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ABSTRACT

Autoscaling is a critical mechanism in cloud computing, enabling
the autonomous adjustment of computing resources in response
to dynamic workloads. This is particularly valuable for co-located,
long-running applications with diverse workload patterns. The pri-
mary objective of autoscaling is to regulate resource utilization
at a desired level, effectively balancing the need for resource op-
timization with the fulfillment of Service Level Objectives (SLOs).
Many existing proactive autoscaling frameworks may encounter
prediction deviations arising from the frequent fluctuations of cloud
workloads. Reactive frameworks, on the other hand, rely on real-
time system feedback, but their hysteretic nature could lead to
violations of stringent SLOs. Hybrid frameworks, while prevalent,
often feature independently functioning proactive and reactive
modules, potentially leading to incompatibility and undermining
the overall decision-making efficacy. In addressing these challenges,
we propose OptScaler, a collaborative autoscaling framework that
integrates proactive and reactive modules through an optimization
module. The proactive module delivers reliable future workload
predictions to the optimization module, while the reactive module
offers a self-tuning estimator for real-time updates. By embedding a
Model Predictive Control (MPC) mechanism and chance constraints
into the optimization module, we further enhance its robustness.
Numerical results have demonstrated the superiority of our work-
load prediction model and the collaborative framework, leading
to over a 36% reduction in SLO violations compared to prevalent
reactive, proactive, or hybrid autoscalers. Notably, OptScaler has
been successfully deployed at Alipay, providing autoscaling support
for the world-leading payment platform.
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1 INTRODUCTION

The rapid growth of cloud computing has generated a significant
demand for computing resources such as CPU cores and memory
[47]. As a result, efficient resource management and optimization
techniques have received increasing attention to strike a balance
between the cost of resources and the strict Service Level Objectives
(SLOs) in cloud services. Traditionally, to address drastic workload
changes and ensure SLO adherence, resources are often provisioned
based on peak demand, leading to substantial resource waste [12].
In response to this challenge, autoscaling has emerged as a funda-
mental capability of cloud infrastructure, allowing for the automatic
and dynamic scaling of resources in reaction to workload fluctu-
ations [7]. With autoscaling, cloud providers can swiftly adapt to
varying workloads without manual intervention, thereby achieving
optimal performance. This capability not only provides substantial
cost savings but also enhances user experience. There are two types
of scaling based on how resources are adjusted: vertical scaling,
which modifies the resource capacity within existing cluster nodes
[14], and horizontal scaling, which involves adding or removing
deployed nodes [59]. Major cloud vendors widely favor horizontal
scaling due to its ease of implementation and its ability to enhance
the availability and fault tolerance of applications [7, 9, 10].

In this paper, we focus on horizontal scaling in the context of
co-located long-running applications (LRAs) with diverse workload
patterns. LRAs, also known as online services, are integral in many
cloud computing scenarios such as online marketing and content
recommendation. These scenarios frequently exhibit time-varying
workloads due to periodic user arrivals. LRAs differ from batch jobs,
where each job is assigned to an exclusive node that is terminated
after processing the job [38]. Existing autoscaling methods (also re-
ferred to as autoscalers) for LRAs can be classified as either reactive
or proactive, based on the timing of scaling, and both have been
widely researched [1]. Reactive autoscalers, driven by real-time sys-
tem feedback [39, 43], adaptively adjust resources at run-time after
unexpected outcomes occur and are favored for their simplicity
of implementation. However, real-world workloads often exhibit
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periodic fluctuations [16], and the reactive autoscaling’s hysteretic
nature could lead to violations of SLOs.

In this regard, [36] experimented with the autoscaling methods
from Amazon, Microsoft, and Google, leading to the conclusion
that their reactive methods had performance pitfalls. In contrast,
proactive autoscalers, which anticipate future workload and scale
resources beforehand, might avoid the pitfalls of reactive scaling
[11, 57]. However, proactive autoscalers with sophisticated predic-
tion techniques may struggle to capture the full picture of uncer-
tain LRAs’ workloads, resulting in prediction errors and resource
wastage. To enhance the performance of proactive autoscaling un-
der uncertainty (e.g., unpredictable bursts or anomalies), integrating
proactive and reactive methods to build a hybrid autoscaler is essen-
tial, as highlighted in [47]. An ideal paradigm involves the proactive
method handling foreseeable workload patterns while the reactive
method corrects unexpected deviations.

In practical applications, hybrid autoscalers face their own set
of challenges. Firstly, the use of proactive and reactive modules
in existing hybrid autoscalers often leads to independent opera-
tion, potentially resulting in conflicting scaling decisions when
the outputs of these modules differ. While an enhanced prediction
model in the proactive module could mitigate these conflicts, [47]
stresses that reconciling conflicting outputs to reach a final imple-
mentation decision remains a significant challenge in production.
Secondly, the intricate nature of the cloud environment poses chal-
lenges in developing a robust hybrid autoscaler. For example: 1)
Hardware speed limitations can constrain scaling capacity, possibly
causing disparities between intended and actual scaling decisions,
ultimately undermining autoscaling performance; 2) Systematic
noise in scaling metrics, such as CPU utilization, has the potential
to mislead both proactive and reactive scaling decisions; 3) The
co-location of LRAs frequently leads to resource contention, further
exacerbating the uncertainty in scaling metrics.

The primary goal of this study is to develop an autoscaling frame-
work for LRAs that effectively tackles the challenges previously
mentioned. To confront the first challenge, we introduce a novel
collaborative autoscaling framework, an advancement of existing
hybrid frameworks. This includes an innovative proactive module
with enhanced prediction capabilities, a real-time reactive module
to address scaling errors stemming from prediction inaccuracies,
and an optimization module to manage the trade-off between re-
source costs and SLO satisfaction. The term collaborative indicates
that our framework orchestrates proactive and reactive modules
to make holistic final decisions, thus avoiding potential conflicts
between the two modules. To achieve this, our collaborative frame-
work constructs the optimization module with dynamic inputs from
both proactive and reactive modules. The optimization objective is
to assist the cloud system in attaining the desired scaling metrics
under dynamic workloads. The interpretable optimization objective
and constraints (i.e., practical restrictions in the cloud) also improve
the interpretability of our framework, an aspect often lacking in
many black-box or machine-learning-based autoscalers. Enhanced
transparency within the framework can further establish user trust
and facilitate potential upgrades of autoscalers [47].

To tackle the second challenge, we explicitly model the essential
components of the complex cloud system to enable robust scaling
decisions. Specifically: 1) We integrate Model Predictive Control
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(MPC) into our optimization module to address the speed limita-
tion of scaling. In contrast to traditional control methods such as
Proportional-Integral-Derivative (PID) [5], MPC is recognized for
its superior potency. In our context, MPC enables optimization
of the scaling decision at the current time while accounting for
potential workload bursts in future time intervals; 2) We mitigate
the impact of noises in scaling metrics by employing the chance-
constraint method [45], further enhancing the robustness of MPC;
3) We develop an adaptive estimator within the reactive module,
continually adjusted based on real-time system feedback, to monitor
the collaborative impact of co-located LRAs on scaling metrics.

The enhancement and collaboration of each module in OptScaler
has proven highly effective for managing co-located LRAs with
diverse workload patterns. To support this, the following questions
are thoroughly investigated:

(1) Question 1: Can OptScaler offer superior workload predic-
tion ability compared to prevalent methods?

Question 2: Can OptScaler make more robust scaling de-
cisions than mainstream autoscaling frameworks (e.g., re-
active, proactive, and hybrid frameworks) across various
real-world workload patterns?

Question 3: Taking the autoscaling framework as a whole,
what is the overall advantage of OptScaler compared to
state-of-the-art autoscalers?
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Contributions. Addressing the above questions, OptScaler con-
tributes to cloud resource management in three key aspects:

(1) OptScaler develops an innovative proactive module that
surpasses state-of-the-art prediction methods when tested
on challenging public and internal workload traces;
OptScaler creatively leverages an optimization module to
enable the proactive module to collaborate with the reactive
module in making final scaling decisions. The incorpora-
tion of MPC mechanism and chance constraints into the
optimization module enhances its robustness;

OptScaler demonstrates its superiority as a comprehensive
autoscaling framework, reducing over 36% more SLO vio-
lations compared to a state-of-the-art hybrid framework.
OptScaler has successfully supported the online autoscaling
of LRAs at Alipay, the world-leading payment platform.
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The remainder of the paper is organized as follows. Section 2
reviews related works. Section 3 provides background information
about our proposed autoscaling framework. Section 4 elaborates
on the proposed framework, encompassing the proactive, reactive,
and optimization modules. Section 5 compares experimental results
from the proposed framework and prevalent frameworks. Section 6
describes the deployment of OptScaler along with the online results
at Alipay. Section 7 concludes this paper.

2 RELATED WORKS

Autoscaling methods play a critical role in managing cloud re-
sources, with active research in both theoretical and practical im-
plementation across various cloud systems. Table 1 compares our
work with representative literature. It is observed that the majority
of autoscalers rely on standalone proactive or reactive modules.
In the context of workload prediction, statistical models such as
Auto regression or Exponential smoothing are commonly applied



Table 1: Comparison of the proposed OptScaler with the existing representative works on autoscaling

Type Literature Optimization® Uncertaintyd
Zhou2023AHPA[59], Wang2023[51], Das2016[8] I3 3
Dezhabad2018[11], Zhang2013[58], Roy2011[42] v X

Proactive Poppe2023[37], Qiu2023AWARE[40], Xue2022[57], Jamshidi2016[19] X v
Pan2023MagicScaler[33], Qian2022RobustScaler[38], Luo2022[26] v v
Cahoon2022Doppler[6], Rzadca2020Autopilot[43], Farokhi2016[14] X X

Reactive Qiu2020FIRM[39] X v
Gaggero2018[15] v X
Persico2017[35] v v

Hybrid? Singh2021RHAS[46], Jv2018HAS[22], Ali2012[2], Urgaonkar2008[48] X X

v v

Collaborative? OptScaler

2 The work employs both proactive and reactive modules but they operate independently and may produce conflicting scaling decisions.
b The work orchestrates proactive and reactive modules to produce a holistic scaling decision.
¢ The work adopts any optimization technique that can handle practical scaling restrictions and increase interpretability of scaling decisions.

4 The work considers uncertainty in the cloud system.

[19, 21, 22, 40, 58], with recent trends also embracing deep learning
models like RNN and Transformer [25, 26, 33, 53]. When it comes
to scaling decisions, existing works predominantly use queuing
models to make stable decisions. Some also employ analytical meth-
ods like PID [3, 5] or pretrained estimators [59], while others rely
on customized rules based on prior knowledge [22, 28, 43, 52, 54].
Additionally, optimization techniques and Reinforcement Learning
(RL) have also been utilized, and a minority of literature addresses
noise through fuzzy decisions [19, 35, 50].

However, as pointed out by [47], a standalone proactive or reac-
tive autoscaler may fall short of production-ready standards. Only
a small number of studies (15 out of 104) have attempted to har-
ness the power of hybrid autoscaling, with the dominant approach
being to choose between scaling decisions made by proactive and
reactive modules. For instance, [1, 2, 41] adopted the reactive de-
cision when the two conflicted, and [22, 46, 48] switched between
proactive and reactive decisions based on predefined rules. Notably,
our proposed framework revolutionizes this approach by fostering
full collaboration between the proactive and reactive modules, with
both contributing to the final scaling decision. The former provides
future workload inputs, while the latter traces system dynamics
between workloads and scaling metrics through real-time feedback.

Previous researchers have also explored leveraging optimization
techniques such as Model Predictive Control (MPC) in autoscal-
ing. For example, MPC has been used to adjust the number of
virtual machines to meet response time requirements [42], study
the impact of control frequency on resource efficiency and proactive
scaling overhead [31], solve server placement problems [15, 58],
and facilitate combined horizontal and vertical scaling with load
distribution among machines [18]. However, to our knowledge,
MPC (or any other optimization technique) has never been applied
in a hybrid/collaborative autoscaler. Our paper advances this area
of research by presenting a new approach to exploring the potential
of optimization in facilitating collaborative autoscaling.
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3 PRELIMINARIES

In this section, we first present background about cloud resource
deployment. Then, we briefly introduce workload patterns and
scaling metrics, both are exploited by OptScaler for robust scaling.

3.1 Basics of Resource Deployment in the Cloud

In cloud computing, computing resources are organized within
a multilevel hierarchical structure. For instance, within Alipay’s
Recommendation Platform, the cloud computing resource is logi-
cally divided into several clusters [24]. Each cluster encompasses
a variable number of nodes (or machines) and supports a group of
LRAs. Each node possesses its own dedicated (and usually equal-
ized) computing resources and can be virtually segmented into
multiple containers [23]. Each container has the capacity to ac-
commodate a single LRA, and for fault tolerance purposes, an LRA’s
workload is evenly spread across all host containers. To achieve a
well-balanced loading scheme, each node in the cluster deploys one
container for each LRA, resulting in all nodes sharing an identical
container configuration.

It is important to note that two practical constraints impact the
scaling within the LRA scenario. In order to ensure safety, upper
and lower bounds for the number of nodes in each cluster must
be maintained. Furthermore, the addition or removal of multiple
nodes can be conducted in parallel, but there are limitations on the
speed and concurrency of node addition/deletion.

3.2 Patterns of Workload and CPU Utilization

Variations in workload patterns impact the predictive complexity,
significantly affecting the performance of the proactive module
and consequently, the entire autoscaling framework. For accurate
workload prediction, it is essential that workloads exhibit periodic
behaviors. Using randomly sampled workloads of two LRAs from
Alipay (from Jan/22/2024 to Feb/04/2024), we have depicted the
normalized workload patterns in the left subplot of Figure 1. These
patterns reveal periodic behaviors in both LRAs, indicating the
potential benefits of autoscaling. Specifically, LRA 1 demonstrates
daily fluctuations, while LRA 2 exhibits a weekly pattern with lower
workloads during weekends.
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Figure 1: Periodical workloads (left) and linear correlation
between unit workload and CPU utilization (right) for two
randomly chosen LRAs from Alipay.

Moreover, as highlighted in [4], there exists a close relationship
between SLOs and system metrics such as CPU and memory utiliza-
tion within a cloud environment, directly influencing the efficacy
of cloud resource management. With the primary resource stress
stemming from the limited CPU capacity, CPU utilization has been
selected as the primary scaling metric. To strike a balance between
SLOs and resource conservation, CPU utilization should closely
approach (but not exceed) a designated threshold. Consequently,
understanding the dynamics between the unit workload (i.e., work-
load of LRAs in each node) and the resultant CPU utilization is
crucial for our framework design.

Initially, we focus on a single node hosting a solitary LRA, as-
suming that this rule applies similarly when hosting multiple LRAs
(i-e., co-location). As shown in the right subplot of Figure 1, we
observe an explicit linear correlation between the unit workload
and the mean CPU utilization. This correlation underscores two key
insights: 1) LRAs exhibit varying impacts on CPU utilization. LRA
2 proves to be more resource-intensive than LRA 1, evident from
the significantly higher CPU utilization for LRA 2 compared to LRA
1 under the same unit workload (e.g., 200 QPS or queries per sec-
ond); 2) Under a linear estimator, the variance of residuals sharply
increases as the unit workload rises, exacerbating estimator uncer-
tainty. To address these insights, we propose two enhancements
to the standard linear estimator. Firstly, we incorporate an uncer-
tainty term, with the variance being a function of the unit workload.
Secondly, we implement an online linear regression (OLR) [29] as
a feedback mechanism to dynamically adapt the linear estimator
at runtime with the latest feedback, without requiring complete
retraining of the estimator with the entire dataset. More details on
these enhancements will be provided in Section 4.2.

4 PROPOSED FRAMEWORK

When implementing horizontal scaling, OptScaler could focus on
the scaling of the number of nodes in each cluster for making
holistic scaling decisions. The OptScaler framework, illustrated in
Figure 2, comprises the following components:

o Proactive module consists of a workload prediction model
trained on historical workloads, providing multi-timestep
predictions of future workloads for all LRAs of interest;
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Figure 2: Flowchart of the proposed OptScaler framework.

e Reactive module offers a self-tuning estimator of CPU
utilization. It is initialized using historical data of the unit
workloads and the corresponding CPU utilization, and con-
tinuously fine-tuned by real-time system feedback;
Optimization module takes input from both proactive
and reactive modules, producing an optimal scaling plan
under practical restrictions. The plan is then deployed to
the cloud system.

4.1 Proactive Module

In Proactive Module, we employ a workload prediction model to an-
ticipate the future workloads of different LRAs. The casting results
are further forwarded to the optimization module for CPU utiliza-
tion management. The following challenges must be addressed for
effective autoscaling: 1) Long-term forecasting: In order to com-
plete node addition/removal within each time interval amidst rapid
workload fluctuations, the optimization module must plan several
steps in advance. This necessitates long-term forecasting, such as
predicting workload a day in advance. 2) Model efficiency: Due to
the presence of multiple LRAs with diverse weekly and daily work-
load patterns, constructing a separate prediction model for each
LRA would be inefficient. It is advantageous to have a single model
that can accommodate the various workload patterns, providing
convenience for the online service management.

To address the above challenges, a workload prediction model is
introduced in Figure 3. Formally, let y, € R denotes the workload
at time step t of the n-th LRA, the task is to predict the future

values y/ HHH = [yt1) . yi*H] based on the historical values
f;C:t = [y,tl_c, e y,ﬁ] and other covariates. We herein use bold

symbols to denote vectors. Typically, it can be formalized as:

t+1:t+H _ t—C:t _t—C:t+H
Yn =Foly, .z,

1)

1),
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Figure 3: Framework of the workload prediction model in
the Proactive Module.

where Fg(+) denotes the workload prediction model, © is the learn-
ing parameters, z;,C***H is the known covariates (e.g., date) of the
n-thLRA, and n € {1,2,..., N} is the index of LRAL

It is evident that Fg(+) handles the workload prediction task for
various LRAs with the parameter © and distinguishes LRAs with
index n. Specifically, Fo(-) comprises a Long-term Periodic Block

and a Short-term Local Block to accomplish this task effectively.

e Long-term Periodic Block. Capture too long series in-
put for forecasting workloads of LRAs, each with vary-
ing weekly or daily patterns, can be challenging. To ad-
dress this, we employ the Fourier series to represent the
diverse periodicities of different LRAs. With a periodic-
ity P and truncation order N of the Fourier series expan-
sion, the long-term periodicity can be formalized as y* =
Zf;]:() (ancos( 275,’” ) +bpsin( %)) The Fourier coefficients
[ao, bo, ..., a N b N]’ learned from historical data, facilitate

the inference of future periodicity without the need for

extensive historical inputs.

Short-term Local Block. This block learns the local pat-

tern of workloads, such as local trend and influence. For

this purpose, we apply a Seq2seq structure consisting of
three steps: 1) According to historical values y*~C* and
gé‘fC:t
=Y
local pattern of historical residual with series yf ~Cit and

, we calculate the residual
t—C:t _

their periodic estimation

of historical series yf -Cit

yf,‘c:t ; 2) We extract

corresponding covariates z/ ~¢*. A linear-complexity Flow-
Attention [55] f(q, k,v; O4¢tn) is applied for long sequences
with high efficiency. Specifically, let h;;,, = [y;_C:t, 217C1]
denote the whole historical representation, the encoder is
hene = f(hin, hin, hin; Oenc), where O,y is the parameters
of encoder; 3) Based on the encoder output hepe and co-
variates z! “C*+H the decoder estimates the local residual
in future. With the same Flow-Attention structure, the de-
coder is g;+1:t+H — f(zt—C:t’Zt+1:t+H’ hencZ edec)a where
0 4. is the learning parameter.

In the Short-term Local Block, two practical techniques are em-
ployed to enhance long-term forecasting. The first technique, Flow-
Attention, demonstrates computational efficiency with linear com-
plexity relative to the length of the series. The second technique

IFor simplicity, we ignore the index n of LRA in the following.

4094

Algorithm 1 Widrow-Hoff algorithm in the Reactive Module

Input: Choose parameter n > 0
Initialize: wi.® according to historical data training
fort=1toT do

t
Get unit workload % eRN

t
Estimate ¢’ = (%) e R
Observe ¢! e R

Get feedback error e = ¢t — ¢!

-c
Update wy.! =wpf71 - qe%

end for

return wkT

involves the use of a non-autoregressive decoder, where the forecast-
ing of time step ¢ is independent of the results from the preceding
time step. This non-autoregressive decoder helps avoid accumula-
tive errors and offers swift inference speed.

As illustrated in the flowchart Figure 2, the predicted workload
of each LRA is the sum of the outputs from Long-term Periodic
Block and Short-term Local Block:

gt+1:t+H — g;+1:t+H +g;+1:t+H ®)
During model training, quantile loss [34, 60] helps minimize the
ratio of the forecasting results that are lower than the actual val-
ues. This approach enhances the reliability of subsequent scaling
decisions from the perspective of proactive module.

4.2 Reactive Module

In Reactive Module, we build a linear estimator with an uncer-
tainty term to map the unit workloads of LRAs to the average CPU
utilization of all nodes in the cluster, which could be formulated as:

y Yy Wi

=1 (3 x

where f(-) denotes the estimator; y € RY is the workload vector
for all N LRAs; x is the number of nodes in the cluster to be decided;
¢ denotes the estimated CPU utilization, which is a function of unit
workload %; wp. and wy, are the slope and intercept for the linear
model, respectively. wy. can be seen as the weights of the LRAs,
and wy, is naturally the overhead load of CPU; € is the uncertainty
term compensating for the residual of a linear model. € obeys the
following normal distribution:

+ €

®G)

):Wb+

yTak )2)

e~ N(0.6*(%)) ~ N(0. (0 + L-25 (@)

where the standard deviation of € is modelled as a linear function
(with coefficient o and o},) of unit workload. In this way, we ensure
that the uncertainty term obeys the rules shown in Figure 1 that the
variance of CPU utilization increases with larger unit workloads.
Based on the above formulations, we now introduce the reactive
mechanism. Initially, all the parameters (including wy., wp, o and
op) are initialized using maximum likelihood estimation [30] on
the historical data with non-negative constraints. Subsequently, we
employ OLR [29] as a means to adjust wy. using real-time feedback.
The feedback mechanism of OLR resembles that of a supervised
learning algorithm, aiming to minimize the cumulative square loss
of a linear function in an online setting. The pseudocode is shown



in Algorithm 1, where 7 is a parameter to control the strength of
feedback tuning, in analogy with the learning rate in a machine
learning context, and the real-time feedback error e = ¢t —clis
derived from the cloud. In practice, each time when new feedback
is available, we could choose the most recent (i.e., T = 1) or a
series of (i.e., T > 1) feedback, and apply OLR to update wj. quickly.
Instead of retraining the linear model using the whole dataset each
time, OLR focuses on the newest T feedback, and its simplicity and
efficiency become key advantages in an online system.

4.3 Optimization Module

Our optimization module is designed to enable collaboration be-
tween the proactive module and the reactive module, fostering
holistic decision-making. It leverages MPC to dynamically take in-
puts from both modules and consider all the practical constraints in
the cloud. As stated in Section 1, MPC shows promise for addressing
future workload bursts when the scaling speed is restricted.

In general, for each control action, MPC takes the latest system
state and solves a constrained optimization model over a sliding
window of future time intervals. It only applies the first solution
over the horizon and repeats the procedure the next time [17]. In
our context, we repeatedly optimize scaling decisions of future D
time intervals at the beginning of every time interval. Each time
interval d € {1,2,...,D} spans h minutes (e.g., 30 minutes), which
can be much longer than the resolution of workload predictions
(e.g., 1 minute). Given that each cluster is highly autonomous with
its exclusive LRAs and resources, we will focus on a single cluster
to build the optimization model. At time step ¢ (i.e., the beginning of
a time interval), the following model of D time intervals is solved:

D
max o (5)
u
d=1
d h
st |uf < -5, vd 6)
T
d .
x? =%+ Z u, vd 7)
j=1
d y
c = ma: — 1> Vd 8
je{d,d)i-l}f(xd) ®
4 <, vd (9)
Xmin < xd < xmax, vd (10)

Inputs: x° represents the initial number of nodes, capturing the
number of nodes deployed at time ¢. y? denotes the peak value
of the predicted workload in time interval d (i.e., y!*(d-Dht+dhy
taken from the proactive module. f(-) denotes the CPU utilization
estimator taken from the reactive module.

Variables: u? denotes the maximum change of the number of nodes
in time interval d, and u = [u!,...,uP] € RP is the vector. Only
u! is returned for deployment. x¢ denotes the number of nodes
provisioned during time interval d.

Objective: (5) is the objective that maximizes the CPU utilization
cd (without exceeding a desired level ¢*) over all D time intervals.
Constraints: (6)-(10) are explained as follows:
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e Constraint (6): The speed limitation of scaling, where h is
the time interval between two successive scaling actions,
while 7 and s represent the time cost and the concurrency
of single node addition/removal action, respectively;
Constraint (7): The state transition equation that defines
the relationship between x? and x?;

Constraint (8): The calculation of CPU utilization c¢, esti-
mated as the maximum value in two adjacent time intervals
{d,d + 1}. This is due to the fact that scaling decisions are
made in advance, where the resource for time interval d + 1
is provisioned ahead during d, leading to f(y?*1/x?));
Constraint (9): The upper bound c¢* for ;

Constraint (10): The upper and lower bounds for the num-

ber of nodes x9.

Reformulation: Due to uncertainty term € in f(-) as shown in
(3), constraint (9) is easily violated. We reformulate constraints (8)
and (9) by chance constraint (11) that guarantees satisfaction of
constraint (9) with probability a:

v

J
f(d

X

P{c* > %= (11)

max

)} >a, Vd
je{d.d+1}

Equivalent transformation: Consider the formulation of f(-) in
(3), constraint (11) can be converted to a deterministic equivalent
form under the theory of chance-constraint method [45]:

d_1

max (¢ (@) o +wp) Ty’

#
¢ =c
x4 je{dd+1)

vd  (12)

where 1 ~1(-) is the inverse of the cumulative distribution function
of a standard normal distribution. For example, y~!(a) ~ 1.28
when a = 0.9. Define m9 = MaX e (d.d+1} W Ya) o +wp) Ty,
which can be calculated before solving the optimization model, (12)
can be easily rearranged to an equivalent linear form:

ma

> .

¢ —wp =y~ a) - op
Constraint (12) also restricts ¢? from exceeding ¢*, hence, by omit-
ting constant terms, objective (5) is equivalent to

+wp+ Y (a) - op,

d

X vd

(13)

(14)

Solver: Now the optimization problem (5)-(10) under uncertainty
can be reformulated as a robust counterpart with a non-linear objec-
tive (14) and linear constraints (6), (7), (10), (13). This reformulated
problem can be solved using off-the-shelf solvers (e.g. IPOPT [49])
and the solution u! can be rounded for implementation.
Robustness: In summary, we utilize MPC and chance constraints
to ensure the satisfaction of practical constraints and bolster the
robustness of the solution.

5 NUMERICAL RESULTS

In this section, we provide a detailed exploration of the three re-
search questions in Section 1. We specifically investigate the per-
formance of the proposed OptScaler in the context of co-located
LRAs with diverse workload patterns. Question 1 is addressed in
Section 5.3, while Questions 2 and 3 are discussed in Section 5.4.



5.1 Workload Dataset

To facilitate a comparison of different autoscalers, we conduct exper-
iments using datasets from the public Azure Functions Trace [44]
and the internal Alipay Applets Trace. We select five workloads
from LRAs in the Azure Trace and three from the Alipay Trace.
Each dataset spans a duration of two weeks (Jul/15 to Jul/28) and
maintains a minute-level resolution. Each LRA is identified by the
last four bits of its hash ID. We categorize the workloads into three
sets, denoted as S4, Sg, and Sc, based on the complexity of their
workload patterns. Sets S4 and S¢ are derived from the Azure Trace,
while set Sp is derived from the Alipay Trace. LRAs within each set
will be co-located in a cluster, resulting in three clusters of interest.
Subsequently, experiments on workload prediction and autoscaling
will be carried out for these three clusters.

Figure 4 provides details about workloads in the three sets. The
left three subplots show the time series of workloads (measured
in QPS). Along with the legend, o denotes the standard deviation
of daily peaks of the normalized series. A higher o value signifies
a more pronounced variation in the daily peaks, posing a greater
challenge for prediction models. The right three subplots show
the regression statistics: daily coefficient of auto-correlation (i.e.,
Daily AR), weekly coefficient of auto-correlation (i.e., Weekly
AR), and spectral entropy (i.e., Entropy); the first two statistics
detect the strength of daily/weekly periodicity, and the spectral
entropy normalizes the overall complexity of the workloads [20].
We take the bar value of Entropy as 1.0 minus the original spectral
entropy, such that for all the three regression statistics, a lower
bar indicates a higher level of prediction difficulty. Clearly, the
complexity for S, is much lower than that of Sg and Sc.

In set S4, both workloads (4b3e and 8df4) exhibit steady fluctu-
ations of daily peaks with a low standard deviation (o < 0.1) and
demonstrate clear daily periodicity, with both daily and weekly
auto-correlation values exceeding 0.9. For set Sg, the workloads
display weak periodicity (e.g., d82f), elusive spikes (e.g., 86f3), and
volatile daily peaks, with the standard deviation reaching up to
0.25. In set S¢, three workloads (28ac, 7e75, and 98b1) show similar
trends. Specifically, they all experience dramatic workload increases
and unstable daily peaks, with a standard deviation of > 0.1. Addi-
tionally, two spikes of different magnitudes between 6 PM and 9 PM
each day further complicates accurate prediction and robust scaling,
especially for workload 28ac. In summary, the workload patterns in
the three sets effectively represent various scenarios of co-located
LRAs, each with distinct levels of complexity. These diverse pat-
terns present a significant challenge and effectively distinguish our
proposed autoscaling framework from others.

5.2 Experiment Settings

During offline simulations, we emulate the actual implementation
of OptScaler in a production cloud. The data from the initial 12 days
will be used as training data for the workload prediction model. In
the last 2 days (Jul/27 to Jul/28), OptScaler will be triggered every
half hour (i.e., h = 30) to control the CPU utilization to approach
the target ¢* = 0.5.

Additionally, we take into account the scaling limitations, deter-
mined by the time interval h, the time cost 7 of a single node addi-
tion/removal, and the concurrency of scaling s in (6). We set 7 = 5

4096

00

—— 4b3e (0=0.05)

—— 8df4 (0=0.06)

o
)

7

4b3e
8dfa

Invocations of Sa
o
@

Statistics of Sa

o
=

AR Weel

W/ Ju/i6  Jul/is  Jul20  Jul22 _ Jul/24 __Jul/26 _ Jul/28 Dail

—— 982d (0=0.10) —— 86f3 (g=0.25) —— d82f (0=0.20)

& s | o £ 982d
5400 20.8 =3 8663
g 8 ) ds2f
%200) §0.6
g |
= / ) | 'Y 1z
0 VAN ATt AT MV 04
W4 Jalic /18  Jul20  Jul2z  Jul24  Julj26 - Jul28 iy AT Weokly AR Entron
B0 ——38a6 (0=0.14) —— 7e75 (0=0.16) — 9gb1 (0=0.12) | V"
F100 0l = 28ac
- 0.8/} 2z €75
150 7 98b1

o
>

Statistics of Sc

Invocations of
)
S

Al

: A\
Jul/2i Jul/28 ily AR Weekly AR Entropy
Regression Statistics

A
Jul/18

o
=

!
Jul/24

Figure 4: Time series (left) and regression statistics (right) for
Azure Trace (S4, Sc) and Alipay Trace (Sg). The complexity
of prediction and scaling increases from S4 to Sg and Sc.

minutes and s = 4 as in a real system. Consequently, with h = 30,
a maximum of 24 nodes could be added or removed in each time
interval. Furthermore, we establish the upper bound X™%* = 400,
and the lower bound X™" = 80 for S4 and Sg, and X" = 20
for Sc, considering that the total workload often approaches zero
in the latter case. We set the parameter @ = 0.95 for the chance
constraint (11) for all optimization-based frameworks. As for OLR
(see Algorithm 1), we select the feedback strength n = 2e — 4 by
minimizing the cumulative loss on the training data.

5.3 Comparison of Workload Prediction Models

5.3.1 Prediction Models. To address Question 1, we compare our
workload prediction model with several traditional and state-of-
the-art time series prediction models, namely ARIMA [27], Aut-
oformer [56], DEPTS [13], and NBEATS [32]. ARIMA represents
a traditional time series prediction model in statistics. Due to the
workload pattern in Section 3.2, we adopt ARIMA with the exoge-
nous regressors of Fourier series. Autoformer is a neural network
model designed for long-term prediction based on auto-correlation
mechanism and a seq2seq structure. DEPTS and NBEATS are two
types of neural networks tailored for uni-variate time series predic-
tion, incorporating the neural expansion analysis method. In the
rolling window experiment, we train the ARIMA model every half
hour using the most recent 24-hour data, owing to its fast training
speed. As for the neural network-based models, training occurs at
midnight each day. Throughout the training process, data preceding
the training time is included in the training dataset, while the data
from the last two days is utilized for validation. All these neural
network-based models are trained with the 0.5-quantile loss.

5.3.2  Evaluation Metrics. We focus on the long-term prediction
performance, that is, predicting the workload in the following 360
minutes every A = 30 minutes. The metric, weighted absolute
percentage error (WAPE), is adopted to evaluate different models:

N t+8 _ At+S
1 z I - |
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Table 2: Comparison of five prediction models, testing on
WAPE for the Minute-level and Interval-peak accuracy.
Lower values are better, and the best are bolded.

Minute-level Interval-peak

Sa SB Sc Sa SB Sc
ARIMA 0.087 0.280 0.432 0.107 0.286 0.420
Autoformer 0.079 0.258 0.467 0.085 0.274 0.454
DEPTS 0.066 0.243 0.356 0.082 0.257 0.342
NBEATS 0.067 0.218 0.352 0.085 0.178 0.377
Our model 0.063 0.224 0.309 0.080 0.171 0.341

where n is the index of time series (LRAs in our experiments). ¢ is
the starting time of each rolling window, and § is the increment in
time, that is, (t,d) means the §-th step after the starting time t of
the rolling window. Q denotes the whole evaluation space.

We evaluate the prediction accuracy in two aspects: 1) The
Minute-level accuracy, that is, whether the model can accurately
predict the workload of each LRA in each minute, since all the
models are built on the data in minute-level resolution; 2) The
Interval-peak accuracy, that is, whether the model can correctly
capture the peak workload in the given interval used in MPC-based
optimization, i.e., 4/ € RN in constraint (8). This accuracy is critical
to the subsequent optimization.

5.3.3 Experimental Results for Question 1. Table 2 illustrates the su-
perior performance of OptScaler compared to four other prediction
models across LRAs in S4, Sp, and Sc, as measured by the Weighted
Absolute Percentage Error (WAPE) from two different perspectives.
Notably, all methods exhibit considerably better performance on
set Sy in comparison to Sg and Sc. This observation aligns with
the discussion in subsection 5.1, where it is evident that workloads
in S4 display relatively strong periodicity and maintain a steady
peak trend, whereas those in Sg and S¢ demonstrate diverse fluctu-
ations. Furthermore, our model consistently outperforms ARIMA
by a significant margin. This further attests to the effectiveness of
our Short-term Local Block, as both models extract the periodic
property using Fourier series. In terms of Minute-level accuracy,
our model outperforms the others in S4 and S¢ and demonstrates
the second best performance in Sg. Additionally, in the context of
Interval-peak accuracy, a critical aspect in our proposed autoscaling
framework, our model outshines all compared models.

To further highlight this superiority, we present Figure 5, which
illustrates the performance of our model in comparison to the
two most competitive neural network-based models (NBEATS and
DEPTS) presented in Table 2. Specifically, the Minute-level accu-
racy of three LRAs in set Sc is compared using their empirical
cumulative distribution functions (ECDF) of normalized absolute
error (ae_norm, i.e., the absolute error divided by the maximal
absolute error for each workload). As depicted in Figure 5, our
method achieves notably higher empirical cumulative distribution
on smaller ae_norm values. The ECDF curves of our method con-
sistently surpass the others across all LRAs, indicating the superior
performance of our method on complex workloads in set Sc.
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Figure 5: The empirical cumulative distribution function
(ECDF) of normalized absolute error (ae_norm) with respect
to Minute-level accuracy for three LRAs in set Sc. Both x-axis
and y-axis are in log scale.

In general, in our model, the Fourier series in long-term periodic
block could capture various workload patterns without the neces-
sity of long series input to the model, and the linear-complexity
attention mechanism in short-term local block learns the local
trend and fluctuation; the combination of these two blocks gives
our model an edge over neural network based models like NBEATS
and DEPTS in terms of efficiency and accuracy. Our model can also
handle multiple time series by one model with fewer parameters,
which is much more suitable for the scenario of co-located LRAs.

5.4 Comparison of Autoscaling Frameworks

To answer Questions 2 and 3 stated at the beginning of Section 5,
we conduct an ablation experiment to compare the performance
of OptScaler with prevalent autoscaling frameworks. Specifically,
we respond to Question 2 in Section 5.4.3 by comparing all four
frameworks, given the same input of the prediction results; then,
we address Question 3 in Section 5.4.4 by comparing OptScaler
with the best combination from the existing prediction models and
autoscaling frameworks.

5.4.1 Autoscaling Frameworks. We investigate four autoscaling
frameworks, i.e., reactive, proactive, hybrid, and collaborative:

e Autopilot [43] serves as the representative of reactive
autoscalers. Introduced by Google in 2020, it is considered
as an industrial benchmark in this context. Autopilot deter-
mines the optimal resource configuration by identifying the
best-matched historical time intervals to the current win-
dow. We implement Autopilot’s horizontal scaling based
on its publicly available paper [43];

Madu [26] exemplifies a typical proactive autoscaler, lever-
aging the capacity of both prediction and optimization. We
adapt Madu to our context, formulating the optimization
model as (5)-(10). As a pure proactive autoscaler, the CPU
utilization estimator will not be updated after initialization;
HAS [22] represents a hybrid autoscaler that adopts the
mainstream concept of independent proactive and reactive
modules. Without compromising on quality, we integrate
HAS into our context, where the reactive decision replaces
the proactive one when the observed CPU utilization ex-
ceeds a predefined bound. The current bound is set to be
0.9¢*. The reactive decision at current time ¢ is calculated
by u! = max{X™" — x!~1, min{(c!~1/c* - 1)x'"L, h-



s/7, X™aX _ xt=111 adjusting the resource to eliminate the
scaling error at t — 1. The min operation indicates ¢! < c*
if workload at ¢ does not increase, while the max operation
ensures the lower bound in (10) holds.

e OptScaler is our proposed collaborative framework.

Accordingly, we customize the following two parameters for the
above autoscaling frameworks:

e Sis a parameter for Autopilot that denotes the percentile
of the most recent samples of CPU utilization. A higher
value of S indicates a more conservative scaling preference.
Here we consider two different values for S, namely S €
{90%, 95%} for Autopilot;

D represents time horizon in the optimization model for
Madu, HAS, and OptScaler. In our context, we use a 30—
minute interval (i.e., h = 30) for each d. A value of D = 1
signifies a standard optimization model focusing on imme-
diate scaling needs, while D = 11 represents an MPC-based
optimization model that can anticipate future events within
the following 6-hour (as per constraint (8), we need to con-
sider one more time interval than D). Therefore, in the case
of D = 11, we will end our experiment at 6 PM on Jul/28.

5.4.2  Evaluation Metrics. As an end-to-end autoscaling framework,
our primary objective is to achieve a balance between the cost of
computing resources and the stringent SLOs in cloud service. With
this goal in mind, we have developed three evaluation metrics,
where lower metric values indicate better performance:

e Sur denotes the SLO violation rate, representing the percent-
age of minutes with SLO violation (i.e., ¢? > ¢*) during the
experiment period. Therefore, a high value of S, indicates
a prolonged duration of SLO failure;

Vsum denotes the accumulated magnitude of SLO violation,
calculated as the sum of max(cd — c*,0) for all the minutes
during the experiment period. It is important to note that
a high S, may be accompanied by a low Vgy,; therefore,
lower metric values signify desirable SLO satisfaction;

Raug denotes the cost of resources, calculated as the average
number of installed nodes x? during the experiment period;

5.4.3 Experimental Results for Question 2. The statistical results
are summarized in Table 3, and the metrics are explained in Sec-
tion 5.4.2. From the table, OptScaler excels in SLO satisfaction while
maintaining relatively low resource cost, particularly for complex
workloads (e.g., Sg and S¢). Further details are provided below:

e Under the quantile of S = 90%, Autopilot demonstrates an
unacceptable level of safety across all sets; with S = 95%,
it achieves an averaged performance in preventing SLO
violations across all experiment groups, but the resource
cost Rgyg is notably higher than in other experiment groups,
particularly in S4 and Sc, potentially limiting its applica-
bility under tight resource budgets. The high magnitude of
Vsum presents another issue for Autopilot to address;

Madu demonstrates high risks in terms of both SLO viola-
tion rate Sy and magnitude Vsyp,. This can be attributed
to the disparity between estimated CPU utilization and the
real system feedback. Without adjustment by a reactive
module, this gap will consistently undermine the reliability
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of final scaling decisions. This underscores the assertion
in [47] that a reactive scaling component should be a part
of every production-ready autoscaler, complementing an
unsatisfactory proactive counterpart;
OptScaler outperforms Autopilot in terms of both safety and
resource costs. When compared to the hybrid autoscaler
HAS with D = 11, OptScaler incurs a slightly higher re-
source cost Rgpg (1% ~ 12% more) to achieve a significantly
lower SLO violation rate Sy (53% ~ 75% less) and magni-
tude Vsum (56% ~ 82% less). This advantage is even more
pronounced when compared to Autopilot and Madu. It
demonstrates OptScaler’s superiority in SLO satisfaction,
particularly for challenging workload patterns such as in
sets Sg and S¢;
e The comparison between D = 1 and D = 11 reveals that
the multi-timestep optimization structure in MPC brings
a consistent improvement of the rate S, and magnitude
Vsum of SLO violation in both OptScaler and HAS.

We have further generated Figure 6 to present the experimental
details of CPU utilization for clusters linked with sets S, Sg, and
Sc. In this figure, we display the Ideal line for ¢*, along with two
Mean lines representing actual CPU utilization under different
parameter settings. The light Range area illustrates the a = 0.95
confidence interval of the actual CPU utilization. For improved
clarity, we only depict the Range area for the line demonstrating
better performance, as indicated in Table 3; specifically, we display
S = 95% for Autopilot and D = 11 for the three optimization-based
autoscalers. Any part of the line above the Ideal line signifies the
risk of SLO violations. From Figure 6, we observe four key insights:

o Autopilot struggles with significant fluctuations in CPU
utilization due to the absence of workload prediction. As
showcased for S¢ in Figure 4 and Figure 6, from 6 AM to
9 AM on Jul 27 (indicated as 27-06 to 27-09 on the x-axis),
Autopilot exhibits delayed responsiveness to the substan-
tial surge in workloads, potentially leading to severe SLO
violations. Using S = 95% only serves as a partial solution.
The underlying problem is that Autopilot only considers
a limited historical window in preparing resources for the
future. Consequently, when a more significant workload
spike occurs, the risk of violations could reoccur;

The pure proactive scaler Madu also experiences SLO vio-
lations due to the absence of a reactive module to rectify
scaling errors, leading to a wider range of SLO violations
than HAS and OptScaler, as evidenced in the period from 28-
06 to 28-12 for Sc in Figure 6. This presents an undesirable
outcome for cloud service providers. In contrast, the hy-
brid scaler HAS demonstrates less frequent SLO violations,
underscoring the effectiveness of including both proactive
and reactive modules in ensuring SLO compliance;
OptScaler outperforms HAS by maintaining a safer fluc-
tuation that significantly reduces both the duration and
magnitude of SLO violations, as also reflected in S, and
Vsum in Table 3. For example, for set Sc in Figure 4 and
Figure 6, during two workload spikes around 6 PM and 9
PM (27-18 and 27-21 on the x-axis), HAS experiences two
instances of SLO violations with CPU utilization reaching
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Table 3: Comparison on four types of autoscalers. Each autoscaler is tested with sets S4, Sg, and Sc. Three metrics are evaluated
under different parameter settings. Lower metric values are desired, and the best are bolded.

Sa? Sg? Sc?
Type Name Param A B ¢

Svr(%) Vsum Ravg Sur(%) Vsum Ravg Svr(%) Vsum Ral)g
Reactive Autopilot $=90% 6.1 1.87 1159 13.8 4585 193.0 9.6 34.52 132.6
S=95% 2.8 0.87 119.0 1.8 4.98 266.7 4.3 9.64 158.8

Proactive Madu D=1 13.7 8.87 99.0 5.6 13.20 2149 7.0 8.74 69.5
D=11 13.6 8.65 99.1 2.7 3.22 2525 6.5 834 700

Hybrid HAS D=1 1.6 0.73 105.1 5.3 13.96 223.0 3.6 3.36 81.3
D=11 1.5 0.58 1046 2.2 2.21 263.2 2.8 3.13 80.4

Collaborative OptScaler D=1 1.2 0.26 113.0 2.1 356 2263 1.1 0.63 8438
(proposed) D =11 0.7 0.25 1123 0.6 0.61 2657 0.7 0.55 90.5

2 Due to the randomness in sampling the CPU utilization feedback, all evaluation metrics are averaged over five repetitive runs and calculated in
minute-level resolution. S, denotes the SLO violation rate, Vs;,m denotes the accumulated magnitude of SLO violation, and Rgyy denotes the

resource cost.
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0.63, while OptScaler encounters a single violation with
less severe impact at 0.51;

OptScaler, HAS, and Madu exhibit similar overall trends, but
OptScaler consistently maintains CPU utilization at a much
safer level, particularly under D = 11. Interestingly, the
increase in the time horizon D from 1 to 11 in MPC-based
optimization results in less satisfactory CPU utilization for
HAS and Madu compared to OptScaler. This is ascribed
to their CPU estimator’s inability to adapt to the evolving

Figure 6: Experimental results of CPU utilization of four types of autoscalers. Each autoscaler (column) is tested with sets Sy
(top row), Sp (middle row), and Sc (bottom row) under two different parameter settings (as indicated by the bottom legends).

cloud environment characterized by less regular workload
patterns. This illustrates the significance of incorporating
a reactive module to align with MPC-based optimization,
as implemented in OptScaler.

In summary, Autopilot exhibits limitations in effectively man-
aging substantial workload fluctuations, owing to its hysteretic
nature. However, when considering the three autoscalers equipped
with a proactive module, OptScaler, as a collaborative autoscaler,
demonstrates the most resilient performance at a slightly higher
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resource cost, followed by HAS, the hybrid autoscaler, with Madu,
a pure proactive autoscaler, ranking at the bottom. This observa-
tion suggests that OptScaler effectively strikes a balance between
resource cost and the risk of SLO violations, particularly for the
co-located LRAs characterized by complex workload patterns.

5.4.4  Experimental Results for Question 3. We compare OptScaler
with the existing HAS framework (the second-best performer in Ta-
ble 3) using NBEATS (the second-best prediction model in Table 2).
We design the experiments in an ablative manner, i.e., we adopt
NBEATS to replace the workload prediction model in OptScaler
to illustrate the impact of different prediction models on the final
decision. The results are presented in Table 4.

Upon examining Table 4, a comparison between Exp.2 and Exp.1
reveals a relatively 27% ~ 60% improvement of S, by upgrad-
ing the autoscaling framework alone. Comparing Exp.3 to Exp.2
demonstrates a further improvement of 25% ~ 53% in Sy, along
with significant reductions in both Vsum and Rgyg, achieved by
advancing the prediction model from NBEATS to our model. Con-
sequently, when comparing OptScaler as a whole (Exp.3) to a best
hybrid framework (HAS with NBEATS in Exp.1), OptScaler incurs
4% ~ 15% more resource costs in order to achieve 36% ~ 81% fewer
SLO violations. This demonstrates the clear benefits of OptScaler for
LRAs with demanding SLOs. In essence, Table 4 serves to illustrate
that the robustness of OptScaler is derived from enhancements in
both the workload prediction model and the autoscaling framework.

5.4.5 Further discussions. The experimental results above provide
a broad response to Question 2 and 3. However, in practice, the
scenario may vary based on different scaling frequencies and un-
foreseen workloads. Therefore, in this subsection, we further enrich
our investigation by delving into the following specific situations.

Sensitivity analysis. In order to explore the impact of hyperpa-
rameters in OptScaler, we conducted sensitivity experiments on a
key parameter, 5, which represents the strength of feedback in the
reactive module (refer to Algorithm 1). We examined various values
of n, ranging from 5e — 3 to 0 in increments of order of magnitude.
When 1 = 0, it effectively simulates the closed state of the reactive
module (comparable to Madu). The results are presented in Figure 7,
where the left and right y-axes depict the crucial metrics of resource
cost Rgyg (shown as bars) and SLO violation rate Sy, (depicted as
lines), respectively. Lower values are favourable for both metrics.
We normalized each metric as a percentage of the corresponding
result with n = 2e — 4 (the default value of OptScaler), allowing for
a comparison of performance across different 5 values.

The findings portrayed in Figure 7 reveal a distinct trend wherein
Raug and Sy move inversely as 7 decreases from 5e — 3 to 0. Thus,
it becomes evident that # significantly influences the trade-off be-
tween the two evaluation metrics. Opting for a higher feedback
strength with n proves effective in suppressing SLO violations.
However, an overly aggressive reactive strategy with a large n also
leads to an over-provisioning of resources. Figure 7 suggests that
a relatively optimal range for 7 falls between 5e-4 to le-4 across
all sets. It is important to recognize that in real-world implementa-
tion, the selection of 1 should be fine-tuned according to the local
policies governing SLOs and resource budgets.
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Figure 7: Sensitivity experiments of feedback strength r in
OptScaler show a clear balance between resource cost Rgyg
(plotted as bars) and SLO violation rate S, (plotted as lines).
Metrics are evaluated under D = 11 and normalized with
respect to the results of 7 = 2e — 4, the lower values the better.

Unpredictable workload. To further evaluate the robustness of
OptScaler, we mock some totally unpredictable spikes by directly
increasing the workloads to 10 times of the original value based on
Sa, and test the response of OptScaler and its reactive competitor
Autopilot to that workload. Note that Autopilot’s ability to recog-
nize the unprecedented spike depends on a percentile parameter
S as mentioned in Section 5.4.1. A higher S makes it more sensi-
tive to unpredictable workload. Our results in Table 5 show that
when S = 95%, Autopilot tends to ignore the unprecedented spike,
especially when the duration of the spike is short (e.g. 30-minute).
In contrast, OptScaler recognizes the event and scales up the re-
sources accordingly, resulting in a lower SLO violation S;,; when S
continues to increase (e.g. 99%), both OptScaler and Autopilot can
quickly respond to the event; however, a higher S will lead to an
over-conservative Autopilot, and OptScaler leads to significantly
less resource cost Rgyg than Autopilot does when they achieve a
similar level of S, .

Scaling frequency. In practice, clusters may vary in scaling fre-
quency, hence we enrich our experiments by investigating autoscal-
ing frameworks under different intervals h. Here we test h = 10 for
10-minute interval, and h = 60 for 1-hour interval. We omit tables
for lack of space, and the results are summarized as follows: 1)
OptScaler achieves the best Sy, and Vs, under both A, followed by
HAS as the second-best, which aligns with that of h = 30; 2) Under
the same horizon D, OptScaler generally costs more resources in the
scenario of 1-hour interval than that of 10-minute, as it considers
a longer period of future workloads; 3) The evaluation metrics of
Autopilot shows no significant differences under different h, as it
has no proactive or optimization module, and h has very limited
impact on the evolving process of scaling metrics.

6 DEPLOYMENT

Before deployment, we tested OptScaler in a production cluster with
co-located LRAs to verify its effectiveness in the online environment.
We refrained from comparing OptScaler with other frameworks due
to concerns about their SLO violations exceeding 2%, as indicated
by Sy in Table 3. We conducted our experiment from 8 AM to 12



Table 4: Comparison between OptScaler and the existing hybrid framework of combining NBEATS and HAS. Ablative studies
are conducted on all sets under D = 11. Metrics with lower values are desired, and the best are bolded.

Autoscaling Prediction Sa Sp Sc
D Framework Model
Sor (%) Vsum Ravg Sor(%)  Vsum Ravg Sor (%) Vsum Ravg
Exp.1 HAS NBEATS 1.1 0.60 1059 2.0 3.04 254.3 3.7 8.75 78.8
Exp.2 OptSCaler NBEATS 0.8 0.40 1145 0.8 0.76 277.6 15 5.32 133.8
Exp.3 OptScaler Our model 0.7 0.25 1123 0.6 0.61 2657 0.7 0.55 90.5

Table 5: Comparison on the response of OptScaler and Au-
topilot to unpredictable workloads on set S4. Lower metric
values are desired, and the best are bolded.

30-minute spike  3-hour spike

Name Param
Svr(%) Ravg Svr(%) Raug
Autopilot §$=95% 3.7 120.9 12.7 567.0
5$5=99% 23 569.6 12.6 609.7
OptScaler D=1 2.4 306.4 12.6 316.7
D=11 22 308.3 12.5 317.6
200 0.50
Nodes —— CPU Util
180
3 0.45 .
S g
Z 160 g
5] =
E 140 ’ 405
g B
z 0.35°
120
09:00 12:00 15:00 18:00 21:00 00:00

Figure 8: Online experimental results of OptScaler on the
number of installed nodes (bars with left y-axis) and CPU uti-
lization (red line with right y-axis). OptScaler demonstrates
its ability to regulate CPU utilization.

PM. From the result shown in Figure 8, OptScaler achieved a steady
CPU utilization (between 0.4 and 0.48) during the whole daytime.
It started to decrease after 10 PM as the total workload dropped to
half of that in the daytime. Besides, the previous resource cost was
fixed at 190 to ensure safety, and the cost Rgyg by OptScaler was
152.9, saving 19.5% of cloud resources.

In addition, OptScaler benefits users for its interpretability. It
allows users to trace back to specific conditions and parameters in
the model to understand why a scaling decision is made. When an
unexpected scaling occurs, this model-based system can facilitate
the debugging and make further improvement. Hence, users are
likely to trust OptScaler more than other black-box scaling methods.

OptScaler has been successfully deployed as an integrated plat-

form of prediction and decision-making at Alipay, supporting the
autoscaling of more than 100 online LRAs. To access the platform

of OptScaler, a cluster typically undergoes the following steps: 1)
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The user configures necessary parameters for the cluster and the
algorithm; 2) The cloud system monitors and collects the workloads
and metrics of the cluster, and the data will be saved to a database; 3)
OptScaler loads historical workload data for the proactive module
to train model offline at a regular pace, and outputs the prediction
results at real-time; 4) OptScaler loads the latest system feedback
from the database to fine-tune the reactive module; 5) The opti-
mization module makes a final scaling decision, which is returned
to the cloud cluster for implementation.

7 CONCLUSION

We present OptScaler as a pioneering collaborative autoscaling
framework, designed as an upgrade to the widely used hybrid frame-
work. OptScaler stands out as the first framework to address the
collaboration of proactive and reactive methods through sophisti-
cated optimization techniques, such as Model Predictive Control
(MPC). Unlike approaches that employ proactive and reactive meth-
ods independently, which can lead to incompatibilities, OptScaler
orchestrates the strengths of both proactive and reactive modules to
effectively manage workload fluctuations and system uncertainty,
significantly enhancing the robustness of cloud clusters. OptScaler
surpasses other prevalent autoscaling frameworks thanks to its
superior prediction model and collaborative mechanism. Offline
experiments demonstrate that OptScaler effectively mitigates the
risk of SLO violations by a minimum of 36% in comparison to other
frameworks. In online experiments, OptScaler maintains desirable
CPU utilization while achieving substantial savings of up to 19.5%
in cloud resources. It is noteworthy that OptScaler has already been
deployed online to support the autoscaling of LRAs at Alipay, a
leading global payment platform.
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