Transparent Migration from Datastore to Firestore

Ed Davisson Tilo Dickopp David Gay
Google, Inc. Google, Inc. Google, Inc.
eddavisson@google.com tdickopp@google.com dgay@google.com
Eric Karasuda Ram Kesavan Vadim Yushprakh
Google, Inc. Google, Inc. Google, Inc.

karasuda@google.com

ABSTRACT

Datastore was one of Google’s first cloud databases, launched ini-
tially as part of App Engine, and built over Google’s internal Mega-
store database system. Firestore was launched in 2019, both a re-
implementation of Datastore over Google’s Spanner database sys-
tem and a new, mobile and web-friendly Firestore APL Spanner was
chosen as the storage engine of Firestore in particular for technical
reasons—it provides unrestricted transaction capabilities, strong
consistency guarantees, and other improvements over Megastore.

To provide these improvements to all our customers, and simplify
our overall system, a non-disruptive, zero-downtime migration was
executed of all Datastore databases (stored in Megastore) to Fire-
store databases (stored in Spanner). This migration took a couple
of years to design and plan, and about three to execute. This paper
describes both the core engine for migrating databases, and various
practical problems that were solved to make this journey successful.
As of the writing of this paper, all (over one million) databases have
been successfully migrated.

PVLDB Reference Format:

Ed Davisson, Tilo Dickopp, David Gay, Eric Karasuda, Ram Kesavan,

and Vadim Yushprakh. Transparent Migration from Datastore to Firestore.
PVLDB, 17(12): 3960 - 3972, 2024.

doi:10.14778/3685800.3685819

1 INTRODUCTION

Datastore launched in 2008 as the database for Google’s early
platform-as-a-service App Engine [34]. Megastore [4] was used
as Datastore’s storage layer. A cloud APL, “Cloud Datastore” was
added in 2013, making the Datastore service accessible to the entire
Google cloud platform. Firestore launched in 2019, combining a
newer implementation of the Datastore API with a new mobile and
web-friendly Firestore API [18], but used Spanner [10] as its stor-
age layer. The two (Datastore and Firestore) APIs share a common
data model and can access the same underlying data; they are also
priced identically. However, the new implementation of the Datas-
tore API brought two notable improvements: strong consistency
for all queries, and unrestricted transactions.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685819

ram.kesavan@gmail.com

3960

vadimy@google.com

Two strong reasons compelled us to migrate Datastore databases
on Megastore to Firestore on Spanner: the improvements noted
clearly make the new (Firestore’s) re-implementation of the Datas-
tore API better than the original, and maintaining and improving
two implementations was not practical in the long term, especially
as Megastore is now legacy technology (neither maintained nor
improved). The design and planning took a couple of years, with
migration of customer databases starting in 2021. At that point,
Datastore had over a million databases, as well as significant stor-
age and QPS.

To ensure the success of this migration, we followed a few prin-
ciples: (1) Data integrity is preserved during and after migration. (2)
Migration causes no downtime or disruption to customer traffic dur-
ing and after migration—a zero-downtime migration was promised
when Firestore was launched [24], and is a vital requirement for
our larger customers as downtime can negatively affect their rev-
enue and reputation. (3) No customer database is left behind. (4)
We communicate to the customer about their migration, and they
must explicitly permit any performance or behavioral regression.
(5) The migration is automatic; the customer does not need to take
any action. The alternative of a self-administered migration would
burden customers, create a substantial communication and support
cost, and fail to ensure that no customer database is left behind.

We make the following contributions in this paper:

e We describe the key building blocks of MegaMover, the core
engine used for the safe and non-disruptive migration of
large amounts of data and customer traffic. We show how
the migrated data is validated to ensure data integrity.

We discuss the performance of the Datastore and Firestore
storage layers, in particular the differences that follow from
different concurrency models, to predict regressions that
may impact a customer application.

We discuss the changes made to Firestore’s concurrency
control mechanisms in response to performance analysis.
These changes move Firestore from being “clearly better”
than Datastore to always better (for all customers).

We present practical topics and insights: the ordering of
databases for migration, the automation needed, testing tech-
niques and infrastructure, and the capability to stop and undo
migration, which is critical given our inability to predict all
problem scenarios a priori.

Although live migration of databases is not a new problem, we be-
lieve it has rarely been attempted at this scale (number of databases,
total QPS and storage). Our goal in writing this paper is to share our
learnings with practitioners who are migrating or attempting to

https://doi.org/10.14778/3685800.3685819
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685819

migrate one or more layers underneath a large number of databases
without disrupting existing applications. An extended version of
this paper [11] includes additional details, especially in the area of
performance.

2 BACKGROUND

Datastore offered a highly available, durable, and schemaless NoSQL
database that easily scaled to handle applications’ load by automat-
ically sharding and replicating the data. Millions of Datastore (and
now Firestore) databases have since been created by customers,
including the server side of a popular social media app with many
millions of users and a popular billion-dollar mobile game.

Data in a Datastore database is organized as a hierarchy of
schemaless entities. Each entity has a unique key and named prop-
erties with values from a rich type set—integers, strings, dates,
booleans, maps, etc. A key is a path-like list of kind (a string) and
identifier (a string or 64-bit integer) pairs. For example:

/users/752/rooms/den: // key
"size": 100, // integer property
"furniture": // map property
{ "desk": true, "bed": false, "chair": true }

is an entity with two properties and a key with two pairs. The first
one has kind "users" and identifier "752". The last kind in this list
is the entity’s kind ("rooms" in this example), which behaves akin
to a database table in Datastore queries. For example,

SELECT * FROM rooms ORDER BY size

returns all entities from the "rooms" kind ordered by ascending
value of their "size" property.

The keys of entities constitute an implicit hierarchy: the entity
with key /users/752/rooms/dens is a child of the one with key
/users/752; the latter is the parent. All entities that share the same
first (kind, identifier) pair belong to the same entity group. For
example, the following four entities all belong to the (users, 752)
entity group: /users/752, /users/752/rooms/den, /users/752/
rooms/kitchen, and /users/752/backups/A/slice/23.

The Datastore API provides capabilities to read and write enti-
ties, ACID transactions, and a simple SQL-like query engine with
indexes for efficient querying. By default, a Datastore database
maintains built-in indexes for each property of each entity kind.
Additionally, the customer can configure composite indexes across
multiple properties.

Datastore was built on Megastore, which used Paxos [28] to
synchronously replicate entity groups for high availability; each
replica was hosted in Bigtable [8]. Megastore, and hence Datas-
tore, provided full ACID semantics within each entity group but
no consistency guarantees across them. Furthermore, each entity
group had a limited maximum write rate (on the order of a few
writes per second), forcing application developers to split their data
across many entity groups, and then have to resort to eventually
consistent queries to access this data. These consistency limita-
tions significantly complicated application—and in particular, data
model—development. As a mitigation, Datastore also supported
transactions that straddle up to 25 entity groups [16]. The migra-
tion of these databases to Firestore (built over Spanner) results in the

3961

Customer Code MegaMover
w/ Datastore SDK Orchestrator
Frontend %atastore API Metadata System
FN
Backend
v
Storage Layer Selection
v v v
Megastore Migration Spanner
v v v v
Megastore Client Spanner Client
I I I
| | |
v v v
. Replication
Coordinator Spanner Server
Server
v
Bigtable W
Megastore Spanner

Figure 1: Migration-specific components in the Firestore ar-
chitecture.

complete removal of these write rate and consistency limitations,
which is very attractive to our customers.

3 ARCHITECTURE

In this section, we present the overall architecture of Firestore
during migration.

3.1

An earlier paper [27] presented the overall Firestore architecture
with Spanner as its storage layer. Firestore subsumed the existing
Datastore service, adding support for the new API and a Spanner-
backed storage layer. Firestore is a service hosted in many geograph-
ical locations—Figure 1 shows the architecture diagram of Firestore
within each location. It includes the legacy components for the
Megastore-backed storage layer, but omits components that do not
relate to migration. The customer’s application code runs on some
platform, such as Google Compute Engine, and communicates with
Firestore via the Datastore API. Each rectangle—Frontend, Meta-
data System, Backend, Coordinator, Replication Server, Spanner
Server—comprises up to several thousand tasks. Because the Fire-
store architecture is multi-tenant, a given task may receive and
process traffic for any customer database.

Datastore API requests get routed to the Frontend tasks in the re-
gion where the database is located, and subsequently to the Backend
tasks that translate them into requests to the underlying per-region
Spanner or Megastore storage layer. The Backend communicates
with Megastore or Spanner via its respective linked library, but the
architecture of the underlying implementations differ. The Spanner
client communicates with one or more Spanner Server tasks that

Migration-Related Components

manage the complexity associated with distributed storage, e.g. co-
ordinating replication via Paxos. Conversely, the Megastore library
accesses the underlying Bigtables directly, in addition to commu-
nicating with two support services: the Replication Server, which
handles per-replica aspects of Megastore’s Paxos implementation,
and the Coordinator, which is an in-memory per-replica cache of
the Paxos replication state.

The MegaMover Orchestrator updates Firestore’s metadata to
shepherd databases through the various migration states. The mi-
gration state of a given database determines how traffic for that
database is routed among the Megastore, Spanner, or migration-
specific implementations. Before migration, traffic goes via the
(original) Megastore-backed implementation. Once migration for a
database starts, traffic is handled by a second, migration-specific
implementation. Depending on migration state, some reads may go
to Megastore while the others for the same database go to Spanner.
Similarly, writes may go to one of Megastore or Spanner, or during
some states of migration writes may be attempted on Megastore
but retried on Spanner. Once a database has completed migration,
all its traffic goes to only Spanner. Section 4 and Table 1 provide
further detail on routing of reads and writes.

As is typical in a distributed system, each Backend task transi-
tions a given database to its latest migration state when it discovers
that change from the Metadata System. In other words, traffic to
a specific database gets rerouted gradually as each Backend task
detects state transitions.

3.2 Storage Layout, Reads, and Writes

This section presents the data format in each underlying storage
layer. Firestore inherited Datastore’s regional and multi-regional
configurations—a regional configuration includes replicas in multi-
ple zones [22] and a multi-regional configuration includes replicas
in multiple zones within those regions. All the Firestore (Datastore)
databases in a given region or multi-region are stored in a single
Spanner (Megastore) alloc (instance), with each alloc (instance) de-
termining the set of replicas. Although not exactly identical, in
practical terms the location of replicas in each Spanner alloc and
Megastore instance is the same. This not only preserves network
distance and latency for applications for accessing their data post-
migration but also minimizes the network latency for the actual
migration of data from Megastore to Spanner.

3.2.1 Storage Layout. Both Megastore (via Bigtable) and Spanner
use sharding to split or merge an instance’s rows into tablets which
are then assigned to individual servers, for sharing and balancing
load. Each tablet contains consecutive ranges of the instance’s
keyed rows; consequently, key ordering is important for locality and
overall performance. Thus, to preserve Datastore’s performance
profile after migration, both implementations must keep essentially
the same storage layout and key order.

In both systems, an underlying Entities table in the Spanner
alloc or Megastore instance stores payloads of entities keyed by
(in order): a database identifier and the entity’s key. As a result,
all entities for a particular Datastore database are contiguous in
both Spanner and Megastore, and all entities within a particular
entity group, which share a common (kind, identifier) prefix, are
also contiguous, and so on.

3962

TABLE EntityGroups (Megastore only)
& db_id | & entity_group log
homes (users, 752)
TABLE Entities
& db_id | R entity_group | & path kind
homes (users, 752) /users/752 users
homes (users, 752) /users/752/rooms/den rooms
homes (users, 752) /users/752/rooms/kitchen | rooms
TABLE Indexes
& db_id & index & value | key to TABLE Entities
homes "size" on rooms 100 /users/752/rooms/den
homes "size" on rooms 200 /users/752/rooms/kitchen

Figure 2: Example storage layout.

Also in both systems, an index entry maps to an individual row
in an Indexes table in Spanner or in the Bigtables underlying Mega-
store. This index row is keyed by (in order): a database identifier,
an index identifier, indexed values, and the indexed entity’s key.
Similar to entities, all index entries for a particular Datastore data-
base are contiguous in Spanner and Megastore. Within a particular
index, entries are ordered by indexed values, as required for the
index table scans which support query execution.

Spanner and Megastore rows support multiversion concurrency
control by allowing each row to contain the values of all recent
writes at their associated timestamp; a background garbage collec-
tion process removes obsolete data older than a selectable threshold
(minutes to hours).

In Megastore, each entity group contains an ordered write-ahead
log [37], usually stored in a single row. As discussed in Section 6,
we added an optional entity group simulation feature to our Spanner
layout for applications that depend on Megastore’s entity group-
based contention behavior.

Figure 2 shows the storage layout for the three entities in the
example (users, 752) entity group from Section 2; we assume
they reside in a Datastore database with an ID "homes". Figure 2
also shows the entries for the built-in index on property "size"
in kind "rooms". A SELECT * FROM rooms WHERE size > 90’
query would read these index entry rows to find matching entity
keys, which are then used to fetch the corresponding rows from
the Entities table. For Megastore, all mutations to entities in the
(users, 752) entity group are appended to its write-ahead log.

3.2.2 Writes. Both Spanner and Megastore use Paxos to synchro-
nously replicate write-ahead log entries across replicas. For Megas-
tore, there is a Paxos instance per entity-group, and for Spanner,
tablets are automatically assembled into Paxos groups. In both sys-
tems, the Datastore write transactions can span multiple Paxos
groups using 2-phase-commit.

Transactions in Spanner are fully ACID and the write-ahead log
entries used in the underlying implementation are invisible to Span-
ner users. In particular, the effects of a given write are guaranteed
to be visible when the transaction finishes committing. This is not
the case in Megastore: although Megastore transactions complete
once the log has been replicated, the application of the log entry,
which involves adding, removing or updating the Bigtable rows for

entities and index entries at the transaction’s write timestamp, hap-
pens asynchronously. This application happens independently on
each Bigtable replica and may be triggered in one of several ways:
(1) by the client that initiated the write (typically as an asynchro-
nous operation) (2) by a client performing a strongly-consistent
read or write on the entity group (3) by a background process that
periodically applies any unapplied writes.

3.2.3 Reads. We use the term “read” to mean both a lookup of an
entity by its key and a query that returns zero or more entities.
Reads on Spanner are by default strongly consistent, but can also be
requested from a recent timestamp within the hour-long window
preserved by the garbage collector. In the rest of the paper, we use
the term strong read to mean strongly consistent read.

Strong reads on Megastore are scoped to a single entity group.
These are implemented by catching-up one replica by applying all
of its log entries, then reading the data at the write timestamp of
the last log entry. Eventual reads can read from any replica at the
current time, and as a result may be missing recent (not yet applied)
writes or see the effects of partially-applied log entries, etc.

3.2.4 Safe Time. Datastore maintains a Safe Time microservice
that returns, for a given Megastore replica and key range, a safe time
tsafe value, which represents a maximum (conservative) timestamp
at which that key range in that replica is up to date. This service is
not responsible for advancing safe time, only tracking it; safe time
advances as a result of logs being applied, as described earlier.
Knowing a safe time for the key range of the entities of a cus-
tomer’s database (which spans many entity groups, so cannot be
queried with strong reads) allows us to select and use a timestamp
to copy those entities to Spanner without risk of missing any writes.

4 MEGAMOVER

MegaMover is responsible for creating and maintaining a continu-
ously-updated version of the Megastore-resident data in Spanner
and for managing the gradual redirection of traffic to the Spanner
version. A move container (aka container) is a subset of data within
a Megastore instance that migrates as a single unit and is defined by
a set of key ranges. A container can include anywhere from one to
thousands of customer Datastore databases; Section 7.2.2 discusses
how databases are picked and assigned to containers.

Each container progresses independently through a sequence of
states (Table 1), starting with all traffic and data in Megastore, and
ending with all traffic and data in Spanner. The current state for
a container and its Datastore databases is stored in the Metadata
System, and used to decide how to handle incoming read and write
operations. As it is not possible to atomically transition the whole
system between states, we enforce that all actors in the system are
in no more than two states, and those states must be adjacent. We
carefully design the behavior of each state so that correctness is
maintained if an arbitrary number of other actors are in either the
prior state or the next, but not both of these at the same time.

There are three actors involved in MegaMover: Backends doing
reads and writes, Log Appliers applying Megastore log entries, and
in some states, Flume pipelines (batch jobs) [7]. Table 1 describes
how these actors behave in each state, and when the system can
transition to the next state (beyond the overarching requirement

3963

that all tasks reach one state before any can transition to the next
state). Operations on an entity group g rely on a catch-up operation,
described below, that ensures Spanner has an up-to-date copy of g.

These states can be grouped into two broad phases: copy and ver-
ification (states through verification) and traffic redirection (states
through final_sync). The correspondingly named sections below
provide additional details on the behavior of those states; finally,
we briefly discuss a cleanup phase that does not feature in this
table. But, we first look at how MegaMover extends Megastore’s
Log Applier system to copy live writes to Spanner.

4.1 Log Applier and Transfer Replicas

MegaMover reuses Megastore’s replication system to propagate
writes to Spanner. Each container designates a subset of the Megas-
tore instance’s replicas as transfer replicas. During the migration,
when a transfer replica’s Log Applier applies its per-entity group
write-ahead log entries to its Bigtable rows, it also writes to Span-
ner!. We use multiple transfer replicas for redundancy at a small
CPU cost; this allows the migration to continue even when a single
transfer replica is unavailable. The form of this transfer depends
on the migration state (as detailed below): early on, the log entry is
added to a per-entity group journal (stored in Spanner); once it is
safe to do so the log entry is applied directly to Spanner. Although
we do not present the exact Megastore and Spanner schemas in our
paper, the actual data representation in Spanner is substantially
different from in Megastore, so this process must also transform
the Megastore log entry into the corresponding Spanner mutation.
The catch-up operation ensures that all committed writes on
an entity group have propagated to Spanner. It is only used in
states where the journal is empty and implemented by performing
a strong read on a transfer replica (ignoring the result), thus causing
the Log Applier to replicate those committed writes to Spanner.

4.2 Copy And Verification Phase

The copy and verification phase establishes a continuously-updated
copy of a container’s data in Spanner. This process has two parts:
copying the data that exists as of the start of the migration, and
applying the writes that occur after migration starts to Spanner.

After initial creation of the container, a copy timestamp (tcopy)
and a copy replica are chosen during the preparing_transfer state,
and added to the container configuration. This timestamp is chosen
several minutes in the future to give all actors sufficient time to
acknowledge it. If any actor does not acknowledge before that times-
tamp elapses, this step is repeated with a new copy timestamp; oth-
erwise, the container transitions to the journal_and_copy state.
Writes committed prior to the copy timestamp are propagated to
Spanner via a bulk copy Flume pipeline. Before initiating this bulk
copy, MegaMover polls the previously described Safe Time service
until £gafe > teopy on the copy replica for the container’s key ranges.
During the journal_and_copy state, Megastore garbage collection
is configured to preserve the latest version at or before tcopy so that
it is available for the bulk copy.

! Multiple tasks may attempt to apply the same log entry at the same time; these conflicts
are resolved by running the apply logic idempotently using a Spanner transaction.

Table 1: MegaMover States and Actor Behaviors

state next state when

eventual read

strong read of g | writeto g applierof [to g

on_megastore
preparing_transfer
journal_and_copy

copy timestamp selected

Flume pipeline copying data as of copy
timestamp to Spanner completes

Flume pipeline applying all journaled
logs completes

journal_or_apply

Flume pipeline comparing Spanner and
Megastore data succeeds

verification

to Megastore

idle

add [to g’s journal

if g’s journal is empty:
apply [to Spanner
otherwise:
add [to g’s journal

to Megastore to Megastore

Spanner has adjusted to load
Spanner has adjusted to load

redirect_eventual
redirect_strong

terminate_writes as soon as possible

final_sync all journaled logs applied

on_spanner

to Spanner

if g terminated:
to Spanner
otherwise:
to Megastore
catch-up g,
terminate g,
to Spanner
catch-up g,
to Spanner
to Spanner

apply [to Spanner

catch up g,
to Spanner

idle

to Spanner

Simultaneously, starting in the preparing_transfer state, the
Log Applier adds all Megastore writes to the per-entity group jour-
nal, as applying them to Spanner is not possible while the bulk copy
is in progress.

On completion of the bulk copy, the container transitions to the
journal_or_apply state. In this step, a bulk apply Flume pipeline
applies the log entries from all the Spanner journals, until all jour-
nals are empty. Also from this state on, the Log Applier applies log
entries directly to Spanner if the corresponding per entity group
journal is empty.

At this point, both Megastore and Spanner must have equivalent
copies of the container’s data, which we confirm in the verification
state using a data verification Flume pipeline. The job operates in
two passes. The first pass does a fast comparison of the container’s
data in Megastore and Spanner by computing a canonical finger-
print of each entity in each storage system, joining the fingerprints
by key, and emitting keys for which one fingerprint is missing or
the fingerprints do not match. Because the first pass operates over
an inconsistent view (just the most recently applied version of each
row) of the data in Megastore, it risks reporting false differences.

The second pass eliminates false positives using the following
algorithm on each entity flagged by the first pass. First, perform a
strong read of the entity on a transfer replica and note its version.
Performing this read on the transfer replica ensures that Spanner
is also caught up to this version. Second, read the latest version of
the entity from Spanner. Third, perform a second strong read of
the entity from Megastore and again note its version. If it matches
the version from the first read, then the entities from Spanner and
Megastore must match; otherwise, repeat the process.

If the comparison of one or more entities fails repeatedly, the fail-
ure details are logged, the migration of the corresponding database
is paused, and the engineering team root-causes the underlying
problem.

3964

4.3 Traffic Redirection Phase

With the Spanner copy now established and verified, the container
starts redirecting traffic. In redirect_eventual, eventually consis-
tent reads are redirected to Spanner. Then, in redirect_strong,
strong reads are also redirected to Spanner (reads within transac-
tions remain on Megastore). In both states, the reads are redirected
gradually using a geometric progression to allow Spanner’s load-
based tablet splitting sufficient time to adjust to the new traffic. The
initial redirection includes less than 500 QPS of read traffic; each sub-
sequent redirection occurs at least 5 minutes later and increases the
redirection fraction by approximately 50% [19]. Eventually consis-
tent reads are sent directly to Spanner without considering replica
freshness. For strong reads, a catch-up of the corresponding entity
group is first performed to ensure Spanner is up to date. Up until
this point of the migration, Megastore remains the source of truth
for that container, and a migration can be easily and quickly undone
by redirecting all reads back to Megastore and deleting the copy in
Spanner.

Next, the container transitions to the terminate_writes state
in which writes and transactional reads go directly to Spanner,
bypassing Megastore; this is the “point of no return"?. Just prior
to this transition, the data verification Flume pipeline runs again,
using a different Megastore replica than in the verification state
for its comparison to further harden our data integrity guarantee.

In terminate_writes, tasks must first explicitly terminate entity
groups in Megastore, and tasks that are still in the redirect_strong
state must detect terminated entity groups and also send their
writes and transactions to Spanner. Once all tasks have reached the
terminate_writes state, which typically happens within approxi-
mately 5 minutes, the container transitions to the final_sync state,
in which the termination of entity groups is no longer required.
There may still be unapplied log entries in Megastore which are
copied to Spanner during final_sync. Only once Megastore’s safe

%In reality, it’s the “point of no easy return”; Section 7.4 discusses this in more detail.

time for the container has advanced past the timestamp of entry
to final_sync (implying that no unapplied log entries remain) can
we transition to the on_spanner state in which the migration is
essentially complete.

Entity group termination causes extra complexity in the im-
plementation of multi-entity group Datastore transactions in the
redirect_strong state: they may start a transaction on Megastore
on a non-terminated entity group, then find that another entity
group in the transaction is terminated. In this case, the transaction
must be aborted so the client can retry it. In practice, transactions
aborting due to conflicting redirects are limited to the short termi-
nate_writes window and have not caused noticeable disruptions
to any workloads.

4.4 Cleanup or Undoing Migration

All direct writes to Spanner (starting from when the container
switches to terminate_writes) are applied asynchronously back
to Megastore, for a period of several weeks. This is done specifically
to help during undoing migration; more on this in Section 7.4.
Once this period ends, the container’s data is fully deleted from
Megastore.

5 PERFORMANCE: MEGASTORE VS
SPANNER

Applications accessing the database must not experience unaccept-
able performance regression during or after the migration; this
section presents how we handled this requirement. We look at read
(lookup and query) and write operations, and their interaction with
indexes. We defer discussion of transactions to Section 6.

Based on our understanding and analysis of Megastore and Span-
ner, many potential performance concerns were considered early
in the project, and confirmed or rejected using synthetic tests. First,
we used microbenchmarks to characterize the relative performance
of the two storage layers; the inputs to these tests were based on
known concerns from the engineering team. Second, we built a mir-
roring infrastructure described in Section 7.3.2 to run exploratory
performance evaluations on several medium-sized customer and
test databases. The traffic to those databases was mirrored to Span-
ner to provide a more accurate view of potential performance differ-
ences. Third, when analysis of logs or other telemetry suggested a
specific database would likely experience performance degradation
based on a particular traffic pattern (e.g. write rate to a particular
kind exceeding a threshold established by a synthetic test), we used
this same mirroring infrastructure to verify the suspicion.

Additionally, for databases above a certain size and traffic, we mi-
grated a customer’s pre-production databases (identified through a
combination of heuristics and direct outreach) before their produc-
tion databases. Each such migration was also allowed to progress
only slowly. This provided the customer sufficient opportunity to
study their application performance and inform us if they saw any-
thing of concern. During these "soaks" we inspected our monitoring
dashboards for egregious performance problems. Given the wide
surface area of the Datastore API and the wide range of applications
accessing them, it was not always possible to accurately tell when
a performance regression (seen on the dashboard) was of import to
the application; customer outreach was sometimes necessary.

3965

5.1 Indexes

Two traffic patterns were identified during early investigation as
candidates for causing performance issues with indexes: writes
with high index fanout and index lasering.

5.1.1 Index Fanout. As described earlier: (1) mutation of an entity
requires updating all index entries for the mutated properties in
that entity and (2) the synchronous part of the write to Megastore
updates only the write-ahead log, with entities and index entries
updated asynchronously afterwards. Thus, the user-visible latency
of a write to Megastore is largely unaffected by the number of index
entries updated. However, in the case of a write to Spanner, all
entities and index entries are updated synchronously, and therefore
the latency of a write is at least as high as the latency of the slowest
index update; depending on the size of and traffic to the database,
these index entries may reside in few or many tablets. Therefore,
writes that mutate large numbers of indexed properties (aka high
index fanout) may experience increased latency post-migration due
to increased variance.

Although microbenchmarks hinted at potential slowdown for
writes that update more than 10 indexed properties, we found most
migrated databases saw improved write latency in the aggregate.
We mitigated the risk of unacceptable performance degradation
by doing a synchronous, best-effort apply of Megastore writes
during migration. This ensured the customer would experience
the potential increase in write latency prior to the "point of no
return”. No customer reported this performance regression, and
therefore no indexes had to be disabled or deleted. Furthermore,
our monitoring did not show this problem in migrated databases.

5.1.2 Index Lasering. Index lasering is a traffic pattern in which
monotonically increasing or decreasing values are written at a high
rate to an index. For example, lasering can be caused by a data
model where the creation timestamp of each entity is recorded as
an indexed property. In that case, updates to that property’s index
always contain a new, never-seen-before value and those updates
form a write “hotspot” in the index key-space range. Because the
hotspot moves sequentially through a previously empty index key
space, the load cannot be effectively split across multiple servers
in a range-sharded system. When the aggregate rate of insertions
exceeds the capacity of the single server hosting the key range,
insertions slow down or even fail. This behavior is discouraged by
our best practices [17].

Index lasering is more problematic with Spanner because all
index entry updates are committed synchronously. In Megastore,
index entries are updated asynchronously, so slowness or errors
when the index entries are updated mostly manifest to the user
as additional staleness in eventually consistent queries over the
lasered index.

Although lasering was investigated early in the project, our ini-
tial microbenchmarks did not stress the system enough to reproduce
the issue. It wasn’t until a customer database experienced perfor-
mance regressions due to lasering that we recognized its potential
impact.

First, we computed the per-kind write rate (a proxy for per-index
write rate) by parsing logs, and used this conservative heuristic to
identify databases with potential index lasering; the migrations of

these databases were deferred. Next, we used two approaches to
reduce the size of this set of databases: we improved the log-parsing
tool to compute the actual index entries written, and we extended
Firestore’s Key Visualizer [21] to provider coverage of index writes
in addition to entity writes. Finally, we used three mitigations to
unblock the migration of databases with confirmed lasering: (1) we
increased the resource—CPU and RAM—allocations for Spanner
servers to better handle hotspots, (2) we added a feature to the
Datastore API that lets customers disable specific single-property
indexes (built and maintained by default) that caused lasering and
weren’t being used, (3) we built a transparent index sharding system
(Section 8.2) to reduce the intensity of lasering.

5.2 Eventually Consistent Reads

By default, Datastore provided strong reads for lookups and a sub-
set of query types and eventually consistent reads otherwise. To
improve response latency, users could also explicitly opt into even-
tual consistency reads for lookups and all queries. Firestore initially
provided strong reads for all lookups and queries, even for the
explicitly eventually consistent ones. This represented a potential
latency regression for migrated databases.

Datastore provided no freshness guarantees for eventually con-
sistent reads, but the results were typically stale by at most a few
seconds. Spanner supports two methods of eventually consistent
reads: exact staleness and bounded staleness. Although the former
is the most performant, it could result in a noticeable change in
application behavior post-migration: instead of nearly-up-to-date
results in the typical case with occasional higher staleness, reads
would return consistently stale results. In particular, an eventually
consistent read immediately after a write would never yield the
latest data on Spanner. For lookups that explicitly opt into eventual
consistency, we therefore used bounded staleness with a small up-
per bound; thus, reads post-migration return data from a recent, but
not necessarily the latest, timestamp. Spanner does not currently
support bounded staleness for queries, so all queries remain strong.
The relative impact to latency is lower due to the (typically) higher
overall latency of queries.

6 CONCURRENCY

The Datastore API offers transactions with strict serializability
and external consistency [6] built on abstractions offered by the
underlying storage system, Megastore or Spanner. The semantics
of transactions in both implementations are identical, but non-
functional differences between Megastore and Spanner, especially
in the area of contention, can lead to problems for applications.
This section describes how we preserve contention behavior during
migration. We also offer the option of changing contention behavior
post-migration for potentially improved performance.

6.1 Transactions: Megastore vs Spanner

Megastore and Spanner’s concurrency control differs both in con-
tention granularity, and in the overall contention control mecha-
nism. Megastore’s contention control is optimistic [5]; as a result,
Datastore users could run long-running (usually) read-only trans-
actions without fear of blocking other read or write operations.

3966

Conversely, Spanner’s default (and initially only) contention con-
trol is pessimistic (using reader-writer locks). Thus a long-running
Firestore transaction would prevent concurrent writes. This con-
cern was identified very early in the project and motivated the
development of optimistic concurrency controls for both Spanner
and Firestore.

Megastore tracks contention at the granularity of the entity
group. Two concurrent write transactions contend if there is at
least one entity group that they both access. For instance, consider
the case where transaction A reads entity /users/752/rooms/den,
then transaction B commits changes to entity /users/752/rooms/
kitchen, after which transaction A tries to commit changes to the
entity it had read. A’s commit will fail even though there’s no actual
conflict because both transactions operate on the same entity group
(users, 752). Spanner’s contention control is fine-grained, either
with reader-writer locks (when using pessimistic concurrency con-
trol) or by tracking accessed key ranges and validating that these
key ranges have not changed from their time of access to the chosen
commit timestamp (when using optimistic concurrency control).

Some applications depend on the specific behaviors that follow
from Megastore’s approach to concurrency control. One example is
a customer who backs up data using a long-running (say, minutes
long) transaction that reads a large entity group in its entirety,
stores it on some external system, and then ends with a single write
and commit to detect if the entity group has changed during the
transaction (in which case the backup of this entity group is retried).
Such an implementation depends on the backup transaction not
impeding the main user-facing application, and on conflicts being
(very likely) resolved in favor of the user-facing application.

6.2 Transactions And Migration

One key benefit of migration to customers is the option to avoid
write bottlenecks associated with entity group atomicity. For this
reason, Firestore allows customers to choose one of three concur-
rency modes that best fits their use case: pessimistic concurrency,
optimistic concurrency, and a mode (described below) where the
entity group behavior is simulated to guarantee backwards com-
patibility.

Since transactions are optimistic for Datastore on Megastore, a
migrated database defaults to optimistic concurrency mode if anal-
ysis of request logs has shown that the workloads on the database
would not experience differences in contention behavior. Specifi-
cally, the analysis must show that no transaction (prior to migra-
tion) failed due to overlap with another transaction contending on
the same entity group but not the same entities. Otherwise, the
migrated database defaults to the entity group simulation mode.

6.2.1 Entity Group Simulation Concurrency Mode. The entity group
simulation concurrency mode uses a new Spanner EntityGroups
table with one row for each entity group that maintains a log_posi-
tion column. An entity group simulation transaction uses multiple
underlying optimistic Spanner transactions—one per participating
entity group—that include the corresponding EntityGroups row.
The "log position" of the Megastore write-ahead log is simulated
by storing a monotonically increasing number in the log_position
column. Thus, Spanner validates at commit time that this simu-
lated log position is unchanged from the time the entity group

was last read by the Datastore transaction, thereby guaranteeing
atomicity. Randomized testing was used to ensure Datastore on
Megastore concurrency and entity group simulation concurrency
behave identically.

No analysis can perfectly tell if a transaction that commits
with optimistic concurrency on Spanner but aborts on Megastore
changes a behavior the customer application has been relying on.
Therefore, customers are given control over their concurrency mode.
They can, for example, switch away from entity group simulation
to reduce contention, or switch to the conservative entity group
simulation mode.

7 TOPICS IN PRACTICE AND INSIGHTS

The scale and scope of this multi-year project required tackling
significant practical and operational problems. In this section, we
describe the important ones and draw insights that may be useful
to other practitioners.

7.1 Insights

Google has an established history of large scale live infrastructure
changes [29]. The effort described in this paper benefited from this
institutional experience, but several important differences set this
migration apart: (1) The migration was automatic, requiring no
action from the customer. This gave us substantial control over the
project timeline but meant we could not ask customers to make
changes to accommodate the migration; we had to identify and sup-
port all behaviors of the old system on which customers depended.
(2) There were few opportunities for interactive communication
with customers. Most customers received exactly one email notifica-
tion from us, and very few contacted us. It was sometimes difficult
to determine if any customers relied on a particular behavior of the
old system; when in doubt, we were forced to assume at least one
did. The remainder of this section explores the key insights from
the Firestore migration planning and execution.

No amount of design, forethought, and testing can guar-
antee against latent unknowns, and therefore a well-tested
capability to undo migration is a must-have fallback option.
A lightweight undo capability can enable informed risk tak-
ing. We built two mechanisms for undoing migrations: reversion
(see Section 7.4.1) and rollback (see Section 7.4.2). When reversion
is applied prior to read redirection states, the customer may be
fully unaware that part of the migration took place. Having this
lightweight, automated capability enabled us to defer development
of some pre-migration screening checks (see Section 7.2.3). When
a failure occurred during the verification state, we simply reverted
that database’s migration. Conversely, rollback was treated as a
process of last resort.

Analysis of pre- versus post-migration performance is
needed both in the aggregate and for specific customer
workloads, necessitating testing with standard benchmarks
as well as mirroring production traffic. The performance
characteristics of a new storage system may be well understood
prior to the start of a migration, however synthetic benchmarks
alone are insufficient for predicting the performance of real
customer workloads. Early in the development process we built
infrastructure to duplicate live production traffic (see Section 7.3.2).

3967

The practice of workload duplication for evaluating performance
has also proven invaluable for other large scale migrations [3].

Explicitly and exhaustively testing state transitions is a
useful tool for catching unforeseen corner cases. Large scale
live migrations involving distributed systems may involve a large
combinatorial number of states and actors. Nevertheless it is critical
to build comprehensive test infrastructure to catch issues in early
development and to improve developer productivity through easily
debuggable and reproducible tests. For the Firestore migration, ver-
sion skew testing (see Section 7.3) was indispensable for validating
that the distributed system behaved correctly as the configuration
state evolved. Comprehensive testing over data lifecycles relative
to discrete migration states caught subtle correctness issues and
race conditions (see Section 7.3.1).

Starting with "low-risk" migrations is a good strategy, but
should be balanced with the need for early discovery of un-
known problem scenarios. Performing migrations in strict order
of "complexity” may reduce the overall risk of failed migrations
(see Section 7.2.2), but it misses opportunities to get early insights
into upcoming challenges. Identifying customers that are willing to
accept slightly higher risk in exchange for early access to the new
system enables the development team to apply lessons learned well
in advance of the other migrations of similar complexity. Apart
from improving the experience for those subsequent customers,
this strategy can shorten the overall project timeline.

Large scale migration cannot be achieved without well-
oiled automation and tooling to divide the work into con-
figurable batches and orchestrate their progression. To avoid
unsustainable toil, any large scale migration requires early invest-
ments in automation, observability, and debuggability. To migrate
the 1M+ databases we built automation to classify, order, and group
databases into move containers (see Section 7.2.1). The team also set
up a dashboard to track the in-flight migrations across all locations.
Every migration state change was timestamped and tracked in an
internal per-database metadata system; this greatly simplified de-
bugging when the timing of events was important for root-causing
a problem. The Flume pipelines generated detailed logs and activ-
ity reports. The team also wrote and maintained comprehensive
playbooks for diagnosing and dealing with known issues.

Even in a transparent migration, customers want observ-
ability into the process. Customers recognize that there is risk
involved in a migration and want visibility into the process; provid-
ing detail builds trust. Timing of state changes is especially helpful
as it enables customers to rule out migration as a trigger for un-
related performance changes in their application. Each customer
received an automated email before migration with a link to docu-
mentation detailing the stages of migration [15] and a list of support
channels. The web-based administrative console displayed a ban-
ner while migration was in progress. Customers were also able to
receive logging-based updates on the state of their migration; these
could be used to generate customized notifications to a destination
of their choice. For some of the largest customers, a bidirectional
line of communication was opened via email; in all but this last case,
we could not assume that any of the notifications were actually
received or read.

Even in an automatic migration, customers want control
of the process. Customers appreciate having some level of control

over the migration process, especially around timing. We provided
several such limited channels. Customers above a certain size were
able to specify time periods during which migration should not
occur; they were able to use this to prevent migration during high-
risk periods such as calendar days with expected high traffic or
other production changes. Larger customers were also provided
with the ability to pause and resume their migration. This did not
enable them to revert a migration, but they could prevent it from
progressing to the next state. This was primarily to give them time
to rule migration out as a trigger for newly-observed (but unrelated)
performance issues. This feature did not see wide usage, but several
customers expressed appreciation at the existence of the feature.
Finally, for a few very large customers, we undertook "high touch"
migrations, in which we had a bidirectional line of communication
with the customer (usually email; occasionally video chat). This
provided the customer with even more precise control over timing
and deeper insight into the process. Even in this situation, we didn’t
require customer-driven application changes.

For long-running projects, setting intermediate mile-
stones and demonstrating incremental progress are impor-
tant both for internal stakeholders and for team morale.
We built internal dashboards that showed time series graphs of
the number of databases, total storage size, and QPS on both
the old and new storage systems. These numbers were reviewed
during internal weekly syncs along with the number of move
containers currently in flight. Monthly reports to stakeholders
highlighted these numbers and noted geographical locations in
which all databases had been migrated. The team also celebrated
many informal milestones, such as when QPS on the new system
exceeded QPS on the old system. In addition to assuring leadership
about the project timeline, these generated a feeling of momentum
and accomplishment for the migration team.

7.2 Deconstructing the Problem

Starting in early 2020, all newly-created Datastore databases were
backed by Spanner. This prevented the creation of any new data-
bases on Megastore, but not the growth of user traffic or storage
consumption of the existing databases. We had to migrate over
a million databases that spanned a very large spectrum of QPS,
storage size, and customer profiles. Significant automation and
tooling was necessary to minimize manual intervention.

7.2.1 Orchestration and Automation. We built an orchestration
mechanism to manage the migration workflow of each move con-
tainer; it allowed us to have multiple containers proceed indepen-
dently and concurrently through the workflow, and in multiple
regions. Additionally, we built automation to order and organize
databases into move containers, and then to dispatch each move
container into the migration workflow. Although the details of
these mechanisms are out of scope for this paper, we discuss here
the larger problem of how databases are picked for migration. The
choice is driven by multiple factors: the need to keep making steady
progress on migration, using early migrations to gain insights into
problem scenarios and customer needs, efficiently communicat-
ing these changes to customers, but above all minimizing risk to
customers.

3968

7.2.2 Database Ordering and Project Milestones. Datastore
databases exhibit a large spectrum of sizes, traffic patterns, and
feature use. Developers often create small ad-hoc databases for
testing, and leave them idle indefinitely. Such “cold” databases
are the simplest and least risky to migrate. Conversely, “hot”
databases use many features, receive high QPS, and are sensitive
to performance regressions, semantic changes, and increased
error rates. Enterprise customers often operate multiple databases
for different unrelated applications. We also observed that for
any given application, it is common to maintain one database
for development, one for testing, and one for production. In
some cases the naming of the databases betrays this relationship,
but conventions vary across our customers. Although it is
desirable to migrate the development and test databases before the
corresponding production databases to catch potential issues early,
it is not practical to solicit input from all customers for the optimal
ordering across their databases.

Our overall migration project was divided into milestones sorted
by the complexity of the migration. A periodic ordering workflow
parsed request logs to generate per-database information such as
bytes at rest, QPS, feature usage, concurrent access patterns, billing,
and other relevant statistics. The workflow mapped each database
to a specific named milestone, such as “Billable databases with less
than 10k QPS”, or “Databases requiring entity group serializability
with less than 500k QPS”. Based on the progress of our project, the
workflow was configured to admit only databases from milestones
that had been already achieved with respect to development work,
tooling capabilities, and rigorous testing. If databases from the same
customer become eligible for migration together, the workflow also
included naming heuristics; all things being equal, a database with
“test” or “dev” in the name would need to complete migration before
a similarly named database (with or without “prod” in its name).
The number of concurrent containers per milestone was also a
configurable parameter.

Milestones were determined well in advance of migrations to al-
low incremental progress. The scope of each milestone was defined
in terms of metrics such as peak database QPS, storage size, and
workload patterns. The first milestone was limited to "cold" (zero
activity in the last 28 days) databases. However, the machinery
was also developed and tested to handle a cold database suddenly
receiving traffic during its move. We then advanced to "minimal
scale" databases with a conservative QPS of < 0.1, minimizing the
possibility of contending transactions and allowing us to defer
the entity group simulation work (Section 6.2.1). Subsequent mile-
stones increased admissible throughput to 1k QPS, then 10k QPS,
and beyond. The experience with each milestone informed the de-
velopment of subsequent milestones. This methodology ensured
forward progress while allowing for incremental learning from
failed migrations.

7.2.3 Pre-Migration Screening. Automation sends communication
to each customer approximately one week in advance of the migra-
tion of any database, which gives them sufficient time to plan and/or
respond to us. Customers are sorted based on various criteria, and
the largest customers are given the choice to defer their migrations
and/or override the proposed ordering for their databases.

A container undergoes additional screening before entering the
migration workflow. Each entity in each database is validated by
converting it to the Spanner schema format, then back to the Mega-
store format, and then comparing it with the original entity; this
validation is also required to guarantee safe rollback (Section 7.4.2),
if needed. When the checks yielded failures for corner-case data
formats, they were handled in a subsequent milestone. If an en-
tity in a database fails a check, the database is removed from the
container and marked for deferral. In early migrations, such valida-
tion did not occur until the verification state; any failure would
pause the corresponding database’s migration and necessitate its
removal from the container. Subsequently, we replicated this vali-
dation as additional pre-migration screening, which allowed us to
learn about corner-case scenarios earlier and to inform customers
about migrations that needed to be delayed.

7.3 Testing and Validation

As expected, a strong emphasis on comprehensive testing has been
key to success of the project. We developed end-to-end tests to per-
form migrations in a hermetic test environment. The components
running in this test environment were instrumented to induce a
migration state skew—tasks of any given component move from
one migration state to the next at different times—mimicking the
real-world behavior of a distributed Firestore system. Tests single-
stepped through the migration state machine, performing database
operations and validation before, during, and after each state.

7.3.1 Migration States, Entities, and Transactions. The load genera-
tors ensured that in any given migration state, an entity could be
either created, updated, deleted, or not accessed. For example, there
would be at least one entity created in the on_megastore state,
and then updated during the journal_and_copy state. At least
one entity would be created in preparing_transfer, and deleted
in journal_and_apply, and so on. The tests exercised all possi-
ble lifecycle permutations. At various points in time, the entity is
validated against the expectations for its specific lifecycle and the
current migration state. If a particular entity fails the validation
checks the test automation freezes the entire testing environment,
and preserves the on-disk state for analysis. The failing entity’s key
captures its specific lifecycle, which greatly aids debugging. The
reversion and rollback scenarios (Section 7.4) were similarly tested.

We tested Datastore transactions in a similarly comprehensive
fashion. For every adjacent pair of migration states, there is at
least one test that initiates a Datastore transaction in the prior
state, and attempts to commit the transaction in the subsequent
state. Note that the lifetime of a Datastore transaction has an upper
limit [23], and that prevents a transaction from spanning more than
two adjacent migration states, thereby reducing the combinatorial
number of tests. The test matrix covered all possible meaningful
sequences of entity reads and writes occurring within a transaction.

7.3.2 Mirroring. Synthetic workloads cannot simulate every com-
bination of database operations, features, loads, and state of the
underlying storage system. Therefore, although crucial in evolving
our understanding of Spanner performance, and confirming or re-
jecting many of our designs, they are insufficient for understanding
the performance characteristics of real customer workloads.

3969

To address this gap, we developed infrastructure to selectively
forward live production traffic to a second set of “mirror” servers.
Much like the tee command in Unix-like systems, it forwards the
requests coming into a Firestore Backend on to a set of secondary
Mirror Backends. However, unlike tee, requests are duplicated on
only a best-effort basis; failures or delays in the mirrored requests
have zero impact on the customer production traffic.

The mirrored traffic enters a hermetic and ephemeral mirror
environment that is fully isolated from other production systems
except for a shared request log collection service. An on-demand
workflow stands up an instance of this environment, and then
enables traffic mirroring for the chosen set of databases. For a given
experiment, several hours of warm-up time is required to populate a
sufficiently large subset of the database. This is followed by several
days of performance monitoring via the request logs. To get a high
quality analysis, we require a large representative sample of request
types, and that a sufficiently large percentage of those requests were
processed on the mirror. At the completion of an experiment, the
environment is deleted, along with all the mirrored data.

The original and mirror logs contain unique identifiers that allow
individual requests to be matched one-to-one, allowing an apple-
to-apples comparison of operation latencies, error rates, and other
interesting metrics. The lack of true parity in the data sets and that
a small fraction of requests are not forwarded do not significantly
impact the quality of the resulting analyses. We made extensive
use of this infrastructure to gain insights into customer traffic well
before their scheduled migrations. The resultant analyses helped us
study, test and tune several aspects of performance, such as index
lasering, the performance of entity group simulation on Spanner,
and automatic sharded indexes. From these results, we identified
potential performance issues in databases belonging to important
customers so their migrations could be deferred until the issues
were mitigated or fixed.

7.4 Undoing Migration

We distinguish between a reversion, which is a zero-downtime back-
ward MegaMover state transition, and a rollback, which is a full
reverse migration after the normal migration to Spanner has com-
pleted. We designed reversion such that the migration of a subset
of databases in a move container can be undone even while the
rest of the container continues its migration. Conversely, rollback
executes on an individual database.

7.4.1 Reversion. Reversions are trivial in the copy and verification
phase—the migration can be terminated by stopping the transfer
and journaling of writes to Spanner. Since Megastore remains the
source of truth, there is no user-visible impact from aborting the
migration at this stage. In practice, such reversions took place if the
verification job identified data mismatches between Megastore and
Spanner after the copy was complete and the journal was drained.
Reversion is also possible in the read traffic redirection states
(redirect_eventual and redirect_strong) by following the above
procedure after first transitioning back to the journal_or_apply
state. In practice, a reversion at this point took place if the system
detected a performance regression in read latency on Spanner.

7.4.2 Rollback. After write traffic is redirected to Spanner, rever-
sion is no longer possible since the data in the two storage sys-
tems are no longer identical. To deal with this contingency, we
engineered rollback that undoes migration after this “point of no
return”. Crucially, rollback provides a safety net to handle latent
unknowns post migration.

Rollback may be needed from two distinct starting points: before
or after Cleanup. Because rollback is easier in the former—the source
data in Megastore is still available—we configure a multi-week delay
before Cleanup (see Section 4.4) to make the latter unlikely.

Before Cleanup: When MegaMover begins directing write traf-
fic to Spanner, we maintain a record of the Spanner-only writes
in a per-database Spanner queue. Rather than recording the entire
payload of each write, this TransferToMegastore queue records (in
the same transaction as the write) the key of any entity that has
been modified, inserted, or deleted, and the commit timestamp of
the last update. An asynchronous processor receives updates from
this queue, reads the latest state for the relevant entities from Span-
ner, and copies it back to Megastore. It batches updates by entity
group to optimize the Megastore writes. This process continues
during the multi-week period before Cleanup occurs. The following
steps execute a database rollback. First, disable write operations
(reads are still allowed). Second, drain the TransferToMegastore
queue—no writes means no entries are being added to the queue.
Third, redirect read traffic to Megastore. Fourth, enable writes once
the configuration state indicating Megastore as the new source of
truth has propagated to all actors. We found experimentally that
the queue remains nearly empty in steady state—the processor has
to transfer only the latest state of each entity back to Megastore,
making it possible to ignore intermediate updates within the batch.

After Cleanup: We also built a slower rollback for the unlikely
event in which a database has to return to Megastore after data
there has already been deleted. This procedure repeatedly copies
all data back with differential snapshots, and disables writes for
the last copy when the differences are sufficiently small. The write
downtime for this procedure is proportional to the update rate of
the migrating database; it was never required outside of testing.

8 EVALUATION

We first present some production data to convey the scale of this
project, and then discuss performance of sharded indexes.

8.1 Production Data

All (over one million) databases have been successfully migrated in
20 locations. The migrated databases covered a very large range of
storage size and QPS: among databases that exceeded 1 QPS, the
largest by storage was 800,000 times larger than the median; the
most active had 70,000 times more QPS than the median. At peak,
over 71,000 databases were migrating concurrently.

8.1.1 Concurrency Modes. As described earlier, automation selects
the appropriate concurrency mode based on usage statistics and
write patterns. Until optimistic concurrency was available in Span-
ner, we migrated only databases with less than 0.1 QPS of traffic
with pessimistic concurrency mode, which is the default for Fire-
store databases. The low traffic reduces the likelihood the lock

3970

contention that is more likely in this mode. This constituted 29.4%
of all databases migrated.

Once optimistic concurrency was available, all databases were
allowed to migrate, using either optimistic concurrency control
(69.8%) or entity group simulation (0.8%). These modes better match
the behavior of Megastore transactions: writers do not block readers,
conflicting writes fail on commit rather than being delayed on lock
acquisition. As explained earlier, traffic analysis picked entity group
simulation for the databases that showed concurrent transactions
accessing different entities in the same entity group. For only 0.2%
of these databases did customers subsequently choose to switch to
either optimistic or pessimistic concurrency.

8.1.2 Undoing Migration. As described earlier, reversion is sim-
pler than rollback and requires no downtime. Approximately 16K
databases in 85 containers experienced at least one reversion. The
primary reasons for reversion were: failed data integrity checks,
read performance problems, and write performance problems.

Whenever the verification job fails, the migration is undone, the
migrated data purged, and migration is restarted after the under-
lying issue has been debugged and fixed. As expected, once we
replicated the data validation step as a pre-migration screening step
(Section 7.2.3), such cases were caught earlier and the number of
reversions due to failed data validation dropped to zero. Reversions
for the other two reasons were triggered if a read performance
regression was seen during the read redirection states or write
performance regression on the asynchronous write path during
and after the journal_and_copy state.

Rollback was required for only two databases that belonged to
the same customer, and fortunately before Cleanup. A customer
experienced a novel performance regression that surfaced weeks
after the migration. First, we performed a rollback of the customer’s
staging database, which had already been migrated. We then re-
peated the procedure on the customer’s production database, timed
to coincide with a weekly low point in the customer’s traffic. The
customer was involved in this planning. The database experienced
no read outage and only 15 minutes of write downtime.

8.2 Index Sharding Performance

As described in Section 5.1.2, writes with monotonically increas-
ing or decreasing values may cause index lasering, which is more
problematic with Spanner because index entry updates are applied
synchronously. Based on an analysis of request logs, the migrations
of 134 customer databases were deferred. After the steps mentioned
in Section 5.1.2, fewer than 30 databases needed index sharding.

8.2.1 Mirroring Sharded Indexes. We used mirroring to compare
Megastore with Spanner for customer workloads with index laser-
ing. Figure 3(a) compares the Megastore and Spanner latency for
a customer database with several lasered indexes, with peaks of
>5k writes/sec. The bright white area just above the diagonal blue
line shows Spanner’s comparative slowness for typical lasering
writes. The dim magenta area high above the diagonal line shows
Spanner’s long performance tail under intense lasering.
Transparent index sharding partitions a single laser into N lasers
of 1/N intensity each, potentially served by different Spanner
servers. We inserted a shard identifier (with N possible values) into

Spanner write latency
Ratio of write Requests

Megastore write latency

Megastore write latency

(a) without index sharding (b) with index sharding

Figure 3: Write latency with index lasering. X and Y axes are
log scale in milliseconds. Each pixel represents a fraction of
customer writes comparing their latency on Megastore vs
the Spanner mirror. The pixel color indicates the percentage
of the total writes plotted in the graph.

the index row key before the index identifier and the (monotonic)
indexed values, producing an index row key with the following
elements in order: a database identifier, a shard identifier, an index
identifier, the indexed values, and the indexed entity’s key.

Figure 3(b) shows the result from mirroring a second customer
database that lasered several indexes, with higher (>10k peak)
writes/sec. The second database is otherwise very similar to the
first; in fact they are a customer’s production and pre-production
database, respectively. Each index was sharded 10-way in the mirror.
Note that despite the more intense lasering most of the brightly-
colored area above the diagonal from Figure 3(a) is now below the
diagonal (Spanner is faster) in Figure 3(b).

8.2.2 Tuning Index Sharding. We chose the shard count based on
the customer’s peak index write rate. Although sharding mitigates
lasering it also slows down queries, which must now read all shards
when searching an index. Based on internal experimentation, 500
writes per index shard minimizes impact on query latency while
providing headroom for future increases in index lasering intensity.
After picking an initial shard count for a customer database, we
further tuned it based on analysis via mirroring.

To better understand query performance regression, we exam-
ined customer queries with a LIMIT clause of 1 through 10; note
that these lead to the worst-case ratio of rows in the result set
to number of distinct shard reads. Compared to other databases
in the same region that did not require sharding of their indexes,
queries to those with sharded indexes were 41% (p50) and 40% (p99)
slower—an acceptable slowdown for these customers.

An early prototype derived the shard identifier from the un-
sharded index row key. However, we discovered that databases
with lasering behavior often laser on multiple indexes (on differ-
ent properties). Thus a write of a single entity would often update
different shards (on different Spanner servers) for each index that
needed to be kept up to date. We mitigated this problem by deriving
the shard identifier from the entity row key and by using the same
shard count for all single-property indexes in a database. Thus, up-
dates to all indexes for a single entity are closer in index key-space
and handled by a smaller set of Spanner servers that owns the index

3971

shard key-ranges for that entity. This change improved p99.9 write
latency by almost 50% when compared to the earlier prototype.

9 RELATED WORK

There has been an industry-wide trend in the migration of work-
loads from data centers to the cloud, and this includes databases as
well. Major cloud providers such as AWS [1], GCP [14], Azure [31],
and OCI [33] have all published white papers on methodology and
tooling for both bulk and streaming data migrations into their cloud
services. For databases, the focus has been on offline ETL-style data
moves and data transforms for migrating from an RDMBS to Docu-
ment databases [26, 35], or migrating between different flavors of
NoSQL databases [36].

Tools such as Mongify [9] and Apache Sqoop [13] have been
developed to facilitate large bulk migrations from RDBMS to NoSQL
databases, using a snapshot of the source data. For moves to the
cloud, database migration services for GCP [20] and AWS [2] offer
lift and shift solutions with low downtime. For live migrations,
there has been research on live data replication using differential
snapshots [12], log replication using efficient stream processing
frameworks [30] and stream processing combined with relational
to document format transforms [32]. The migration machinery
presented in this paper uses an approach similar to a bulk snapshot
copy combined with active log replication, however it provides a
critical orchestration layer, which manages the customer’s write
and read traffic during the migration.

For emergency rollback after migration, the fast rollback method
described previously (Section 7.4.1) uses an approach similar to
trigger-based replication [25], while the slower rollback method is
analogous to differential snapshots [12].

The survey of existing migration tooling and literature reveals
a widespread business need for large scale database migrations,
including moves from RDBMS to NoSQL databases. Research on
data replication has generated techniques for fast bulk migrations
with efficient live synchronization of database state. The machinery
presented in this paper uses a replication model similar to docu-
mented techniques, while leveraging unique architectural features
of the Megastore storage system. Unlike many of the migration
solutions described in literature, the application data model is pre-
served across the migration, along with the transactional semantics
of the source database. Migrating customers enjoy a zero-downtime,
fully managed migration experience that requires no intervention.

10 CONCLUSION

In this paper, we presented the multi-year process of non-disruptive
migration of more than a million Datastore databases from Megas-
tore to Firestore’s Spanner-backed storage system; all applications
retained access via the Datastore API with zero downtime during
and after migration. We also presented the changes we made to
Firestore, in particular in the domain of concurrency control, to
ensure that all customers migrated to an implementation that was
not just better overall, but better for their particular workload.

ACKNOWLEDGMENTS

We thank the many Googlers and ex-Googlers who worked to make
this project a success.

REFERENCES

[1] Amazon. 2016.

[o
[10

[11
[12
[13
[14
[15
[16
[17
[18

[19

]

]

]

]
]

]

]

An Overview of AWS Cloud Data Migration Ser-
vices. https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-
data-migration-services/overview-aws-cloud-data-migration-services.html. Ac-
cessed 2024-07-12.

Amazon. 2016. AWS Database Migration Service. https://aws.amazon.com/dms/.
Accessed 2024-07-12.

Ankita Girish Wagh. 2022. Online Data Migration from HBase to TiDB with Zero
Downtime. https://medium.com/pinterest-engineering/online-data-migration-
from-hbase-to-tidb- with-zero-downtime-43f0fb474b84. Accessed 2024-07-12.
Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In Fifth Biennial Conference on Innovative Data Systems Research, CIDR
2011, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings. www.cidrdb.org,
223-234. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

Philip A. Bernstein and Nathan Goodman. 1986. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13 (1986), 185-221. https:
//api.semanticscholar.org/CorpusID:30874

Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley Longman Publishing
Co., Inc., USA.

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert Henry,
Robert Bradshaw, and Nathan. 2010. FlumeJava: Easy, Efficient Data-Parallel
Pipelines. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 2 Penn Plaza, Suite 701 New York, NY 10121-0701, 363-375.
http://dl.acm.org/citation.cfm?id=1806638

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2 (2008), 4:1-4:26. https://doi.org/10.1145/1365815.1365816

Anlek Consulting. 2011. Mongify. https://github.com/anlek/mongify.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1-22.

Ed Davisson, Tilo Dickopp, David Gay, Eric Karasuda, Ram Kesavan, and Vadim
Yushprakh. 2024. Transparent Migration from Datastore to Firestore (Extended
Version). https://research.google.com.

Wei Du and Xianxia Zou. 2015. Differential snapshot algorithms based on Hadoop
MapReduce. In 2015 12th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD). 1203-1208. https://doi.org/10.1109/FSKD.2015.7382113
Apache Software Foundation. 2012. Apache Sqoop. https://sqoop.apache.org/.
Google. [n.d.]. A CIO’s Guide to Application Migration. https://services.google.
com/fh/files/misc/cio_guide_to_application_migraton.pdf. Accessed 2024-07-12.
Google. [n.d.]. Automatic Upgrade to Firestore. https://cloud.google.com/
datastore/docs/upgrade-to-firestore. Accessed 2024-07-12.

Google. [n.d.]. Cloud Datastore Transactions. https://cloud.google.com/datastore/
docs/concepts/cloud-datastore-transactions. Accessed 2024-07-12.

Google. [n.d.]. Datastore Best Practices. https://cloud.google.com/datastore/docs/
best-practices#indexes. Accessed 2024-07-12.

Google. [n.d.]. Firestore APL https://cloud.google.com/firestore/docs/reference/
rpe. Accessed 2024-07-12.

Google. [n.d.]. Firestore: Ramping up traffic. https://firebase.google.com/docs/
firestore/best-practices#ramping_up_traffic. Accessed 2024-07-12.

3972

[20

[21

[22

[23

[24

[26

[27]

[28

[29]

[31

[32

[33

[34

&
2

[36

[37

Google. [n.d.]. Overview of Database Migration Service. https://cloud.google.
com/database-migration/docs/overview. Accessed 2024-07-12.

Google. [n.d.]. Overview of Key Visualizer. https://cloud.google.com/firestore/
docs/key-visualizer. Accessed 2024-07-12.

Google. [n.d.]. Regions and Zones. https://cloud.google.com/compute/docs/
regions-zones. Accessed 2024-07-12.

Google. [n.d.]. Transactions. https://cloud.google.com/datastore/docs/concepts/
transactions. Accessed 2024-07-12.

Google. 2019. NoSQL for the serverless age: Announcing Cloud Firestore gen-
eral availability and updates. https://cloud.google.com/blog/products/databases/
announcing-cloud-firestore- general-availability-and-updates. Accessed 2024-
07-12.

Yong Hu and Stefan Dessloch. 2014. Extracting deltas from column oriented
NoSQL databases for different incremental applications and diverse data targets.
Data & Knowledge Engineering 93 (2014), 42-59. https://doi.org/10.1016/j.datak.
2014.07.002

Girts Karnitis and Guntis Arnicans. 2015. Migration of Relational Database to
Document-Oriented Database: Structure Denormalization and Data Transforma-
tion. In 2015 7th International Conference on Computational Intelligence, Commu-
nication Systems and Networks. 113-118. https://doi.org/10.1109/CICSyN.2015.30
Ram Kesavan, David Gay, Daniel Thevessen, Jimit Shah, and C. Mohan. 2023.

Firestore: The NoSQL Serverless Database for the Application Developer. In 2023
IEEE 39th International Conference on Data Engineering (ICDE). 3367-3379.

Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(may 1998), 133-169. https://doi.org/10.1145/279227.279229

W. Look, M. Dallman, and an O’Reilly Media Company Safari. 2019. Case Studies
in Infrastructure Change Management. O’Reilly Media, Incorporated. https:
//books.google.com/books?id=uUY7zQEACAA]

Kun Ma and Bo Yang. 2015. Live Data Replication Approach from Relational
Tables to Schema-Free Collections Using Stream Processing Framework. In 2015
10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC). 26-31. https://doi.org/10.1109/3PGCIC.2015.64

Microsoft. [n.d.]. Cloud Migration Simplified: A Guide for Migrating Infrastruc-
ture, Databases, and Applications. https://clouddamcdnprodep.azureedge.net/
gdc/gdcOB3Q4w/original. Accessed 2024-07-12.

Basant Namdeo and Ugrasen Suman. 2021. A Model for Relational to NoSQL
database Migration: Snapshot-Live Stream Db Migration Model. In 2021 7th
International Conference on Advanced Computing and Communication Systems
(ICACCS), Vol. 1. 199-204. https://doi.org/10.1109/ICACCS51430.2021.9441829
Oracle. [n.d.]. Oracle Cloud Infrastructure Database Migration (DMS). https:
//www.oracle.com/a/ocom/docs/oci- database-migration-onprem-adb.pdf. Ac-
cessed 2024-07-12.

Charles R. Severance. 2009. Using Google App Engine - start building and running
web apps on Google’s infrastructure. O’Reilly. http://www.oreilly.de/catalog/
9780596800697/index.html

Wilson Tandya and Fazat Nur Azizah. 2023. Migration of Relational Database
to NoSQL Document-Oriented Database. In 2023 IEEE International Conference
on Data and Software Engineering (ICoDSE). 180-185. https://doi.org/10.1109/
ICoDSE59534.2023.10291584

Yansyah Saputra Wijaya and Arry Akhmad Arman. 2018. A Framework for Data
Migration Between Different Datastore of NoSQL Database. In 2018 International
Conference on ICT for Smart Society (ICISS). 1-6. https://doi.org/10.1109/ICTSS.
2018.8549944

Wikipedia contributors. [n.d.]. Write-ahead Logging. https://en.wikipedia.org/
wiki/Write-ahead_logging. Accessed 2024-07-12.

https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-data-migration-services/overview-aws-cloud-data-migration-services.html
https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-data-migration-services/overview-aws-cloud-data-migration-services.html
https://aws.amazon.com/dms/
https://medium.com/pinterest-engineering/online-data-migration-from-hbase-to-tidb-with-zero-downtime-43f0fb474b84
https://medium.com/pinterest-engineering/online-data-migration-from-hbase-to-tidb-with-zero-downtime-43f0fb474b84
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
https://api.semanticscholar.org/CorpusID:30874
https://api.semanticscholar.org/CorpusID:30874
http://dl.acm.org/citation.cfm?id=1806638
https://doi.org/10.1145/1365815.1365816
https://github.com/anlek/mongify
https://research.google.com
https://doi.org/10.1109/FSKD.2015.7382113
https://sqoop.apache.org/
https://services.google.com/fh/files/misc/cio_guide_to_application_migraton.pdf
https://services.google.com/fh/files/misc/cio_guide_to_application_migraton.pdf
https://cloud.google.com/datastore/docs/upgrade-to-firestore
https://cloud.google.com/datastore/docs/upgrade-to-firestore
https://cloud.google.com/datastore/docs/concepts/cloud-datastore-transactions
https://cloud.google.com/datastore/docs/concepts/cloud-datastore-transactions
https://cloud.google.com/datastore/docs/best-practices##indexes
https://cloud.google.com/datastore/docs/best-practices##indexes
https://cloud.google.com/firestore/docs/reference/rpc
https://cloud.google.com/firestore/docs/reference/rpc
https://firebase.google.com/docs/firestore/best-practices#ramping_up_traffic
https://firebase.google.com/docs/firestore/best-practices#ramping_up_traffic
https://cloud.google.com/database-migration/docs/overview
https://cloud.google.com/database-migration/docs/overview
https://cloud.google.com/firestore/docs/key-visualizer
https://cloud.google.com/firestore/docs/key-visualizer
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/datastore/docs/concepts/transactions
https://cloud.google.com/datastore/docs/concepts/transactions
https://cloud.google.com/blog/products/databases/announcing-cloud-firestore-general-availability-and-updates
https://cloud.google.com/blog/products/databases/announcing-cloud-firestore-general-availability-and-updates
https://doi.org/10.1016/j.datak.2014.07.002
https://doi.org/10.1016/j.datak.2014.07.002
https://doi.org/10.1109/CICSyN.2015.30
https://doi.org/10.1145/279227.279229
https://books.google.com/books?id=uUY7zQEACAAJ
https://books.google.com/books?id=uUY7zQEACAAJ
https://doi.org/10.1109/3PGCIC.2015.64
https://clouddamcdnprodep.azureedge.net/gdc/gdcOB3Q4w/original
https://clouddamcdnprodep.azureedge.net/gdc/gdcOB3Q4w/original
https://doi.org/10.1109/ICACCS51430.2021.9441829
https://www.oracle.com/a/ocom/docs/oci-database-migration-onprem-adb.pdf
https://www.oracle.com/a/ocom/docs/oci-database-migration-onprem-adb.pdf
http://www.oreilly.de/catalog/9780596800697/index.html
http://www.oreilly.de/catalog/9780596800697/index.html
https://doi.org/10.1109/ICoDSE59534.2023.10291584
https://doi.org/10.1109/ICoDSE59534.2023.10291584
https://doi.org/10.1109/ICTSS.2018.8549944
https://doi.org/10.1109/ICTSS.2018.8549944
https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Write-ahead_logging

	Abstract
	1 Introduction
	2 Background
	3 Architecture
	3.1 Migration-Related Components
	3.2 Storage Layout, Reads, and Writes

	4 MegaMover
	4.1 Log Applier and Transfer Replicas
	4.2 Copy And Verification Phase
	4.3 Traffic Redirection Phase
	4.4 Cleanup or Undoing Migration

	5 Performance: Megastore vs Spanner
	5.1 Indexes
	5.2 Eventually Consistent Reads

	6 Concurrency
	6.1 Transactions: Megastore vs Spanner
	6.2 Transactions And Migration

	7 Topics in Practice and Insights
	7.1 Insights
	7.2 Deconstructing the Problem
	7.3 Testing and Validation
	7.4 Undoing Migration

	8 Evaluation
	8.1 Production Data
	8.2 Index Sharding Performance

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

