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ABSTRACT
Forecasting extrapolates the values of a time series into the future,
and is crucial to optimize core operations for many businesses and
organizations. Building machine learning (ML)-based forecasting
applications presents a challenge though, due to non-stationary data
and large numbers of time series. As there is no single dominating
approach to forecasting, forecasting systems have to support a wide
variety of approaches, ranging from deep learning-based methods
to classical methods built on probabilistic modelling.

We revisit our earlier work on a monolithic platform for fore-
casting from VLDB 2017, and describe how we evolved it into a
modern forecasting stack consisting of several layers that support
a wide range of forecasting needs and automate common tasks like
model selection. This stack leverages our open source forecasting
libraries GluonTS and AutoGluon-TimeSeries, the scalable ML plat-
form SageMaker, and forms the basis of the no-code forecasting
solutions (SageMaker Canvas and Amazon Forecast), available in the
Amazon Web Services cloud. We give insights into the predictive
performance of our stack and discuss learnings from using it to
provision resources for the cloud database services DynamoDB,
Redshift and Athena.
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1 INTRODUCTION
Forecasting predicts time series into the future and hasmany critical
applications, ranging from inventory management in supply chains
to provisioning of compute resources in the cloud [35, 54].
Challenges in forecasting. The recent growth of time series cor-
pora has led to methodological challenges and puts existing fore-
casting systems under stress. In particular, the diversity and scale of
modern forecasting problems poses the following challenges [8, 63]:

• Model selection – Empirical evidence suggests that there is no
single dominant forecasting algorithm and instead, a wide range
of methods and paradigms are applied in practice. For example,
most classical forecasting methods [31, 71] employ one local
model per time series in a large corpus of time series. The canon-
ical implementations of these methods typically do not explicitly
distinguish between training and inference, and fit parameters
at inference time. At the other methodological extreme are high-
capacity deep learningmethods [6, 34, 40, 49, 57, 59, 60, 70] where
a single global model is learnt over a large number of time series.
Since so far no generally dominant approach is available, the best
approach for a given scenario depends on the data [14, 39, 47, 48]
and a modern forecasting stack needs to support both local and
global models, each with their own computational patterns.

• Non-stationary data – Auxiliary machine learning (ML) tasks
such as hyperparameter tuning or backtesting have their own
pecularities in the forecasting task given the non-stationarity
of the data and the importance of time in forecasting, hence
standard supervised learning approaches need (often non-trivial)
adaptations.

• Variety of user expertise – Real world forecasting systems need to
support users with highly varying needs and levels of expertise,
ranging from scientists developing newmethods to non-technical
business users that need friction-free delivery of forecasts.

3883

https://doi.org/10.14778/3685800.3685813
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


GluonTS: Open source implementations 
of forecasting methods

AutoGluon: Open 
source AutoML 
framework for 
tuning forecasting 
models

Amazon SageMaker: AWS ML platform 
providing scalable forecasting models

SageMaker Canvas /  
Amazon Forecast: No-code 
forecasting solutions

SageMaker  
Canvas

Figure 1: High-level overview of the AWS forecasting stack.

History of infrastructure for forecasting at AWS. Our ap-
proach to the aforementioned challenges has evolved over time. In
2016/2017, we designed a monolithic end-to-end system for proba-
bilistic forecasting [8], centered on Apache Spark [76]. This system
improved upon existing ad-hoc solutions for which end-to-end ex-
perimentation was not possible. We chose a monolithic architecture
with a single system for both experimentation and production to
avoid the common pitfall of diverging experimentation and produc-
tion codebases [63]. We had to implement many custom forecasting
algorithms and experimentation techniques into this monolith, due
to a lack of publicly available viable alternatives at this time.

With the advent of deep learning and its associated ecosystem,
our next step was to focus on methodological improvements to
forecasting algorithms [19, 55, 61, 62, 73]. We provide these models
as part of the Apache-licensed open source library GluonTS [1].
Concurrently, we helped conceive the SageMaker [41] platform
for scalable ML, which offers infrastructure for productization and
scalability that does not restrict experimental capabilities as much
as our original monolith.
The AWS forecasting stack. We combined the advantages of
the previous monolith with the composability of the current in-
frastructure in the AWS forecasting stack. It provides end-to-end
experimentation and production-grade quality with high compos-
ability, to ensure that a a seamless offering is available for different
life cycle stages and data scales of forecasting scenarios.

As illustrated in Figure 1, our stack consists of four major lay-
ers (Section 2). Its foundation is the open-source Python library
GluonTS [1] for probabilistic forecasting, and we leverage Sage-
Maker [41] for scalable and elastic model training and inference.
AutoGluon-TimeSeries [65] builds on GluonTS, SageMaker, and the
popular AutoML frameworkAutoGluon [15]. AutoGluon-TimeSeries
provides an easy-to-use interface for automatically building, tun-
ing and combining accurate forecasting models. Furthermore, we
provide no-code forecasting services (Time Series Forecasts in Sage-
Maker Canvas and Amazon Forecast), built on top of GluonTS and
AutoGluon-TimeSeries, to automate tedious issues such as hard-
ware provisioning and feature preprocessing.

In Section 5, we experimentally evaluate the predictive perfor-
mance, the distribution of algorithm choices, as well the distribu-
tion of runtimes of our service. Our results indicate that the main
challenge in forecasting is not a computational one, but rather
identifying the appropriate model from the wide range of families
of well-working forecasting algorithms (e.g., classic time series
smoothing, deep-learning or boosted decision trees [34]).
Resource provisioning for cloud database services. Finally, we
discuss how we used our forecasting stack to optimise the resource
provisioning (in terms of the hardware demand of internal cus-
tomer teams, or in terms of deciding on the size of a warm pool of
pre-provisioned machines) for Amazon’s cloud database services
DynamoDB [66], Redshift [50] and Athena [9] in Section 5.2. For
each use case, we describe which layer of our stack was chosen, and
how this choice contributed to the developed forecasting solution.
As a result of improved forecasting methods, Athena was able to
achieve an enormous reduction in warm pool sizes between 30-45%,
and Redshift saw utilization gains between 35% and 91% relative to
an existing baseline solution.
Contributions. The contributions of this paper are as follows:
• We detail the design of the AWS forecasting stack, which is part

of the machine learning offering of the Amazon Web Services
cloud (Section 2).

• We give examples of the prediction quality, runtime and model
selection capabilities of our stack (Section 5.1).

• We discuss our learnings from using the AWS forecasting stack to
provision resources for the cloud database services DynamoDB,
Redshift and Athena (Section 5.2).

2 THE AWS FORECASTING STACK
We describe the AWS forecasting stack, which is available as part
of the AWS machine learning offering at https://aws.amazon.com/
machine-learning/.

2.1 Overview
As mentioned in the introduction, our stack consists of four major
layers: The open source forecasting libraryGluonTS [1] (Section 2.2),
the intregration with Amazon SageMaker for scalable and elastic
training and inference (Section 2.3), hyperparameter optimization
and ensembling via the AutoGluon-TimeSeries library (Section 2.4),
and no-code functionality provided by SageMaker Canvas andAma-
zon Forecast (Section 2.5).
Forecasting algorithms. The available algorithms cover the main
families of forecasting, see Table 1 for an overview. A major dis-
tinction are local methods [31, 71], which train a model per time
series, and global models, which train a model for a large set of
time series [6, 34, 40, 49, 57, 59, 60, 70]. We choose methods based
on their popularity and maturity of implementation. Global models,
which employ deep learning or gradient-boosted trees [27, 69] are
in the majority, as they are particularly amenable for larger-scale
forecasting problems.
Input data. All layers of our stack operate on a simple, JSON-based
input format for multiple time series, as illustrated in the snippet
below. Users have to specify the start time of a time series, as
well as the time series itself (target), and can specify additional
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categorical covariates (e.g., via the cat attribute). Note that the
granularity of the time series (e.g., minutes, seconds, hours, ...) is
globally configured.
{"start": "2016-01-16", "cat": 1, "target": [4.96, 5.15, 5.12, ...]}
{"start": "2016-01-01", "cat": 1, "target": [3.04, 3.19, 3.65, ...]}
{"start": "2016-02-08", "cat": 2, "target": [2.51, 2.81, 3.14, ...]}

2.2 GluonTS
The foundation of the forecasting stack is the GluonTS [1] library
for probabilistic forecasting with backends for popular deep learn-
ing engines such as PyTorch [51] and MXNet [11], available at
https://ts.gluon.ai. Apart from forecasting, it contains elementary
support for time series analysis tasks such as classification and
anomaly detection. GluonTS allows its users to quickly build both
forecasting prototypes and develop new models, via support for
automated backtesting, rich featurization, an exhaustive list of fore-
cast accuracy metrics and a plethora of state-of-the-art forecast-
ing models (as detailed in Table 1). GluonTS is in active use in
research [56, 59, 60, 62, 73], forecasting competitions [37] and in-
dustrial applications (see Section 5.2 for details).

Scientists working on model improvements require a high de-
gree of standardization and reproducibility for comparison with the
state-of-the-art. Unlike in production use cases, the data for most
scientific experiments is assumed to be static. GluonTS is integrated
with many common openly available forecasting datasets, including
those collected in [23], and makes it easy for users to run standard-
ised experiments on these. Furthermore, our library supports the
declarative generation of synthetic datasets to assist data scientists
with model design, debugging and testing. Additional components
in GluonTS are feature transformations for generating common
date features, whose implementation follows the estimator/trans-
former pipeline approach that scikit-learn [52] popularised. Note
that time series have to be carefully featurised: it is important to
scale features without leaking data from the future, so if for exam-
ple a mean is calculated as part of the normalization, it must only
be calculated with respect to observed values from the relative past
of the time series. Moreover, GluonTS supports comparisons with
other well-known forecasting packages such as R Forecast [31] or
Prophet [71] via Docker containers with custom data conversion
code.

2.3 Forecasting with SageMaker
While GluonTS focuses on experimentation and algorithm devel-
opment, tasks such as distributed training, extensive hyperparam-
eter optimization and scalable deployment are covered by Sage-
Maker [41]. SageMaker already provides the prebuilt algorithm
DeepAR [62] for forecasting out-of-the box and enables the us-
age of GluonTS containers with low integration costs. GluonTS
makes no general assumptions on the execution environment and
can therefore be run on a variety of cloud platforms. However, it
provides a custom shell module for a direct integration with Sage-
Maker. Users can dynamically select a specific model by setting a
hyper-parameter. Unlike SageMaker’s DeepAR, users of GluonTS
need to build and upload their own algorithm container. To ease
this process, GluonTS provides prebuilt Docker files, which, in our
experience, often facilitate a working setup within minutes.

Table 1: A selected subset of the forecasting methods avail-
able in theAWS forecasting stack. Readiness denoteswhether
a given implementation is production ready (prod) or only
available in an experimental state (exp). The level details
whether the model has either robust default parameters or
an auto-tuning component (auto), requires basic forecasting
knowledge (basic) or deep expertise (expert). The availability
column indicates whether algorithms are available in Glu-
onTS (GTS) or Forecast (AF).

Read- Availability
Algorithm(s) Type iness Level GTS AF

ETS [30], ARIMA [30] local prod auto ✓ ✓
Prophet [71], NPTS local prod auto ✓ ✓
DeepAR [62], CNN-QR [2] global prod auto ✓ ✓
MQ*NN [74] global prod basic ✓ ✓

DeepNPTS global exp expert ✓ ✓
Rotbaum [27] global exp expert ✓
TFT [42], NBEATS [49], Feed-
Forward

global exp basic ✓

DeepVAR [61], DeepState [56],
DeepRenewal [72], DeepFac-
tors [73]

global exp expert ✓

Development and deployment. SageMaker uses algorithm con-
tainers to run training and inference workflows. This requires that
either the algorithm code is part of the container image or that
the code is loaded dynamically before execution. For production
use-cases, a static image which contains the forecasting algorithm
is desirable. During development however, flexibility is key. To
reconcile these two requirements, a custom shell module can re-
cursively search for Python modules and packages, which are then
installed within the container, before the process gets restarted. In
subsequent runs, the newly installed packages have priority over
possible existing versions, which means that existing packages can
be patched to updated versions.
Integration benefits. The close integration with SageMaker comes
with several benefits: New GluonTS models have a direct path to
large-scale experimentation and productization. Users can benefit
from existing components in SageMaker, such as state-of-the-art
hyper-parameter optimization [53], a feature store, data processing
in pipelines, model debugging [67] and profiling, and support for
batch and online inference modes. When developing new forecast-
ing models, scientists can initially prototype their ideas indepen-
dently of a framework. However, once a prototype is integrated
with GluonTS, it can directly be compared against established ap-
proaches via SageMaker on existing datasets.

2.4 AutoGluon-TimeSeries
Our next component focuses on the model selection challenge in
forecasting (Section 1). AutoGluon-TimeSeries (AG-TS) [65], is a
specialised module within the broader AutoGluon framework, is
designed for time series forecasting. AutoGluon [15] is a popular
state-of-the-art AutoML framework for tabular data tasks [21], de-
veloped by an active community, led mainly by the AI research
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division at AWS. It is worth noting that time series pose unique
challenges for the standard AutoML framework. Cross-validation,
a primitive that both multi-layer stacking and ensembling hinge
on, has to adhere to the order in the data imposed by the presence
of time. This is taken into account during backtesting with AG-TS,
which ensures that the temporal order of the splitting is preserved
at all times, and information leakage is avoided.

Our previous monolithic forecasting system from 2017 [8] al-
ready had rudimentary support for model selection and ensemble
creation. However, this functionality was difficult to use and re-
quired a lot of trial-and-error by the end users, since they had
to manually define complex combinations of predicates to select
subsets of the training data as inputs for different algorithm vari-
ants. Moreover, they also had to manually specify the weights for
combining the predictions of the resulting model variants into the
final ensemble. As a consequence, we put a significant emphasis on
the automation of hyperparameter tuning and ensembling in our
reworked stack.
AutoML for forecasting. AG-TS adopts the core principles of
AutoGluon, particularly the reliance on ensembling techniques,
diverging from a sole focus on hyperparameter optimization or
neural architecture search. AG-TS builds ensembles from a broad
selection of models (most of which depend on GluonTS imple-
mentations) [10]. AG-TS also aims to serve domain experts with
limited experience in forecasting, by embracing the convention-
over-configuration principle, as it provides default hyperparameter
settings tuned to deliver strong performance across various scenar-
ios. In particular, the API in AG-TS shields the user from complex
considerations regarding model selection, specification, tuning, and
training. AG-TS also provides a range of high-level configuration
options to choose from a portfolio of models and hyperparameters,
in order to balance between rapid training times and enhanced
accuracy.
Integration. Like GluonTS, AG-TS integrates seamlessly with Sage-
Maker for training and production-ready inference deployment.
AutoGluon is part of SageMaker’s deep learning containers, avail-
able at https://github.com/aws/deep-learning-containers, which
provide a well-maintained, robust, portable and secure environ-
ment for a wide array of machine learning applications within
Amazon’s machine learning ecosystem. Furthermore, AG-TS can
be utilised through AutoGluon Cloud on SageMaker, offering an
even more streamlined and efficient deployment pathway.

2.5 SageMaker Canvas and Amazon Forecast
The forecasting capabilities in SageMaker Canvas and Amazon Fore-
cast are managed forecasting services, built around GluonTS and
SageMaker. As such, they aim to free the user from having to worry
about hardware provisioning and operations. As both Canvas and
Amazon Forecast are based on the same technical underpinnings,
we refer them collectively as Forecast here. Forecast uses SageMaker
for training and inference, and executes its feature processing via
extract-transform-load (ETL) pipelines in Apache Spark [76]. Fore-
cast limits customization opportunities, as its primary goal is the
abstraction and automation to lower the technical bar for building
ML-based forecasting applications.

Model tuning, selection and combination. Forecast inherits
large parts of the model tuning functionality from SageMaker or
contains specializations that are similar to what we discussed be-
fore in Section 2.4. For example, its hyperparameter optimization
combines the backtesting capabilities of our forecasting stack here
with SageMaker’s generic hyperparameter tuning [53].
Backtesting. Setting up a backtesting scenario properly in fore-
casting is challenging for ML practitioners without prior exposure
to forecasting. This is due to the fact that time series data is not
assumed to be identically and independently distributed (in con-
trast to data for supervised learning scenarios such as classification
and regression). Therefore, partitioning the data into train, test and
validation sets always needs to take the time dimension into ac-
count to avoid data leakage, preferably in a rolling forecast horizon
fashion [30]. Furthermore, forecasting comes with its own set of
evaluation metrics [22, 32].
Data augmentation. Additionally, Amazon Forecast provides a
prepopulated feature store that allows data scientists to augment
existing data with available covariates. Examples include calendar
events such as holidays, weekends, or workdays, as well as weather
index features. The latter often help to “explain away” anomalies
(e.g., a drop in attendance due to extreme weather) and to predict
future values (e.g., hot temperatures are indicative for sales of gro-
ceries in retail). However, incorporating weather data correctly in
forecasting during model training and backtesting is challenging.
We need to take into account that the actual observed weather is
only available for the past and not in the future, where it is only
available in the form of forecasts. Training such models requires in-
corporating the correct past weather forecast to avoid data leakage.
Forecast aims to abstract away these subtleties, and joins the time
series from customers with our internal weather data based on the
user-provided timestamps during the ETL process. Other features,
like calendar data, can be produced on the fly via standard date
libraries and training data (over)sampling techniques are inherited
from GluonTS.

2.6 Retrospective
We would finally like to mention that the components of our stack,
especially GluonTS, were designed to allow for addressing Amazon
internal use cases in general. One particular such use case was
the conception of Forecast, where the necessity arose to quickly
build, evaluate and deliver state-of-the-art forecasting algorithms.
Forecast in turn relies internally on SageMaker. Hence, the stack
presented here externalises many of the learnings of Amazon’s
forecasting teams.

3 BACKGROUND
Forecasting. Given a regularly sampled time series 𝑧𝑖,𝑡 represent-
ing the measurements of an item 𝑖 at time 𝑡 , the goal is to estimate
𝑃 (𝑧𝑖,𝑇+1, . . . , 𝑧𝑖,𝑇+ℎ |𝑧𝑖,1, . . . , 𝑧𝑖,𝑇 ), the predictive distribution over
the a forecast horizon 𝑇 + 1, . . . ,𝑇 + ℎ of length ℎ conditioned on
historical values. Forecasts, especially probabilistic ones, are in-
strumental for decision making problems that require optimising
expected (future) costs.
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Note that we often have additional co-variate information avail-
able and we may be interested in a multi-variate forecast as well.
Forecasting typically requires one to train a model parameterised by
𝜃 either over a single time series 𝑖 (local models) or over groups of
time series (leading to globalmodels). Examples for forecastingmod-
els range from classical state space models [29], dynamical factor
models [20], linear regression [30] and combinations thereof [64]
to modern methods including gradient boosted trees [36, 69] and
deep learning [7, 16, 70].
Amazon SageMaker. SageMaker, available at https://aws.amazon.
com/sagemaker/, is a scalable machine learning platform for train-
ing models on large, continuously evolving datasets, which sup-
ports incremental training, resumable and elastic learning as well
as automatic hyperparameter optimization [41].

Most algorithms are designed based on a computational model
for incremental updates, which resembles the way in which dis-
tributed aggregation functions are executed in relational database
management systems. It can leverage both CPUs and GPUs seam-
lessly, as many built-in algorithms in SageMaker use common deep
learning engines as an interface to the underlying hardware. Fur-
thermore, SageMaker also supports the scalable deployment of
blackbox algorithms provided in the form of a Docker image.

SageMaker Canvas is a visual, no-code tool designed to make it
easier for business analysts and other non-developers to build ML
models without requiring any machine learning expertise. Canvas
provides a user-friendly interface that allows users to generate
predictions by creating ML models based on their data. Users can
simply upload their data, use the graphical interface to prepare
and clean it if necessary, and then let Canvas automatically build a
model that can make predictions.

4 RELATEDWORK
Contemporary forecasting solutions are either available under
open-source or proprietary licenses. For the open-source side [33],
popular examples include R Forecast [31], StatsForecast [18] and
Prophet [71] for classical methods, and PyTorch-forecasting [5] or
Darts [28] for deep learning based methods [6], which have seen
an explosive growth over the last two years [40, 49, 57, 59, 60, 70].
Open source solutions enable control and customisability, but typi-
cally require significant effort for productionization. For example,
scaling classical methods to large datasets is challenging [69] and
may often require systems like SageMaker.

Recently, the emergent capabilities of large language models
have sparked strong interest in developing so-called foundation
models for time series forecasting [3, 12, 13, 17, 24, 25, 38, 58, 75].
Despite the promising zero-shot performance of such pre-trained
forecasting models on benchmark datasets, it remains to be seen
how well they perform in real-world use cases. That said, as a
framework, AG-TS in the proposed stack is well poised to embrace
the latest developments in foundation time series models, with
Chronos [3] being a part of the ensemble.

On the other hand, closed-source commercial solutions from
enterprise software vendors and start-ups like BlueYonder often
lack customization opportunities but are production ready. We note
that forecasting solutions using SAS or Matlab sit in between these
extremes, but their closed-source nature does not offer the same

sort of transparency that in particular scientists have come to value.
Our stack incoporates both open source and proprietary methods,
and attempts to take the best from both worlds by allowing different
entry points to reduce the engineering efforts for productionising
customised, open-source based solutions with SageMaker. To the
best of our knowledge, our solution is the first comprehensive stack
for forecasting-related problems (in contrast to stacks for general
ML tasks such as Google TFX [4]).

5 EVALUATION & LEARNINGS
We give examples of individual model performance, overall algo-
rithm performance for our methods and the time required to find
a well-working method in Section 5.1. In Section 5.2, we discuss
our learnings from three internal use cases of applying our stack in
resource provisioning for the database services DynamoDB [66],
Athena [9] and Redshift [50] in the Amazon Web Services cloud.

5.1 Predictive Performance & Runtime
We discuss model performance and runtime in the following.
Individual model performance. Often, our individual models are
already highly competitive. As a showcase, we compare DeepAR
(with default settings) to the winning solution [68] of the M4 fore-
casting competition [46]. We find that DeepAR achieves state-of-
the-art performance, with a mean absolute scaled error (MASE) of
1.50 compared to 1.54, a symmetric mean absolute percentage error
(sMAPE) of 0.12 compared to 0.114, and a mean scaled interval
score (MSIS) of 12 compared to 12.2.
No one-size-fits-all solution. Even though deep learning-based
global models often perform extremely well, the field of forecasting
is not dominated by these approaches in a similar fashion such
as natural language processing or computer vision [45, 46]. As
discussed in Section 2, we explicitly designed our stack to incor-
porate methods from many different forecasting approaches and
provide AutoML components that learn ensembles or select the
best algorithm for a given dataset and forecasting scenario.

We validate this claim by discussing the results from a recent
study of ours [65], where we evaluate five individual forecast-
ing algorithms from Gluon-TS (Section 2.2) as well as ensembles
learned by AG-TS on a collection of twenty-weight public forecast-
ing datasets. The study for example includes data from the Monash
Forecasting Repository [23], such as the M1, M3 and M4 competi-
tion data [44, 47], and the range of datasets covers various scenarios
that can be encountered in practice – from small datasets (M1 and
M3) to datasets with a few long time series (Electricity, Pedestrian
Counts) and to large collections of medium-sized time series (M4).
The neural methods evaluated in this study are DeepAR [62] and
TFT [42] (which applies transformers) and the classical methods
included were ARIMA and ETS as well as an ensemble of them
(ARIMA+ETS). We generated probabilistic (quantile) forecasts and
compute their mean weighted quantile loss (wQL) averaged over
nine quantile levels 𝑞 ∈ {0.1, 0.2, ..., 0.9}.

We detail the resulting scores per dataset and forecasting algo-
rithm in Table 2, where we indicate the best individual algorithm
performance in bold. The columns on the right side of this table
additionally indicates the performance of a forecasting ensemble
learned by AutoGluon-TS and whether this ensemble wins or loses
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Table 2: Probabilistic forecasting performance (measured by weighted quantile loss (wQL), lower is better) of five forecasting
algorithms from Gluon-TS on twenty eight public datasets. The best individual algorithm performance is indicated in bold.
The columns on the right indicate the performance of a forecasting ensemble learned by AutoGluon-TS and whether this
ensemble wins or loses (or has a tie) against the best performing individual forecasting algorithm. The results show that no
individual family of methods (classical or neural forecasting) dominates performance. Furthermore, the ensemble learned by
AutoGluonTS achieves on-par or better performance than the best single model in 19 out of 28 cases.

Dataset Individual forecasting algorithms Ensemble learned by AG-TS
Name #Series Frequency Seasonality ARIMA ETS ARIMA+ETS DeepAR TFT wQL score Win? Tie? Loss?
Car Parts 2,674 M 12 1.589 1.338 1.324 0.963 (0.009) 0.878 (0.004) 0.923 (0.0) ✓
CIF 2016 72 M 12 0.017 0.039 0.028 0.114 (0.024) 0.010 (0.002) 0.019 (0.0) ✓
COVID 266 D 7 0.030 0.046 0.046 0.072 (0.02) 0.031 (0.003) 0.030 (0.0) ✓
Electricity Hourly 321 H 24 - 0.100 - 0.081 (0.002) 0.097 (0.001) 0.076 (0.0) ✓
Electricity Weekly 321 W 1 0.138 0.144 0.141 0.123 (0.041) 0.118 (0.011) 0.088 (0.0) ✓
FRED-MD 107 M 12 0.056 0.050 0.054 0.054 (0.021) 0.114 (0.011) 0.056 (0.0) ✓
Hospital 767 M 12 0.058 0.053 0.053 0.053 (0.001) 0.054 (0.001) 0.051 (0.0) ✓
KDD Cup 2018 270 H 24 - 0.550 - 0.363 (0.014) 0.488 (0.054) 0.323 (0.014) ✓
M1 Monthly 617 M 12 0.146 0.163 0.152 0.136 (0.008) 0.224 (0.016) 0.135 (0.0) ✓
M1 Quarterly 203 Q 4 0.088 0.081 0.083 0.084 (0.003) 0.093 (0.006) 0.090 (0.0) ✓
M1 Yearly 181 Y 1 0.160 0.139 0.142 0.142 (0.029) 0.127 (0.004) 0.134 (0.001) ✓
M3 Monthly 1,428 M 12 0.102 0.093 0.092 0.098 (0.001) 0.109 (0.003) 0.089 (0.0) ✓
M3 Other 174 Q 1 0.035 0.032 0.031 0.036 (0.002) 0.033 (0.001) 0.031 (0.0) ✓
M3 Quarterly 756 Q 4 0.079 0.069 0.068 0.073 (0.001) 0.071 (0.001) 0.065 (0.0) ✓
M3 Yearly 645 Y 1 0.162 0.129 0.128 0.117 (0.002) 0.133 (0.001) 0.114 (0.0) ✓
M4 Daily 4,227 D 7 0.023 0.025 0.023 0.023 (0.0) 0.023 (0.0) 0.022 (0.0) ✓
M4 Hourly 414 H 24 0.036 0.070 0.037 0.065 (0.03) 0.038 (0.002) 0.030 (0.001) ✓
M4 Monthly 48,000 M 12 0.085 0.085 0.082 0.092 (0.003) 0.089 (0.001) 0.081 (0.0) ✓
M4 Quarterly 24,000 Q 4 0.082 0.079 0.076 0.084 (0.005) 0.083 (0.001) 0.075 (0.0) ✓
M4 Weekly 359 W 1 0.050 0.052 0.050 0.046 (0.001) 0.049 (0.001) 0.041 (0.0) ✓
M4 Yearly 22,974 Y 1 0.130 0.111 0.109 0.124 (0.006) 0.116 (0.004) 0.104 (0.0) ✓
NN5 Daily 111 D 7 0.169 0.162 0.164 0.148 (0.002) 0.145 (0.001) 0.140 (0.0) ✓
NN5 Weekly 111 W 1 0.090 0.088 0.089 0.084 (0.007) 0.085 (0.001) 0.078 (0.0) ✓
Pedestrian Counts 66 H 24 - 0.764 - 0.230 (0.006) 0.261 (0.008) 0.238 (0.013) ✓
Tourism Monthly 366 M 12 0.095 0.101 0.085 0.086 (0.005) 0.103 (0.01) 0.083 (0.0) ✓
Tourism Quarterly 427 Q 4 0.098 0.070 0.070 0.068 (0.002) 0.083 (0.005) 0.072 (0.0) ✓
Tourism Yearly 518 Y 1 0.156 0.157 0.155 0.141 (0.016) 0.102 (0.006) 0.152 (0.0) ✓
Vehicle Trips 262 D 7 0.100 0.115 0.103 0.090 (0.002) 0.099 (0.005) 0.087 (0.0) ✓
Web Traffic Weekly 145,063 W 1 0.475 8 · 1013 0.474 - 0.223 (0.011) 0.225 (0.0) ✓

(or has a tie) against the best performing individual forecasting
algorithms. The results confirm our claim that no individual family
of methods (classical or neural forecasting) dominates performance,
as can be seen by the distribution of the best performance between
classical and neural methods.

We additionally report dataset characteristics (such as the num-
ber of time series, the frequency and the seasonality of the series)
to showcase that there are no simple patterns to identify the best
model class. If we investigate the performance on datasets with
more than 1,000 time series as an example, we see five cases where
classical methods perform best and three cases where neural mod-
els perform best. Furthermore, the results show that the ensemble
learned by AutoGluonTS achieves on-par or better performance
than the best single model in 19 out of 28 cases, which confirms
our design choice of including automated ensembling and model
selection functionality in our stack.
Automated model selection. Even though ensembles perform
well in general, users are often interested in running a single well-
performing model only, where the forecast is easier to interpret
and debug. Our AutoML component based on AG-TS supports
this use case as well, and we plot its distribution of algorithm

choices in Figure 2a to validate that model selection and a wide
variety of approaches is indeed necessary for real-world forecasting.
This data is compiled from a sample of more than ten thousand
invocations of our service with highly varying datasets. Note that
we sampled from a uniform distribution from all service calls to
obtain a representative distribution of the “winning” model in the
AutoML component. We use the selection of the winning algorithm
in the AutoML component as a proxy for which algorithm is “best”,
as a means to arrive at a distribution of best algorithms for practical
problems on proprietary datasets. We observe that deep learning-
based methods (DeepAR, CNN-QR) perform best in about 60% of
cases. However in the remaining 40% of scenarios, a simpler, non-
neural approach (NPTS, Prophet, ETS or ARIMA) is chosen due to
superior accuracy. This confirms our decision to make non-neural
methods a first-class citizen in our stack.

We validate the discussed choices of our AutoML component
with a comparison to the results in Table 2 on the twenty-eight
public datasets from the previously discussed study of ours [65].
We plot the resulting distribution of best-performing algorithms
on the public datasets in Figure 2. We observe a similar distribution
of algorithm choices between neural and non-neural methods (55%
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Figure 2: Distribution of forecasting algorithm choices for
deep learning-based methods (blue) and classical methods
(green). The distribution of algorithm choices by our AutoML
component (60% neural methods versus 40% classical meth-
ods, shown on the left side) reflects the distribution of the
best algorithm results on publicly available datasets (55%
neural methods versus 45% classical methods, as shown on
the right side).

neural methods versus 45% classical methods), which confirms the
representativity of our results on prorietary datasets.
Runtime. Next, we focus on the training time of our most used
deep learning approaches DeepAR+ and CNN-QR during the hyper-
parameter search in our AutoML component. We measure the time
that it takes to find a well-working configuration for runs on a large
sample of several thousand complex, real-world time series datasets.
The corresponding SageMaker instance is adaptively chosen based
on availability and efficiency for training. For both approaches, a
well-working model can be found within several minutes in the
average (median) case, and this time is only increased by a factor
of roughly four when we investigate the 90th percentile of the run-
times. These results indicate that the main challenge in forecasting
is not computational cost, but rather how to algorithmically select
an appropriate model.

5.2 Learnings from Resource Provisioning for
Cloud Database Services

Next, we discuss our learnings from Amazon-internal use cases of
database services within AWS in order to showcase the flexibility of
our forecasting stack. In contrast to this, our previously presented
monolithic platform [8] was geared towards retail demand forecast-
ing only. The presented cases leverage different parts of our stack
and confirm that its design allows users to choose the appropriate
entry point for their scenario, based on their ML expertise and
willingness to invest in operations and maintenance.

We choose to present the resource provisioning use cases because
we think they are of particular interest to the data management
community. However, we would like to note that our stack is in
active use for a wide variety of forecasting problems, including
retail demand forecasting and traffic forecasting.
DynamoDB and GluonTS. At Amazon, internal teams are typi-
cally asked to predict their usage of a service over a longer horizon
(e.g., a financial year in advance). This gives the team operating
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Figure 3: Examples of highly seasonal time series in internal
planning scenarios for DynamoDB.

the service leverage to plan compute resources accordingly. The
team running the distributed key-value store DynamoDB [66] pro-
vides their internal customer teams with guidance for their usage
planning. This team has access to data about the demand of several
internal customer teams, which is highly seasonal and regular, but
consists of complex patterns. We showcase three corresponding
example time series in Figure 3, which are quasi-periodic with mul-
tiple seasonalities and have spikes with differing degrees of noise
levels, i.e., they are heteroscedastic. In light of such data, the team
specifically looked for a forecasting method that could handle com-
plex patterns gracefully, without common failure modes such as
error accumulation over long periods of time.

Furthermore, the team has its own data science capability so
they can leverage expert-level methods in their algorithmic choice.
The team settled on directly working with the deep state space
models [55] available in GluonTS, which allows them to model
complex seasonalities in a data-driven way, but provides control
(via the state space underpinning) so that error accumulation is
avoided. In order to make this choice, the data science teammapped
their requirements to the model landscape. They understood that
they need a data-driven, yet model-based method due to the large
amount of data available to them (hence the data-driven require-
ment), yet they need full control on the repeating patterns (hence
the model-based requirements). Such methods are refered to as
deep probabilistic models, and there is only a limited number of
academic publications on them available. To the best of our knowl-
edge, none of these are available in commercial solutions (where
either data-driven or model-driven approaches exist, but no hy-
brids). As a consequence, the team concluded that no other method
fulfills their needs and confirmed this qualitatively.

Due to the open source nature of GluonTS, the team was even
able to modify and improve the deep state space models for their
particular use case. When examining the the model’s capability,
they found that solely data-driven approaches either suffered from
halluscinations for longer horizons or were not able to capture
the complex seasonalities well enough. Solely model driven ap-
proaches on the other hand had difficulties with the large number
of overlapping seasonalities. The productization of the model via
the integration of GluonTS into SageMaker only required minor
engineering efforts.
Athena and SageMaker DeepAR. Athena, available at https://
aws.amazon.com/athena/, is an AWS offering to analyze data in
Amazon S3 using standard SQL. It is built on a serverless design for
AWS customers, meaning that resource provisioning is automated.
From an operations perspective, this requires a sizable warm-pool
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Figure 4: Demand for Athena instances (red) versus the 99th
percentile of a forecast (blue) for 12 hours ahead.

of instances to be able to react quickly to customer demand. The
Athena team initially employed heuristics for warm-pool sizing,
and later on replaced them with DeepAR in SageMaker which led
to an enormous reduction in warm pool sizes (between 30%-45% for
specific instance types and availability zones) without impacting
the customer experience. An interesting insight from this use case
is that cross-learning across many time series is beneficial, based on
pooling data from different regions for example. Global forecasting
models such as DeepAR can take advantage of this, and we saw the
expected increase in accuracy.

The Athena team was able to increase its cluster utilization by
a factor of four. In order to guarantee a consistent customer expe-
rience, a probabilistic forecast is crucial, in order to account for
the level of uncertainty when making decisions. This requires a
high degree of customization of the settings for the core forecasting
algorithm while guaranteeing a relatively low latency at inference
time. Therefore, the Athena team chose to build on the SageMaker
layer and DeepAR in SageMaker. Figure 4 shows the forecast for
Athena instances (blue) versus the actuals (red) for the 99th per-
centile of the forecast distribution. The forecast is generally above
the actuals which is required to ensure that enough instances are
available, while drastic overprovisioning is avoided.
Redshift and Forecast. Redshift [50] is a data warehousing ser-
vice. For the classical version, where customers explicitly choose a
Redshift cluster, Redshift maintains a cache pool of EC2 instances
which brings down the time to have a cluster fully operational,
to improve customer experience. Analogous to the previous use
case, a trade-off has to be made between reducing the resource
provisioning time and having a high internal cost for reserving
instances. These cache pools are specific per configuration, where a
typical configuration consists among other things of the EC2 type
or the data center region as well as Redshift-specific configuration
settings. This means that the actual usage time series can be of an
intermittent nature (where many configurations have no requests
over a given period of time).

For Redshift, addressing the cost for overstocking inventory was
important, but they wanted a maintenance-free solution without
having to dive deeply into ML details. Therefore, Amazon Forecast
was the logical choice for them: due to its nature as a hosted service,
the Redshift team did not have to worry about the maintenance of
ML components. Furthermore, Amazon Forecast supports a range
of models which the AutoML component picks automatically on
behalf of the customer. In this specific case, the AutoML compo-
nent of Forecast chose a model that is specifically geared towards
intermittent or sparse data. The probabilistic nature of the forecast
allows the Redshift team to define service levels using the quantiles

of the forecast which made the trade-off between provisiong time
and cost savings explicit. The remaining work for the Redshift team
consisted of making their data amenable for training and infer-
ence around Forecast, which they conducted with standard AWS
tooling [43]. The utilization gains relative to an existing baseline
solution ranged between 35% and 91% for specific instance types
and availability zones, resulting in millions of dollars of annual
operational cost savings.

6 CONCLUSION
We detailed the Amazon Web Services (AWS) forecasting stack,
consisting of several layers that support a wide range of forecasting
models and automate common tasks like model selection. This stack
is the basis for the Amazon Forecast service and leverages our open
source forecasting library GluonTS and the scalable ML platform
SageMaker. Furthermore, we evaluated the predictive performance
and runtime of the contained forecasting models, and discussed our
learnings from using this stack to provision resources for the cloud
database services DynamoDB, Redshift and Athena.

In the future, we expect foundation models to make their way
into forecasting (due to promising early results [17, 26, 58]), and
become available on services like Hugging Face or Bedrock. Our
stack can be used to build and train such foundation models, and
may be extended to incorporate them via fine-tuning.
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