
Towards Millions of Database Transmission Services in the Cloud
Hua Fan∗
Dachao Fu∗
Alibaba Group

Hangzhou, China

Xu Wang
Jiachi Zhang
Chaoji Zuo†
Alibaba Group

Hangzhou, China
{guanming.fh,qianzhen.fdc,wx105683,zhangjiachi.zjc,zuochaoji.zcj,wuzhengyi.wzy}
{yanmen.zm,yuankang.yk,xizi.nxz,guocheng.hgc,zwc231487,lifeifei,jingren.zhou}

Zhengyi Wu
Miao Zhang
Kang Yuan
Alibaba Group

Hangzhou, China

@alibaba-inc.com

Xizi Ni
Guocheng Huo
Wenchao Zhou
Alibaba Group

Hangzhou, China

Feifei Li
Jingren Zhou
Alibaba Group

Hangzhou, China

ABSTRACT
Alibaba relies on its robust database infrastructure to facilitate real-
time data access and ensure business continuity despite regional
disruptions. To address these operational imperatives, Alibaba de-
veloped the Data Transmission Service (DTS), which has become
critical for internal applications and public cloud services alike.
This paper presents a comprehensive study of the architectural
innovations, resource scheduling mechanisms, and performance
optimization strategies that have been implemented within DTS to
tackle the significant challenges of cross-network, heterogeneous
data transmission in a cost-effective manner. We explore the novel
Any-to-Any (A2A) architecture, which simplifies the complexity
of data paths between diverse databases and mitigates network
connectivity issues, thereby significantly reducing development
overhead. Additionally, we examine a dynamic network bandwidth
scheduling algorithm that effectively maintains Service-Level Ob-
jectives (SLOs), complemented by a serverless mechanism that
ensures efficient resource utilization. Furthermore, DTS utilizes
advanced strategies such as transaction dependency tracking, hot
data consolidation, and batching to enhance synchronization per-
formance and efficiency. DTS has distilled the lessons learned from
years of serving our customer base and currently supports nearly
1 million public cloud instances annually. Our evaluation results
show that DTS can effectively and efficiently handle real-time data
transmission in both experimental and production environments.

PVLDB Reference Format:
Hua Fan, Dachao Fu, Xu Wang, Jiachi Zhang, Chaoji Zuo, Zhengyi Wu,
Miao Zhang, Kang Yuan, Xizi Ni, Guocheng Huo, Wenchao Zhou, Feifei Li,
and Jingren Zhou. Towards Millions of Database Transmission Services in
the Cloud. PVLDB, 17(12): 4001 - 4013, 2024.
doi:10.14778/3685800.3685822

1 INTRODUCTION
Alibaba operates a vast digital commerce service, anchored by its
resilient database services, which store essential business data. This
requires two key functions: First is real-time access to database
∗Both authors contributed equally to this research.
†Also a student at Rutgers University. Work done while at an internship at Alibaba.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685822

information, critical for applications like advertising and search,
prompting the need for services that can parse real-time database
logs to satisfy the many business units demanding instant data
from primary databases [25, 30, 42]. Secondly, business continuity
against regional disruptions — such as power outages or natural dis-
asters — is pivotal, demanding real-time database synchronization
to secondary regions for swift operation transfer [34]. These neces-
sities drove Alibaba to create its own Data Transmission Service
(DTS) [20] in 2011, focusing on synchronization between databases
(e.g., MySQL to MySQL).

As Alibaba Cloud Computing expanded, it began offering a vari-
ety of database services to the public cloud, triggering a need for
migrating more than 24 different types of databases from local data
centers or other cloud providers. This diversity led to a surplus of
potential data transmission pathways, heavily complicating the pro-
cess and increasing the development workload. Network connectiv-
ity issues further exacerbated this complexity, potentially requiring
specialized programs to access private intranets, culminating in a
significant challenge: developing numerous cross-network,
heterogeneous data transmission services cost-effectively.

Managing a high volume of DTS instances poses the challenge
of resource scheduling. This complexity arises from the need to
balance and allocate network and computational resources effec-
tively such as bandwidth, CPU, and memory among a multitude
of services. Insufficient resource allocation can lead to violations
of Service Level Objectives (SLOs), adversely affecting customer
business operations. As the demand for real-time access to data
grows, ensuring efficient resource scheduling becomes critical for
maintaining service quality and reliability in DTS operations.

The third challenge that emerges is related to synchroniza-
tion performance issues. This concerns the need for near-zero
delay in real-time data synchronization, which is highly sought
after by our customers. However, synchronization latency can be
significantly affected by the performance of the target database,
particularly under high-frequency updates. Factors contributing
to this delay include lower concurrency in database replication
compared to the source [30], performance discrepancies in updates
between heterogeneous databases [18], and inefficiencies in writing
to the target database.

To conquer these challenges while meeting customer and busi-
ness needs, DTS was architected with several key design consid-
erations. In this paper, we outline the architecture aimed at reduc-
ing development complexity, resource scheduling mechanisms for
enhancing user experience and efficiency, and optimizations for
performance of update operations. The specifics are as follows.

4001

https://doi.org/10.14778/3685800.3685822
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685822

• DTS employs an Any-to-Any (A2A) architecture, which is a
strategic design choice that allows for universal compatibility
and flexibility in data transmission. This A2A approach enables
DTS to interconnect any source database with any target data-
base, transforming and translating data formats as needed. By
adopting this architecture, DTS can reduce the number of poten-
tial data transmission pathways from a factorial of M source-to-N
target links to a M+N configuration. On each link, DTS encap-
sulates network connectivity issues into predefined scenarios
within the DTS framework. Users can thus select their scenario
without the need for additional network programming to achieve
connectivity.

• Using the optimization-based scheduling algorithm for network
flow, DTS can intelligentlymanage and allocate bandwidth across
different data transmission links. This algorithm takes into ac-
count the current network conditions, transmission priorities,
and the overall demand on the system to dynamically adjust the
flow of data. By doing so, it minimizes the risk of SLO viola-
tions and ensures fair distribution of network resources among
all active transmissions. Moreover, DTS serverless dynamically
alters resource allocation for each service according to the cur-
rent workload and performance metrics. This adaptive resource
management ensures that computational resources are allocated
efficiently in real-time.

• DTS employs a series of strategies that collectively enhance
performance and efficiency. These strategies include the opti-
mization of transaction execution by tracking dependencies to
maximize concurrency, the consolidation of frequently accessed
data (hot data) to reduce the volume of writes, and the use of
batching techniques to enhance the transfer and processing of
data. These enhancements are particularly crucial in real-time
synchronization scenarios, where delays can have significant
downstream impacts on business operations.

In summary, this paper makes the following contributions:
(1) The adoption of an A2A architecture, when paired with prede-

fined network connectivity scenarios, effectively simplifies the
development complexity associated with DTS.

(2) Our demonstration highlights the effectiveness of the DTS’s
optimization-based scheduling algorithm in managing network
flow, alongside its dynamic resource allocation mechanism that
enables real-time adaptation to fluctuating workloads.

(3) DTS enhances performance and efficiency through an approach
that encompasses tracking transaction dependencies, consoli-
dating hot data, and implementing batching techniques, while
upholding user-defined consistency standards.

(4) We showcase the real-world deployment of DTS, which sup-
ports nearly onemillion public cloud instances annually, thereby
affirming its practicality and scalability in an industrial setting.
The remainder of this paper is structured as follows: Section 2

offers an overview of data transmission, detailing the complexi-
ties and challenges involved in managing a vast number of DTS
instances. In Section 3, we delve into the architectural design, in-
troducing the A2A architecture, and the mechanisms it utilizes for
establishing network connectivity. Section 4 explores the resource
scheduling solutions including the bandwidth allocation algorithm
and the DTS serverless mechanism, while Section 5 delves into the

MongoDB

AnalyticD
B

ClickHouse
DataHub

Elastic
SearchKafka

MaxCompute
MySQL

PolarDB

PostgreSQL
SelectD

B

Tablestore
OracleRedis

SQLServer
Lindorm

Target DB Type

MongoDB

MySQL

Oracle

PolarDB

PostgreSQL

Redis

SQLServer

So
ur

ce
 D

B
Ty

pe

Figure 1: Diversity of Databases in DTS Instances within a
Region (Circle Sizes Represent Traffic Volume)

optimization strategies for efficient data writing to target databases.
Lastly, Section 6 evaluates DTS’s performance improvements for
individual instances and the collective benefits within a datacenter.

2 BACKGROUND AND MOTIVATION
In this section, we introduce background knowledge of data trans-
mission and three major challenges as motivations of this paper.

2.1 Data Transmission
In the domain of database research, a typical data transmission
scenario entails data replication of two different databases, namely
source database and target database. Based on the transmission
medium, replication can be categorized into two types: physical
replication, which involves the direct duplication of raw database
files, and logical replication, which replays Data Manipulation Lan-
guage (DML) statements on the target database. Physical replication
can be readily implemented utilizing inherent features provided by
database management systems, such as MySQL’s Multi-threaded
Replication mechanism [12]. However, its application is constrained
due to its requirement for identical source and target database types.
Therefore, data transmission services, such as AWS Data Migration
Service (DMS) [2], Oracle’s GoldenGate [13], and Fivetran [8], fa-
vor logical replication because they accommodate heterogeneous
database types.

The heterogeneity of databases also compels data transmission
providers to implement logical replication outside of database en-
gines. Taking AWS DMS as an example, a transmission task consists
of a source endpoint that fetches data from the source database
and a target endpoint that is responsible for writing to the target
database. Data transmission tasks are typically categorized, based
on the fetched data, into full transmission tasks that transfer entire
tables at once and Changed Data Capture (CDC) transmission tasks
that replay DML statements from write-ahead logs (WALs) in real-
time [32]. Despite being a mature field, the growing scale of data
transmission continues to bring forth novel challenges.

2.2 Challenges
In this section, we introduce three major challenges that emerge as a
result of the escalating scale of data transmission. These challenges
are examined along three dimensions of scale: database and network
diversity, task quantity, and transmission velocity.

4002

0 1 2 3 4 5 6 7 8 9 10
Time (hour)

(a)

0.0

0.5

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

CDC
Full
Total
Bandwidth Limit

0 1 2 3 4 5 6 7 8 9 10
Time (hour)

(b)

0.25

0.50

0.75

1.00

No
rm

al
ize

d
la

te
nc

y

P99

Figure 2: Sum of MBps of all DTS tasks (a) and P99 latency
(b) of all CDC transmission tasks in a region.

2.2.1 Databases and Network Diversity. First, the source and target
databases may encompass a wide variety of database types. As
reported by DB-Engines [6], as of March 2024, there have been hun-
dreds of cataloged database systems. Furthermore, Alibaba Cloud
offers a suite of standard cloud services encompassing 24 distinct
database types [1]. Various databases differ significantly in terms of
their connection protocols, syntax conventions, and underlying data
models, such as relational, key-value (KV), or document-oriented.
Therefore, a universal data transmission tool does not exist.

Figure 1 illustrates the distribution of traffic across different
pairings of source and target database types in a region of DTS. The
diameter of each circle corresponds to the average data throughput
observed over a defined period. The complexity of development
scales to 𝑂 (𝑁 2), where 𝑁 represents the total number of database
types.

Second, the source and target databases may be situated within
heterogeneous network environments, which leads to a lack of
connectivity. In Alibaba Cloud, users typically create their cloud
databases within a Virtual Private Cloud (VPC) [24], which is de-
signed to restrict external access. Meanwhile, some users create
their databases within their data centers and private networks, or
from other cloud providers. Therefore, it is critical for us to estab-
lish connections between the isolated network segments, while
concurrently mitigating the risk of exposing sensitive data.

2.2.2 Quantity of Transmission Tasks. The escalating quantity of
transmission tasks that share resources in the cloud calls for ef-
ficient utilization of bandwidth, CPU and memory. On the one
hand, the escalating bandwidth demands associated with large full
transmission tasks frequently result in increasing latency, which
can occasionally violate Service Level Objectives (SLOs). For in-
stance, Figure 2 shows the total throughput of all DTS instances
(a), and the corresponding the 99-𝑡ℎ percentile (P99) latency of all
CDC transmission tasks (b). The blue area represents full tasks and
the orange area represents CDC tasks. Observations indicate that:
(1) a relatively strong correlation exists between latency and total
throughput, and (2) there are intervals throughout the day when
total bandwidth usage surpasses the designated safe limit (indicated
by the dashed line). Therefore, we are looking for a fair bandwidth
allocation algorithm that minimizes SLO violation and latency.

On the other hand, the workloads associated with CDC transmis-
sion tasks may significantly vary, which requires precise estimation
of CPU and memory resources [39, 46]. Overestimation of resource

requirements results in low resource utilization, whereas underesti-
mation may lead to violations of SLOs. Therefore, our goal has been
to develop a serverless architecture, that ensures highly efficient
resource utilization and minimal SLO violations.

2.2.3 Transmission Velocity. Thirdly, for many mission-critical cus-
tomers, high throughput is an essential requirement, characterized
by the volume of transactions processed per second when writing
to the target databases. However, in the implementation of tradi-
tional serial transaction processing methods, the transmission tasks
within DTS emerge as the bottleneck, while the target database
still has unused resources [28, 30, 42]. Therefore, we have been
seeking for more efficient parallel data transmission mechanisms.
The parallelized mechanism should not only enhance throughput
but also maintain a defined level of data consistency.

3 SYSTEM
We detail the key components that make up the DTS architecture,
discuss mechanisms to resolve network connectivity issues under
various scenarios, and describe the Any-to-Any (A2A) model that
effectively transforms data into a General Internal Representation
(GIR) for seamless data interaction between different types of data-
base systems.

3.1 Architecture
The architecture of DTS is composed of several integral components,
and Figure 3 provides a detailed overview of the DTS architecture.

S o ur c e D at a b a s e T ar g et D at a b a s e

S o ur c e Pl u gi n s

M y S Q L, P o st gr e S Q L, P ol ar D B …

F ull S o ur c e S c h e m a S o ur c e

C D C S o ur c e

S c h e m a M a n a g er

Tr a n s a cti o n S c h e d ul er

Si n k Pl u gi n s

M y S Q L, P o st gr e S Q L, P ol ar D B …

S o u r c e

Q u eri er

S eri ali z er

E x e c ut or

C o n v ert or

Si n k

C o ntr ol Pl a n e

R at e C o nt r ol

T a bl e s

L o g s

D e p e n d e n c y Tr a c k er

P ar all el E x e c ut or

P u b -S u b

T u n n el

L o c al Di s k N A S O S S

St or a g e

A 2 A M o d el

M o nit or M a st er Billi n g N et w or k C o nt r oll er C e nt er

S er v erl e s s C o nt r oll er C e nt er

S o ur c e D at a b a s e T ar g et D at a b a s eT a bl e s

L o g s

S o ur c e Pl u gi n s

M y S Q L, P ost gr e S Q L, P ol ar D B …

Si n k Pl u gi n s

M y S Q L, P ost gr e S Q L, P ol ar D B …

F ull S o ur c e S c h e m a S o ur c e

C D C S o ur c e

S c h e m a M a n a g er

E xtr act or Q u eri er

C o n v ert or S eri aliz e r

R at e C o ntr ol

Tr a n s a cti o n S c h e d ul er

D e p e n d e n c y Tr a c k er

P ar all el E x e c ut or

P u b -S u b

St or a g e

 L o c al Dis k N A S O S S

M o nit or C o or di n at or Billi n g N et w or k C o ntr oll er C e nt er

S er v erl e s s C o ntr oll er C e nt er

S o ur c e Si n k

T u n n el

C o ntr ol Pl a n e

A 2 A M o d el

Figure 3: DTS architecture.

3.1.1 Source. The extraction component, referred to as the Source,
is tasked with capturing both the pre-existing dataset and any
subsequent modifications within the source database. It diligently

4003

surveils the database log files for any Data Manipulation Language
(DML) activities to ensure that modifications are extracted with
minimal impact on the source database’s operational efficiency.
The modules SchemaSource and FullSource equip the Source with
the capability to accurately retrieve the existing schema and the
complete dataset of the source database, respectively.

The Extractor retrieves all database modification events from
the logs. These events encompass but are not limited to, Data Def-
inition Language (DDL) operations such as creation, alteration,
or deletion of table structures, and DML operations like INSERT,
UPDATE, DELETE, etc. The acquisition of this event information
can be achieved through a variety of methods. In our system, the
DB Source Plugin (detailed in §3.3) is utilized to obtain the SQL or
SQL-like events. For databases that do not use DML operations,
we employ alternative mechanisms to generate CDC. For instance,
Redis utilizes the PSYNC command to achieve this.

In the majority of cases, the sequence of the event (or log entry)
stream is consistent with the transaction commit order to ensure
the persistence and consistency of data. Transaction logs, such as
MySQL’s binlog or PostgreSQL’sWAL logs, are typically recorded in
the actual sequence of transaction occurrences. However, in certain
scenarios, the recorded order of logs may diverge from the actual
transaction commit sequence, particularly in the case of distributed
database systems or those utilizing Multiversion Concurrency Con-
trol (MVCC). The Serializer component reorders events according
to their transaction sequence and delineates transaction boundaries
within the event stream.

The Converter module transforms the event stream into an in-
ternal representation format known as Records (§3.3). Yet, when
it comes to the serialization of Out-of-Row Storage fields within
Records, it’s imperative to employ the Querier module to trans-
pose them with their corresponding field values. The Out-of-Row
Storage mechanisms in databases, such as TOAST (The Oversized-
Attribute Storage Technique) in PostgreSQL, LOB (Large Objects)
storage in Oracle, predominantly manage the storage of large fields,
such as text or Binary Large Objects (BLOBs), which may be too
voluminous for direct storage within regular data rows.

3.1.2 Tunnel. After data has been successfully extracted, it must
be reliably transmitted over the transmission layer, known in the
DTS as the Tunnel.

Remarkably distinct from other transfer mechanisms, DTS has
been purposefully engineered with a subscription-based interface,
complemented by scalable storage for data persistence. This inter-
face leverages the publish-subscribe (Pub-Sub) pattern, enabling
multiple services or applications to subscribe to specific events or
data changes, thus receiving notifications upon their occurrence.

DTS espouses the persistence of data within the Pub-Sub Tunnel
for several critical reasons: (1) decoupling from the source data-
base: the database logs can be pruned after a brief retention period,
post-successful data ingestion into the tunnel. (2) simplified fault
tolerance and scaling logic: with the state preserved within the
tunnel, both Source and Sink components operate statelessly, sim-
plifying the system’s failover design and scale-out mechanisms. (3)
deferred processing and message scheduling: some applications
necessitate delayed message processing or scheduled sinks.

Consequently, the tunnel requires a scalable storage device. To
address this, a three-tier hierarchical storage architecture encom-
passing local disks, NAS, and OSS (object storage in Alibaba Cloud)
is deployed in DTS. This design thoughtfully balances storage la-
tency for small data sets, curtails expenses, and meets the needs for
scalable storage capacity.

The pub-sub system ensures at-least-once delivery semantics,
and the Sink plugin will skip over duplicated records. By default,
the tunnel retains data for 7 days before it is deleted. It is important
to note that each source database is paired with an independent
tunnel instance. This setup is highly elastic, given that instances can
be created on-demand using cloud-based resources. Additionally,
in the event of tunnel failures, all data can be reconstructed from
the source database, ensuring strong resilience to failure.

3.1.3 Sink. Upon reaching the target system, the Sink component
takes over. It is responsible for applying the data changes to the
target database. This module must handle conflicts and reconcile
data while adhering to the target database’s schema and constraints.
It should also be optimized for batch processing to minimize the
latency and maximize throughput.

In the event of conflicts, if a batch transaction fails, the Sink
will automatically revert to processing updates on a non-batch ba-
sis. Our conflict handling strategies are fully configurable. When
conflicts occur, we allow users to choose among IGNORE, INTER-
RUPT and OVERWRITE options to handle the conflicts [21]. DTS
employs best practices for logical replication. For instance, to ad-
dress conflicts arising from retries, it executes update operations by
combining delete and replace actions, replacing values as absolute
rather than relying on statement replay. This approach ensures con-
sistency. Furthermore, DTS defines various error codes along with
corresponding retry strategies (e.g., resubmit, reconnect). Should
failures persist, the process will ultimately escalate to require man-
ual intervention, ensuring resilience and reliability in data handling.

The Transaction Scheduler module within the Sink leverages so-
phisticated conflict resolution techniques to bolster concurrent data
processing, thereby enhancing the overall throughput. Although
both the Source and Sink have transaction reordering modules —
the transaction serializer and transaction scheduler, respectively —
these two modules should not coexist on either the Source or the
Sink. A Source can be linked tomultiple Sinks; for example, anOLTP
database can synchronize with both OLTP and OLAP databases. If
the serializer function, which reorders transactions to follow the
commit order, is placed on the Sink side, it will be executed multi-
ple times. Furthermore, the outcomes of the transaction scheduler
depend on runtime conditions and configurations, as OLTP and
OLAP workloads might require different settings. Incorporating
such specific requirements on the Source side would therefore be
inappropriate. The mechanisms deployed within the Transaction
Scheduler to enhance the performance of the Sink component are
elaborated in §5.

Given that source data and the target database may often possess
divergent data schemes, the Sink module may entail executing pre-
cise data transformations and mappings. This alignment guarantees
that data is accurately conformed to the target schema. This crucial
functionality is also facilitated by the database plugin component
as detailed in the A2A (§3.3).

4004

In addition, the DTS’s Rate Control module, embedded within the
Sink, enables each DTS link to adhere to precise line rates governed
by the control plane, thus regulating the Sink’s reading speed from
the Tunnel.

3.1.4 Control Plane. The Control Plane plays a pivotal role in
orchestrating the data transmission services, encompassing the
initialization, scheduling, monitoring, billing, and termination of
data migration or synchronization tasks.

TheMonitor module vigilantly tracks the health and performance
of the DTS instance, providing timely alerts and detailed logs for
effective error resolution. The Coordinator module oversees the
entire lifecycle of each DTS job, ensuring smooth execution and
transitions between different stages. The SCC (Serverless Controller
Center) module is responsible for managing the control flow con-
cerning serverless operations, which will be expounded upon in
the Section 4.2. The Network Control Center module executing the
network allocation algorithm (§4.1).

3.2 Network Connectivity
In practice, the source and target databases, as well as DTS in-
stances are often isolated within diverse network environments.
For instance, source and target databases might be located within
Alibaba’s Virtual Private Cloud (VPC) [24], VPCs from other cloud
providers, classic networks [19], and Internet Data Center (IDC).
And DTS instances are typically deployed within a designated VPC,
enabling us to enhance resource utilization through condensed
scheduling practices. Meanwhile, customers have varying expecta-
tions regarding costs and data privacy. As a result, we have devel-
oped and offer a variety of bridging mechanisms to interconnect
these network environments, each with tiered costs and levels of
data privacy to meet diverse customer needs.

In the remainder of this section, we introduce the bridging mech-
anisms implemented in six representative scenarios. To present,
Figure 4 depicts the network systems with the components, and
network connections represented by directed arrows to indicate
their initiation points.

S1: VPC to VPC. Figure 4 (a) illustrates the most common sce-
nario in Alibaba Cloud, which involves transferring data from one
VPC to another within the same region. In such cases, once autho-
rized by the user, the DTS Source and Sink respectively establish
network connections to the source and target database through
VPC NAT gateways [17] (pink arrows).

S2: Classic network to VPC. Figure 4 (b) illustrates another
common scenario, where the source database is hosted within
classic networks. To access the source database, we deploy a clus-
ter within the classic network to host DTS instances. Users can
grant network access (yellow arrow) by reconfiguring their security
groups accordingly.

S3: Cross region. Figure 4 (c) illustrates a scenario where the
source and target databases are hosted in different geographic re-
gions. In such cases, we leverage the Cloud Enterprise Network
(CEN) service [4] (blue arrow) to facilitate high-speed transmission
across regions. The DTS Source and Tunnel are typically co-located
since they can be shared by tasks that involves transferring data to
different regions. However, once the CEN becomes the bottleneck
rather than the target database, we will co-locate Sink with Source

and Tunnel. In this way, cross-region bandwidth consumption can
be minimized, benefiting from the optimizations of Sink (see § 5).

S4: IDC/other cloud VPC to Alibaba Cloud. Figure 4 (d) illus-
trates a crucial scenario in which users aim to migrate data from
their on-premises data centers (IDCs) or other cloud providers to
Alibaba Cloud. Users have the option to set up an Express Con-
nect [7] (green arrow) by laying a physical network cable from
their sources to Alibaba Cloud’s nearest access point. Alibaba Cloud
offers a global network of access points [11] to support such con-
nections, enabling direct, reliable, and high-bandwidth connectivity.
In practice, the DTS access the Express Connect via a virtual switch
(vSwitch) [16] within another Alibaba Cloud VPC, ensuring the
security.

S5: Public Internet to Alibaba Cloud. In the scenario similar
to S4, Figure 4 (e) illustrates a more cost-efficient approach where
users make their databases accessible over the public network. This
allows DTS Source to access the source database through public
Internet connections (purple arrow). Despite the potential cost
savings, this method is generally discouraged due to the increased
risks to data security that are inherent with exposing sensitive data
to the public Internet.

S6: Database gateway (DG). To reduce security risks associated
with exposing databases to the public network and the high costs of
Express Connect, Figure 4 (f) illustrates a method utilizing DG [5].
Users should deploy a DG agent in their private network. Concur-
rently, a DG server is deployed within an Alibaba Cloud VPC. The
DG agent creates an encrypted connection (red arrow) to the DB
server, while also accessing the source database over the private
network. This approach enhances the security of data transmission,
as it avoids exposing the database directly to the public network
and ensures that data is encrypted during transit between the user’s
private network and Alibaba Cloud.

3.3 A2A Model
The A2A (Any-to-Any) Model transforms modification events from
databases into a General Internal Representation (GIR), an inter-
mediate format that is independent of any specific database or
data format. This representation facilitates easier exchange of data
across diverse database systems and applications, enhancing data
portability and system interoperability.

The A2A Model enables the development of DTS to be modular,
utilizing a framework and plugins that can be developed indepen-
dently. The DTS framework focuses on the consistent handling of
GIR, while database developers only need to concentrate on the
creation and testing of plugins for their specific databases. Based on
our real-world production experience, this development model has
significantly reduced the time required to support new database
types, from three weeks to just one week.

3.3.1 Compatibility. Designing a GIR that can accommodate the
logical logs of various database systems demands a thorough and
inclusive approach. It involves finding a common ground that en-
capsulates the shared characteristics while respecting the unique
differences of each database system. In the context of Any2Any,
data is abstracted into individual records, where each record is com-
posed of a Schema, Operation, BeforeImage, and AfterImage. The

4005

R e gi o n

S o ur c e V P C T a r g e t V P C

S o ur c e
D B

T a r g e t
D B

D T S V P C

S o ur c e T u n n el Si n k

R e gi o n

S o ur c e V P C

S o ur c e
D B

D T S V P C

S o ur c e T u n n el

R e gi o n

T a r g e t V P C

T a r g e t
D B

D T S V P C

Si n k

R e gi o n

T a r g e t V P C

S o ur c e
D B

T a r g e t
D B

Cl a s si c N et w or k

S o ur c e T u n n el Si n k

R e gi o n

Ali b a b a
Cl o u d
V P C

T a r g e t V P C

T a r g e t
D B

D T S V P C

S o ur c e T u n n el Si n k

I D C n et w or k s / Ot h er cl o u d V P C

S o ur c e
D B

R e gi o n

T a r g e t V P C

T a r g e t
D B

D T S V P C

S o ur c e T u n n el Si n k

P u bli c N et w or k

S o ur c e
D B

R e gi o n

Ali b a b a
Cl o u d
V P C

T a r g e t V P C

T a r g e t
D B

D T S V P C

S o ur c e T u n n el Si n k

I D C n et w or k s / Ot h er cl o u d V P C

S o ur c e
D B

C o n n e cti o n wit hi n V P C

V P C N A T

C o n n e cti o n wit hi n cl a s si c
n et w or k

C E N

P h y si c al e x pr e s s c o n n e ct

P u bli c n et w or k c o n n e cti o n

E n cr y pt e d c o n n e cti o n

(a) (b) (c)

(d) (f)(e)

v S wit c h

D G a g e nt D G s er v er

Fir e w all

Figure 4: Six representative scenarios of DTS network.

Schema specifies the database and table to which the record be-
longs, along with column information. The Operation delineates
the type of transaction performed, BeforeImage represents the data
state prior to the operation, and AfterImage depicts the data state
subsequent to the action. This design covers the shared logical log
formats and ensures compatibility across multiple database systems.
In situations where a BeforeImage is not available in the WAL, DTS
will attempt to retrieve it using the capabilities of the source data-
base (e.g., Flashback in Oracle, MongoDB, etc.). If this is not feasible,
DTS will resort to using the default NoneValue in the record. This
NoneValue will then be processed accordingly by the plugin of each
target database.

3.3.2 Precision. In DTS, precision and the value range of each
data type are imperative. Generally, the most basic data types fall
into three categories: numeric, temporal, and character. For nu-
meric data types, commonly used floating-point data types such as
Double and Float are directly converted into the Double type. High-
precision data types such as Number or Decimal are transformed
into BigDecimal. Int/BigInt types are represented using BigInte-
ger to cater to their varied signed/unsigned ranges. Temporal data
types are addressed using UnixTimestamp, which represents time
in milliseconds since the epoch, and DateTime, which incorporates
timezone and offset information. Special data formats are converted
into the BinaryObject type, encapsulated as byte array accompa-
nied by an enum type. Similarly, textual data is converted into the
StringValue type, consisting of byte array and a CharSet specifi-
cation. Upon reaching the Sink, the handling of the byte array is
determined according to its associated CharSet type. This approach
ensures that the GIR can precisely capture the breadth of data types
and their respective nuances as found in various database systems.

3.3.3 Extensibility via Database Plugins. The A2A framework con-
ceptualizes each plugin as offering two distinct capabilities: data
extraction throughAnySource and data insertion viaAnySink. These
capabilities correspond to the specific functions the plugins perform

within the data flow process. This abstraction not only simplifies
the interaction with different databases but also ensures that each
plugin is precisely aligned with the demands of the data transfer
tasks it facilitates.

The DTS dynamically loads the appropriate plugin in line with
the task’s configuration. Within the plugin, a data transfer task is
abstracted into a DataFlow. ADataFlow, in essence, is a configurable
stream of data that is currently composed of three key components:
SchemaFetcher, SchemaBlaster, and RecordRangeScheduler.

SchemaFetcher is responsible for retrieving the structural de-
tails of the source and destination databases, tables, and columns.
SchemaBlaster takes on the role of segmenting the acquired ta-
bles into more manageable slices or partitions. RecordRangeSched-
uler then steps in to schedule these newly created table partitions
for data transfer. The actual transfer of data from AnySource to
AnySink operates at the granularity of these slices, known as Recor-
dRanges. This granular approach ensures both the efficiency and
manageability of data transfers. By structuring the architecture in
this manner, the A2A framework attains significant extensibility.

4 RESOURCE SCHEDULE
This section presents our designs for resource scheduling in DTS,
including bandwidth allocation (§4.1) and DTS serverless (§4.2).

4.1 Bandwidth Allocation
Within each Alibaba Cloud region, thousands of DTS transmission
tasks may execute concurrently, creating a complex network of data
flows that depend on a shared network infrastructure. Those include
elephant flows of full tasks with lower-level SLOs (i.e., latency) and
mouse flows of CDC tasks with higher-level SLOs. Sometimes, the
rapidly increasing flow may surpass the bandwidth limit granted
by Alibaba’s internal network infrastructures, resulting in SLO
violations of CDC tasks. This drives us to refine the scheduling
process for network flows across all DTS Tunnels.

4006

C o ntr ol Pl a n e

L o g S er vi c e

D T S C o or di n at or

S er v erl e s s C o ntr oll er C e nt er

D T S I n st a n c e

E C S

Ei g e n
A g e nt

Billi n g

L o c al
s c al e

R e m ot e
s c al e

R u nti m e M etri c & S c ali n g E v e nt s

R e a d
l o g s

Figure 5: DTS serverless architecture

The domain of network scheduling has been extensively re-
searched. Network scheduling [23] typically involves the following
stages implemented in network routers: (1) classify that decides
which waiting line the arriving packet will join, (2) queue that
dictates the sequencing of packet transmission, such as Earliest
Deadline First (EDF) [43] and Fixed Priority Scheduling (FPS) [27]
and [44], and (3) schedule that manages the transmission rates by
calling packets from queues (i.e., bandwidth allocation). The sched-
ule algorithms include heuristic algorithms, such as Equal Share
(i.e., round robin), Proportional Fair Share [29] and Max-Min Fair
Share [33], and optimization-based algorithms, such as Hedera [26].

In our scenario, the challenge lies in the fact that traditional
methods of network scheduling are largely dependent on the un-
derlying network topology and the ability to measure, classify, and
manage traffic at intermediate points within the network. There-
fore, we chose to implement bandwidth allocation algorithms by
periodically regulating the data fetching rate of the Sinks (i.e., the
Rate Control module in Figure 3). In this paper, we present an
optimization-based algorithm that minimizes a practically valuable
self-defined metric SLO violation.
DTS Transmission Latency First, we define the latency of a DTS
instance 𝑖 at timestamp 𝑡 :

latency𝑖 = 𝑑𝑖 +
max(0, (𝑎𝑖 − 𝑏𝑖)𝑇)

𝑏𝑖
+ buffer

𝑏𝑖
(1)

The latency consists of three terms. The first term (i.e.,𝑑𝑖) repre-
sents a constant latency that is caused by non-bandwidth issues
(e.g., SQL analyzing and transaction processing). The second term
represents the latency introduced through a period of 𝑇 (𝑎𝑖 and 𝑏𝑖
represent the rates of data generation and transmission). The final
term corresponds to the queued data volume at timestamp 𝑡 .
SLO Violation Based on latency𝑖 , we then evaluate, then minimize
the SLO violation by a hinge-loss function

loss𝑖 = 𝛼𝑖 max(0, latency𝑖 − SLO𝑖) (2)

where 𝛼𝑖 is a loss weight that depends on the priorities of the tasks.
The problems are solved by the classic quadratic programming
solvers, such as Sequential Least Squares Programming (SLSQP) [38].
In practice, we improve the performance (to less than 10 seconds)
of the solvers by proactively reserving bandwidth for a collection
of mouse flows (e.g., less than 1 MBps).

4.2 DTS Serverless
In analyzing the online trouble ticket data for DTS instances, we
have identified that 30% of events with high latency were attributed
to insufficient resources, such as CPU and memory limitations.
Normally, the events require the manual intervention of scaling up,
which is operationally costly. This called for the enhancement of

DTS’s elasticity, leading to the introduction of the DTS serverless.
This architecture offers automated scaling in response to workload
fluctuations, enabling a pay-as-you-go pricing model that optimizes
users’ costs.

DTS Serverless supports both horizontal and vertical auto-scaling
of the Source and Sink components. Specifically, Source can be scaled
out/in through being paired with the partitioned tables in the source
databases, and Sink can be scaled out/in through being paired with
Sources. Furthermore, both Source and Sink can be scaled up/down
based on the number of threads and CPU cores, allowing for flexible
resource management depending on computational demands.

Implementation The architecture of DTS serverless is depicted
in Figure 5. It is founded on Alibaba’s cluster management sys-
tem, Eigen [35]. Within Eigen, we leverage some critical functions,
including Eigen Agent, Log Service, Serverless Controller Center
(SCC), and then re-implement some components, such as DTS Co-
ordinator and DTS Billing. In Figure 5, yellow boxes represent the
components from Eigen, and white boxes represent the components
re-implemented by DTS.

Within a cluster composed of Elastic Compute Service (ECS)
nodes, an instance of the Eigen Agent is deployed on each node.
The Eigen Agent plays a crucial role in the management of DTS
instances (i.e., Kubernetes pods). It is tasked with the continuous
monitoring of runtime metrics for each instance, making informed
decisions regarding scaling, and executing resource scheduling
tasks. The Eigen Agent within DTS supports two distinct categories
of reactive auto-scaling: local scaling and remote scaling.

• Local Scaling: Depicted by the yellow arrow, this method in-
volves adjusting the resource allocation on the current node
where the DTS instance is running. If the instance requires more
resources and there is sufficient capacity available on the local
node, it can scale up without the need to move to a different
node. After the completion of a scaling operation, the Eigen
Agent communicates the outcome to the DTS Coordinator. This
update is conveyed through the log service and SCC (blue ar-
rows), ensuring that the DTS Coordinator is informed of the
current state of resource allocation and can maintain an overall
view of the system’s performance and resource utilization.

• Remote Scaling: When the current node cannot accommodate
the necessary scaling changes, for instance, when there is a lack
of available resources for scaling up, the system resorts to remote
scaling. Upon receiving a request from the Eigen Agent through
the log service and SCC (blue arrows), the DTS Coordinator takes
action to re-schedule the DTS instance remotely. As depicted
by the red arrows, this involves migrating the DTS instance to
another node within the cluster that has the required resources.

Strategy Events that trigger either local or remote scaling are
dictated by specific strategies. The prevalent triggers are instances
when CPU/memory utilization or processing speed, measured by
rows per second (RPS), exceeds or descends below predetermined
thresholds. By default, we apply the 90-50 rule: the DTS instance
astutely escalates its resource allocation, increasing it twofold when
the metric attains 90% of the upper limit; conversely, the DTS in-
stance reduces its resource consumption by half when the metric
drops to 50% of the established lower threshold. These thresholds

4007

Tu
nn

el

Records

Transaction Scheduler
Transactions

Ta
rg

et
 D

B

T1
T2
T3
…

r1
r2
r3
…

DAG
……
……
……

:Transaction

Dependency
Tracker
§5.2

Hotspot
Consolidation

§5.4

Parallel
Executor
§5.3

Sink

Figure 6: Transaction Scheduler Processing Flow in the Sink.

are set to ensure that the instances are running with optimal re-
source allocation, balancing performance and cost-efficiency. When
a trigger event occurs, the Eigen Agent responds accordingly by
initiating the appropriate scaling action to maintain system stability
and performance.

5 SINK OPTIMIZATION
In the data transmission link of DTS, the computational models
for the Source and Tunnel are predominantly IO-heavy, rarely be-
coming bottlenecks for throughput. However, rapidly writing to
a replica database presents significant challenges. It is well recog-
nized that the execution parallelism in a replica database is lower
than that in the primary database [22, 30]. As a result, it’s impossi-
ble to guarantee bounded replication lag under strong consistency
for asynchronous database replication [30].

Consequently, the DTS service defaults to ensuring eventual
consistency for CDC tasks. This means that updates to the source
database will ultimately be synchronized with the target database.
Eventual consistency allows for non-conflicting transactions to be
executed in parallel and potentially out of order. This ensures that
the parallelism of DTS writing to the target database can be greater
than or equal to the parallelism of the source database, preventing
unbounded replication lag.

To achieve rapid replaying of change operations to the target
database, Sink utilizes a Transaction Scheduler which manages the
transaction execution order and implements optimization strate-
gies to boost throughput. The following sections will explore the
optimization employed by Sink in detail.

5.1 Transaction Scheduler
The overall processing flow in the transaction scheduler is depicted
in Figure 6. A continuous sequence of transactions is extracted
from a stream of records retrieved through the Tunnel. During
this process, transactions that exceed a predefined configuration
limit—typically those containing thousands of records—are inten-
tionally segmented into smaller, more manageable subsets. Such
strategic division is crucial for preventing system congestion that
could result from processing exceptionally large transactions. As
transactions enter our system, the Dependency Tracker (§5.2) per-
forms a thorough analysis of transaction dependencies. This anal-
ysis leads to creating of a Directed Acyclic Graph (DAG), which
outlines the dependencies among the transactions awaiting replay.

Utilizing the DAG, the Parallel Executor (§5.3) is able to pinpoint
and isolate groups of transactions devoid of conflicts. Such transac-
tions are not only capable of being replayed in parallel — thereby
maintaining data consistency — but they also gain from a variety
of optimizations that users can tailor to their needs. Among these
optimizations, batching stands out for its ability to significantly
improve the efficiency of network communications and bolster the

execution performance of transactions within the target database.
In scenarios of synchronization of data from an Online Transaction
Processing (OLTP) system to a data warehouse, many customers
opt for the TableAggregation feature. This feature intelligently con-
solidates updates and groups insertions by table. Leveraging the
inherent columnar organization of data warehouses, TableAggre-
gation facilitates more efficient write operations and augments
concurrency across tables.

Furthermore, for users who are less concerned with tracking the
intermediate states of updates, the configuration option of hotspot
consolidation (§5.4) presents a compelling solution. This optimiza-
tion is designed to minimize frequent changes to specific data
hotspots, thereby streamlining the update process and reducing the
opportunity for performance bottlenecks.

The transaction scheduler adopts a single-producer-multiple-
consumer model, consisting of a single fetching thread and mul-
tiple working threads. The fetching thread persistently retrieves
records from the Tunnel, subsequently assembling them into a
First-In-First-Out (FIFO) transaction queue, while simultaneously
integrating these transactions into the dependency graph. In paral-
lel, the working threads autonomously extract transactions from
the dependency graph, executing them concurrently on the target
database. This approach to parallelism significantly reduces syn-
chronization latency and elevates throughput between Sink and
the target database, enhancing overall system efficiency.

Algorithm 1: Dependency Tracker Procedure
Data: dependency graph𝐺
Input: A transaction𝑇 extracted from Tunnel.

1 Function TrackDependency(𝑇):
2 Add vertex𝑇 to𝐺
3 foreach transaction𝑇𝑖 in graph𝐺 do
4 foreach record 𝑟 𝑗 in𝑇 and records 𝑟𝑘 in𝑇𝑖 do
5 if (𝑟 𝑗 .PK == 𝑟𝑘 .PK) or (𝑟 𝑗 .UK == 𝑟𝑘 .UK) then
6 Add edge from𝑇𝑖 to𝑇 in𝐺 ;
7 break ; // break internal for-loop

5.2 Dependency Tracker
The Dependency Tracker is designed to identify transaction depen-
dencies. These dependencies are primarily determined by conflicts
involving the primary keys (PK) and unique keys (UK) of records
between transactions, as these keys are critical in maintaining data
integrity. For example, if two transactions, 𝑇1 and 𝑇2, both involve
updates to records with the same primary key, and 𝑇1 is executed
before 𝑇2 in the source database, they are considered to have an
innerdependency and must be replayed to the target database in
the original order. A directed acyclic graph (DAG) is employed to
accurately map transactional interdependencies. In this graph, each
vertex represents a distinct transaction, and an edge from vertex
𝑇1 to vertex 𝑇2 indicates that 𝑇2 depends on the prior execution
of 𝑇1. Throughout the remainder of this paper, we use "DAG" and
"dependency graph" interchangeably.

Algorithm 1 delineates the process by which the dependency
graph is constructed. It accepts as input a transaction and an ex-
isting DAG and yields an updated DAG that incorporates the new

4008

Algorithm 2: Parallel Executor Procedures
Data: dependency graph𝐺

1 Function ConflictFreeTxns():
2 𝑇𝑠𝑒𝑡 ← vertices having no incoming edges in𝐺 ;
3 foreach vertex 𝑣 in𝑇𝑠𝑒𝑡 do
4 Remove 𝑣 and its outgoing edges from𝐺 ;
5 return𝑇𝑠𝑒𝑡 ;
6 Function ParallelTask():
7 𝑇𝑠𝑒𝑡 ← ConflictFreeTxns(G);
8 parllel foreach transaction𝑇𝑖 ∈ 𝑇𝑠𝑒𝑡
9 Execute𝑇𝑖 ;

10 Function BatchTask():
11 𝑇𝑠𝑒𝑡 ← ConflictFreeTxns(G);
12 𝑇𝑏𝑎𝑡𝑐ℎ ← initialize new transaction;
13 foreach transaction𝑇𝑖 ∈ 𝑇𝑠𝑒𝑡 do
14 𝑇𝑏𝑎𝑡𝑐ℎ ← 𝑇𝑏𝑎𝑡𝑐ℎ ∪𝑇𝑖 ;
15 Execute𝑇𝑏𝑎𝑡𝑐ℎ ;
16 Function TableAggregationTask():
17 𝑇𝑠𝑒𝑡 ← ConflictFreeTxns(G);

// map from TableNames to Transactions
18 𝑚𝑎𝑝 ← ∅;
19 foreach transaction𝑇𝑖 ∈ 𝑇𝑠𝑒𝑡 do
20 foreach record 𝑟 ∈ 𝑇𝑖 do
21 𝑚𝑎𝑝 [𝑟 .𝑡𝑎𝑏𝑙𝑒] .𝐴𝑝𝑝𝑒𝑛𝑑 (𝑟) ;

22 parllel foreach pair 𝑝 in𝑚𝑎𝑝

23 Execute𝑚𝑎𝑝 [𝑝.𝑡𝑎𝑏𝑙𝑒] ;

transaction. The key of this procedure is the identification of any
pair of transactions that share a common PK or UK. Throughout this
process, the records contained within the new transaction are ex-
amined, with their primary and unique keys being extracted. Upon
discovering a dependency, an edge is added to the DAG, connecting
the preexisting conflicting transaction to the new transaction. This
connection signifies that the new transaction must be executed
subsequently to maintain the integrity of the data.

5.3 Parallel Executor
The Parallel Executor retrieves a set of conflict-free transactions and
executes them concurrently. Depending on the user’s configuration,
the executor can employ various strategies—or even a combination
thereof—to expedite execution.

Algorithm 2 presents the pseudocode of these procedures. The
function ConflictFreeTxns is designed to identify and process
transactions that are primed for immediate parallel execution, as
determined by the current state of the DAG. Specifically, a transac-
tion with no incoming edges is independent of other transactions
and, thus, eligible for concurrent execution. After such a transaction
is retrieved from the graph, all its outgoing edges are also removed.

In simple scenarios, these conflict-free transactions are executed
in parallel by the task threads , as demonstrated in the function
ParallelTask. More commonly, however, the BatchTask is em-
ployed to pursue higher throughput. Batching is particularly effica-
cious in scenarios characterized by amultitude of small transactions.
By consolidating these transactions into a single, larger transac-
tion, batching substantially reduces the overhead associated with
multiple database invocations.

The TableAggregationTask is specifically customized for sce-
narios where the target database is an OLAP system, taking full
advantage of the system’s ability to perform high-throughput op-
erations on specific tables. This task adeptly capitalizes on the
OLAP system’s strengths by consolidating updates and batching
insertions based on their target table. The TableAggregation fea-
ture effectively improves write performance by optimizing for the
columnar storage architecture prevalent in data warehouses. Fur-
thermore, it enhances table-level concurrency, thereby facilitating
more efficient parallel processing of database operations.

5.4 Hotspot Consolidation
In scenarios where users are primarily concerned with the final
state following a series of updates, we offer an optimization known
as Hotspot Consolidation. This technique streamlines the update
process by amalgamating multiple alterations to the same record
into a single update. It significantly decreases the quantity of records
that need to be replayed, which is particularly advantageous when
there are frequent updates to a small subset of the data.

This feature must identify all updates eligible for consolidation
while maintaining the correct order, achieving this with minimal
overhead and without compromising parallelism. The dependency
tracker satisfies all these conditions with only minor modifications.
Consequently, when two conflicting transactions are detected at
line 6 of algorithm 1, a further check determines if they can be con-
solidated. If they are eligible, the updates are merged accordingly.

6 EVALUATION
In this section, we present the evaluation results of DTS. Our eval-
uation commences with a series of micro-benchmark experiments
conducted within a controlled environment as detailed in §6.1. This
initial phase is designed to preclude any environmental distortions,
thereby enabling a precise assessment of the end-to-end perfor-
mance as well as a detailed performance breakdown of individual
DTS components. As it is impracticable to perform large-scale ex-
periments that could potentially lead to violations of numerous DTS
instances in a production setting, §6.2 involves simulations based
on traces of online network traffic. Finally, we substantiate the
practical effectiveness of DTS in providing serverless services and
managing substantial data transfers through two case studies con-
ducted within real-world production environments. Our evaluation
focused on the following questions:

• How does DTS perform under heterogeneous databases, particu-
larly in terms of read operations from the source database and
write operations to the target database?
• What impact does the write optimization from Sink (§5) have on

write operations in OLTP and OLAP databases?
• How is bandwidth effectively allocated to multiple DTS instances

on cloud platforms to better satisfy users’ SLOs?
• How does DTS perform in a production environment under spiky

or massive transmission workloads?

6.1 Micro-Benchmark
6.1.1 Setup. Our micro-benchmarks utilized DTS instances and
database instances acquired from Alibaba Cloud. The employed
Alibaba RDS instances acted as the source databases and OLTP

4009

MySQL PostgreSQL PolarDB0
50

100
150
200
250
300

Th
ro

ug
hp

ut
 (M

Bp
s) NarrowTable

WideTable

(a) end to end throughputs for Full tasks
MySQL PostgreSQL PolarDB0

50

100

150

200

Th
ro

ug
hp

ut
 (M

Bp
s) NarrowTable

WideTable

(b) Source throughputs for CDC tasks
MySQL PostgreSQL PolarDB0

50

100

150

200

Th
ro

ug
hp

ut
 (M

Bp
s) NarrowTable

WideTable

(c) Sink throughputs for CDC tasks

0 500 1000 1500 2000 2500 3000
Sink Latency (ms)

0

25

50

75

100

CD
F

(%
)

MySQL
PostgreSQL
PolarDB

(d) latency distribution under 20MBps

Figure 7: DTS Performance Across Three Database Types with NarrowTable and WideTable Configurations

target databases, were configured with 8 vCPU cores and 32GB of
RAM, hereinafter referred to as "8C32G". The default configuration
for DTS is 1C1G for both the Source and Tunnel, and 4C16G for the
Sink. The OLAP target databases utilize the more robust ADB [48]
24C32G configuration. These components were interconnected
using dual VPC NATs as depicted in scenario (a) of Figure 4.
Workloads. Our experiments employed Sysbench [15] to generate
database workloads, with 100 tables of 100,000 rows each. We eval-
uated two row sizes commonly found in actual workloads: Nar-
rowTable (200-byte rows) and WideTable (100-KB rows), both of
which consist of four columns. To replicate hotspot update sce-
narios accurately, we applied a Zipfian distribution to the update
operations on each table, while the selection of tables was uniformly
distributed. This setup is designed to emulate typical e-commerce
situations where the stock of hot-sale products is frequently up-
dated, and overall product data is distributed across multiple shards
for load balancing.

6.1.2 Full Tasks. For full task transmission, the Source and Sink
components are interconnected, as data pulled from the source
database is immediately written into the target database via Sink
(bypassing the necessity for a Tunnel), a standard configuration
in database migration scenarios. Therefore, we use the end to end
throughput (MBps, MB per second) for three different databases
to evaluate the performance of full tasks. The results depicted in
Figure 7(a) show that for NarrowTable, all three DTS instances
can achieve a throughput exceeding 50 MBps. When it comes to
WideTable, each instance can surpass 150 MBps in throughput.
Notably, PostgreSQL exhibits the best performance for NarrowTable
becauseDTS takes advantage of bulk loading via the COPY command,
while PolarDB shows superior performance for WideTable.

6.1.3 CDC Tasks. We begin by presenting an ablation study on the
individual submodules, demonstrating the throughput limitations
separately at the Source and Sink ends. Subsequently, we investigate
the latency on end-to-end transmission under heavy workloads.
Source. Figure 7(b) presents the throughput of Source module for
three different databases. Remarkably, even with a modest allo-
cation of 1 core and 1 GB memory, Source can still achieve high
throughput. For example, our Source can transfer data fromMySQL
at 78MBps, which meets or exceeds the needs of most deployments
(according to daily statistics, 99% of running DTS instances ex-
hibited a peak throughput of less than 36.5MBps). Moreover, to
investigate the performance ceiling of DTS, for PostgreSQL we
escalated the source RDS instance to 32 cores 128GB RAM to pre-
vent the source database writing throughput from becoming the

bottleneck. The results indicate that Source can efficiently capture
change data and generate records at a high rate.
Sink. Figure 7(c) presents the throughput of the Sink module for
three different databases. The sink module of PostgreSQL exhibits
the best performance, reaching as high as 47.6 MBps. Notably, for
PostgreSQL, the maximum throughput of Sink is higher than that
of Source. This is because the BatchTask (see § 5.3) collects a batch
of transactions to write at once, resulting in higher throughput.
End to End Latency. Figure 7(d) presents the latency distribution
when the Sink throughput is 20MBps. It is evident that 90% of the
records for MySQL and PolarDB can be written within 1 second,
even under high throughput conditions. PostgreSQL exhibits a
slightly higher latency (around 1.3 seconds) due to the performance
related to the "Replication Slot" in the source database. Overall, this
demonstrates that DTS can synchronize data in a timely manner.

6.1.4 Sink optimization strategies. We conducted performance tests
under various Sink optimization strategies described in §5. The Se-
rial mode writes to the target database only in a sequential manner;
Parallel mode utilizes the dependency tracker detailed in (§5.2);
Batch and Consolidation add the BatchTask (§5.3) and hotspot con-
solidation (§5.4) optimization on top of the dependency tracker,
respectively; Aggregation mode employs the TableAggregationTask
(§5.3). Figure 8(a) illustrates the throughput of DTS under various
coefficient values 𝜃 of the Zipfian distribution. A 𝜃 value of 0 indi-
cates a uniform distribution of updates across all entries, while a
𝜃 value of 2 indicates a high concentration of updates on specific
entries. The Serial method yields a modest throughput that does
not exceed 0.33 MBps, equivalent to an RPS (Records Per Second)
of 882. In contrast, the Parallel mode consistently achieves a perfor-
mance increase of more than 200 times. Moreover, with additional
Batch and Consolidation optimizations, the throughput is doubled
compared to the Parallel mode alone.

We conducted additional experiments on both OLTP and OLAP
target databases. Figure 8(b) presents the results for the OLTP tar-
get database, MySQL. For OLTP, strategies such as consolidation
and batching significantly increased throughput by approximately
1.6 times when updates were evenly distributed. Nevertheless, as
update hotness rose (i.e., 𝜃 = 1), the interdependence among trans-
actions grew, reducing the number of non-conflicting transactions
that could be batch-processed and, consequently, attenuating the
benefits of batching on throughput. In contrast, our investigation
into OLAP databases (e.g., ADB [48]), presented in Figure 8(c),
revealed that the Aggregation mode was extremely effective, poten-
tially amplifying data synchronization throughput to data ware-
houses by a factor of six. This significant enhancement is detailed

4010

0 0.5 1 1.5 2
θ

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

Bp
s)

Parallel+Batch+Cons.
Parallel
Serial

(a) Sink to MySQL varying skewness

Serial Parallel+Cons.+Batch+Cons.
+Batch

Serial Parallel+Cons.+Batch+Cons.
+Batch

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

Bp
s)

θ= 0
θ= 1

(b) Breakdown of Optimization: Sink to MySQL

Serial Parallel+Cons. +Aggr. +Cons.
+Aggr.

Serial Parallel+Cons. +Aggr. +Cons.
+Aggr.

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

Bp
s)

θ= 0
θ= 1

(c) Breakdown of Optimization: Sink to ADB

Figure 8: DTS performance under various Sink optimizations, using MySQL as sources.

in §5.3. It is important to note that OLAP database performance,
particularly in terms of writing to the 100 tables involved in our
experiments, faced inherent limitations without the use of Aggre-
gation mode. This limitation resulted in a less discernible contrast
in throughput benefits between hotspot consolidation and varied
update concentrations.

6.2 Simulation on Network Trace
We conducted simulation experiments to evaluate bandwidth allo-
cation algorithms using a dataset of 3983 real-world CDC tasks, of
which 122 had data generation rates above 1 MBps, demanding a to-
tal bandwidth of 921 MBps. And the remaining 3861 tasks required
183 MBps. Our experimental design involved two stages: initially
ensuring bandwidth for the majority of lower-rate tasks. And next,
applying different bandwidth allocation algorithms among the 122
high-rate tasks with a quantity of full tasks. The SLO for CDC tasks
was set at 60 seconds, while full transmission tasks, averaging 500
GB in size, had an SLO of 1 hour. All CDC tasks have been assigned
a cost weight of 1, while full tasks are assigned lower weights to
reflect their relative priority. The period is set at 10 seconds. Algo-
rithm performance is evaluated across three dimensions: bandwidth
limitation, buffer ratio, and full-CDC throughput ratio. Specifically,
the buffer ratio of a CDC task 𝑖 is defined as buffer

𝑎𝑖×SLO𝑖
× 100% , where

𝑎𝑖 represents data generating rate.
Figure 9 illustrates the impact of varying bandwidth limits on (a)

average loss and (b) normalized latency, under a fixed buffer ratio
constraint of 100% with 0 full transmission task. The red dotted
lines mark the sum of data generation rate of all CDC tasks. Fig-
ure 9 (c) and (d) illustrate the effects of buffer ratios on the average
loss and normalized latency, respectively, under a fixed bandwidth
constraint of 800 MBps with 0 full transmission task. Figure 9 (e)
and (f) present the impact of changing the full-CDC throughput
ratio on the same metrics, under the bandwidth constraint of 800
MBps and a buffer ratio constraint of 100%.

The data show that the DTS Optimization-Based Scheduling
approach consistently results in lower loss. However, it does not
consistently outperform the Max-Min Fair Share method regard-
ing normalized latency (e.g., when the full-CDC ratio is 80%). It is
reasonable since the optimization-based scheduling algorithm prior-
itizes loss over latency. This approach seeks to distribute bandwidth
more equitably, tolerating increased latency provided it remains
within the bounds of the specified SLO. Moreover, both Max-Min

Fair Share and DTS Optimization-Based Scheduling exhibit im-
provements over Proportional Fair Share algorithm, which was the
baseline of DTS, across these metrics.

6.3 Production Case Studies
6.3.1 Severless Case. In Figure 10, we showcase the performance of
a serverless DTS instance in production over a 24-hour period. We
record the throughput, measured in Rows Per Second (RPS) and de-
picted in blue, alongside the instance’s RPS upper threshold, shown
in orange. Additionally, we present the latency in the lower portion
of the figure. The orange line largely covers the blue line, indicat-
ing that the automatic scaling system efficiently handles the load,
while the latency trend remains consistent. A notable exception
occurs around 5 AM when a spike in latency coincides with batch
maintenance tasks on the source database, causing a lag on the
source side. This event triggers a rapid fourfold increase in resource
allocation within one minute, successfully managing the higher
workload and preventing further delays in transmissions. This case
study underscores the remarkable efficiency of the serverless DTS
instance: it utilizes only 25.5% of the resource capacity required by a
large-scale DTS instance that runs continuously, while maintaining
end-to-end latency below one second in over 99.8% of cases.

6.3.2 Massive Data Case. Figure 11 illustrates DTS’s proficiency
in managing change data transmission across regional databases
over a 24-hour period. The graphed throughput, measured in MBps,
alongside the corresponding latency, highlights the system’s capa-
bility to handle large volumes of data. Notably, throughput spikes
dramatically at midnight, coinciding with scheduled database main-
tenance activities such as data cleaning. Furthermore, the sys-
tem adeptly copes with significant throughput increases—reaching
75MBps around noon and in the evening—as a result of frequent
updates from the source databases. Despite these variations, DTS
consistently keeps latency under 4 seconds, affirming its ability to
sustain seamless real-time data transmission. This reliable perfor-
mance emphasizes DTS’s robustness in fulfilling the requirements
of heavy data transmission workloads, ensuring that data remains
up-to-date and accessible within the target databases.

7 RELATEDWORK

Commercial Database Transmission Service on Cloud. Sev-
eral cloud providers offer database transfer services. Amazon Web
Services (AWS) [2], Microsoft Azure [3], and Google Cloud [9]
all provide Database Migration Services (DMS) that support both

4011

200 400 600 800 1000
Total bandwidth (MBps)

(a)

0

50

100

150

200

250

Lo
ss

200 400 600 800 1000
Total bandwidth (MBps)

(b)

1

2

3

4

5

No
rm

al
ize

d
la

te
nc

y
0 50 100 150 200

Buffer ratio (%)
(c)

0

20

40

60

80

100

Lo
ss

0 50 100 150 200
Buffer ratio (%)

(d)

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
la

te
nc

y

0 20 40 60 80
Full-CDC ratio (%)

(e)

0

50

100

150

200

250

300

Lo
ss

0 20 40 60 80
Full-CDC ratio (%)

(f)

1.0
1.2
1.4
1.6
1.8
2.0
2.2

No
rm

al
ize

d
la

te
nc

y

Equal Share Proportional Fair Share Max-Min Fair Share DTS Network Schedule Bandwidth Limit

Figure 9: The performance of different bandwidth allocation algorithms.

0

5000

10000

15000

Rp
s

Rps
Rps limit

0 3 6 9 12 15 18 21 24
Time (hour)

0

5

10

La
te

nc
y

(s
)

Figure 10: A serverless DTS instance over a 24-hour period.

0
25
50
75

M
Bp

s

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0

2

4

6

La
te

nc
y

(s
)

Figure 11: Real DTS performance for a 24-hour period.

homogeneous and heterogeneous migrations, as well as change
data replication. Furthermore, Oracle’s GoldenGate [13] facilitates
high-performance data replication and can be utilized beyond the
confines of the Oracle ecosystem. In contrast to these offerings,
Alibaba’s DTS distinguishes itself in terms of supported databases,
network environments, architectural design, and functionality. For
example, AWS’s DMS requires a dedicated replication instance for
each migration task, which is responsible for extracting data from
the source database and loading it into the target database. Con-
versely, DTS deconstructs the process into three discrete modules:
Source, Tunnel, and Sink. This modular architecture allows for each
component to be deployed independently, thus aligning with the
specific requirements of Alibaba Cloud’s clientele.

Three party companies specializing in data integration and man-
agement such as Informatica [10], Fivetran [8], and Qlik [14] also of-
fer database transmission services on cloud, with a particular focus
on data integration and Extract-Transform-Load (ETL) processes.
Debezium is an open-source tool for Change Data Capture (CDC)
and data synchronization. While Debezium and DTS share similar
functionalities in data synchronization, DTS supports more complex
data synchronization and transmission scenarios, including data
migration, data synchronization, data subscription, and real-time

data processing. Additionally, as part of a cloud service, DTS pro-
vides a comprehensive commercial solution with high functionality
integration, making it suitable for enterprise-grade applications
with a user-friendly graphical interface and automation tools. In
contrast, Debezium still requires considerable manual tuning and
configuration for optimal performance.

Database Replication and Synchronization. To provide effi-
ciency database replication in distributed environment and reduce
the lag gap of primary/backup database , a lot of concurrency con-
trol protocol and system have emerged in both academia and in-
dustry [28, 30, 31, 40–42, 47]. These work proposed novel protocol
and designs which require modifying the original database systems
or proposed new database system. In contrast, our work aims to
provide a generic solution to efficiently interconnect any source
databasewith any target database, independent of reliance on native
support from the databases themselves.

Cloud Resources Management. The scheduling of resources
within cloud environments to facilitate database replication for
multi-tenant architectures, while adhering to Service Level Objec-
tive (SLO) requirements, is studied in [37, 45]. Additionally, [36]
explores resource management in cloud networking through eco-
nomic and pricing perspectives. As a cloud-based service, DTS
primarily concentrates its resource management on bandwidth allo-
cation and serverless architecture to ensure reliable and high-speed
transmission. This focus is designed to meet the diverse require-
ments of multiple tenants and to manage the bandwidth demands
of simultaneous transmission tasks effectively.

8 SUMMARY
This paper provides a comprehensive analysis of Alibaba’s Data
Transmission Service (DTS), a database infrastructure that facili-
tates data migration and real-time data synchronization. We high-
lighted the novel Any-to-Any (A2A) architecture which simplifies
the complexity of data transmission across heterogeneous databases
and under various network connectivity scenarios. Additionally,
we examine a dynamic network bandwidth scheduling algorithm
that effectively maintains Service-Level Objectives (SLOs), comple-
mented by a serverless mechanism that ensures efficient resource
utilization. We detail key performance optimization strategies, such
as transaction dependency tracking, hot data consolidation, and
batching, which are proven to significantly boost the efficiency of
DTS. Our evaluation results show that DTS can handle real-time
data transmission effectively and efficiently in both experimental
and production environments.

4012

REFERENCES
[1] [n.d.]. Alibaba Cloud Database Services Empower Your Business. https:

//www.alibabacloud.com/en/product/databases Accessed: 2024-04-30.
[2] [n.d.]. AWS Database Migration Service. https://aws.amazon.com/dms/ Ac-

cessed: 2024-04-30.
[3] [n.d.]. Azure Database Migration Service. https://azure.microsoft.com/products/

database-migration Accessed: 2024-04-30.
[4] [n.d.]. Cloud Enterprise Network (CEN). https://www.alibabacloud.com/

product/cen Accessed: 2024-04-30.
[5] [n.d.]. Database Gateway. https://www.alibabacloud.com/help/en/database-

gateway Accessed: 2024-04-30.
[6] [n.d.]. DB-Engines Ranking. https://db-engines.com/en/ranking Accessed:

2024-04-30.
[7] [n.d.]. Express Connect. https://www.alibabacloud.com/product/express-

connect Accessed: 2024-04-30.
[8] [n.d.]. Fivetran. https://www.fivetran.com/ Accessed: 2024-04-30.
[9] [n.d.]. Google Cloud Database Migration Service. https://cloud.google.com/

database-migration Accessed: 2024-04-30.
[10] [n.d.]. informatica. https://www.informatica.com/ Accessed: 2024-04-30.
[11] [n.d.]. Locations of access points. https://www.alibabacloud.com/help/en/

express-connect/user-guide/locations-of-access-points Accessed: 2024-04-30.
[12] [n.d.]. MySQL Replication. https://dev.mysql.com/doc/mysql-replication-

excerpt/5.7/en/ Accessed: 2024-04-30.
[13] [n.d.]. Oracle GoldenGate. https://www.oracle.com/integration/goldengate/

Accessed: 2024-04-30.
[14] [n.d.]. Qlik. https://www.qlik.com/ Accessed: 2024-04-30.
[15] [n.d.]. sysbench. https://github.com/akopytov/sysbench Accessed: 2024-04-30.
[16] [n.d.]. VPCs and vSwitches. https://www.alibabacloud.com/help/en/vpc/user-

guide/vpcs-and-vswitchs/ Accessed: 2024-04-30.
[17] [n.d.]. What is a VPC NAT gateway. https://www.alibabacloud.com/help/en/nat-

gateway/user-guide/what-is-a-vpc-nat-gateway Accessed: 2024-04-30.
[18] 2024. AWS DMS: Challenges & Solutions Guide. https://www.integrate.io/blog/

aws-dms-challenges-solutions-guide/ Accessed: 2024-04-30.
[19] 2024. Classic Network. https://www.alibabacloud.com/help/en/ecs/user-guide/

classic-network Accessed: 2024-04-30.
[20] 2024. Data Transmission Service: Data Migration and Synchronization - Alibaba

Cloud. https://www.alibabacloud.com/en/product/data-transmission-service
Accessed: 2024-04-30.

[21] 2024. DTS-Reserve parameter. https://www.alibabacloud.com/help/en/dts/
developer-reference/reserve-parameter-description Accessed: 2024-04-30.

[22] 2024. Parallel Recovery - PostgreSQL wiki. https://wiki.postgresql.org/wiki/
Parallel_Recovery Accessed: 2024-04-30.

[23] 2024. Queuing and Scheduling. https://www.cisco.com/c/en/us/td/docs/
switches/lan/catalyst9400/software/release/16-6/configuration_guide/qos/b_
166_qos_9400_cg/b_166_qos_9400_cg_chapter_01.html#concept_whp_jdb_
p1b Accessed: 2024-04-30.

[24] 2024. Virtual Private Cloud (VPC). https://www.alibabacloud.com/product/vpc
Accessed: 2024-04-30.

[25] Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,
Philip A. Bernstein, Michael J. Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai
Doan, Michael J. Franklin, Johannes Gehrke, Laura M. Haas, Alon Y. Halevy,
Joseph M. Hellerstein, Yannis E. Ioannidis, H. V. Jagadish, Donald Kossmann,
Samuel Madden, Sharad Mehrotra, Tova Milo, Jeffrey F. Naughton, Raghu Ra-
makrishnan, Volker Markl, Christopher Olston, Beng Chin Ooi, Christopher
Ré, Dan Suciu, Michael Stonebraker, Todd Walter, and Jennifer Widom. 2016.
The Beckman report on database research. Commun. ACM 59, 2 (2016), 92–99.
https://doi.org/10.1145/2845915

[26] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. 2010. Hedera: dynamic flow scheduling for data
center networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (San Jose, California) (NSDI’10). USENIX
Association, USA, 19.

[27] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. 1991. Hard Real-Time
Scheduling: The Deadline-Monotonic Approach. IFAC Proceedings Volumes 24, 2
(1991), 127–132.

[28] Dennis Butterstein, Daniel Martin, Knut Stolze, Felix Beier, Jia Zhong, and
Lingyun Wang. 2020. Replication at the speed of change: a fast, scalable replica-
tion solution for near real-time HTAP processing. Proc. VLDB Endow. 13, 12 (aug
2020), 3245–3257. https://doi.org/10.14778/3415478.3415548

[29] Jon Crowcroft and Philippe Oechslin. 1998. Differentiated end-to-end Inter-
net services using a weighted proportional fair sharing TCP. ACM SIGCOMM
Computer Communication Review 28, 3 (1998), 53–69.

[30] Jeffrey Helt, Abhinav Sharma, Daniel J. Abadi, Wyatt Lloyd, and Jose M. Faleiro.
2022. C5: Cloned Concurrency Control That Always Keeps Up. Proc. VLDB
Endow. 16, 1 (2022), 1–14. https://doi.org/10.14778/3561261.3561262

[31] Chuntao Hong, Dong Zhou, Mao Yang, Carbo Kuo, Lintao Zhang, and Lidong
Zhou. 2013. KuaFu: Closing the parallelism gap in database replication. In ICDE
2013, Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.).
IEEE Computer Society, 1186–1195. https://doi.org/10.1109/ICDE.2013.6544908

[32] IBM. [n.d.]. Change-capture replication and full-refresh copying.
https://www.ibm.com/docs/en/idr/10.2.1?topic=tables-change-capture-
replication-full-refresh-copying Accessed: 2024-04-30.

[33] Srinivasan Keshav and S Kesahv. 1997. An engineering approach to computer
networking: ATM networks, the Internet, and the telephone network. Vol. 116.
Addison-Wesley Reading.

[34] Feifei Li. 2019. Cloud-native database systems at Alibaba: opportunities and
challenges. Proc. VLDB Endow. 12, 12 (aug 2019), 2263–2272. https://doi.org/10.
14778/3352063.3352141

[35] Ji You Li, Jiachi Zhang, Wenchao Zhou, Yuhang Liu, Shuai Zhang, Zhuoming
Xue, Ding Xu, Hua Fan, Fangyuan Zhou, and Feifei Li. 2023. Eigen: End-to-End
Resource Optimization for Large-Scale Databases on the Cloud. Proc. VLDB
Endow. 16, 12 (aug 2023), 3795–3807. https://doi.org/10.14778/3611540.3611565

[36] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Yonggang Wen, and Zhu Han.
2017. Resource Management in Cloud Networking Using Economic Analysis and
Pricing Models: A Survey. IEEE Commun. Surv. Tutorials 19, 2 (2017), 954–1001.
https://doi.org/10.1109/COMST.2017.2647981

[37] Riad Mokadem and Abdelkader Hameurlain. 2020. A data replication strategy
with tenant performance and provider economic profit guarantees in Cloud data
centers. Journal of Systems and Software 159 (2020). https://doi.org/10.1016/J.
JSS.2019.110447

[38] Jorge Nocedal and Stephen J Wright. 2006. Quadratic programming. Numerical
optimization (2006), 448–492.

[39] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu,
and Ajay Kalhan. 2022. Moneyball: Proactive Auto-Scaling in Microsoft Azure
SQL Database Serverless. Proc. VLDB Endow. 15, 6 (feb 2022), 1279–1287. https:
//doi.org/10.14778/3514061.3514073

[40] Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman, Bhaskar
Ghosh, Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Auradkar, Chris
Beaver, Gregory Brandt, Mihir Gandhi, Kishore Gopalakrishna, Wai Ip, Swaroop
Jagadish, Shi Lu, Alexander Pachev, Aditya Ramesh, Abraham Sebastian, Rupa
Shanbhag, Subbu Subramaniam, Yun Sun, Sajid Topiwala, Cuong Tran, Jemiah
Westerman, and David Zhang. 2013. On brewing fresh espresso: LinkedIn’s
distributed data serving platform. In SIGMOD 2013. ACM, 1135–1146. https:
//doi.org/10.1145/2463676.2465298

[41] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal: Contention
Management with Deterministic Concurrency Control. In SOSP 2021, Robbert
van Renesse and Nickolai Zeldovich (Eds.). ACM, 180–194. https://doi.org/10.
1145/3477132.3483591

[42] Dai Qin, Ashvin Goel, and Angela Demke Brown. 2017. Scalable Replay-Based
Replication For Fast Databases. Proc. VLDB Endow. 10, 13 (2017), 2025–2036.
https://doi.org/10.14778/3151106.3151107

[43] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. 1990. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE Trans. Comput. 39,
9 (1990), 1175–1185.

[44] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon
Chan. 2023. Network Load Balancing with In-network Reordering Support for
RDMA. In Proceedings of the ACM SIGCOMM 2023 Conference. 816–831.

[45] Flávio R. C. Sousa and Javam C. Machado. 2012. Towards Elastic Multi-
tenant Database Replication with Quality of Service. In IEEE Fifth International
Conference on Utility and Cloud Computing. IEEE Computer Society, 168–175.
https://doi.org/10.1109/UCC.2012.36

[46] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-Store:
An Elastic Database System with Predictive Provisioning. In Proceedings of the
2018 International Conference on Management of Data (Houston, TX, USA) (SIG-
MOD ’18). Association for Computing Machinery, New York, NY, USA, 205–219.
https://doi.org/10.1145/3183713.3190650

[47] Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen,
Matthias J. Sax, John Roesler, Sophie Blee-Goldman, Bruno Cadonna, Apurva
Mehta, Varun Madan, and Jun Rao. 2021. Consistency and Completeness: Re-
thinking Distributed Stream Processing in Apache Kafka. In SIGMOD 2021. ACM,
2602–2613. https://doi.org/10.1145/3448016.3457556

[48] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai.
2019. AnalyticDB: real-time OLAP database system at Alibaba cloud. Proc. VLDB
Endow. 12, 12 (aug 2019), 2059–2070. https://doi.org/10.14778/3352063.3352124

4013

https://www.alibabacloud.com/en/product/databases
https://www.alibabacloud.com/en/product/databases
https://aws.amazon.com/dms/
https://azure.microsoft.com/products/database-migration
https://azure.microsoft.com/products/database-migration
https://www.alibabacloud.com/product/cen
https://www.alibabacloud.com/product/cen
https://www.alibabacloud.com/help/en/database-gateway
https://www.alibabacloud.com/help/en/database-gateway
https://db-engines.com/en/ranking
https://www.alibabacloud.com/product/express-connect
https://www.alibabacloud.com/product/express-connect
https://www.fivetran.com/
https://cloud.google.com/database-migration
https://cloud.google.com/database-migration
https://www.informatica.com/
https://www.alibabacloud.com/help/en/express-connect/user-guide/locations-of-access-points
https://www.alibabacloud.com/help/en/express-connect/user-guide/locations-of-access-points
https://dev.mysql.com/doc/mysql-replication-excerpt/5.7/en/
https://dev.mysql.com/doc/mysql-replication-excerpt/5.7/en/
https://www.oracle.com/integration/goldengate/
https://www.qlik.com/
https://github.com/akopytov/sysbench
https://www.alibabacloud.com/help/en/vpc/user-guide/vpcs-and-vswitchs/
https://www.alibabacloud.com/help/en/vpc/user-guide/vpcs-and-vswitchs/
https://www.alibabacloud.com/help/en/nat-gateway/user-guide/what-is-a-vpc-nat-gateway
https://www.alibabacloud.com/help/en/nat-gateway/user-guide/what-is-a-vpc-nat-gateway
https://www.integrate.io/blog/aws-dms-challenges-solutions-guide/
https://www.integrate.io/blog/aws-dms-challenges-solutions-guide/
https://www.alibabacloud.com/help/en/ecs/user-guide/classic-network
https://www.alibabacloud.com/help/en/ecs/user-guide/classic-network
https://www.alibabacloud.com/en/product/data-transmission-service
https://www.alibabacloud.com/help/en/dts/developer-reference/reserve-parameter-description
https://www.alibabacloud.com/help/en/dts/developer-reference/reserve-parameter-description
https://wiki.postgresql.org/wiki/Parallel_Recovery
https://wiki.postgresql.org/wiki/Parallel_Recovery
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9400/software/release/16-6/configuration_guide/qos/b_166_qos_9400_cg/b_166_qos_9400_cg_chapter_01.html#concept_whp_jdb_p1b
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9400/software/release/16-6/configuration_guide/qos/b_166_qos_9400_cg/b_166_qos_9400_cg_chapter_01.html#concept_whp_jdb_p1b
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9400/software/release/16-6/configuration_guide/qos/b_166_qos_9400_cg/b_166_qos_9400_cg_chapter_01.html#concept_whp_jdb_p1b
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9400/software/release/16-6/configuration_guide/qos/b_166_qos_9400_cg/b_166_qos_9400_cg_chapter_01.html#concept_whp_jdb_p1b
https://www.alibabacloud.com/product/vpc
https://doi.org/10.1145/2845915
https://doi.org/10.14778/3415478.3415548
https://doi.org/10.14778/3561261.3561262
https://doi.org/10.1109/ICDE.2013.6544908
https://www.ibm.com/docs/en/idr/10.2.1?topic=tables-change-capture-replication-full-refresh-copying
https://www.ibm.com/docs/en/idr/10.2.1?topic=tables-change-capture-replication-full-refresh-copying
https://doi.org/10.14778/3352063.3352141
https://doi.org/10.14778/3352063.3352141
https://doi.org/10.14778/3611540.3611565
https://doi.org/10.1109/COMST.2017.2647981
https://doi.org/10.1016/J.JSS.2019.110447
https://doi.org/10.1016/J.JSS.2019.110447
https://doi.org/10.14778/3514061.3514073
https://doi.org/10.14778/3514061.3514073
https://doi.org/10.1145/2463676.2465298
https://doi.org/10.1145/2463676.2465298
https://doi.org/10.1145/3477132.3483591
https://doi.org/10.1145/3477132.3483591
https://doi.org/10.14778/3151106.3151107
https://doi.org/10.1109/UCC.2012.36
https://doi.org/10.1145/3183713.3190650
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.14778/3352063.3352124

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Transmission
	2.2 Challenges

	3 System
	3.1 Architecture
	3.2 Network Connectivity
	3.3 A2A Model

	4 Resource Schedule
	4.1 Bandwidth Allocation
	4.2 DTS Serverless

	5 Sink Optimization
	5.1 Transaction Scheduler
	5.2 Dependency Tracker
	5.3 Parallel Executor
	5.4 Hotspot Consolidation

	6 Evaluation
	6.1 Micro-Benchmark
	6.2 Simulation on Network Trace
	6.3 Production Case Studies

	7 Related Work
	8 Summary
	References

