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ABSTRACT

Modern database systems including IBM Db2 have numerous pa-
rameters, “knobs,” that require precise configuration to achieve
optimal workload performance. Even for experts, manually “tun-
ing” these knobs is a challenging process. We present Db2une, an
automatic query-aware tuning system that leverages deep learn-
ing to maximize performance while minimizing resource usage.
Via a specialized transformer-based query-embedding pipeline we
name QBERT, Db2une generates context-aware representations of
query workloads to feed as input to a stability-oriented, on-policy
deep reinforcement learning model. In Db2une, we introduce a
multi-phased, database meta-data driven training approach—which
incorporates cost estimates, interpolation of these costs, and data-
base statistics—to efficiently discover optimal tuning configurations
without the need to execute queries. Thus, our model can scale to
very large workloads, for which executing queries would be prohibi-
tively expensive. Through experimental evaluation, we demonstrate
Db2une’s efficiency and effectiveness over a variety of workloads.
We compare it against the state-of-the-art query-aware tuning sys-
tems and show that the system provides recommendations that
surpass those of IBM experts.
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1 INTRODUCTION

1.1 Motivation

Database systems such as IBM Db2 contain many configuration pa-
rameters, often referred to as “knobs,” each with the potential to in-
fluence query performance and resource usage [4, 45]. These knobs
govern various aspects of the system, such as query optimization,
resource allocation, and compiler algorithms. Setting these param-
eters correctly, “tuning the knobs,” is essential to generate query
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execution plans (QEPs) that both optimize system performance and
resource usage. For IBM Db2, tuning knobs include configuration
parameters [11] and registry variables [12]. Tuning is often done by
experts, such as by database administrators (DBAs). Such tuning by
hand, however, is both time-consuming and challenging, due to the
sheer number of performance-impacting knobs, and the interdepen-
dence amongst the knobs, where adjusting one affects the others
[11]. As well, an optimal tuning configuration for one workload
is likely far from optimal for another. The increasing complexity
of modern systems and workloads challenges experts significantly,
despite their expertise [7]. Additionally, manual tuning does not
scale, say, to thousands of database instances in the cloud.

Given these challenges, automated tuning systems have been pro-
posed [2, 45]. These systems employ a range of machine-learning
algorithms to find optimal tuning configurations for specific work-
loads. Still, these have significant drawbacks. First, the systems re-
quire a costly training process, since evaluating database-system
performance would seem to necessitate workload execution. For
OLAP workloads especially, queries can have long runtimes, even
with a good tuning configuration. This heavy training load can
lead to extended database downtime. To circumvent this, some
approaches [2, 5] clone the database, which itself is costly.

Second, automatic tuning systems can perform poorly due to
inaccurate workload characterization. The effectiveness of a
tuning system’s configuration hinges on an accurate workload char-
acterization that can inform the tuning requirements. Query-aware
systems attempt to address this by bringing a deeper understanding
of the queries, and the query plans, that are involved [19, 24].

Lastly, these systems often unnecessarily waste resources. In
cloud-based database-system deployments, users must pay for CPU,
memory resources, and I/O bandwidth. In such a setting, efficient
resource usage may be as important as overall performance. The
less expensive resource allocation option would be preferred if
similar latency could be achieved for a workload, say, with 64GB
rather than 128GB of RAM. Neglecting resource conservation and
focusing solely on performance enhancement may be reasonable
when provisioning fixed resources for a dedicated server. However,
it becomes unreasonable when resources are shared or paid for per
deployment, such as in cloud computing environments.

1.2 Knob Effects Example

Knobs affect the performance of query evaluation by modifying
the behavior of the optimizer, and by provisioning resources for
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database operations. In IBM Db2, optimization level specifies which
query-optimization techniques will be employed when compos-
ing QEPs. The buffer pool and sort heap knobs set the memory
allocations for those, respectively. Their sizes affect the choices
of operators during query planning. An insufficient allocation to
either leads to less efficient operations and spillage to disk. These
settings compete for main memory, a limited resource, however.
Figure 1 plots how varying buffer pool and sort heap at two
different optimization levels changes cost estimates for TPC-DS’s
query #23 (Qy3) [31]. Note how a change on one knob affects the
responsiveness to changes on the others. While we illustrate this
here with three knobs, this behavior extends to a multi-dimensional
parameter space of knobs to be tuned. Thus, this is a complex
search space that is prohibitively expensive to search exhaustively,
and difficult to tune manually within. In addition to affecting the
estimated cost, knob settings inform the optimizer’s plan selection,
which may change the structure of a plan. Figure 1 illustrates this,
with the same structured plans assigned the same color. Figure 2
illustrates how changing the sort heap knob from 1, 000 pages to
2,000 pages changes the QEP for Q;, in TPC-DS. Each box is an
operator; the three lines in the box report the operator’s type, and its
estimated cost and estimated cardinality (in exponential notation),
respectively. At the lower knob settings, shown on the left, the
optimizer chooses to perform duplicate removal, UNIQUE, which is
not present in the other plan. This reduces the cardinality from the
result of the prior HSJOIN from 4.8E+4 to 1.1E+3, done to avoid
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spilling when executing the subsequent HSJOIN. With sort heap
set at 2,000 pages, the HSJOIN likely fits in memory, so removing
duplicates is judged not significant enough to offset the cost of the
UNIQUE operation. Thus, changes in plan structure and operations
can result in changes to query performance. For tuning, therefore,
we need to encode the structure and statistics of the QEPs.

1.3 Contributions

We present Db2une, an automatic knob-tuning system for IBM Db2,
which provides query-aware tuning recommendations for analyti-
cal workloads and a transformer-based, query-embedding pipeline
via deep learning. We provide an architectural overview in Section
2. This work makes the following contributions towards addressing
the challenges outlined in Section 1.1.

(1) QEP Embeddings with Context (Section 3). We propose
QBERT, a transformer-based pipeline for generating fixed-length
vector embeddings of SQL queries using QEPs, capturing both
statistics and structure of the query plan. Thus, QBERT advances
beyond prior representation learning techniques such as the
featurization of QTune [24] and the bag-of-words approach of
BLUTune [19, 20] by encoding both of these aspects. QBERT em-
beddings are context-aware, with structurally different QEPs
being represented differently, even when they share common
operators and statistics. This is necessary for recommending
optimal knob configurations for unobserved queries.

A Knob-Tuning System (Section 4). Db2une leverages deep
reinforcement learning (DRL) to provide effective and efficient
tuning recommendations for diverse query workloads.

(a) Stable Deep Learning Approaches for Tuning. We em-
ploy proximal policy optimization (PPO), a DRL algorithm
identified as state-of-the-art by experts such as OpenAl
[33], to tuning data systems. Previous DRL-based work use
off-policy algorithms [25] that are sensitive to the quality
of training data, and have been shown to have convergence
issues [2]. PPO belongs to a class of on-policy algorithms
that are more stable.

Multi-phased & Database Meta-data Driven Training.
Performance Metrics for Multi-phased Training. We select
three interchangeable performance training metrics for use
in DRL knob tuning: IBM Db2 cost estimates; interpolated
cost estimates from samples; and actual query runtimes. We
leverage cost estimates from the IBM Db2 optimizer as our
primary training metric, allowing for effective tuning with-
out running expensive analytical queries for training data.
We employ estimated costs as a fast and scalable training
metric for large workloads, where repetitive query execu-
tions are prohibitively expensive. We enhance this further
by using sampled IBM Db2 cost estimates and interpola-
tion, for rapid model pre-training over the most relevant
knobs. This allows for fine-tuning over additional knobs in
a multi-phased fashion, using cost estimates and runtimes.
Database Meta-data for Large-Scale Training. We also pro-
pose an approach to training based on database meta-data,
rather than relying on the full physical database. This
method replicates database objects and statistics from the

@

(b)



production system to a test environment with limited re-
sources. This facilitates effective training for very large
databases with terabytes of data.

Performance and Resource Reward. We design a re-
ward function that guides the DRL agent to learn optimal
knob settings, consisting of two components assessing per-
formance and resource usage. Performance improvement
is evaluated using the metrics of cost estimates and run-
times, while an adjustable metric for reducing resource
usage—termed back pressure—incorporated into the reward
encourages resource-effective tuning, as would be needed
for cloud-based applications.

(3) Experimental Validation (Section 5.)

(a) Tuning System Comparisons (Section 5.1). We demon-
strate the efficiency of Db2une across various workloads,
showcasing significant improvements when compared
against state-of-the-art query-aware tuning systems of up
to 60%. These systems include BLUTune, which employs
QEP2Vec embeddings [19], and QTune, which uses a query
featurization approach [24] (which we call Featuriza-
tion herein). We measure the execution times of unseen
test queries under the recommended knob settings from
each model. We run two experiments: first, in which a tun-
ing configuration is set for each test query; and second, in
which a single tuning configuration is set for the workload
of the test queries.

Training Approach Evaluation (Section 5.2) Via an
evaluation suite, we determine the trade-offs of overhead
and effectiveness for training regimes using our differ-
ent performance metrics. We show how extremely effec-
tive training is just over estimated and interpolated costs,
paired with PPO, for very little training overhead. This
offers a scalability that other systems simply cannot. We
evaluate Db2une trained over database statistics for a very
large 3TB TPC-DS database simulating a production envi-
ronment. This demonstrates its effectiveness in achieving
high performance while optimizing resource usage, and
reducing human effort, delivering recommendations that
surpass those of IBM experts.

Back Pressure Evaluation (Section 5.3). We evaluate the
effectiveness of back pressure to minimize resource usage
while not degrading performance. We run three experi-
ments: to study the best way to incorporate back pressure
into the training; to compare Db2une against itself without
back pressure, both setting per query and per workload;
and to demonstrate back pressure’s ability to conserve
resource allocation while preserving performance.

©

(©

We discuss related works in Section 6, and conclude in Section 7.

2 SYSTEM OVERVIEW

Db2une is a query-aware knob tuning system for IBM Db2, designed
to optimize both for performance and resource efficiency for ana-
lytical workloads. It is a proprietary prototype for internal use by
IBM experts. The system is used in two ways: to train a model for
tuning recommendations; and to make tuning recommendations
on request (using the trained model).
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Figure 3: Architectural overview of Db2une.

Figure 3 overviews the architecture of Db2une. A query workload
is defined as a collection of SQL queries executed over a specific
database (its schema and its corresponding data). A query execution
plan (QEP) details the steps the database system undertakes to
retrieve the queried data, including the chosen join order, join
type, associated costs, cardinalities of intermediate results, and
underlying statistics (as seen in Figure 2).

To train a model, a tuning request is made with a target work-
load (Step 1). The IBM Db2 environment processes the workload
with respect to the current tuning configuration (initially, this is
its default configuration), generating a QEP per query (Step 2).
Db2une’s QBERT pipeline extracts critical tuning information from
the QEPs, mapping features to templates (Step 3). The transformer
generates a low-dimensional embedding for each plan (Section 3).
QBERT then aggregates these into a workload embedding vector,
which is passed to the actor model within the deep reinforcement
learning (DRL) tuning agent (Step 4). (Note that a QBERT embedding
can represent an individual query or a workload.) The agent, based
on proximal-policy optimization, recommends a knob configura-
tion aimed at optimizing performance while efficiently allocating
resources (Section 4). The recommended configuration is then ap-
plied to IBM Db2, which generates new QEPs for the workload based
on the new tuning (Step 5). A reward value is determined, based
on the performance cost and the amount of resources allocated
(Step 6). The workload embedding from Step 4 is also passed to
the critic model in the tuning agent (Step 7). Via the reward and
the workload embedding, the critic learns how beneficial the ac-
tor’s actions were, and determines an advantage value to guide
the actor’s future tuning recommendations (Step 8). This process
is repeated, enabling Db2une to explore the space of knob settings
through trial-and-error, until convergence. To use Db2une to make
a tuning recommendation, only Steps 1 through 5 are executed. The
DBA screens final knob recommendations.

3 QUERY PLAN REPRESENTATIONS

To determine an optimal tuning configuration, a tuning system must
identify and represent features of the target workload that align
with the tuning requirements. These could encompass database
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Figure 4: Query plan for Q,, representation via QBERT.

metrics and query-workload characteristics. A query-aware system
informs tuning decisions by focusing on specific aspects of the
query workload, including the query operators, operator structures,
and costs associated with CPU and input/output (I/O). Being able to
identify, for example, that a particular query is memory-intensive
would inform the system to increase the memory-related knobs
such as sort heap and buffer pool sizes.

Previous query-aware systems have demonstrated the ability
to determine knob settings, such as QTune [24] and BLUTune [19,
20], and to identify problematic components [21]. These methods
suffer from several limitations, however. QTune relies on a simplistic
featurization approach, aggregating operator costs across an entire
query, and hard-coding schema table and attribute names, which
limits its ability to generalize to other query workloads. BLUTune’s
QEP2Vec model, inspired by Doc2Vec neural document embeddings
[22], treats query plans as documents and operators as a bag of
words. This fails to capture the inherent structure of the query plans,
however. It also produces non-deterministic query embeddings,
which hinders the tuning learning process.

To address these limitations, we propose the QBERT pipeline for
templating query plans and generating embeddings from them.
Leveraging a transformer architecture, QBERT represents query
plans in a low-dimensional vector space. This facilitates clustering
based on structure and costs while anonymizing schema names.
This is more adaptable and effective for query-aware knob tun-
ing. Figure 4 provides an overview of how QBERT transforms a
query plan into a vector embedding, via an example with Query
#97 (Qq;) from the TPC-DS benchmark.! A templating process is
subsequently employed to extract relevant tuning information from
these plans, as detailed next in Section 3.1. This extracted informa-
tion serves as input to the QBERT transformer model, responsible
for generating the embeddings, discussed in Section 3.2.

3.1 The Templating Process

Learning tuning configurations involves observing how the perfor-
mance changes while processing the workload from tuning to tun-
ing. Unlike the SQL queries themselves which remain unchanged
across tuning configurations, the query plans do change. As such,
we opt to learn representations of the QEPs as generated by IBM

1IBMDb2 offers a command-line tool db2exfmt to explain its generated query execution
plan. We use this to pull graphical representations of query plans as shown herein.
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Db2’s cost-based optimizer. The effectiveness of a new tuning, in
turn, is assessed by observing changes in the query plans [6]. To
extract relevant information from QEPs, we employ a templating
process, which represents a QEP as a sequence of templates. A tem-
plate encodes the operators’ information, and costs, akin to the
“boxes” in a QEP plot, as seen in Figure 4.

To transform a QEP into templates, we traverse its graph struc-
ture by a depth-first walk to extract the physical operators and their
attributes. During this traversal, we use a hash function to map
a relevant window of operators, a sub-plan, to a template. These
templates encapsulate operator types and comparable cost and car-
dinality ranges (within upper and lower bounds). The costs are a
weighted sum of I/O, CPU, and communication costs, measured
in timerons [13] within IBM Db2. The hashing function assigns the
same template for sub-plans when they share the same operator
types and exhibit similar costs and cardinalities. If no template exists
for a sub-plan with operators within a specific cost and cardinal-
ity range, a new template is created. Templates are represented as
<operator window>—<attribute range>, allowing for different ranges
of costs and cardinality to be associated with the same window
of operators. For example, as shown in Figure 4, a template might
represent a combination of a Hash Join (HSJOIN) connecting two
grouping by (GRPBY) operators. The template is labeled accordingly
based on the range of costs and cardinality. If costs and cardinality
increase, the template label will reflect a greater range. Similarly,
changes in operator combinations, such as replacing a Hash Join
with a Merge-Sort Join (MSJOIN), result in new template labels.

Our architecture supports templating for any operators. We
presently template for join type (e.g, Nested-Loop Join (NLJOIN),
Hash Join (HSJOIN), and Merge-Sort Join (MSJOIN)), and neighbor-
ing operators, such as table scan (TBSCAN), index scan (IXSCAN),
unique (UNIQUE), sorting (SORT), and grouping by (GRPBY). We
abstract table and attribute names into canonical symbols, allowing
us to characterize QEPs based on their most significant features.
This facilitates the identification of (sub)plans with similar charac-
teristics and structures across queries and query workloads, even
when underlying tables and attributes differ. By decomposing the
QEP into an ordered sequence of templates, the templating process
enables us to learn query representations that are context-aware.

3.2 OBERT Embeddings

A sequence of templates representing a QEP can be arbitrarily long,
which does not mesh well as input for a machine learning model.
As such, we seek to map this into a low-dimensional embedding
space, in which a QEP is represented by a fixed-length vector, while
preserving the semantic richness of the QEP. We conceptualize
transforming a QEP template sequence into an embedding as a
natural language processing (NLP) problem, where a QEP template
sequence is to a document as its templates are to words.

Towards this end, QBERT employs a transformer architecture, a
state-of-the-art neural network in the field of NLP, to create con-
textually aware embeddings [9, 40]. Specifically, it leverages the
Bidirectional Encoder Representations from Transformers (BERT)
architecture [9], known for its effectiveness in generating contex-
tually rich embeddings via self-supervised training tasks. BERT
processes a sequence of tokens (e.g., words in text) that are divided



into segments (e.g., sentences). It undergoes training on two main
tasks: masked-language modeling and next-segment prediction. Fol-
lowing observations made in RoBERTa [26] for the task of question
answering where the former is more performant, we have observed
the same for us. Thus, we restrict our focus to that herein. For the
masked-language task, BERT is given a sequence with some tokens
randomly replaced by a placeholder mask. Its goal is to predict the
original tokens at these masked-out positions accurately.

The masked-template prediction task is our version of the masked-
language task: the model learns to predict the masked portions of
the query-plan sequence. For example, the model can identify that
a filter operation usually occurs after a table scan (TBSCAN), but
before a nested-loop join (NLJOIN). It may determine the reason
for the high costs associated with certain operations is due to their
placement relative to preceding operators.

The attention mechanism in the transformer’s neural networks
mimics human attention, allowing the model to focus on the parts
of the input data most relevant for performing a given task. This
dynamically weighs different input elements for more accurate,
context-aware outputs. BERT’s bidirectional nature complements
this well by providing contextual information from both directions
within the sequence. This enables the model to focus dynamically
on portions of the input QEP sequence during the prediction of
masked-out tokens, thereby uncovering and understanding complex
relationships amongst the operators.

Figure 5 illustrates our QBERT pipeline. The templated QEP un-
dergoes tokenization, to represent it as a sequence of vocabulary
elements (tokens). QBERT employs a word-piece tokenizer [9], de-
composing template segments into sub-word units where operators
serve as root words, and their associated costs and cardinalities
become suffixes. This helps the model to generalize to unseen tem-
plates by splitting unseen tokens into smaller seen tokens. The
tokenized templates, Tokj, ..., Tok,, are input to the QBERT trans-
former where they then are mapped to learned template embeddings,
Emby, ..., Emby,. These template embeddings are then augmented by
the transformer neural encoder into contextual embeddings, Emb’l,
..., Emb},, to encode context information. The inclusion of contex-
tual information allows the transformer to interpret the ordering
of templates, preventing it from perceiving the sequence as a bag
of words. The template embeddings traverse multiple encoders,
leveraging multiple attention mechanisms to encode complex rela-
tionships and contextual information.

The components of the pipeline boxed with a dashed black line
are present just during the training phase of the transformer, specif-
ically for the masked template prediction task. The transformer
training based on this task is sketched in Algorithm 1. Given a set
of queries, the QEPs are generated (Line 3), which then undergo
the templating process (Line 4). These templates are tokenized and
randomly masked with a special token, MASK_TOKEN, with some
probability; e.g., 15% (Line 10). (In the figure, the masked elements
are encircled with a dashed black line and thatched.) The trans-
former proceeds with a forward pass (Line 13), computing con-
textual embeddings for the masked-token embeddings via the use
of the encoders. The masked-template contextualized embeddings
are used as input to a prediction network that aims to predict the
masked templates based on the encoded contextual information
(Line 14). The softmax activation function is applied to calculate
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“probabilities” for each template (over the entire vocabulary) to
determine its likelihood of being the masked template (Line 15).

For instance, the predicted probability for the masked dark-blue
colored template is 93%. The model’s performance is assessed using
cross-entropy loss, which compares the distribution of predicted
templates (93% for the dark-blue colored and 2% for the pink colored
template) against the actual template distribution (100% for the dark-
blue colored and 0% for the pink colored template). This indicates
that the prediction was accurate, as only the dark-blue colored
template was masked. Iterative refinement of the transformer’s
weights based on multi-class cross-entropy loss function (Lines 16—
17) allows the model to identify contextual template embeddings
that predict the masked templates with high accuracy.

Ultimately, the transformer outputs a contextual embedding for
each template. These are averaged to obtain an embedding to rep-
resent the entire query plan. This QEP embedding, indicated as
0.9,...,0.7) in Figure 5, captures the operators’ properties and
their relationships. Similarly, we obtain a workload embedding by
averaging the workload’s QEP embeddings. There are a variety of
tasks, such as clustering and knob tuning, that can use QBERT em-
beddings. Our experiments in Section 5 show that our embeddings



Algorithm 1 QBERT-Train

Naata

1. Input: dataset of queries {qn},

2: for n € [Nyg4] do
3: qn < GET-QEP(qp)

, initial parameters 0

4: Qn < TEMPLATE-QEP(qy)

5: Qn < TOKENIZE-TEMPLATES(qn)

6: end for

7. for i € [Nepochs] do

8 for n € [Ny,,] do

9 fort € [len(gn)] do

10: G, [t] < MASK_TOKEN with probability p,, sk
11: end for

12: T « {t € [len(gn)] : d,[t] = MASK_TOKEN}
13: X ¢ TRANSFORMER-FORWARD(q,, |0)

14: X < LINEAR(X)

15: P « sorTMAX(X)

16: loss(0) « — 2., 7 qnlt]logP(2)

17: 0 «— 60— a - Vloss(6)

18: end for

19: end for

allow Db2une to achieve significantly better tuning performance
than competing methods.

4 AUTOMATIC TUNING SYSTEM

To navigate the complexity of the tuning configuration space, we
employ deep reinforcement learning (DRL), using actor-critic net-
works, as illustrated in Figure 3. This approach trains two neural
networks in parallel: an actor, which learns a policy 7 to map an
input state to a set of recommended actions; and a critic, which
learns a value function to estimate the effectiveness of the actions.
The actor updates its policy as guided by the critic’s values to learn
which actions are beneficial, and which are detrimental, in a given
state. The actor and critic together constitute an agent, tasked with
learning how to maximize rewards within its environment. This is
achieved by combining exploration, where new strategies are tried,
and exploitation, where known strategies are employed.

In the context of Db2une, the agent interacts with the target IBM
Db2 database environment. Knob configurations are recommended
via the actor’s actions, which align with the current state of the
model. This state is represented by the QBERT workload embedding
at the current knob settings. Applying a new tuning configuration
changes the state. A reward (Section 4.3) is subsequently calculated
based on the changes in performance metrics (Section 4.2), and re-
source allocation. The critic uses this reward to learn how effective
the current tuning is, computing an advantage score to provide
feedback to guide the actor’s future recommendations.

4.1 Stability-Oriented, On Policy Tuning

Prior work in DRL for database knob tuning [2, 5, 16, 17, 24, 43]
has employed off-policy algorithms such as deep deterministic policy
gradient (DDPG) [25]. On the one hand, these methods favor sample
efficiency, which allows for the reuse of expensive sampled data.
On the other hand, they have difficulty converging on tuning tasks
[2] and are sensitive to the quality of training data [42]. DDPG
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specifically exhibits instability and is brittle to hyperparameter se-
lection [14, 18]. As off-policy algorithms update the current policy
using experiences collected under older policies, misalignment be-
tween past and target behaviors can hinder learning. Additionally,
fluctuations in reward signals lead to disruptive policy updates,
undermining the stability of DRL algorithms [3].

We employ an on-policy algorithm, in contrast to this prior work.
On-policy algorithms update the policy based on the data collected
while following that policy. This is more stable and exhibits better
convergence [32, 33]. A potential drawback of on-policy algorithms
is that they discard past experiences after each update. This requires
fresh data for each iteration. This can be limiting in environments in
which sampling is expensive, as is sampling latency and throughput
from the database environment.

Our system mitigates these drawbacks in two ways. First, we pre-
train the policy using quickly-obtainable cost estimates instead of
using runtimes (Section 4.2). Second, we employ the proximal policy
optimization (PPO) on-policy algorithm [33], recognized as state
of the art by OpenAI [30]. PPO is recognized for its stability and
adaptability, and can handle discrete and continuous action spaces.
This makes it particularly well suited for knob tuning. PPO enhances
training stability by limiting the magnitude of policy updates in
each training iteration. This is accomplished by evaluating the
deviation of the current policy 7 from the previous policy 7g , by
using their ratio, denoted as f;(8), as in Equation 1:

fr(0) =

mg(azlst)
ﬂegld(af |St)

The ratio f;(6) calculates the relative likelihood of the current pol-
icy my choosing action a; at state s; compared to the old policy
g,y at time step t. For the task of tuning, a; represents the knob
configuration, and s; represents the query workload embedding.
The ratio indicates the extent of the divergence between this and
the old policy. If f;(6) > 1, the current policy is more likely to
select action a; at state sz, than under the old policy. Conversely, if
f:(0) < 1, the current policy is less likely to choose a; at s;,
Db2une employs the advantage actor-critic framework, an im-
provement over the original actor-critic algorithm used in QTune
[24] and CDBTune [43]. In the original framework, the critic learns
the Q-value function Q(s;, a;), which estimates the overall expected
reward for an actor-agent in state s; that performs an action a;,
following a specific policy until the end of the episode. The Q-
value alone, however, does not capture the relative quality of an
action compared against other possible actions. To address this, the
V-value function V(s;) is introduced, which indicates the overall
expected reward of the agent by performing an “average” action
in state s;, then following the policy until the end of the episode.

1)

The advantage, denoted as A(ay, s¢), of a given state-action pair is
defined in Equation 2 as the difference between the Q-value and
V-value. Thus, the advantage captures how good the action taken
is compared against other possible actions in that state.

Alst,ar) = Q(se.ar) = V(st) @)

For conciseness, we refer to the reward from taking action a; at
state s; simply as r;. Since the Q-value can be expressed as the
sum of the intermediate rewards r; discounted by the parameter
v, minus the V-value at the end of the episode at timestamp T, we
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Figure 6: Tuning agent based on advantage actor-critic.

can rewrite the advantage as in Equation 3.

T-1
Alars) = Yy iy IV (sr) = Vise) &)
i=t
PPO’s clipped surrogate objective function, denoted by L in
Equation 4, restricts updates by constraining the ratio f;(6). If the
ratio exceeds a predefined threshold, the update is clipped, ensuring

it does not deviate too far from the previous policy.

Lelip — E[mm(ﬁ(g)&, clip(f;(6),1—€1+ G)gt)] (4)

The objective function in Equation 4 aims to maximize the product
between f; (0) and A(a;, s;), indicating the current policy is more
likely to favor advantageous actions than the old policy. To prevent
excessively large updates, f;(0) is clipped within [1—¢€, 1+ €], with
the threshold e typically set to 0.2 [33]. The final objective function
is determined by selecting the minimum value between the clipped
and unclipped objectives. The policy is updated multiple times each
episode to promote efficiency.

Figure 6 illustrates our actor-critic framework. The actor mod-
els multiple probability distributions and can sample discrete and
continuous actions. A discrete knob may lack a linear mapping to
a continuous variable. Being able to model simultaneously continu-
ous and discrete variables is an advantage over algorithms such as
DDPG, used by QTune and CDBtune, which are limited exclusively to
modeling continuous variables. The actor processes the QBERT state
embedding through two fully connected layers with tanh activa-
tions. The outputs represents the means of the normal distributions
for sampling continuous actions (pink nodes), and the logits of cate-
gorical distributions for discrete actions (blue nodes). The variance
of each of the normal distributions serves as a model parameter.
The critic also processes the QBERT state embedding to compute
the state’s V-value, V (s). The V-values and the rewards are used
to calculate the advantage (Equation 2), which, in turn, guides the
actor-network to minimize the objective function (Equation 4).

4.2 Multi-phased & Meta-Data Driven Training

Performance Metrics: Multi-phased Training. We support three
training metrics to generate our reward: query runtimes; IBM Db2
“timeron” cost estimates; and an interpolated estimate of those costs.
These are interchangeable, enabling training on one and fine-tuning
on another via transfer learning in a multi-phased approach. This
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allows us to select initial metrics that facilitate faster model training,
to be followed by fine-tuning on more precise metrics.

Prior tuning work relies predominantly on query workload run-
times, but this does not scale for workloads with expensive analyti-
cal queries and very large databases. Poor tuning configurations
(including the default) sampled during training can lead to unrea-
sonably long runtimes. Therefore, we opted to use IBM Db2 cost es-
timates as our primary training metric. These estimates, generated
by the query optimizer for a given query and knob configuration
during QEP compilation, provide valuable insights into query per-
formance. While traditional optimizer cost estimates have faced
challenges with accuracy [10, 23], recent advancements in machine
learning-based cardinality estimation have significantly improved
these estimates, offering promising enhancements for tuning efforts
[29, 36]. Cost estimates do not capture the impact of every knob,
such as the degree of parallelism, however, this approach allows
many of the most important knobs to settle into optimal settings.

This does scale; for TPC-DS, we empirically verified that the over-
head in time for compiling the queries during training increased
by 9% when scaling from 1GB to 100GB (and by only 7% when scal-
ing from 10GB to 100GB). In contrast, training based on execution
times can vary by orders of magnitude—ranging, from minutes to
hours for 1GB versus 100GB. Furthermore, for a specific dataset
size (e.g., 100GB), compilation times remain relatively stable across
various knob configurations. Meanwhile, execution times for dif-
ferent knob configurations can vary significantly, often leading to
query plans for which the execution time can be hours longer, or
may not complete at all, having a significant impact on training. In
Section 5, we demonstrate that effective tuning can be provided via
cost estimates, with the ability to fine-tune models further using
query runtimes, controlled by the number of training steps.

Despite using cost estimates, the process of modifying database
settings, even virtually, and re-compiling the QEP for each sample
remains the main time bottleneck during training. To address this
issue further, we implement a process in our model to estimate
the IBM Db2 cost estimates themselves. We initially sample QEPs
with their corresponding costs and knob settings. Then using the
sampled costs at given settings, we create a function to interpo-
late linearly between the sampled costs. Figure 7 illustrates this
interpolated function overlaid over sampled costs for TPC-DS’s
Qg4 During training, we use this function to obtain an interpolated
cost estimate. The embedding, used as the input state for Db2une,
is the nearest-neighbor sampled QEP. As QEPs with small changes



in knob settings can have similar structures, and only vary slightly
in cost metrics, the resulting embedding is sufficiently similar for
tuning purposes. In Section 5.2, we show that by removing the
need to change database system settings and re-compile QEPs, we
improve the time to train significantly, while obtaining reasonable
results which can be further fine-tuned. Our interpolation is limited
in the number of knobs we can simultaneously tune, of course,
since sampling involves combinations of knob values. Thus, we
prioritize sampling the most impactful knobs for a given workload.
IBM experts have observed that typically it is a subset of knobs that
are most influential.

Meta-Data Driven Training. A significant challenge for tuning
database systems in prior work is downtime, as the database is typi-
cally taken offline during training. While cloning the database is a
workaround for this, this introduces potential concerns regarding
space, resources, data duplication time and synchronization, and
network transfer costs. We propose a novel method to train over
database meta-data instead of the full physical database. We lever-
age the db21ook tool, which extracts data definition language (DDL)
statements for replicating database objects and generates UPDATE
STATISTICS for replicating catalog statistics on a test system. This
facilitates the synchronization of query optimizer configuration
settings with a production database.

Moving the training of the tuning agent onto the test system
allows for Db2une to experiment with different knob configurations
without the risk of affecting customer workloads on the production
system [8]. The db2fopt command is used during training to let us
adjust memory parameters used by the query optimizer virtually.
This setup enables a test system with limited resources (such as
memory and CPU) to generate query plans mirroring those of a
higher-capacity production system. The query plans cannot be exe-
cuted on the test system since no copy of the data exists. However,
this is not an issue since our training focuses on reducing QEP
estimated costs. Consequently, we can train the model solely on the
database statistics, even when our test system lacks the resources
of the production system. This method performs and scales well
for very large databases with terabytes of data (Section 5.2)

4.3 Performance and Back Pressure Reward

The reward signal plays a vital role in guiding the agent to learn
which knobs work best for a given workload. Our reward function,
r, consists of two components, each assessing a key tuning metric.
First, we evaluate how much our knob recommendation enhances
the performance of queries, denoted by rp,: Second, we measure
the reduction in system resources, compared against other beneficial
knob settings, denoted by ry,s. Then r; is the sum of these, with ryeg
weighted by a binary parameter § € {0, 1}.

©)
Performance. We design ry,r to enhance performance, employing
metrics such as the cost estimates generated by IBM Db2’s optimizer
and actual query runtimes (detailed in Section 4.2). This is calculated
as the difference in workload performance attributed to the agent’s
current knob recommendation and the performance of its previous
and initial knob recommendations [24, 43]. This provides the agent
with immediate feedback, indicating whether its tuning actions
improve or worsen performance throughout an episode. Thus, 7pe,¢

Tt = Tperf+ Orres
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is defined as in Equation 6.
N ((1+rpren)® = D1+ rinitl  if rinig > 0
P (1 - rprev)? = D1 = rinigl  if rinig <0

Here, ripj; is the performance difference between the current per-
formance and the initial sampled performance, normalized by the
initial performance, and rprey is the performance change between
the current cost and the previous sampled performance, normalized
by the previous performance. After calculating ry,f, we normalize
its value to the range [-5, 5] to maintain a controlled scaling.
Back Pressure. Our design of rps is motivated by the applica-
tion of automated tuning systems in multi-tenant settings, includ-
ing cloud environments. In such settings, database tuning should
only use as many resources as needed to achieve a high perfor-
mance level to prevent the customer from paying for unnecessary
resources. Other query-aware tuning systems lack the utilization
of resource rewards [24] or are constrained by upper-bound re-
source limits [19, 20]. In contrast, our system implements back
pressure—we refer to the idea of pushing back on a high resource
allocation as “back pressure”—into the reward to accommodate this
need for intelligent resource management. For two knob configura-
tions that result in the same performance, the one that used fewer
resources is favored. During training, we track the best-performing
configuration seen for a given query. If a newly sampled config-
uration’s performance falls within « of the best, we calculate an
additional incentive or penalty for each knob that has back pressure
applied. Thus, this parameter « controls the tolerance for change
in performance before back pressure is applied.

For each knob, we have its current recommended resource set-
ting, rrec, its resource setting in the best-seen performance settings,
T'pest> and its maximum setting, rmqyx. A parameter f is used to weigh
the magnitude of the resource reward. The resource reward is then
calculated for each knob i independently, as in Equation 7.

0 _ ()

Trec ~ rbest

(i)

max

(6)

rres = B )
For knobs that allocate shared resources—for instance, such as
buffer pool and sort heap do for memory—the resource reward
is calculated by subtracting the current number of recommended
pages of memory and the pages allocated to achieve the best-seen
performance, normalized as per Equation 7. Back pressure can also
be applied to discrete knobs with ordinal values. For such a knob,
we map its n ordered discrete values onto [1,...,n], and set its
maximum value to be n. Given this, we can then treat discrete and
continuous knobs the same for the purpose of computing r.’s as
per Equation 7. Given tuning knobs 1, .. ., k, the overall resource
award, rpes, is then simply the sum over the individual knob resource

awards: rres = Z{'C:l rgs) .

In IBM Db2, for example, the optimization level knob has seven
settings: 0-3, 5, 7, and 9. It dictates which optimizer algorithms will
be used and the number of plans that will be considered for a SQL
statement. A higher setting indicates a higher degree of optimiza-
tion. We found that on large, real-world workloads, setting this too
high may worsen runtime performance. The system often selects
the same plan as it would have with a lower optimization level, but

at a greatly increased compile time, sometimes even exceeding the
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Figure 8: Db2une setting knobs.

actual execution time. Applying back pressure to this knob encour-
ages the model to select the lowest optimization level to achieve the
highest-performing plan, potentially reducing compilation times.
However, we do not explicitly enforce resource constraints when
they are not captured in cost estimates (i.e., compile time).

Figure 8 shows a projection onto buffer pool and sort heap al-
locations for Db2une training runs with respect to two TPC-DS
queries, Q4q and Qg. In Figure 8a, we illustrate a use case of our
reward function. The contour plot shows the estimated costs of a
given query over buffer pool and sort heap settings. The higher
cost regions are shown in the bottom-left in yellow-green, and the
lowest cost “plateau” in the upper-right in dark blue. (Figure 8b is
discussed shortly below.) The buffer pool and sort heap settings
are measured in pages of memory. The red dot indicates Db2une’s
recommended tuning for this query when trained without back
pressure. The blue dot represents the recommendation from the
same model after undergoing additional training with back pressure
implemented. Notably, this recommendation remains within the
lowest cost plateau, but uses significantly fewer memory pages as
per the buffer pool setting, thus achieving optimal cost efficiency
with reduced resource allocation.

Back Pressure Variations. We consider three approaches for
applying the back pressure in the reward function. First, we consider
Db2une without any back pressure. Second, we apply split back
pressure by conducting one training pass without back pressure,
followed by another pass with it. Lastly, we implement full back
pressure by incorporating it into the reward for the entire training.

With split back pressure, due to the large, complex search space,
we initially guide the agent’s learning using only the performance
reward. This allows it to converge on the best knob settings, regard-
less of resources. After this, we enable the resource reward, ryes,
weighted by the parameter §, alongside the performance reward,
Iperfs s per Equation 5, to encourage the actor-agent to prefer knob
configurations that result in high performance, but while using as
few resources as possible. Based on our experimental evaluation
(Section 5.3), we observed that split back pressure offers the best
trade-off between efficiency and resource allocation.

4.4 The Training Process

Algorithm 2 pseudocode details the training process for Db2une’s
PPO model. Multiple passes of N episodes are conducted over each
query in the target workload (or until convergence, if sooner). Each
training episode executes with ¢ steps in the IBM Db2 environment
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Algorithm 2 Train-PPO

1: Input: policy parameters 6 and value function parameters ¢
2. while i < N and not converged do
fort e {1,...,T} do

4 Dt (st,ar, 11, log mg,,, (arlst), V(st))

5 end for

6: for je{1,...,J} do

7: loss(0) — E[min(f; (0)Ay, clip(f;(0),1— €, 1+ €)Ay)]
8: loss(¢) — Xrer(Vp(se) — Re)?

9 0 «— 0 —a-Vlioss(0)

10: ¢ — ¢ — B - Vioss(P)

11 end for

12: 901d<—9,i<—i+1

13: end while

(Lines 3-5). An episode samples multiple knob settings based on
the current policy, and evaluates their effect on workload queries.
IBM Db2’s optimizer processes a query from the target workload,
generating a QEP under the default knob settings. QBERT embeds
this QEP, and the PPO agent predicts knob settings. These settings
are then applied to the database system, a new QEP is generated
under them, and this is used to compute the performance and back
pressure rewards for the predicted knob settings.

At each step t, we store in a buffer D; the state, action, reward,
probability of the policy taking the action, and V-value (Line 4).
After calculating the advantage at the episode’s end, we update the
actor and critic networks for J steps (Lines 6—11) using stochastic
gradient descent over their objective functions (Lines 7-8), where
R; is the sum of discounted intermediate rewards.

In Figure 8b, we show an example use case of tuning two knobs,
buffer pool and sort heap. The contour plot depicts the estimated
cost of a query at various settings, with the lowest cost represented
in dark blue. The dots, ranging from black to yellow to finally red,
highlight recommended settings during training. This illustrates the
system’s exploration process, ultimately recommending a setting
in the lowest cost region.

5 EXPERIMENTAL VALIDATION

We conduct an experimental validation of Db2une, showcasing its
efficiency, and effectiveness. The experiments were run on a ma-
chine with an Intel i7-8565U CPU and 32GB of RAM and a RTX3070
GPU, running IBMDb2 Enterprise Edition. We evaluate Db2une over
the standard TPC-DS [31] and TPC-H [34] benchmarks, and over an
IBM client-inspired analytical workload, referred to as IBM Client,
that includes common OLAP operations like window functions,
union operators, and complex nested joins and subqueries. Each
database is column-organized and sized at 100GB (column com-
pressed to 36GB), unless stated otherwise. We cap memory usage
of DB2 to 2GB. For each workload, we measure the execution times
of test queries that are unseen during training. Query embedding
models (i.e., QBERT, QEP2Vec) are trained once on GPU and used
across all experiments, while the tuning agents are re-trained on
CPU across different workloads.

5.1 Query and Workload Level Tuning

We evaluate the Db2une system against BLUTune [19, 20], which
uses QEP2Vec embeddings, and against QTune [24], which uses



Featurization (denoted herein as QTune-F) over the TPC-DS,
TPC-H, and IBM Client workloads. To demonstrate Db2une’s transf-
er-learning effectiveness, we evaluate Db2une against BLUTune and
QTune where each system has been trained over either the TPC-DS
or TPC-H workload, then tested over the TPC-H or IBM Client
workload, respectively.

Exp-1: Query Level. We first evaluate Db2une’s efficiency tuning
on each query. As illustrated in Figure 9, Db2une’s knob configu-
rations result in significant performance gains over the TPC-DS,
TPC-H, and IBM Client workloads, achieving a 23.3% to 50.1% re-
duction in execution time over BLUTune, and a 30.9% to 60.4% reduc-
tion over QTune-F. To demonstrate Db2une’s effectiveness to re-use
learned tuning models, we train the systems on TPC-DS and then
test them on TPC-H (TPC-DS — TPC-H), and train on TPC-H and
test on IBM Client (TPC-H — IBM Client). Db2une shows a 32.3%
and 48.2% execution-time reduction compared against BLUTune,
and a 44.1% and 51.0% reduction compared against QTune-F, over
TPC-DS — TPC-H and TPC-H — IBM Client, respectively.
Exp-2: Workload Level. We next evaluate how the Db2une sys-
tem tunes once per workload. As shown in Figure 10, Db2une again
outperforms substantially BLUTune and QTune-F over the TPC-DS,
TPC-H, and IBM Client workloads, achieving a 25.0% to 48.5% re-
duction in execution time over BLUTune, and a 31.2% to 56.3% reduc-
tion over QTune-F. Db2une shows a 33.2% and 47.2% execution-time
reduction compared against BLUTune, and a 43.1% and 50.1% re-
duction compared against QTune-F, over TPC-DS — TPC-H and
TPC-H — IBM Client, respectively.

5.2 Multi-phased & Meta-Data Training

Exp-3: Performance Metrics. We next evaluate the effectiveness
of multi-phased training for knob tuning, considering different com-
binations of our training metrics (Section 4.2). A model is either
fully trained using a single performance metric (e.g., interpolated
cost or estimated cost), or pre-trained with one performance metric
during a first training pass, and then fine-tuned by a more precise
metric during a second training pass. For the latter, we pre-train on
interpolation and fine-tune on estimated cost, or pre-train on esti-
mated cost and fine-tune on runtime. When fine-tuning on runtime,
we implement timeouts to prevent excessively long runs caused
by poor initial knob settings. For pre-training with interpolation,
we train for buffer pool, sort heap, and optimization level (with the
remaining knobs set at their default values), as these have the most
significant impact on cost estimates and runtime.

Table 1 reports the cumulative times for training and testing
Db2une over the TPC-DS, TPC-H and IBM Client workloads.? For
instance, for TPC-DS, compared against training on interpolation
(interpolation/—), pre-training on interpolation then fine-tuning on
cost (interpolation/cost), yields a 3% improvement in testing time, at
the cost of an 81% increase in training time. Compared against the
interpolation/cost model, cost/— yields a further 6% improvement in
testing time, at an additional cost of a 44% increase in training time.
Lastly, compared against cost/—, cost/runtime yields yet a further
4% improvement in testing time, but at an additional cost of a 94%

2To construct our interpolation function via sampling took on average 30 minutes.
This is an off-line cost, as it is done once, when the data is sampled. This is reused over
any number of training runs. Thus, this off-line cost is not included in the table.
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increase in training time. Note that the reported training times
for Db2une are on average 40% faster than those for BLUTune and
QTune, due primarily to faster convergence during training.

We do not report the results of training fully on runtime as this
is extremely time-consuming. Many of our training runs had to be
aborted because the initially untrained model would recommend
poor knob parameters, which resulted in queries that would run
for hours. We conclude that training solely on runtime is simply
not practical for large workloads. We observed similar trends over
the TPC-H and IBM Client workloads as reported in Table 1. Our
experiments confirm that we can achieve significant time savings
during training while not significantly sacrificing model perfor-
mance. While cost estimates offer a favorable trade-off between
training time and testing time, it is ultimately up to the administra-
tor to decide which method is most suitable for their specific needs,
considering whether investing the additional training time needed
by the more accurate performance metrics is worthwhile for the
corresponding performance gains.
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Table 1: Times with training metrics and fine tuning,.

pre-training: | interp. interp. cost cost

fine tuning: - cost — runtime

training time (TPC-DS) 19m 1h4lm 3h 48h
testing time (TPC-DS) 978s 946s 890s 856s
training time (TPC-H) 8m 54m  1h46m 30h
testing time (TPC-H) 887s 833s 737s 692s
training time (IBM Client) 13m 1h12m 1h57m 42h
testing time (IBM Client) 636s 542s 527s 495s

Exp-4: Tuning with Database’s Meta-data. As we have shown
that we can effectively train via cost estimations, this effectively
means we do not need the database itself but just the database’s
meta-data—schema, constraints, and data statistics—in order to
train! To demonstrate, we used a 3TB TPC-DS database, partitioned
by the IBM team across eight nodes, to simulate a production envi-
ronment. Using db21ook, we extracted the DDL and update stat-
istics statements to replicate the database objects and statistics,
but not the data, in our test system. We used the db2fopt command
to adjust memory-related knobs, such as buffer pools, to beyond
the actual resource limits available in our test environment. Thus,
the test system mimics the resources of the production system.

Training Db2une in our test environment for the 3TB TPC-DS
workload took 4 hours and 47 minutes. This training time is quite
reasonable in light of the performance improvements the model
conferred. Applying the model’s recommended configurations, we
observed up to 18.5% improvement over the individual queries, with
an average improvement of 5%, with none more expensive than
via the tuning configurations recommended by IBM experts. In
addition, Db2une’s tuning allocates 130 thousand fewer pages in
total over the buffer pool and sort heap. Interestingly, it allocated
376 thousand more pages for sort heap but 506 thousand fewer
for buffer pool than the IBM experts had. This surprised the IBM
team, as this ratio between sort heap and buffer pool differed from
their heuristic rules based upon past tuning experiences with other
workloads. Furthermore, this tuning task was achieved automati-
cally, alleviating the human burden to tune manually, which IBM
experts report can take hours, even days.

5.3 Back-Pressure Evaluation

Exp-5: Ways To Apply Back Pressure. To study the inclusion
of back pressure into the reward function, we evaluate three ap-
proaches over the TPC-DS workload: with no, split, and full back
pressure. We measure the changes in the estimated cost, in query

3865

Table 2: Summary of back-pressure models.

no BP split BP full BP

estisimated cost | 15.2M 16.4M 20.3M

avg. total runtime 864s 891s 1,226s

change in est. cost & runtime - 7% &3% 25% & 42%
avg. change in memory - 78% 91.8%

execution time, and in pages of memory allocated. Figure 12a plots
the estimated cost of each test query as provided by the IBM Db2
optimizer at Db2une’s recommended settings. Figure 12b shows the
actual runtime for each. The no back pressure model achieves the
lowest estimated cost for each query. Split achieves a close second-
best performance, with nearly identical results on five of the ten
test queries, and only slight increases for the rest. Full is not as
good, showing either similar or worse results than the split model
on each query. These results are reflected in the runtimes. (Note
that Q, is an outlier in that the split model outperforms the full.)
Figure 12c shows the pages of memory allocated by each model,
revealing a significant memory-resource reduction for both the
split- and full-back pressure models, just as anticipated.

Table 2 summarizes the models’ performance. Split shows a slight
3% increase in total runtime (and 7% in estimated cost), in exchange
for a significant 78% average reduction in memory allocation per
query! Full demonstrates a worse 42% increase in runtime (and
25% in estimated cost), but with a 92% reduction in memory allo-
cation. We surmise that full performs worse than split as an early
application of back pressure may discourage exploration of higher-
performing settings. As our goal is to avoid significant increases
in runtime while economizing on resource allocation, we advocate
for the split back-pressure approach.

Exp-6: Performance with and without Back Pressure. We now
compare Db2une (thus, with split back pressure) against Db2une but
with no back pressure, tuning per query and tuning per workload.
We aggregate over the workloads for each of the following. For
query tuning, the increase in execution times is 0.7%, 3%, and 6% for
the TPC-H, TPC-DS and IBM Client workloads, respectively. For
workload tuning, it is 5.9%, 7.7%, and 9% for the TPC-DS, TPC-H
and IBM Client workloads, respectively. Thus, loss in performance
is minimal. Meanwhile, back pressure dramatically decreases the
allocated memory. For query tuning, this decrease is 78%, 15.8%,
and 22% and for workload tuning, this decrease is 78%, 34%, and 30%
for the TPC-DS, TPC-H and IBM Client workloads, respectively.

Exp-7: Reduction in Resource Allocation. In Figure 11, we
compare the resource allocation, specifically for the number of



pages allocated by Db2une’s recommended tuning, against those
of BLUTune’s and QTune-F’s for tuning by workload. Over TPC-
DS, Db2une allocates 71.4% fewer resources than BLUTune does,
and 73.5% fewer than QTune-F. Db2une finds that a large buffer
pool is unnecessary, as long as there is sufficient sort heap. Thus
it allocates less memory for the buffer pool than do BLUTune and
QTune-F. Over IBM Client, Db2une finds the opposite: allocating
more memory for a larger buffer pool is better. It uses 48.9% more
resources than BLUTune does, and 35.2% more than QTune-F. Over
TPC-H, Db2une uses 50% more resources than BLUTune, and 70%
more than QTune-F. One reason Db2une may identify that these
workloads require a larger buffer pool is due to their large fact
tables. For example, the LINE_ITEM fact table in TPC-H at 100GB
contains about 600 million rows, which is about twice as large as the
STORE_SALES table, the largest table in TPC-DS. With the smaller
size of tables on TPC-DS, a smaller buffer pool was sufficient, as
long as the sort heap was large enough. Over TPC-H, however, since
the queries were, on average, accessing a larger fact table, the buffer
pool is more critical. Over TPC-DS — TPC-H, Db2une uses 4.1%
more memory resources than BLUTune does, but 21.5% less than
QTune-F. Finally, over TPC-H — IBM Client, Db2une uses 26.7%
more resources than BLUTune does, and 46.2% more than QTune-F.
Thus, Db2une’s resource usage in transfer-learning scenarios varies,
based on workload-specific needs, demonstrating its adaptability.

6 RELATED WORK

Many systems for automatic database system knob tuning using
machine learning have been developed over the last several years;
e.g., [1,5, 16, 24, 38, 41, 43, 44]. In this section, we focus on the ones
most relevant to the Db2une system.

OtterTune [1, 2] identifies and ranks the knobs with the strongest
impact on performance by applying Lasso, maps the given workload
to a repository of previously collected performance measurements,
and employs Bayesian optimization using a Gaussian process to
choose knob settings. This approach produces effective recommen-
dations, however, requires a large number of costly training samples.
Bayesian optimization, while shown as effective for knob tuning, is
generally less effective in large search spaces [15, 28], which may
limit its use for tuning complex analytical workloads.

CDBTune [43] introduces DRL as a method for automatic knob
tuning. It uses a deep deterministic policy gradient model (DDPG),
an off-policy-based learning method. This approach relies on a
trial-and-error method for learning knob settings, which improves
upon existing work by alleviating the need for a large number
of expensive high-quality training samples. However, CDBTune is
limited in that it can provide only coarse-grained tunings (i.e., for
specific workload types, such as read-only). It is also not query-
aware. It only reacts to the anticipated change to data system health
metrics, such as counters for data reads and lock timeouts.

Gur et al. [17] propose a multi-model tuning solution that em-
ploys DDPG to address deployments with varying workloads. The
authors use IBM Db2 monitoring to track the memory allocated.
Their approach is particularly suited for handling a variety of OLTP
workloads with varying patterns. However, in scenarios with nu-
merous distinct workload patterns, the training and maintenance
of these models can be quite costly.
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QTune [24] extends on CDBTune to be query-informed by using a
double-state DDPG (DS-DDPG) method. By performing a featuriza-
tion of queries—accounting for factors such as table and attribute
involvement and aggregated costs—QTune converts queries into
vectors. These vectors serve as the initial state and input to a pre-
dictor model, which is trained to forecast changes in the internal
database system state. This predicted state then serves as the input
to the second model, which in turn predicts knob settings. This
approach falls short in capturing the structure of queries and their
cardinalities. Thus, it does not generalize effectively to new queries
and workloads that involve different table names and attributes.

BLUTune [19] is also a query-aware approach, leveraging learned
representations of query plans as input states for its DRL model.
This method employs a QEP2Vec component to capture a more
comprehensive range of query information within the learned
embeddings than does QTune’s featurization technique. However,
QEP2Vec’s use of a bag-of-operators approach, similar to the bag-of-
words technique in Doc2Vec, fails to capture the complex structural
details of query plans. Moreover, QEP2Vec embeddings exhibit non-
determinism, which introduces challenges for the DRL agent due to
inconsistent state representations across episodes. This complicates
the learning process, affecting the tuning system’s effectiveness.

Query representation methods have been proposed for vari-
ous optimization tasks beyond database tuning. SQLBERT combines
graph neural networks and transformers to generate rich SQL em-
beddings for tasks like cardinality estimation [37]. Unlike SQLBERT,
which focuses on encoding SQL queries for different optimization
tasks, QBERT encodes query plans to capture stats related to physical
operators for effective database tuning. QPSeeker uses an LSTM
architecture to encode query plans, capturing the interactions of
physical operators over the tables and the data types and distribu-
tions to select effective query plans [39]. Tree-LSTM architectures
have also been used to encode query plans for cost estimation [35],
encoding information such as physical query operations, predi-
cates, columns, tables, indexes, and tuples. In contrast to these
methods, QBERT anonymizes table attributes, metadata, and tuples
for schema-independent tuning.

7 CONCLUSIONS

Db2une has been well received within IBM, and is proving to be
a valuable tool both for company support and in database devel-
opment, as our novel system effectively addresses the problem of
automatic knob tuning for IBM Db2. Our system is query-aware
via QBERT embeddings, converges using stable deep learning ap-
proaches and scales well for complex and large workloads using
multi-phased and database meta-data driven training, while encour-
aging resource-conscious tuning. Our experimental evaluations
have demonstrated significant improvements by Db2une over pre-
vious state-of-the-art query-aware tuning systems and IBM experts.
In future work, we plan to incorporate distributed computing, as
in our prior work on query problem determination [27], to knob
tuning to improve further the efficiency.
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