—providing insights

from a diversity of use cases for LLM pipelines. Figure 5 shows

a rough breakdown of the use cases people wanted to generate

assertions for; however, it’s important to note that some runs may

not cleanly fit into a single category (e.g., a chatbot for telehealth-

related questions for a medical provider could be in “customer

support” and “health”). Interestingly, 8% of tasks related to con-

versational assistants, and we observed instances of at least four

different companies generating assertions for their chatbots, given

that the company name was in the prompt. Users for 48 of these

runs clicked the “download assertions” button, which downloads

the candidate assertions as a Python file. We note that users can

also directly copy the assertions code displayed, instead of down-

loading the assertions as a Python file, and we did not measure the

copy events. No users clicked the “thumbs down” button—which

is not to say that the generated assertions were perfect. After our

Streamlit app was released, we found an unprompted review of

spade-generated assertions from a LangChain user who built a

“chat-with-your-pdf” tool
5
: in their words, “When I saw it I didnt

beleive it could work that well, but it really did and made the evalua-
tion process fun and ez.”We also found an independently-written

open-source re-implementation of spade
6
.

Observations about Assertion Criteria. Across the 2000+ runs,

with regards to our taxonomy, assertion criteria were most com-

monly derived from inclusion and exclusion instructions. For ex-

ample, for a shopping assistant, where the objective was to find

the most relevant product related to a customer’s query, responses

were required to include “all the features [the customer] asked

for.” In another customer support agent example, responses were

required to include “exact quotes in the [context] relevant to the

[customer’s] question...word for word.” One common exclusion

instruction across chat-related tasks was to avoid any discussion

unrelated to the end-user’s question; however, we noticed that GPT-

4 struggled to generate assertion criteria around such a generic

exclusion instruction. We found Python functions generated to

implement criteria such as “avoid unrelated ideas”, did not use an

LLM to check the criteria. Instead, they checked for the presence of

specific phrases like “unrelated” and “I’m sorry, I did not find any-

thing related” in the response. Such errors indicate the limitations

of current state-of-the-art LLMs and may suggest the need for spe-

cialized, fine-tuned LLMs for generating assertions in future work;

here, we work with the limitations of present-day state-of-the-art

LLMs. We discuss this further in our tech report [50].

A new pattern we noticed after deployment, which wasn’t seen

in our initial analysis, is that developers often wish to hide certain

5
https://twitter.com/th_calafatidis/status/1728144652119769394

6
https://github.com/uptrain-ai/uptrain/blob/main/examples/integrations/spade/

evaluating_guidelines_generated_by_spade.ipynb
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Figure 4: Screenshot of an early version of spade.

parts of the LLM workflow in the outputs. This could be viewed

as a special instance of the exclusion category in our taxonomy.

For instance, in a prompt related to enterprise automation, the

first instruction was to write a query targeting a specific database

(e.g., “Write a SQL query to fetch the most relevant table from the

MySQL database”). However, another instruction in the prompt

specified that the name of the database should not appear in the

final summary returned to the end-user (e.g., “Do not mention that

you queried the MySQL table X”). We were pleasantly surprised to

find that our process for generating criteria successfully identified

and implemented such exclusion instructions accurately.

Observations about Assertions. In LLM pipelines with numerous

prompt versions, we observed two main patterns. First, prompt

engineering often leads to many similar assertions, and redundancy

can be a headache at deployment when a developer has to keep track

of so many assertions. For instance, a pipeline to summarize lecture
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Figure 5: Prompts submitted to the spade Streamlit applica-

tion span a variety of fields.

transcripts
7
had 14 prompt versions, with many edits localized to

the paragraph providing instructions on titles, speakers, and dates,

creating multiple overlapping assertions. 10 assertions assessed the

lecture’s central thesis; two are as follows:

async def assert_response_articulates_central_thesis(
example: dict , prompt: str , response: str

):
return "Central Thesis:" in response

async def assert_response_completeness(example: dict , prompt: str , response:
↩→ str):

required_elements = [
"Context:",
"Central Thesis:",
"Key Points:",
"Conclusions and Takeaways:",
"Glossary of Important Terms:",

]
return all(element in response for element in required_elements)

Second, many assertions may be incorrect, causing runtime er-

rors or false failures. Assessing the accuracy of these assertions

is challenging, particularly for those that are complex or invoke

LLMs themselves, where even experienced developers might not

be able to gauge their effectiveness without viewing the results

of the functions on many examples. Even if the assertions are not

incorrect, they still may have undesirable failure rates or coverage,

which is often hard for a developer to reason about in conjunction

with other assertions. Since there can be 50+ assertions generated

for just a handful of prompt versions (as demonstrated in Section 4),

manually filtering them by eyeballing failure rates for each sub-

set of assertions is impractical. Therefore, we adopt an automated

approach for filtering, as discussed in the following section.

3 FILTERING CANDIDATE ASSERTIONS

As we saw in the previous section, we often have redundant and in-

correct assertions, particularly in pipelines with numerous prompt

versions. Here, we focus on filtering this candidate set to a smaller

number, which not only improves efficiency and reduces cost when

deploying the assertions to run in production, but it also reduces

cognitive overhead for the developer.

7
https://smith.langchain.com/hub/kirby/simple-lecture-summary
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3.1 Definitions

Consider 𝑒𝑖 as an example end-to-end execution (i.e., run) of an LLM

pipeline on some input. For the purposes of this section, we assume

the prompt template P is fixed to be the final prompt version that

the developer eventually decided on. We denote 𝑦𝑖 ∈ {0, 1} to

represent whether the developer considers 𝑒𝑖 to be a success (1) or
failure (0).

Let 𝐸 be the set of all such example runs (this set is not pro-

vided upfront, as we will deal with shortly). We define an asser-

tion function 𝑓 : 𝐸 → {0, 1}, where 1 indicates that the exam-

ple was processed successfully by the LLM and 0 otherwise. Let

𝐹 ′ = {𝑓1, 𝑓2, . . . , 𝑓𝑘 } be a set of 𝑘 data quality assertions. An example

𝑒𝑖 is deemed successful by 𝐹 ′ if and only if it satisfies all assertions

in 𝐹 ′. Specifically:

𝑦𝑖 =

{
1 if 𝑓 (𝑒𝑖 ) = 1 ∀𝑓 ∈ 𝐹 ′, // Deemed successful by all of 𝐹 ′

0 otherwise. // Deemed a failure by ≥ 1 of 𝐹 ′

Given all𝑚 candidate assertions 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑚}, the objective
is to select 𝐹 ′ ⊆ 𝐹 such that 𝑦𝑖 = 𝑦𝑖 for most examples in 𝐸, with

𝐹 ′ being as small as possible. This goal involves maximizing failure

coverage and minimizing the false failure rate and selected function

count, expressed as follows:

Definition 3.1. Coverage for a set 𝐹 ′ is the proportion of actual

failures that are correctly identified by 𝐹 ′, defined as:

Coverage

(
𝐹 ′
)
=

∑
𝑖 I [𝑦𝑖 = 0 ∧ 𝑦𝑖 = 0]∑

𝑖 I [𝑦𝑖 = 0] // Failures caught by 𝐹 ′

Definition 3.2. False Failure Rate (FFR) for a set 𝐹 ′ is the fraction
of examples that 𝐹 ′ incorrectly evaluates as failures (𝑦𝑖 = 0) when

they are actually successful (𝑦𝑖 = 1), defined as:

FFR

(
𝐹 ′
)
=

∑
𝑖 I [𝑦𝑖 = 0 ∧ 𝑦𝑖 = 1]∑

𝑖 I [𝑦𝑖 = 1] // Non-failures flagged by 𝐹 ′

In both definitions above, 𝑦𝑖 represents set 𝐹
′
’s prediction for

the 𝑖-th example, 𝑦𝑖 is the actual outcome, while I is the indicator
function. In practice, coverage and FFR are impossible to compute

since the universe of examples 𝐸 is unknown. So, for now, we

assume access to a subset 𝐸′ ⊂ 𝐸 of labeled LLM responses, where

𝐸′ is a manually provided set of example runs and may not contain

all the types of failures the LLM pipeline could observe—an issue

we will deal with in Section 3.3. Thus, we replace Definition 3.1

and Definition 3.2 with Coverage𝐸′
(
𝐹 ′
)
and FFR𝐸′

(
𝐹 ′
)
, omitting

the subscript 𝐸′ for brevity.

3.2 Coverage Problem Formulation

Our goal is therefore to select a minimal set of assertions 𝐹 ′ ⊆ 𝐹

based on a sample 𝐸′ = {𝑒1, . . . , 𝑒𝑛} ⊂ 𝐸. Formally:

minimize |𝐹 ′ |
subject to: Coverage(𝐹 ′) ≥ 𝛼, FFR(𝐹 ′) ≤ 𝜏
The above problem may be infeasible with certain values of 𝛼 , for

multiple reasons. To see this, consider the case where no assertion

catches a specific failure, while 𝛼 is set to 1. We ignore this (and

similar cases) for now and defer their discussion to Section 4. To

expand out the above, we introduce a matrix 𝑀 (size 𝑛 ×𝑚) to

track each assertion’s result on each example 𝑒𝑖 , where 𝑀𝑖 𝑗 = 1

if 𝑓𝑗 (𝑒𝑖 ) = 1 (i.e., 𝐹 𝑗 deems 𝑒𝑖 a success) and 𝑀𝑖 𝑗 = 0 otherwise.

We also define binary variables 𝑥 𝑗 and 𝑤𝑖 𝑗 to represent whether

an assertion is chosen and if it marks an example as a failure:

𝑤𝑖 𝑗 =
(
1 −𝑀𝑖 𝑗

)
· 𝑥 𝑗 , which is based on whether 𝑓𝑗 denotes 𝑒𝑖 as

a failure and 𝑓𝑗 is included in 𝐹 ′. We additionally introduce the

binary variable 𝑢𝑖 to represent whether a failed example is covered

by any selected assertion:

𝑢𝑖 ≤
𝑚∑︁
𝑗=1

𝑤𝑖 𝑗 , ∀𝑖 ∈ [1, 𝑛] : 𝑦𝑖 = 0. // Coverage of failure 𝑒𝑖

Then, the coverage constraint can be written as:∑
𝑖:𝑦𝑖=0 𝑢𝑖∑

𝑖 I [𝑦𝑖 = 0] ≥ 𝛼.

FFR is decomposed similarly: we introduce a new binary variable 𝑧𝑖 ,

which defines whether 𝐹 ′ denotes 𝑒𝑖 as a failure while 𝑒𝑖 is actually
a successful example (i.e., false failure):

𝑧𝑖 ≥ 𝑦𝑖 ·𝑤𝑖 𝑗 , ∀𝑖 ∈ [1, 𝑛] ; ∀𝑗 ∈ [1,𝑚] . // 𝑒𝑖 is a false failure
Then, the FFR constraint is:∑𝑛

𝑖=1 𝑧𝑖∑𝑛
𝑖=1 I [𝑦𝑖 = 1] ≤ 𝜏 .

We can then state the problem of minimizing the number of

assertions while meeting 𝐸′ coverage and FFR constraints as an

Integer Linear Program (ILP):

minimize

𝑚∑︁
𝑗=1

𝑥 𝑗

subject to: 𝑤𝑖 𝑗 = (1 −𝑀𝑖 𝑗 ) · 𝑥 𝑗 , ∀𝑖 ∈ [1, 𝑛] , ∀𝑗 ∈ [1,𝑚] ;

𝑢𝑖 ≤
𝑚∑︁
𝑗=1

𝑤𝑖 𝑗 , ∀𝑖 ∈ [1, 𝑛] where 𝑦𝑖 = 0;

∑
𝑖:𝑦𝑖=0 𝑢𝑖∑

𝑖 I [𝑦𝑖 = 0] ≥ 𝛼 ;

𝑧𝑖 ≥ 𝑦𝑖 ·𝑤𝑖 𝑗 , ∀𝑖 ∈ [1, 𝑛] , ∀𝑗 ∈ [1,𝑚] ;
∑𝑛
𝑖=1 𝑧𝑖∑𝑛

𝑖=1 I [𝑦𝑖 = 1] ≤ 𝜏 ;

𝑥 𝑗 , 𝑢𝑖 , 𝑧𝑖 ,𝑤𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ [1, 𝑛] , ∀𝑗 ∈ [1,𝑚] .
We refer to a solution for this ILP as spadecov. Trivially, the problem

is NP-hard for 𝜏 = 0 and 𝛼 = 1, via a simple reduction from set

cover, and is in NP, since it can be stated in ILP form. In our case,

given tens of candidate assertions and fewer than 100 examples 𝑒𝑖 ,

the ILPs tend to be of reasonable size (i.e., thousands of variables).

Most ILP solvers can efficiently and quickly such programs.

3.3 Subsumption Problem Formulation

So far, we’ve assumed that the developer is willing to provide a

comprehensive set of labeled example runs 𝐸′. In settings where

the developer is unwilling to do so, and where 𝐸′ does not include
all failure types in 𝐸, spadecov may overlook useful assertions in 𝐹

that only catch failures in 𝐸 \𝐸′—as shown empirically in Section 4.

We initially considered using active learning [6] to sample more

LLM responses for each assertion and weak supervision to label

the responses [40]. However, this approach can be costly with

state-of-the-art LLMs, and it demands significant manual effort to

balance failing and successful examples for each assertion, ensuring

meaningful FFRs, and avoiding the exclusion of assertions due to

underrepresented failure types.
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For this setting, we additionally introduce the notion of sub-
sumption. To illustrate this concept, consider the following real

example of assertions from a pipeline which uses an LLM to review

pull requests to Github codebases: gratitude_v1 checks for the

presence of “thank you” in the response; gratitude_v2 verifies if

the response contains “thank you” or “thanks”; and gratitude_v3
checks for “thank you”, “thanks”, or “grateful” in the response. In

this hierarchy, gratitude_v3 subsumes the other two assertions,

as it covers all their cases and more.

Assuming that all candidate assertion functions cover as many

failure modes as possible, our goal is to pick 𝐹 ′ ⊆ 𝐹 such that

assertions in 𝐹 \ 𝐹 ′ are subsumed by 𝐹 ′. Formally, a set of functions

𝑆 subsumes some function 𝑓 if the conjunction of functions in 𝑆

logically implies the conjunction of functions in 𝑆 and 𝑓 . That is,

Definition 3.3. A set of functions 𝑆 =⇒ 𝑓 if and only if ∀𝑒 ∈
𝐸, ∃𝑠 ∈ 𝑆 such that 𝑠 (𝑒) =⇒ 𝑓 (𝑒). In other words, if 𝑆 =⇒ 𝑓 ,

then 𝑓 catches no new failures that 𝑆 does not already catch.

A simple example of subsumption is as follows: suppose our set

of functions 𝑆 contains only one function 𝑓 , which parses an LLM

output into a JSON list to check that the list has at least 2 elements.

𝑓 may be generated as a result of a count-related instruction from

our taxonomy of prompt deltas. Now, let 𝑔 be some other function

that only checks if the output can be turned into a JSON list.𝑔might

have been generated due to a “Response Format Instruction”-type

delta. If 𝑔 fails for some LLM output, 𝑓—and therefore 𝑆—must also

fail that output; thus 𝑆 =⇒ 𝑔.

3.3.1 ILP with Subsumption Constraints. We reformulate the prob-

lem with subsumption constraints. Let 𝐺 be the set of functions in

𝐹 \ 𝐹 ′ not subsumed by 𝐹 ′:

minimize |𝐹 ′ | + |𝐺 |
subject to: Coverage(𝐹 ′) ≥ 𝛼, FFR(𝐹 ′) ≤ 𝜏
To represent 𝐺 , we introduce binary variables and a matrix 𝐾 to

denote subsumption relationships. 𝐾𝑖 𝑗 = 1 if and only if 𝑓𝑖 =⇒ 𝑓𝑗 .

We discuss how we construct 𝐾 in more detail in Section 3.3.2.

Recall that 𝑥 𝑗 represents whether 𝑓𝑗 is selected in 𝐹 ′. For each
function 𝑓𝑗 , a binary variable 𝑟 𝑗 indicates if it is subsumed by 𝐹 ′.

𝑥𝑖 · 𝐾𝑖 𝑗 ≤ 𝑟 𝑗 ≤
𝑚∑︁
𝑖=1
𝑖≠𝑗

(
𝑥𝑖 · 𝐾𝑖 𝑗

)
, ∀𝑗 ∈ [1,𝑚] , 𝑖 ≠ 𝑗 .

Now, 𝑠 𝑗 will denote if 𝑓𝑗 is neither in 𝐹
′
nor subsumed by 𝐹 ′. We

break this into three parts. First,

𝑠 𝑗 ≤ 1 − 𝑥 𝑗 , ∀𝑗 ∈ [1,𝑚] ,

indicates that 𝑓𝑗 ∉ 𝐹 ′ if 𝑠 𝑗 is allowed to be 1 (i.e., 𝑓𝑗 ∉ 𝐹 ′ when
𝑥 𝑗 = 0). The second constraint,

𝑠 𝑗 ≤ 1 − 𝑟 𝑗 , ∀𝑗 ∈ [1,𝑚] ,

captures the condition where 𝑓𝑗 is not subsumed by 𝐹 ′. Here, if
𝑟 𝑗 = 0, suggesting no subsumption, then 𝑠 𝑗 may be 1. Lastly, to

combine these conditions, we employ the constraint,

𝑠 𝑗 ≥ 1 − 𝑥 𝑗 − 𝑟 𝑗 , ∀𝑗 ∈ [1,𝑚] ,
which ensures that 𝑠 𝑗 can only be 1 if both prior conditions are

satisfied: 𝑓𝑗 is neither in 𝐹
′
nor subsumed by 𝐹 ′.

Finally, our objective is to minimize the sum of the number of

functions in 𝐹 ′ and non-subsumed functions𝐺 . The ILP formulation

then becomes (with changes highlighted in blue):

minimize

𝑚∑︁
𝑗=1

𝑥 𝑗 +
𝑚∑︁
𝑗=1

𝑠 𝑗

subject to: 𝑤𝑖 𝑗 =
(
1 −𝑀𝑖 𝑗

)
· 𝑥 𝑗 , ∀𝑖 ∈ [1, 𝑛] , ∀𝑗 ∈ [1,𝑚] ;

𝑢𝑖 ≤
𝑚∑︁
𝑗=1

𝑤𝑖 𝑗 , ∀𝑖 ∈ [1, 𝑛] where 𝑦𝑖 = 0;

∑
𝑖:𝑦𝑖=0 𝑢𝑖∑

𝑖 I [𝑦𝑖 = 0] ≥ 𝛼 ;

𝑧𝑖 ≥ 𝑦𝑖 ·𝑤𝑖 𝑗 , ∀𝑖 ∈ [1, 𝑛] ,∀𝑗 ∈ [1,𝑚] ;
∑𝑛
𝑖=1 𝑧𝑖∑𝑛

𝑖=1 I [𝑦𝑖 = 1] ≤ 𝜏 ;

𝑥𝑖 · 𝐾𝑖 𝑗 ≤ 𝑟 𝑗 ≤
𝑚∑︁
𝑖=1
𝑖≠𝑗

(
𝑥𝑖 · 𝐾𝑖 𝑗

)
, ∀𝑗 ∈ [1,𝑚] , 𝑖 ≠ 𝑗 ;

𝑠 𝑗 ≤ 1 − 𝑥 𝑗 , 𝑠 𝑗 ≤ 1 − 𝑟 𝑗 , ∀𝑗 ∈ [1,𝑚] ;
𝑠 𝑗 ≥ 1 − 𝑥 𝑗 − 𝑟 𝑗 , ∀𝑗 ∈ [1,𝑚] ;
𝑥 𝑗 , 𝑢𝑖 , 𝑧𝑖 ,𝑤𝑖 𝑗 , 𝑟 𝑗 , 𝑠 𝑗 ∈ {0, 1}, ∀𝑖 ∈ [1, 𝑛] , ∀𝑗 ∈ [1,𝑚] .

We call a solution to this ILP spade
sub

. We maintain the coverage

constraint because the subsumption approach alone does not in-

herently account for the distribution or the significance of different

types of failures. For instance, if a particular type of failure makes

up a critical portion of 𝐸′, a subsumption-based approach might

overlook it. To see this in the simplest case, consider 𝛼 = 1: simply

optimizing for the sum |𝐹 ′ | + |𝐺 | does not guarantee all failures
in 𝐸′ are covered. In practice, spade

sub
is less sensitive to 𝛼 than

spadecov, as we will discuss further in Section 4.

3.3.2 Assessing Subsumption. Here, we detail how to construct 𝐾 ,

our matrix representing subsumption relationships between pairs

of functions 𝑓𝑖 , 𝑓𝑗 . For pure Python functions, one could use static

analysis to determine subsumption. However, it becomes complex

when dealing with assertions that include LLM calls or a mix of pure

Python and LLM-invoking assertions. For these, spade employs

GPT-4 to identify potential subsumptions {𝑎} =⇒ 𝑏 for pairs

of functions 𝑎, 𝑏. For any pipeline, there are only two LLM calls

to determine all subsumptions: first, all assertion functions are

combined into a single prompt for GPT-4, instructing it to list as

many subsumption relationships as possible, then prompting again

to transform its response into a parse-able list of pairs 𝑎 =⇒ 𝑏.

To maximize precision of =⇒ relationships identified, we

employ some heuristics. First, 𝐸′ can filter subsumptions: for 𝑓𝑖 and

𝑓𝑗 , observe that:

∃𝑒𝑖 ∈ 𝐸′ : (𝑓𝑖 (𝑒𝑖 ) = 1) ∧
(
𝑓𝑗 (𝑒𝑖 ) = 0

)
⇒

(
{. . . , 𝑓𝑖 , . . .} ≠⇒ 𝑓𝑗

)
.

In other words, any set containing 𝑓𝑖 definitely does not subsume

𝑓𝑗 if 𝑓𝑗 flags a failure that {𝑓𝑖 } does not. Next, we use the FFR

threshold to skip evaluating subsumption. Observe that, for any set

of assertions 𝑆 and 𝑓 ∉ 𝑆 ,

max (FFR (𝑆) , FFR ({𝑓 })) ≤ FFR (𝑆 ∪ {𝑓 }) ,
FFR (𝑆 ∪ {𝑓 }) ≤ FFR (𝑆) + FFR ({𝑓 }) . (1)

As such, we need not evaluate {𝑓𝑖 } =⇒ 𝑓𝑗 if either FFR ({𝑓𝑖 }) ≥ 𝜏
or FFR

(
{𝑓𝑗 }

)
≥ 𝜏 . Lastly, we use transitivity of implication to
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𝑎 (gratitude_v3)

𝑏

𝑑 𝑐

𝑒 (irrelevant_llm)

𝑓 (irrelevant_keyword)

Figure 6: Example depicting subsumption relationships.

Node 𝑎 represents themost comprehensive assertion to check

for presence of gratitude, e.g., “thank you”, in the LLM re-

sponse (gratitude_v3 in the beginning of Section 3.3), sub-

suming nodes 𝑏, 𝑐, and 𝑑 , which are less comprehensive

checks (e.g., checking fewer keywords). Node 𝑒 represents an

LLM-based check for irrelevant content in the LLM response,

subsuming node 𝑓 , a simpler keyword-based check that is

less comprehensive.

further prune checks: if 𝑥 =⇒ 𝑦 and 𝑦 =⇒ 𝑧, then 𝑥 =⇒ 𝑧 is

also true.

3.3.3 Subsumption without Examples. For completeness, we also

consider the case where we have no developer-provided examples

𝐸′. In this case, we are only reliant on our subsumption relationships

to pick our set 𝐹 ′. Our problem can then be restated as follows:

minimize

𝑚∑︁
𝑗=1

𝑥 𝑗 +
𝑚∑︁
𝑗=1

𝑠 𝑗

subject to: 𝑥𝑖 · 𝐾𝑖 𝑗 ≤ 𝑟 𝑗 ≤
𝑚∑︁
𝑖=1
𝑖≠𝑗

(𝑥𝑖 · 𝐾𝑖 𝑗 ), ∀𝑗 ∈ [1,𝑚] ;

𝑠 𝑗 ≤ 1 − 𝑥 𝑗 , 𝑠 𝑗 ≤ 1 − 𝑟 𝑗 , ∀𝑗 ∈ [1,𝑚] ;
𝑠 𝑗 ≥ 1 − 𝑥 𝑗 − 𝑟 𝑗 , ∀𝑗 ∈ [1,𝑚] ;
𝑥 𝑗 , 𝑟 𝑗 , 𝑠 𝑗 ∈ {0, 1}, ∀𝑗 ∈ [1,𝑚] .

However, it turns out this problem is no longer NP-Hard. Consider

the example in Figure 6, where an edge indicates subsumption. For

example 𝑎 → 𝑏 means that 𝑏 catches a subset of the failures of 𝑎,

and is therefore subsumed by 𝑎. Concretely, 𝑎 may be a function

that checks for the presence of gratitude-related keywords in the

LLM response, and 𝑏 may check for a subset of keywords that 𝑎

checks. Here, if we were to minimize Σ 𝑗 (𝑥 𝑗 + 𝑠 𝑗 ), we would simply

pick 𝑎 and 𝑒 to be part of 𝐹 ′, since the rest of the functions would be
subsumed (therefore their 𝑠 𝑗 = 0—recall that 𝑠 𝑗 = 1 for assertions

that are neither subsumed nor selected), and our overall metric

would evaluate to 2. One intuitive way to view this problem is to

start by keeping all of the nodes as unselected, i.e., 𝑥 𝑗 = 0, 𝑠 𝑗 = 1,

and then by adding them one at a time in a predefined order to

𝐹 ′, we set 𝑥 𝑗 = 1, 𝑠 𝑗 = 0, and at the same time, we also impact 𝑠 𝑗
(moving them from 1 to 0) for all other functions that then become

subsumed as a result.

More generally, subsumption relationships can be represented

in the form of a Directed Acyclic Graph (DAG), as in our example

above. (We omit the trivial case where two or more functions are

equivalent, that is the only case where there can be cycles; in all

other cases we have a DAG.) Within this DAG, we simply select

all nodes that have no incoming edges and add them to 𝐹 ′. We

can see that the rest of the nodes are subsumed, since they have at

least one incoming edge. We could certainly exclude a node that

doesn’t have any incoming edge from 𝐹 ′, but adding it to 𝐹 ′ does
not worsen the objective because there is no way that that node will

be subsumed by another. So, overall, we need to do a topological

sort of the subsumption graph and pick the nodes “at the top”. Thus,

the problem is in PTIME when there are no examples provided.

4 EVALUATION

We first discuss the LLM pipelines and datasets (i.e., 𝐸′); then, we
discuss methods and metrics and present our results. The experi-

ment code, datasets, and LLM responses are hosted on GitHub.

4.1 Pipeline and Dataset Descriptions

We evaluated spade on nine LLM pipelines—eight from LangChain

Hub
8
, an open-source collection of LLM pipelines, and 1 propri-

etary pipeline. Each pipeline consists of a prompt template for the

LLM and collection of approximately 75 examples (i.e., inputs and

ouptuts in 𝐸′) with labels for whether the outputs were good or

bad. All nine pipelines come from LangChain users. Six pipelines

were used in developing our prompt delta taxonomy (Section 2.2),

each representing a different domain (e.g., programming, finance,

marketing). Two pipelines came from spade’s Streamlit deployment

(Section 2.4). We include one final proprietary pipeline (the fashion
pipeline) in our experiments because it had the largest number of

prompt template versions and spade’s assertions have already been

deployed in production for tens of thousands of daily runs.

Table 3 provides details on each LLM pipeline and correspond-

ing set of good and bad examples. For the fashion pipeline, good

and bad examples were provided by a developer at the correspond-

ing startup. While we used real user-provided prompt templates

and histories (between 3 and 16 prompt versions) for the other

8 pipelines, we constructed and annotated our own input-output

examples so we could release them publicly. For two pipelines,

we sourced examples from Kaggle. For the other six pipelines, we

synthetically generated the other datasets using Chat GPT Pro

(based on GPT-4) and manually reviewed them. For instance, for

the codereviews pipeline that uses an LLM to review pull requests,

we asked Chat GPT to generate example pull requests covering

a variety of programming languages, application types, and diff

sizes. On average, we collected 75 examples per pipeline. We then

executed the LLM pipelines on these inputs and manually labeled

the responses to assess whether they met the prompt instructions.

4.2 Method Comparison and Metrics

As before, let 𝐸′ be a dataset of example prompt-response pairs, as

well as the corresponding labels of whether the response was good

(i.e., 1) or bad (i.e., 0). Let 𝜏 be the FFR threshold and 𝐹 be the set of

candidate assertions produced by the first step of spade (Section 2).

If a candidate function 𝑓 results in a runtime error for some example

𝑒 , we denote 𝑓 (𝑒) = 0 (i.e., failure). All code was written in Python,

using PuLP to find solutions for the ILPs. We used the default PuLP

configuration, which uses the CBC solver [17].

The simplest baseline involves generating candidate assertions

and choosing all of them, but it proved ineffective, yielding 100%

coverage and 100% FFR due to at least one assertion failing all tests.

8
https://smith.langchain.com/hub
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Table 3: Description of data-generating LLM pipelines in our experiments. The fashion examples (and ground-truth indicators

of whether the example response is good or bad) are provided by a startup that uses LangChain. All other examples are

synthetically generated except examples for the finance and lecturesummaries pipelines, which are taken from Kaggle.

Pipeline # Good Ex. # Bad Ex. # Prompt Ver. Data Generation Task Full Prompt Link

codereviews 60 16 8 Writing reviews of GitHub repo pull requests homanp/github-code-reviews

emails 43 55 3 Creating SaaS user onboarding emails gitmaxd/onboard-email

fashion 48 34 16 Suggesting outfit ideas for specific events N/A

financea 48 52 5 Summarizing financial earnings call transcripts casazza/map_template

lecturesummariesb 27 22 14 Summarizing lectures or talks, focusing on main points and

critical insights

kirby/simple-lecture-summary

negotiation 27 19 8 Writing tailored negotiation strategies based on provided

contracts and target prices

antoniogonc/strategy-report

sportroutine 19 31 3 Transforming workout video transcripts into structured ex-

ercise routines

aaalexlit/sport-routine-to-program

statsbot 39 31 3 Writing interactive discussions for any topic in statistics anthonynolan/statistics-teacher

threads 50 56 4 Crafting concise, engaging Twitter threads for specific audi-

ences and topics

flflo/summarization

a
https://www.kaggle.com/datasets/ashwinm500/earnings-call-transcripts

b
https://www.kaggle.com/datasets/miguelcorraljr/ted-ultimate-dataset

Table 4: Results of different versions of spade with 𝛼 = 0.6

and 𝜏 = 0.25. “# CA” is short for the number of candidate

assertions. The ✓and ✗ marks denote whether 𝛼 and 𝜏 con-

straints are met. Each entry is a fraction of the total number

of candidate assertions for that pipeline (with the absolute

number in parentheses). spadecov selects the fewest asser-

tions overall. spade
sub

selects the fewest assertions while

optimizing for subsumption.

Pipeline # CA Method FFR

Coverage

on 𝐸′
Frac Func.

Selected

Frac Excl.

Funcs. not

Subsumed

codereviews 44

baseline 0.117 ✓ 1 ✓ 0.456 (20) 0 (0)

spadecov 0 ✓ 0.625 ✓ 0.045 (2) 0.409 (18)

spadesub 0.117 ✓ 0.875 ✓ 0.341 (15) 0 (0)

emails 24

baseline 0 ✓ 1 ✓ 0.5 (12) 0 (0)

spadecov 0 ✓ 1 ✓ 0.0417 (1) 0.458 (11)

spadesub 0 ✓ 1 ✓ 0.458 (11) 0 (0)

fashion 106

baseline 0.878 ✗ 0.971 ✓ 0.632 (67) 0 (0)

spadecov 0.245 ✓ 0.6 ✓ 0.028 (3) 0.321 (34)

spadesub 0.224 ✓ 0.62 ✓ 0.377 (40) 0 (0)

finance 47

baseline 0.667 ✗ 1 ✓ 0.787 (37) 0 (0)

spadecov 0.229 ✓ 0.673 ✓ 0.085 (4) 0.553 (26)

spadesub 0.208 ✓ 0.981 ✓ 0.553 (26) 0 (0)

lecturesum. 70

baseline 0.528 ✗ 1 ✓ 0.457 (32) 0 (0)

spadecov 0.194 ✓ 0.643 ✓ 0.014 (1) 0.414 (29)

spadesub 0.194 ✓ 1 ✓ 0.343 (24) 0 (0)

negotiation 50

baseline 0.444 ✗ 1 ✓ 0.4 (20) 0 (0)

spadecov 0.222 ✓ 0.632 ✓ 0.04 (2) 0.32 (16)

spadesub 0.185 ✓ 1 ✓ 0.34 (17) 0 (0)

sportroutine 26

baseline 0.211 ✓ 1 ✓ 0.538 (14) 0 (0)

spadecov 0.211 ✓ 0.774 ✓ 0.077 (2) 0.462 (12)

spadesub 0 ✓ 0.871 ✓ 0.308 (8) 0 (0)

statsbot 15

baseline 0 ✓ 1 ✓ 0.467 (7) 0 (0)

spadecov 0 ✓ 0.935 ✓ 0.133 (2) 0.333 (5)

spadesub 0 ✓ 1 ✓ 0.467 (7) 0 (0)

threads 34

baseline 0 ✓ 1 ✓ 0.765 (26) 0 (0)

spadecov 0 ✓ 0.875 ✓ 0.029 (1) 0.735 (25)

spadesub 0 ✓ 1 ✓ 0.589 (20) 0 (0)

Failures were due to errors or overly specific conditions that, in

theory, could pass some outputs (for example, requiring a precise

phrase in a certain case) but, in reality, never matched any actual

LLM outputs. As such, we evaluated two versions of spade against

a baseline that simply filters candidate assertions that individually

exceed the FFR threshold. The baseline selects all functions 𝑓 in 𝐹

where FFR ({𝑓 }) ≤ 𝜏 . spadecov is a solution to the ILP defined in

Section 3.2 spade
sub

is a solution to the ILP defined in Section 3.3.1.

Let 𝐹 ′ represent the set of selected assertions by any version of

spade. We measure four metrics:

(1) Fraction of Assertions Selected (i.e., |𝐹 ′ |/|𝐹 |)
(2) Fraction of Excluded Non-Subsumed Functions (i.e., |𝐺 |/|𝐹 |,

where 𝐺 = {𝑔 | 𝑔 ∈ 𝐹 \ 𝐹 ′ and 𝐹 ′ ≠⇒ 𝑔})
(3) False Failure Rate (Definition 3.2)

(4) Coverage on 𝐸′ (Definition 3.1)

An important aspect of spade
sub

’s success is the effectiveness

of subsumption assessment. Since we do not have ground truth for

subsumption, we focus on precision, calculated as the proportion of

correctly identified subsumed pairs of assertions out of all subsumed

pairs identified by the LLM.We do not assess recall—whether GPT-4

identified every possible subsumption—due to the impracticality of

labeling possibly tens of thousands of assertion pairs per pipeline.

Moreover, precision is more critical than recall, as identifying even

some subsumptions allows spade
sub

to achieve a solution with

fewer selected assertions.

4.3 Results and Discussion

Table 5: Precision of

assessing subsump-

tion with GPT-4 (ver-

ified by two authors).

Pipeline Precision

codereviews 0.90

emails 0.79

fashion 0.74

finance 0.79

lecturesummaries 0.89

negotiation 0.68

sportroutine 0.89

statsbot 0.86

threads 0.80

Table 6: Average ILP runtimes (in sec-

onds) over 10 trials for spadecov and

spade
sub

. The baseline method

has no ILP component.

Pipeline spadecov spade
sub

codereviews 0.267 0.362

emails 0.196 0.225

fashion 0.628 1.197

finance 0.352 0.441

lecturesummaries 0.265 0.538

negotiation 0.220 0.332

sportroutine 0.120 0.158

statsbot 0.104 0.122

threads 0.272 0.332
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First, we briefly discuss whether individual components of spade

are practical (e.g., determining subsumption, solving the ILPs). Us-

ing GPT-4 to assess subsumption results in an average precision of

0.82 across all pipelines, as seen in Table 5, confirming its effective-

ness. The ILP runtimes in Table 6 are all under one second, except

for 1.197 seconds for spade
sub

for the fashion pipeline. This rela-

tively small runtime demonstrates the feasibility of our approach.

In the remainder of this section, we will focus on the assertions

chosen by different methods.

For simplicity, we set the coverage and FFR thresholds to be

the same across all pipelines (𝛼 = 0.6, 𝜏 = 0.25). We report re-

sults for the three methods in Table 4. Consider the codereviews
pipeline, for example, which uses an LLM to review a pull request for

any code repository. Here, baseline selects 20 assertions, spadecov

selects two assertions, and spade
sub

selects 15 assertions. By se-

lecting more functions, spade
sub

ensures that all non-subsumed

functions are included. All three approaches respect the 𝐸′ coverage
constraint, but baseline violates the FFR constraint in 4 out of 9

pipelines. For our workloads, spade
sub

opts for approximately 14%

fewer assertions compared to baseline and shows a significantly

lower FFR, reducing it by about 21% relative to baseline. spadecov

excludes, on average, about 44% of functions that are not subsumed

by 𝐹 ′. Choosing a spade implementation primarily depends on how

much labeled data is available. We subsequently discuss trade-offs

between different spade implementations.

Subsumption vs. 𝐸′ Coverage. spadecov and spadesub are comple-

mentary, the former being more useful if 𝐸′ is more comprehensive.

For our datasets, 𝐸′ is not comprehensive: Table 4 reveals that, on

average, 44% of functions excluded by spadecov are not subsumed

by the selected functions, despite being accurate within the FFR

threshold. This is unsurprising given that each task has only 34

bad (i.e., failure) examples on average. While larger or more mature

organizations may have extensive datasets and could get a mean-

ingful result from spadecov, spadesub’s ability to select assertions

that cover unrepresented potential failures can be beneficial in data-

scarce settings. For example, here is a sample of 3 assertions for the

codereviews pipeline ignored by spadecov but included in spade
sub

(with comments excluded for brevity):

async def assert_includes_code_improvement_v2(
example: dict , prompt: str , response: str

):
question = "Does the response include suggestions for code improvements?
↩→ "
return await ask_llm(prompt , response , question)

async def assert_contains_brief_answers_v1(example: dict , prompt: str ,
↩→ response: str):

question = "Is the response brief and to the point without unnecessary
↩→ elaboration?"
return await ask_llm(prompt , response , question)

async def assert_responds_to_correct_pull_request(
example: dict , prompt: str , response: str

):
pr_title = example["title"]
question = (

f"Is the response a review focused on the Pull Request titled '{
↩→ pr_title}'?"

)
return await ask_llm(prompt , response , question)

Subsumption as a Means for Reducing Redundancy. Several

pipelines exhibit a large discrepancy between functions selected in

baseline and spade
sub

, which occurs when there are many redun-

dant candidates. For example, in the codereviews pipeline’s 8 prompt

versions, the developer iterated several times on the instruction

to give a clear and concise review, resulting in five assertions that

check the same thing (three of which are shown below):

async def assert_response_is_concise_v1(
example: dict , prompt: str , response: str

) -> bool:
question = "Is the LLM response concise and to the point?"
return await ask_llm(prompt , response , question)

async def assert_response_is_concise_and_clear(
example: dict , prompt: str , response: str

):
question = "Is this pull request review response concise and clear?"
return await ask_llm(prompt , response , question)

async def assert_clear_professional_language_v1(
example: dict , prompt: str , response: str

):
question = "Is the response professional , clear , and without unnecessary
↩→ jargon or overly complex vocabulary?"
return await ask_llm(prompt , response , question)

Since all the five assertions meet the FFR constraint, individu-

ally, baseline would select them all, which is undesirable because

they all do the same thing, but spade
sub

would select the one most

compatible with the FFR constraint, as long as subsumption is as-

sessed correctly. On the flip side, while assessing subsumption,

the LLM may not recall all subsumptions, so spade
sub

may have

duplicate assertions. For example, the codereviews pipeline con-

tains assertions titled assert_includes_code_improvement_v1
and assert_includes_code_improvement_v2.

𝜶 and 𝝉 Threshold Sensitivity. The feasibility of solutions from

the ILP solver in spade is dependent on the chosen 𝛼 and 𝜏 thresh-

olds. If a feasible solution is not found, developers may need to

adjust these values in a binary search fashion. In our case, all 9 LLM

pipelines yielded feasible solutions with 𝛼 = 0.6 and 𝜏 = 0.25. How-

ever, the small size of 𝐸′ makes spadecov particularly sensitive to 𝛼 .

In the pipelines, we observed that between one and five assertions

covered 60% of 𝐸′’s failures. For example, spadecov selected only

one assertion for the emails pipeline:

async def assert_encouragement_to_contact_company(
example: dict , prompt: str , response: str

) -> bool:
contact_phrases = [

"reach out",
"don't hesitate to contact",
"looking forward to hearing from you",
"if you have any questions",
"need help getting started",

]
return any(phrase in response for phrase in contact_phrases)

If 𝐸′ is exhaustive of failure modes and representative of the dis-

tribution of failures (e.g., for the emails pipeline, most failures are

actually due to the response lacking an encouragement to contact

the company), spadecov might be a satisfactory solution. How-

ever, our 𝐸′ datasets clearly were not exhaustive, considering that

spade
sub

always chose additional assertions. spade
sub

is less sensi-

tive to 𝛼 , as it explicitly selects assertions based on their potential

to cover new failures (i.e., subsumption) without exceeding the FFR,

even if the constraint on coverage is no longer tight.

FFR Tradeoffs. Considering that the difference between the frac-

tion of functions selected for baseline and spade
sub

is less than
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10% for three LLM pipelines, one may wonder if the complexity

of spade
sub

is worth it. spade
sub

is generally preferable because

baseline fails to consistently meet the FFR threshold 𝜏 . We ob-

served that as prompt versions increase, so do the number of asser-

tions, impacting baseline adversely. The worst-case FFR of a set is

the sum of individual FFRs, as shown in Equation (1). Hence, with

a large number of independent assertions, the total FFR is likely

to surpass the threshold. This issue is evident in the fashion and

lecturesummaries pipelines, where despite each of the 67 and 32

assertions meeting FFR constraints individually, the total FFR for

baseline reaches 88% and 53%, respectively. In practice, if spade

were to be deployed in an interactive system, where spade could

observe each LLM call in real-time (e.g., as a wrapper around the

OpenAI API), the multitude of prompt versions further necessitates

filtering assertions based on overall FFR. This underscores the need

for the more complex spadecov or spadesub approaches.

5 RELATEDWORK

We survey work from prompt engineering, evaluating ML and

LLMs, LLMs for software testing, and testing ML pipelines.

Prompt Engineering. For both nontechnical [63] and technical

users [37, 52], prompt engineering is hard for several reasons: small

changes in prompt phrasing [3, 30] or the order of instructions or

contexts [32] can significantly affect outputs. Moreover, as LLMs

change under the hood of the API (i.e., prompt drift), outputs can

change without developer awareness [9]. Tools and papers are

emerging to aid in prompt management and experimentation, and

are even using LLMs to write prompts [2, 11, 60, 61, 65]. Moreover,

deployed prompts introduce new challenges, like “balancing more

context with fewer tokens” and “wrangling prompt output” to meet

user-defined criteria [38]. Our work doesn’t focus explicitly on

helping developers create better prompts, but it could indirectly

support developers by helping identify mistakes.

ML and LLM Evaluation. Evaluating and monitoring deployed

ML models is known to be challenging [36, 49]. Evaluating LLMs

in a deployed setting is even more challenging because LLMs are

typically used for generative tasks, where the outputs are free-

form [12]. Some LLM pipeline types, like question-answering with

retrieval-augmented generation pipelines [29], can use standard-

ized, automated metrics [13, 43], but others face challenges due to

unknown metrics and lack of labeled datasets [8, 38, 62]. Typically,

organizations rely on human evaluators for LLM outputs [18, 38, 58],

but recent studies suggest LLMs can self-evaluate effectively with

detailed “scorecards” [7, 26, 64]. However, writing these scorecards

can be challenging [38], motivating auto-generated evaluators. Re-

cent work [26, 41, 54] and industry tools [21, 27, 31] proposes the

use of assertions to catchmistakes in LLM pipelines, while requiring

the user to select these assertions.

LLMs for Software Testing. LLMs are increasingly being used in

software testing, mainly for generating unit tests and test cases [28,

44, 53, 55, 56]. Research explores how LLMs’ prompting strategies,

hallucinations, and nondeterminism affect code or test accuracy [10,

14, 15, 35]. Our work is complementary and leverages LLMs to

generate code-based assertions for LLM pipelines.

Testing and Validation in ML Pipelines. ML pipelines are hard

to manage in production. Much of the literature on ML testing

is geared towards validating structured data, through analyzing

data quality [5, 22, 46, 47] or provenance [33, 45]. Platforms for ML

testing typically offer automated experiment tracking and preven-

tion against overfitting [1, 42], as well as tools for data distribution

debugging [19]. Model-specific assertions typically require human

specification [25], or at least large amounts of data to train learned

assertions [24]. LLM chains or pipelines are a new class of ML

pipelines, and LLMs themselves can generate assertions with lit-

tle data. A recent study highlights the difficulty of testing LLM

pipelines for “copilot”-like products: developers want to ensure

accuracy while avoiding excessive resource use, such as running

hundreds of assertions [38]—motivating assertion filtering.

6 CONCLUSION AND FUTUREWORK

We introduce a new problem of auto-generating assertions to catch

failures in LLM pipelines, as well as spade, our framework for doing

so. spade comprises two components: first, it synthesizes candidate

assertions, and then it filters them down into a more manageable

subset. To synthesize candidate assertions, we analyzed prompt ver-

sion histories and learned that prompt deltas are often a rich source

of requirements and therefore candidate assertions. We developed a

taxonomy of prompt deltas for assertion synthesis, demonstrating

its value via integration and deployment with LangChain, with

over 2000 runs across domains. For the latter problem of candidate

assertion filtering, we expressed the selection of an optimal set of

assertions, covering most failures while introducing as few false

failures as possible as an Integer Linear Program (ILP). We proposed

assertion subsumption to cover failures in data-scarce scenarios

and incorporated this into our ILP. We also studied the setting

where there are no examples and demonstrated that it reduces to a

topological sort on the subsumption graph. Our auto-generating

assertion system, spade, was evaluated on nine real-world data-

generating LLM pipelines. We have made our code and datasets

public for further research and analysis.

There are a number of open questions in our effort to make

production LLM pipelines more robust. For instance, while meeting

developer-provided criteria (𝛼, 𝜏) is helpful, sometimes developers

would like to examine the generated and selected assertions in a

way that helps them make the tradeoffs themselves, motivating a

human-in-the-loop interface to assist developers in defining data

quality for LLM pipelines. Such an interface could also be a vehicle

for getting developers to label examples on the fly. Determining

which labeled examples would help best select from the set of

assertions is an open question that is reminiscent of active learning.

Finally, we could also envision automatically updating assertion

sets in deployed pipelines, as new failure modes inevitably arise in

production.
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