
Membrane – Safe and Performant Data Access Controls in
Apache Spark in the Presence of Imperative Code

Andrei Paduroiu
Amazon Web Services
andreipm@amazon.com

Sungheun Wi
Amazon Web Services
sunghew@amazon.com

Yan Yan
Amazon Web Services
yanya@amazon.com

Roni Burd
Amazon Web Services
roniburd@amazon.com

Ruhollah Farchtchi
Amazon Web Services
ruhollah@amazon.com

Giovanni Matteo Fumarola
Amazon Web Services
gifuma@amazon.com

ABSTRACT
Data Governance is an increasingly critical feature of modern cloud
database systems, enabling administrators to set granular access
policies on their data. AWS customers want to define row or column
filtering on their blob storage data and access it using popular tools
such as Apache Spark. AWS EMR provides a managed and server-
less solution that lets users run Spark jobs in the AWS cloud with
imperative and declarative programming against their data, while
securely enforcing the fine-grained access controls defined on those
datasets. Spark runs its compiler and scheduler alongside the user
application and embeds user-defined functions in query plans, giv-
ing a threat actor direct access to its memory space. This introduces
attack vectors such as information disclosure or privilege escalation
during policy enforcement, in addition to well-researched threats
such as SQL side channel attacks. In this paper, we present Mem-
brane: a novel approach to secure query plans with declarative and
imperative code. The innovation comes from splitting the Spark dri-
ver in two in order to rewrite query plans with security boundaries
while avoiding traditional tradeoffs when using container isolation
techniques. The approach described herein enables applying fine
grained data access controls to both SQL and map-reduce Spark
jobs, with negligible performance and cost differences.

PVLDB Reference Format:
Andrei Paduroiu, Sungheun Wi, Yan Yan, Roni Burd, Ruhollah Farchtchi,
and Giovanni Matteo Fumarola. Membrane – Safe and Performant Data
Access Controls in Apache Spark in the Presence of Imperative Code.
PVLDB, 17(12): 3813 - 3826, 2024.
doi:10.14778/3685800.3685808

1 INTRODUCTION
Amazon Web Services (AWS) Elastic Map Reduce [4] (EMR) is
a public cloud service that provides distributed data processing
technologies like Apache Spark [26] and Trino [33], with the latest
open table formats such as Apache Iceberg [22]. EMR delivers
these technologies to customers using multiple service models
including infrastructure as a service (EMR on EC2 [5]), platform as a
service (EMR on EKS [2]), and software as a service (EMR Serverless

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685808

[8]). EMR modifies the Apache Spark open-source engine for AWS
customers to bring performance improvements, automatic elasticity
and enterprise features such as fine-grained access control (FGAC),
that are typically available in mature database systems. Changes
made to the engine need to retain, as much as possible, full API
and language compatibility with the corresponding open-source
version. This paper focuses on the modifications we have made
to support FGAC capabilities such as row level filtering and data
masking while keeping the full expressivity of the Spark dialect.

Apache Spark uses a data lake pattern of disaggregated storage
[57] on top of blob storage systems like AWS S3 [6] or Azure Storage
[40] to retrieve and persist customer data in a variety of formats. For
governance enforcement, Spark connects to catalog and metadata
systems that can resolve objects such as databases, tables and views,
and provide permission constructs for security like row/column
filters and masking policies. These systems can be open-source,
including Apache Hive Metastore [21] and Apache Ranger [24], or
open-source compatible like AWS Glue Data Catalog [7] and AWS
Lake Formation [9]. The Spark engine retrieves metadata from these
systems, materializes schema on read and enforces the applicable
security policy as needed. This exchange of information needs to
remain secure and immune to tampering or interception by users.

Compared to traditional SQL database systems, Apache Spark
allows, as a core feature, mixing of imperative and declarative code
and gives users access to a lower-level interface that enable the
manipulation of the compiler and resulting query plans, thus pre-
senting design challenges unique to it. To our knowledge, other
implementations address this problem by making several trade-offs
in their system architecture. One common solution involves using
a completely separate filtering fleet (middleware) which adds cost
to the customer in terms of extra compute and prevents logical plan
optimizations based on the overall query and constraints. A second
approach isolates security policies using some form of security
boundary with well-known interfaces such as user-defined func-
tions [28] or user-defined aggregator functions [27]; however, this
comes with the cost of restricting Apache Spark customer flexibil-
ity. Both of these also require choosing a compute isolation model
that has to balance security hardening vs query cost in the form
of higher row marshaling latency. Several vendors make trade-offs
by delineating security along process or container boundaries, or
even implement language runtime isolation [39]. For AWS EMR,
none of these are acceptable [10, 38] because we believe that only
a Virtual Machine can be used as an adequate security container
for data policy enforcement protecting from user-provided code,

3813

https://doi.org/10.14778/3685800.3685808
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685808

which would add significant cost to the customer in form of higher
query latency.

The primary innovation presented in this paper describes the
process of creating logical isolation boundaries between existing
query stages by leveraging natural transitions points such as ex-
change materializations or shuffles, without requiring the upstream
application to adhere to any predefined contracts or behaviors.
With some modifications to the compiler, it allows users to write
any arbitrary Spark programs with minimal performance penalties
for most use cases. The query optimizer takes into account the
existing cost of exchanges, the cost of adding security policies and
other mitigations for threat vectors common in SQL-based poli-
cies while rewriting the query plan. To protect the compiler itself
from being tampered with, we present an innovative technique
that separates the Spark Driver into a frontend and backend, with
the user application running on the former and the full compiler
and execution engine on the latter. We also discuss our query plan
marshaling process that helps transfer plans between the two and
automatically identifies and isolates embedded user code within.

Although the concepts presented here are specific to Spark, we
believe these techniques are translatable to many distributed data
processing engines with similar architectures as well.

2 BACKGROUND
Apache Spark is used for distributed querying and manipulation
of large datasets, enabling data processing with both SQL and pro-
grammatic APIs. The entry point for running Spark is the Driver
Program, which is a Python, Java, Scala or R program that invokes
APIs provided by the Spark library to build and execute a job plan.

The Spark Driver [30] is a library referenced by the user-submitted
Driver Program that provides the APIs needed to define the job
plan. The Spark Executors are processes that run the computations
(Tasks) sent over by the Spark Driver and optionally store interme-
diate exchange (shuffle) data. Spark plugs into an external Cluster
Manager that enables it to manage workers for its Executors. Open-
source Spark is bundled with integrations for Apache YARN [20, 56],
Mesos [23, 34] and Kubernetes [36], while EMR Serverless Spark
has a proprietary implementation.

The lowest-level data processing API in Spark is the Resilient
Distributed Dataset [59] (RDD), which implements the map-reduce
paradigm [16]. RDDs are composable, and form a directed acyclic
graph (DAG). For structured data processing, Spark both supports
SQL and provides theDataset API [12], which enables programmatic
construction of relational plans. Regular SQL is parsed into a Logical
Plan, wrapped into a Dataset, and every Dataset is compiled into
an RDD DAG [59] when executed.

The Driver Program triggers the execution of a Dataset or of an
RDD by invoking an action (such as the collect() method) on either.
An RDD’s DAG is sent to theDAGScheduler component in the Spark
Driver, which generates a sequence of Stages made of parallel Tasks
[59], further processed by the Task Scheduler which orchestrates
their execution on the Spark Executors. The Task Scheduler also
manages Executors’ lifecycle using the configured Cluster Manager.
Datasets are executed by analyzing the wrapped Unresolved Logi-
cal Plan, resolving every symbol to a database object (table, view,
function, etc.) and checking for consistency. The resulting Analyzed

Figure 1: Apache Spark SQL and RDD execution pipelines.

Logical Plan is transformed (using a set of rules) into an Optimized
Logical Plan and then again into a Physical Execution Plan, much
like a traditional DBMS pipeline. Spark uses code generation [43]
to further transform this plan into an RDD DAG, which is then
executed using the procedure described above.

Spark Executors receive Tasks from the Driver’s Task Scheduler,
containing executable bytecode, that perform a subset of the en-
tire job’s computation. Depending on the job, Executors may read
data from the Data Sources defined in the job plan, may exchange
intermediate data between consecutive stages and either write the
final stage output data to a persistent store, such as AWS S3 [6], or
stream the result back to the Spark Driver for subsequent use by
the Driver Program. The entire flow is shown in Figure 1.

3 OVERVIEW
This section covers our design goals, the constraints and challenges
we aimed to solve, as well as the high-level architecture of the
system. We introduce our general concept and the driving prin-
ciple behind our design, and deep-dive into specific topics in the
subsequent sections.

3.1 Design Goals
We have adopted the following design goals, in order of priority:

Data Security. Enforcing fine-grained data access control policies
should not reveal unfiltered data or the policies themselves to users.
Dataset owners expect that users with configured policies cannot
see records that do not match those policies’ filters, whether via a
direct projection or as a result of a transformation or aggregation
applied to the protected dataset. Furthermore, since the underlying
data is stored in systems with coarse-grained authorization controls,
such as AWS S3 [6], any credentials granting access to unfiltered
data should also not be disclosed to the querying user. This is
Membrane’s key tenet; its design enforces it by using a container
or VM to isolate the execution of any user-provided code from the
SQL compiler and parts of the execution engine that access raw,
unfiltered data or enforce access control policies.

Performance and Cost Parity. Applying security controls typically
requires making trade-offs with runtime performance and cost,
however our customers expect that doing so should not regress
query execution performance by more than 50%. Since both queries

3814

and security filters have very diverse forms, it is difficult to define
the general system’s performance profile in relation to a baseline.
Even with the strict physical isolation described in Section 4 and the
logical security boundaries and optimization constraints presented
in Section 5, for most queries, Membrane introduces up to a 15%
performance impact where no user code is present, and at most
50% when user-provided code is mixed-in in with SQL, as shown in
Section 8. It needs a single additional node per Spark cluster to host
a secondary Spark Driver, but otherwise the amount of compute
required for a job is equivalent to running a similar job without the
extra security for data access controls.

Maintainability. Membrane should be compatible with future ver-
sions of Spark without the need to refactor with every new release.
Its design leverages the existing modularity and plugin architecture
present in Spark for injecting custom-designed components that
interact with the rest of the system using stable internal contracts,
facilitating the effort needed to adapt to new versions.

3.2 Challenges
The previous section discussed Membrane’s design goals – what
we wanted to achieve. In this section, we summarize the challenges
we had to overcome in order to achieve those goals.

3.2.1 Securing the SQL Compiler and Task Planner.
Data security filters for a table are represented as SQL fragments,
in the form of predicates or joins, that need to be applied to that
table’s relation in the logical plan. This can only be done inside the
Spark’s SQL compiler, when it analyzes an unresolved logical plan
for execution. However, the SQL compiler is sharing memory space
with the Driver Program, which enables the job submitting user to
infer the security policies they are subject to. One potential attack
vector is to perform a tree-walk on the rewritten plan, remove
the injected filters and submit the resulting plan for execution
(bypassing Spark’s query execution pipeline), causing the job to
run on unfiltered data. The user programmay also intercept filtering
tasks output from the Task Planner (including DAGScheduler and
Task Scheduler) and bypass them as well.

Unfiltered data is protected by a set of credentials which either
provide full or coarse-grained access to the dataset. These creden-
tials are different from the submitting user’s credentials and can
only be retrieved from a trusted store (such as a catalog). Spark
needs these credentials to read raw data and perform filtering, and
shares them with both the Driver and its Executors, putting them
within reach of any user-submitted code running in the cluster.

These can lead to unintended information disclosure [41] or a
privilege escalation [48] attack, both of which go against our Data
Security tenet. Membrane should incorporate a design to effectively
secure Spark’s SQL Compiler and Task Planner from the reach of
the Driver Program.

3.2.2 Protecting from SQL side channel attacks.
A side channel attack [13] is an attempt to exploit side effects
of commands with the goal of inferring additional information
about the system. In database systems with governance features,
query predicates can be crafted to reveal either the presence or
the cardinality of data hidden by the filter. Timing attacks [15] are
difficult or even impossible to mitigate, while others, such as SQL

logical optimization attacks, can be addressed. Listing 1 presents an
example of a row-level filter defined on a table employee allowing
user1 to only see rows having birthday prior to 2006. If user1 wants
to infer the existence of rows outside of the filter, they can write
a query designed to interfere with the optimization rules present
on the system. By forcing a division-by-zero error that would only
be thrown if there are any tuples in the table matching the IF
condition, user1 can infer the existence of rows in the table that
would normally be hidden by the filter.

Data Admin:

CREATE TABLE employees(

name varchar (50), birthday date , salary int)
GRANT SELECT ON TABLE employees

TO user1 FILTER 'birthday <2006 -01 -01'

user1:

SELECT * FROM employees

WHERE 1 / IF(birthday >= '2008 -01 -01', 0, 1) = 1

Listing 1: SQL side channel attack using division-by-zero.

To meet our Data Security tenet, Membrane should incorporate
techniques to detect and remove logical optimization SQL side
channel attacks when enforcing fine-grained data access controls.

3.2.3 Sandboxing user code execution.
User-defined functions [12, 28] (UDFs), user-defined aggregator
functions [27] (UDAFs) and user-defined types [12, 32] (UDTs) are
popular features supported by Spark’s Dataset API [12], extending
the expressivity of built-in Spark functionality with user-specific
business logic. Spark users can provide programmatic (non-SQL)
implementations for any of these, and then use them in Dataset
transformations. When referenced, Spark embeds the binary code
of a UDF or UDAF as specialized logical plan nodes, and creates
transformation nodes for UDTs to/from Spark’s internal represen-
tation (using the UDT’s provided serialization code). The binary
code is further serialized (if Java/Scala) or pickled [49] (if Python).

When compiled into a Task, there is no differentiator between
such user-provided code and code that was generated by Spark’s
SQL Compiler. Such user code has access to the entire process space
of the Spark Executors that run the enclosing Tasks, which puts any
credentials present on those executors within their reach. The code
within the UDF/UDAF/UDT can take full control of the Executor
and use those credentials to access unfiltered data, leading to a
privilege escalation attack. With respect to RDDs, almost every
implementation wraps user-provided code so they are susceptible
to the same problems described above.

Membrane should detect user-provided code embedded in query
plans in the form of UDFs, UDAFs or UDTs, or wrapped in RDDs,
and prevent them from making unwanted changes to query plans
or access credentials or data, in line with our Data Security tenet.

3.3 Architecture
In this section we describe Membrane’s general system design. The
approach presented here directly helps solve two of the challenges
listed in the previous section, namely Securing the SQL Compiler
and Task Planner and Sandboxing user code execution.

Membrane splits the Spark Cluster into two partitions. The User
Space runs Spark components (one driver and zero or more execu-
tors) with the submitting user’s credentials. The System Space has

3815

Figure 2: Partitioning the Spark Cluster into User Space and
System Space.

Spark components (one driver and zero or more executors) running
with special service credentials. These service credentials carry over
the submitting user’s identity, but cannot be created by the user
themselves (they are “system”-generated).

This split aims to achieve sandboxing at the stage boundary
(instead of user code boundary): we want to have all types of user
code (Driver Program, UDFs, UDAFs, UDTs and user-submitted
RDDs) execute only on components in the User Space and reserve
the System Space for operations that deal with enforcing data access
controls and filtering. It is important to note that even if there are
now two Spark Drivers, we do not use the System Space merely as
a “filtering fleet” that sits between the raw, unfiltered data and the
user Spark Cluster. Both the User and the System Spaces are part of
the same Spark Cluster and all the components within contribute
towards the execution of the Spark jobs submitted to it, with only
one driver managing it. This is key to achieving our Performance
and Cost Parity goal as outlined in Section 3.1.

We can observe the lifecycle of a Spark job in Figure 2. The
User Driver, sitting in the User Space, is where a Spark job begins.
The Driver Program runs here, instantiating a Spark library and
invoking Dataset or RDD APIs, exactly as it would do in a normal
Spark Cluster. However, this Spark driver is only a frontend; we
modified it to intercept the SQL Compiler pipeline and the RDD
Execution pipeline and extract Logical Plans and RDDDAGs, which
are then sent through RPC calls to the System Driver.

The System Driver, part of the System Space, has an RPC service
listening for requests from the User Driver. Upon receiving one,
it rebuilds either the original logical plan or RDD DAG, runs it
through a Policy Engine (which cleanses and rewrites it to enforce
data access policies), and then passes the resulting plan/DAG to the
real Spark Driver instance. Only the System Driver is connected to
the External Catalog, Data Sources and Cluster Manager, therefore
only it may resolve catalog objects, request executors from the
Cluster Manager, or otherwise communicate with executors. The
User Driver is not allowed to do any of these actions.

Executors are of two types. System Executors run in the System
Space and they may only execute tasks that read data, enforce
filters or otherwise do not invoke any user code. User Executors,
conversely located in the User Space, run all tasks that may invoke
user code, but cannot run any policy-related tasks.

We modified the Planner inside the System Spark Driver to la-
bel tasks based on what they are doing; the Planner uses lineage
techniques to determine the provenance of the code inside each
task – information only available within the Spark Driver. Tasks
may thus be labeled either as User or System. We mapped these
to Spark’s Resource Profiles [18] by creating a System and a User
profile, respectively, and then leveraged the existing mechanism
inside Spark to run them in the appropriate executor.

We modified AWS EMR’s Control Plane to start Spark clusters
with two drivers, enforce firewalling around User Space compo-
nents, provision containers with the correct credentials, and only
allow the System Driver to request resources.

The following sections detail each design vertical that compose
Membrane’s architecture. We begin with a deep-dive into how
the Spark driver was split, followed by query plan manipulation
techniques leading to affinitized query execution, and close with
an experimental evaluation of this design on AWS EMR.

4 DRIVER SEPARATION
Membrane sandboxes the Driver Program by using two drivers. The
User Driver acts as a frontend to the Spark cluster. It executes the
Driver Program, builds one or more Logical Plans or RDD DAGs as
outcomes and delegates their execution to the System Driver, which
is the actual coordinator of the entire Spark Cluster. The execution
result is sent back to the User Driver and provided to the calling code
- fully unaware of the underlying mechanism. Figure 3 visualizes
the separation process and highlights the added components to
bind the two drivers together.

4.1 User Driver
The User Driver is similar to the Driver in a non-Membrane-enabled
Spark Cluster. It runs inside a container (Apache YARN [20]/AWS
EKS [2]/AWS Fargate [3]/etc.) setup by the AWS EMR Control
Plane, which also configures several firewall measures around it. It
is launched by either invoking the main() method (Java/Scala) or
running a Python script, after which it is free to call any Spark APIs
available to it. The AWS EMR Control Plane pre-configures Spark
in this container with delegated SQL and RDD execution pipelines,
as well as a Catalog Proxy in lieu of the actual catalog client.

For Dataset execution, we made the conscious decision to inter-
cept the pipeline immediately after the analysis phase. Although
intuition suggests that we should have sent unresolved plans to the
System Driver and do the entire analysis there, we found this would
lead to an extremely chatty protocol due to Spark performing plan
analysis upon every transformation of a Dataset. Prior to execu-
tion, a Dataset is transformed multiple times until finally executed,
so by taking analyzed plans we reduced the over-the-wire calls
from an unbounded number down to a single one per execution,
all without affecting the integrity of the query. We override Spark’s
QueryExecution class [31] to fetch the Analyzed Plan, marshal it

3816

Figure 3: Driver Separation. Logical Plans and RDDs are in-
tercepted on the User Driver and sent to the System Driver,
where they are run through a Policy Engine and handed off
to the underlying Spark execution pipelines.

into a wire-friendly format and delegate its execution to the System
Driver via an RPC call.

This introduced another challenge: since analysis is partially
performed on the User Driver, Membrane needs a way to resolve
database object names without direct access to the External Catalog.
We solved this by creating a Catalog Proxy that delegates object
name resolution via RPC to the System Driver.

The RDD execution is simpler. As shown in Figure 3, Membrane
only had tomodify theDAGScheduler to marshal the user-submitted
RDD DAG into a wire-friendly format and delegate its execution to
the System Driver via RPC.

4.2 System Driver
The System Driver is a service running in a container setup by
the AWS EMR Control Plane, with the RPC endpoint listening
for requests from the User Driver being its only entry point. No
Driver Programs can be submitted or executed here and no other
connections other than the one from the User Driver are accepted.

As shown in Figure 3, there are two independent layers inside the
System Driver. The Policy Engine sits immediately below the RPC

endpoint, with all Logical Plans and RDDs coming through being
first reconstructed using Membrane’s Driver-Transfer Marshaller
(Section 4.3), and then processed to sanitize them and enforce any
applicable data security policies.

The RDD Labeler handles RDD DAGs coming through the RPC
endpoint and labels those RDDs with the User Resource Profile. Since
their contents are opaque, Membrane cannot reason whether the
bytecode wrapped inside RDDs is safe or was designed to carry
information disclosure or other types of attacks. As such, no user-
submitted RDDs may be assigned the System Resource Profile, how-
ever some internally-generated RDDs for which we have clear
lineage (from the SQL Compiler) may be labeled as such.

Incoming Logical Plans and Resolve Relation requests are run
through the SQL Rewriter, which applies security policies to them
and prevents such policies from leaking out when the User Driver
requests an explain plan or wants to resolve an object name. Policies
are applied by substituting a logical relation pointing to a protected
resource with a Security Boundary node (Section 5.1). When a log-
ical plan needs to be sent to the User Driver, whether to resolve
a relation, or as part of the explain command, the SQL Rewriter
replaces the Security Boundary node with a Remote Logical Relation
node containing only the name of the resource and the columns
visible to the user, thus preventing disclosure of the actual security
predicate or the full underlying schema. If this plan is received
again (as part of a Dataset execution), the Remote Logical Relation
is substituted back with the original Security Boundary node.

The Policy Engine outputs Labeled RDDs and Logical Plans with
Security Boundaries, sending them to either the RDD Execution
or SQL Compiler pipelines. The System Driver runs an unaltered
instance of Spark with no modifications to its components. Using
existing contracts, Membrane latches onto the SQL Optimizer and
Planner to introduce additional rules and constraints to prevent
SQL side channel attacks. The Planner also labels its output RDDs
with either the User or System Resource Profile, depending on what
role they play in the query execution (using the RDD Labeler).

The rest of the pipeline runs plans through the classical Analyzer-
Optimizer-Planner sequence, and both the output RDDs and the la-
beled RDDs received from the User Driver are sent to the DAGSched-
uler and finally the Task Scheduler. No more changes were needed
here as Spark already supports resource profiles; it makes requests
for the appropriate type of executors from the Cluster Manager and
routes Task execution to executors with matching resource profiles.

4.3 Driver-Transfer Marshalling
The driver split sandboxes the Driver Program from the Spark
SQL Compiler and RDD Execution pipeline, but it introduces the
challenge of transferring Logical Plans and RDD DAGs from the
User Driver to the System Driver. Even if marked as serializable,
the classes we need to transfer were not designed to be marshaled
over to another Spark driver (the intent was to copy them from the
driver to executors). Native object serialization [46] cannot be used
here because it restores the entire inner state of an object and thus
may pick up unwanted objects like dynamically-generated lambda
methods or object state specific to the JVM of the User Driver.

We designed the Driver-Transfer Marshaller to take an arbitrary
Spark Logical Plan or RDD DAG, convert it into a wire-friendly

3817

Figure 4: Driver-Transfer Marshalling transforms an object
into a model, which is serialized to/from a byte array, and
then transformed back into a semantically-identical object.

Figure 5: Transformation example for the Filter class (1). The
constructor and relevant fields are identified (2), a model
is created from the class definition and source object (3),
with fields recursively transformed. Unmarshalling rebuilds
nested objects (4) and invokes the constructor with them as
arguments to instantiate the rebuilt object (5).

format, and reconstruct a semantically equivalent [52] plan or RDD
DAG, with no structural changes, that produces the same result.

The marshalling process (Figure 4) transforms an object graph
into an intermediate representation (model) that describes it, and
then serializes that model into a byte stream that can be transferred
over the wire. The model is made up of a handful of primitive
structures indicating the class of the object, primary fields, etc.,
with specialized model types for collections, maps or other corner
cases such as singletons.

The object-to-model transformation relies on Scala case classes
[51] invariants: immutable classes, with the primary constructor’s
arguments becoming class fields with the same names. Since most
of Spark’s classes fit this description, we have designed the trans-
formation process to identify the primary constructor of a class,
extract its argument names and then look up only the fields with
the same name and type. In the model for that object, we record
the class name and the transformed model for objects pointed to by
each of the chosen fields. When we unmarshall, we first transform
the inner fields, and invoke the class’s constructor with the inner
field values as arguments (matching on name and type). Figure 5
uses Spark’s Filter class [29] as an example to visualize this process.
This method works for most of the classes in Spark’s logical plans
and RDDs. We created specialized transformations for collections,
maps, enums and other one-offs, and manual data transport classes
for those handful of classes that couldn’t be handled automatically.

Embedded user-defined code, such as UDFs, UDAFs, UDTs and
RDD functions may require lambda serialization [45] and cannot
be marshalled using the method above. We use the native Java
serializer [46] for them, however extra care must be taken as the

Figure 6: UDF handling example. A function has its signature
extracted and is closure-serialized on the User Driver. On
the System Driver, the serialization is encrypted, a strongly-
typed envelope is created based on the signature and substi-
tuted for the original UDF in the Logical Plan.

simple deserialization of this code can introduce attack vectors such
as serialization gadgets [53].

As exemplified in Figure 6, embedded user-defined code is seri-
alized on the User Driver into a byte array and bundled with some
metadata describing its signature. Both these are sent to the System
Driver, which encrypts the byte array and wraps it into an enve-
lope that matches the previously extracted signature. The signature
describes the user code wrapped: UDFs and RDD functions contain
the number and types of arguments along with the return type,
UDAFs contains the Input/Output/Buffer data types, and UDTs con-
tain the inner type name. The SQL compiler uses this metadata to
validate the plan integrity and generate correct code. The envelope
requires the decryption key when invoked; since this key is only
present on User Executors, it prevents unintended deserialization
and execution of user-provided code on System Space components.

5 QUERY PLAN MANIPULATION AND
OPTIMIZATION

This section describes how data security filters are injected into
a query plan using a new Security Boundary operator that helps
prevent SQL side channel attacks (Section 3.2.2), as well as some
performance-oriented optimizations applicable to this operator that
do not weaken its security constraints.

5.1 Injection of Data Security Filters
The System Driver’s SQL Rewriter injects a data security filter
into a query plan when a plan symbol resolves to a protected table
(Section 4.2). Doing so in the System Space ensures that the injection
logic cannot be overridden or bypassed by threat actors. A Security
Boundary operator, newly introduced in Membrane, is added with
data security filters to enforce security constraints.

Figure 7 (a) and (b) illustrate a sample query plan with the high-
lighted security filter after a row-level filter and data mask are
injected, respectively. The row-level filter is represented as a nor-
mal Filter operator, while the data mask is represented as a Project
operator with an IF expression. In the data mask example of Figure
7 (b), only the salary information of accessible employee rows is
visible while the salary information of other rows is masked as
NULL. Row-level filters and data masking may coexist for the same

3818

Figure 7: Example query plans with the injection of data
security filters.

table, in which case both a Filter and a Project operator are created
together for the same table. All data security filters are evaluated
under a security boundary, ensuring that data the current user is
not privy to does not go beyond that operator. Any other operators
specified by the user are located above the security boundary, and
they are executed only for filtered data.

Column-level filters are enforced by means of a Project operator.
When resolved to a protected table, the underlying table relation
is wrapped in a Project operator containing only the authorized
columns; thus, any upstream operators are limited to referencing
the set of columns defined within.

5.2 Security Constraints Guarantee
The principal reason for introducing a security boundary operator
in a query plan is preventing unwanted plan optimizations from
being applied across the boundary itself. By clearly delineating the
data security filters from the user-specified operators, it removes
opportunities for unintended information disclosure.

Let’s recap the SQL side channel attack example from Listing 1.
To ensure that user1 cannot infer if an employee whose birthday is
in an inaccessible range exists, the row-level security filter has to
be evaluated prior to the IF filter specified by the user. Therefore,
the divide-by-zero error will not occur because the IF user filter is
executed only for already-filtered data. In the Spark Query Optimizer
[12], each optimization rule is applied to a specific pattern of a sub-
plan by explicitly specifying the target pattern such as operator type
and its property. The security boundary operator, located between
data security filters and user-specified operators, prevents existing
optimizer rules from being applied across the boundary because
no existing optimizer rule specifies a security boundary operator
as a target pattern. This guarantees that no operator specified by
a user may exist under the security boundary and the security
filter is evaluated prior to any user operators. However, all existing
optimizer rules can still be applied inside each boundary because
doing so does not risk breaking Membrane’s Data Security tenet.
For instance, a user filter that exists at the top can be pushed down
until a security boundary node is met, and the same is applied to

inside that security boundary. A security filter that exists inside a
security boundary can be further pushed down to a scan operator
to efficiently prune unnecessary partitions.

Security boundary operators also help with not exposing the
definition of the security filter itself. For example, the explain fea-
ture is designed to show the entire query plan and may reveal the
definition of the security filter. With Membrane, the security filter
is obfuscated to not make it visible to an unauthorized user in the
explain result. Security boundary operators make tracking data
security filters trivial; this would be intractable otherwise because
of various transformations applied to the plan as a result of existing
and future optimizer rules present in Apache Spark.
SELECT * FROM employees

INNER JOIN filter_table

ON employees.birthday = filter_table.birthday

Listing 2: SQL example where the filter derivation reveals
the definition of a security filter.

The security filter definition may also be exposed by newly
derived filters from a security filter. Considering the example in
Listing 2, using the same employees table from Listing 1, a threat
actor crafts a join query between the protected employees table
and an arbitrary table to have the join condition and the row-level
filter on the same column (birthday) of the employees table. Mixing
the row-level filter (employees.birthday < 2006-01-01) with the join
condition (employees.birthday = filter_table.birthday), the additional
filter (filter_table.birthday < 2006-01-01) can be now derived for the
joined table to prematurely filter out records that do not match
the join condition. This is a well-known optimization technique
[47] available in Spark which causes the newly derived filter to be
shown in the query plan and therefore exposed to an unauthorized
user. The user can infer which security filter is defined by trying
various queries, changing the join condition for each column and
investigating the resulting query plan because the new filter can
be derived only if the join condition and the row-level filter are
defined on the same column.

The filter derivation rule in Spark combines join conditions and
effective filters from each child of a join operator to discover new
derivations. In the Listing 2 example, the additional filter can be
derived for filter_table by combining the join condition and the row-
level filter returned from a child of a join operator. In Membrane,
the security boundary operator does not pass the information of
security filters to its parent operator, preventing them from partici-
pating in filter derivation. Security Boundary operators also make
it easier to disable the derivation.

5.3 Application of Safe Optimizations
The previous section describes how Membrane guards against SQL
side channel attacks by introducing a security boundary to dis-
able cross-boundary optimizations. However, executing it as-is will
drastically degrade the query runtime performance because no op-
timizations are allowed across the boundary. This section describes
how Membrane achieves its Performance goal while maintaining
the Data Security tenet by identifying and applying safe optimiza-
tion rules to the security boundary. The applicable rules may vary
depending on queries/applications, and three important and com-
monly used rules are described.

3819

Figure 8: Query plans where safe optimizations are applied.

5.3.1 Filter pushdown.
Filter pushdown [14] is one of the most important optimizations in
query engines. Membrane identifies safe user filters that do not risk
disclosing information on unauthorized data even when pushed
down through a security boundary. A user filter is considered safe
if none of the following conditions hold for all expressions included
in the filter:

• May trigger exceptions for specific input values or ranges
(which could be inferred if an exception occurs).

• Enable tracing of input values or related information into a
user-accessible place (i.e., cloud storage, log file).

• Contain user-defined code such as UDF - the implementa-
tion of user-defined code is opaque to Spark.

For example, the simple filter column = <constant literal> is con-
sidered safe while the user filter in Listing 1, which is 1 / IF(birthday
>= ’2008-01-01’, 0, 1) = 1, is considered unsafe because a divide-
by-zero exception can occur for a specific value range. Membrane
maintains a non-overridable, hard-coded list of safe filter types.
Once safe user filters are identified, they are pushed down through
a security boundary and can be freely mixed up with injected se-
curity filters. If a user provided filter is a conjunctive filter that is
a mixture of a safe and an unsafe filter, only the safe part of the
user filter is selectively pushed down while the unsafe filter still
remains over the security boundary, as illustrated in Figure 8 (a).

5.3.2 Dynamic partition pruning.
Dynamic partition pruning [11] (DPP) is a necessary optimization
for a join query in a massively parallel processing system like Spark
because it can efficiently filter out large portions of tables and thus
significantly reduce the data transferred over the network. For
example, when a large fact table is joined with a smaller dimension
table that has a selective filter, 1) the selective filter on the dimension
table is evaluated first; 2) the small list of filtered values for a join
column is transferred to the fact table; and 3) the transferred values
are used to efficiently prune unnecessary partitions of the fact table.
This is a common pattern of query plans for a star schema [17].

Figure 8 (b) illustrates an example query plan where the pro-
tected employees table is joined with dim_table, and the safe DPP
optimization is applied across the security boundary for the employ-
ees table. The DPP filter is semantically equivalent to the filter of
<join-key> IN (<values>)where the values are determined at runtime

from another table; in this example it is employees.ID IN (<values
from dim_table.ID>). The safeness of the DPP filter is determined by
checking the semantically equivalent IN filter with the definition
in Section 5.3.1, and ensuring that all three included expressions
(column access, IN, and constant literal) are safe.

5.3.3 Projection pushdown.
The projection pushdown [12] optimization technique prunes un-
necessary columns as early as possible by pushing down a project
operator. To determine if it is safe to push down a project operator
through a security boundary, all expressions in the project operator
are checked following the same definition described in Section 5.3.1.
Unsafe expressions are evaluated outside a security boundary since
they cannot be pushed down. Instead, the referenced columns are
extracted from the unsafe expression, and an additional project
operator with those columns is pushed down through the security
boundary so that any unnecessary columns can be pruned. For
example, 1 / IF(birthday >= "2000-01-01", new_code, old_code) is an
unsafe expression that needs to be evaluated outside a security
boundary, and a new project operator with the referenced columns
(birthday, new_code, and old_code) is pushed down through the
security boundary.

6 PHYSICAL EXECUTION
This section explains the security constraints imposed when a task
is assigned to an executor and how Membrane sandboxes user code
execution (Section 3.2.3) by appropriately labeling executors and
performing necessary stage separations.

6.1 Executor Security Constraints
Spark splits input data into partitions and distributes them to multi-
ple executors so that they can be concurrently processed for massive
parallelism. When the input data is partitioned, it is usually aligned
with group-by columns or join conditions to avoid an additional
merge step. If the intermediate results need to be re-partitioned for
a subsequent join or aggregation, they are stored on disk and trans-
ferred to another executor after being repartitioned with another
group-by column or join condition. The operator responsible for
this partitioning is called shuffle exchange, and the corresponding
query plan fragment, executed locally in an executor prior to it, is
called a stage. Each stage is made up of multiple tasks responsible
for processing each partitioned data, with the same query plan
fragment being performed in all tasks within the same stage. Tasks
are then assigned to proper executors by Spark’s Task Scheduler.

Membrane imposes executor security constraints when a task is
assigned to an executor. Tasks containing user-defined code, such
as UDF, UDAF, UDT or user-submitted RDD, have to be performed
in a user executor while the unfiltered data for which a security filter
has not been applied yet can only be accessed in a system executor.
This is needed because user-submitted code may gain access to the
unfiltered data if it were executed in the same executor (Section
3.2.3). The goal of the executor security constraints is to enforce a
container-level separation of unfiltered data processing from user-
submitted code execution that may be under control by external
threat actors. However, when conflicting operations coexist in the
same task, these constraints cannot be met as-is because a task is
the smallest unit of work that can be scheduled to an executor. The

3820

Figure 9: Examples of executor type labeling.

task that contains the conflicting operations needs to be split into
two. If the data security filter has already been applied to the input
data and if there is no user code in a task, it does not violate the
constraints to perform it in either executor type. It can be freely
adjusted for better performance, and the optimization made by
exploiting this property is further explained in the next section.

All tasks within a stage perform the same part of a query plan
so they have the same executor security constraints. As such, the
decision on the proper executor type is made at the stage level, not
task level. To meet the executor security constraints, Membrane
performs the following work:

• The proper executor type (either System or User) is labeled
for each stage.

• The physical query plan is adjusted with necessary stage
separations to avoid having conflicting operations in the
same stage.

6.2 Executor Type Labels and Stage Separation
Figure 9 illustrates how each stage is labeled for simple query plans
containing a security filter, a UDF, and its mixture, respectively. In
Spark, these query plans can be executed in a single stage, and it is
the same in Membrane for the examples of Figure 9 (a) and (b). Each
rectangle in the figure denotes a stage boundary, with the stage
containing a security boundary being labeled as System because it
includes the unfiltered data access. An additional observation is that
even the filter located outside the security boundary, previously
treated as unsafe from a side-channel perspective as explained in
Section 5, can be executed in a system executor because it consists
of only built-in functions whose implementations are hard-coded
inside Spark/Membrane and out of control from threat actors.

There can also be cases where multiple stages exist under a secu-
rity boundary if the security predicate is not a simple filter. For ex-
ample, if the security filter is a sub-query that refers to another table
(e.g., employee_id IN (SELECT employee_id from <allowlist_table>)),
it can be internally translated into a join by the Spark Optimizer and
result in multiple stages. In this case, all stages under the security
boundary are also labeled as System because the evaluation of the
security filter is not completed yet.

Figure 10: Examples of avoiding unnecessary stage separa-
tions for executor type labeling.

The stage containing a UDF filter is labeled as User as illustrated
in Figure 9 (b). Since the table used in this example does not have
any defined data security filter, the UDF filter can be executed in
the same stage as the table scan, and the stage is labeled as User.

In contrast, the query plan of Figure 9 (c) has both a data security
filter and a UDF filter, which have conflicting security constraints.
Since they cannot be executed in the same stage, the stage is split
in two, with the stage containing unfiltered data processing labeled
as System while the stage with a UDF filter labeled as User. These
two separate stages are connected via an exchange operator that
transfers intermediate results from one to the other. This additional
stage separation and the corresponding intermediate result trans-
fer caused by the executor security constraints are minimized in
Membrane and occur only when necessary. The exchange opera-
tor added to meet the executor security constraints differs from a
normal shuffle exchange operator in that it doesn’t need to reparti-
tion data and can arbitrarily distribute the data in an efficient way
instead, which would be beneficial for a skewed data set.

Figure 10 illustrates how Membrane avoids unnecessary stage
separation caused by the executor security constraints for two of
the most commonly used operators, a join and an aggregation when
a projection with a UDF is located at the top. In the join example
of Figure 10 (a), two tables protected with a security filter each are
joined by Spark’s shuffle hash join algorithm that partitions both
tables by a join column and performs a join within each partition
where the records with the same join key are co-located. There are
three stages with two shuffle exchange operators located at the
stage boundaries (same as classic Spark). Since the projection with
a UDF exists in a different stage from the unfiltered data access,
the top-most stage is labeled as User while the other two table scan
stages are labeled as System. This enables meeting the executor
security constraints even without additional stage separation, and
the query plan is the same as classic Spark.

Let’s look at another aggregation example in Figure 10 (b) where
we have a projection with a UDF at the top. In Spark, the physical
execution of an aggregation has two parts – partial aggregation and

3821

final aggregation. Executing a partial aggregation in the same stage
as the table scan reduces the transferred data size by executing the
aggregation earlier. Since the data is not partitioned by group-by
columns in the scan stage, the records for the same group may be
spread over different tasks, requiring an additional merge step in
the final aggregation operator, after the partially aggregated result
is shuffled by grouping columns in the shuffle exchange operator.
Similar to the join example, the UDF projection is executed in a
different stage, therefore it meets the security constraints to label
the stage User and there is no need to separate the stage.

Real-world Spark analytic queries are likely to consist of multiple
stages due to either a join and/or an aggregation, so the forced stage
separation described above is not a common scenario. As shown
in Figure 10, additional stage separation is not needed unless any
user-defined code is located in the same stage as the unfiltered data
access that usually happens only in a leaf stage.

Another optimization made during executor type labeling is
minimizing the transition from one executor type to another, since
this process introduces additional overhead for deallocating old and
provisioning new executors. In cases where a query contains either
a security predicate or user-defined code (but not both), all stages
are labeled as either System or User. This is done by exploiting the
property that the stage with neither a security predicate nor a user-
defined code can be labeled as anyone as explained in the previous
section. Depending on the other stages in the query plan, the labels
for those stages can be adjusted to avoid unnecessary executor
type transition. If a query is a mixture of a security predicate and a
user-defined code, the transition from one executor type to another
type is inevitable, and it is optimized to minimize the number of
transitions. For example, the scan stage with a security filter is
labeled as System, and the following stages can also be labeled as
System until a stage with a UDF is met. Once the stage is switched
to User for a UDF, the following stages can also be labeled as User
to avoid additional transitions unless there is conflicting operation.

6.3 Task Assignment to Executors
Once each stage is labeled with a proper executor type, assigning
tasks created from a stage to proper executors relies on Spark’s
Resource Profile feature [18]. Originally introduced for stage-level
scheduling, resource profiles enable a user to choose different types
of executors for each stage depending on its resource needs (e.g.,
CPU and memory). This mechanism is reused to meet Membrane’s
executor security constraints. Membrane introduces a dedicated
resource profile for User and System executors each, and the proper
resource profile is attached to a task referring to the executor type
label available in each stage. The Spark Task Scheduler then assigns
it to the appropriate executor.

7 ADDITIONAL SECURITY MEASURES
The design described in this paper is only part of the fine-grained
access control enforcement in Spark running in AWS EMR. How-
ever, by itself it cannot cover all possible attack vectors in the
environment. Some additional measures that support the safety
of a privileged environment handling access-controlled data and
credentials, enabling it to coexist and communicate with a user-
tamperable environment, are summarized below.

Physical separation of containers. Using VMs or physical EC2 [5]
nodes instead of containers is a safe method to prevent a User space
container breakout [38] from affecting System space components,
but it comes at an increased cost to the customer. To keep the flexi-
bility offered by containers and also isolate User space components,
the EMR Control Plane creates a physical boundary between the
two spaces, using a variety of methods. One example of such a
method may involve enforcing that no User space container can
share a VM/EC2 host with any System space container or vice-versa.

Encryption, authentication and authorization. To prevent a threat
actor from sniffing data on or impersonating the system driver or
system executors, all at-rest and in-transit data are encrypted with
separate keys, and server endpoints communications involving
such nodes require authentication and authorization.

Access control enforcement during marshaling. Various access
control mechanism including file system and network access control
during un-marshaling, combined with an allow-list of safe classes
that can be deserialized on system nodes are enforced to prevent
unintended remote code execution.

8 EXPERIMENTAL EVALUATION
In this section, we outline three experiments that showcase the per-
formance characteristics of Membrane, and compare the run time
results with “baseline” Spark (AWS EMR Spark without Membrane
changes). The experiments are designed to measure the perfor-
mance implications from:

• Having two Spark drivers, in Section 8.1,
• Presence of data security filters, in Section 8.2,
• Presence of data security filters and UDFs, in Section 8.3.

In all experiments, we ran the TPC-DS [42, 55] performance
benchmark at 3 TB with partitioned Hive tables, against Apache
Spark 3.4.1 code deployed on AWS EMR Serverless 6.15. Unless
specified otherwise, all clusters were launched with a fixed number
of 20 executors, each with 4 cores and 10 GB memory. For the
Membrane-enabled clusters, all 20 executors were system executors.
As Membrane requires both at-rest and in-transit encryption, for an
equitable comparison we also enabled them for the baseline runs.

8.1 Overhead from Membrane Design
We ran the full TPC-DS benchmark against tables with no security
filters configured and compared the physical plan shapes between
the same queries on both runs, confirming that the query planning
and execution process was identical on both Membrane-enabled
and baseline Spark clusters. Membrane showed a 5.2% increase
in total execution time, broken down in two categories. Up to 2
seconds per query was due to the User-System driver separation
(Section 4), positively correlated with the query complexity, number
of relations involved and, to a lesser extent, the size of the query
result. The rest was attributable to the access control enforcement
discussed in Section 7 and was influenced by the total size of the
data exchanged throughout the query execution.

8.2 Impact of Data Security Filters
This scenario represents the case of querying a table that has data
security filters enabled, in which case Membrane needs to introduce

3822

Figure 11: Total execution time percentage comparison of
Membrane to baseline Spark for TPC-DS queries using the
store_sales table, with a data security filter onnon-partitioned
and partitioned columns and various selectivity levels.

additional security boundaries as described in Section 5 to perform
data filtering before transferring the intermediate data to the user
accessible environment.

If the filter prunes out a sizeable portion of the table, the re-
sulting smaller dataset may require less time to process and hence
compensates for the extra time introduced by the security boundary
constraints. To remove this variable from the experiment, we modi-
fied the baseline TPC-DS queries by inserting a predicate equivalent
to the data security filter, which ensures that the output data is the
same and only the overhead from the security boundary is captured.

We have selected the biggest fact table in the TPC-DS dataset,
store_sales, to apply the data security filter. To emulate various
customer workloads, we evaluated the performance for three differ-
ent security filter selectivities: 10%, 50%, and 90%, which indicates
how much data from the table remains after filtering. We repeat
the experiments with two different security filters: a row filter on
a non-partition column, ss_item_sk, in the form of ss_item_sk <=
<value>, and one on a partition column, ss_sold_date_sk, in the form
of ss_sold_date_sk <= <value>. We then run all 70 queries that refer
to the table store_sales and compare their execution time with that
of the baseline run. We have also tried 0% and 100% selectivity level
filters, but we did not include them in this evaluation since the
results were difficult to compare with the baseline. The former cuts
short the query execution after applying it, while the latter was
close to not having a filter at all.

Security boundaries can benefit from the same safe optimizations
present in the baseline, with examples shared in Section 5.3. Figure
11 shows that for the 90% selectivity filter, Membrane adds a 5%
overhead for the non-partitioned column case and 6% overhead
for the partitioned column case. The 10% selectivity runs have the
most performance impact among all benchmarked levels, due to the
filter derivation from a security filter being intentionally disabled
as explained in Section 5.2, with the impact of the missing filter
becoming higher as the selectivity decreases. Assuming that the

row filter is ss_item_sk <= 324000 and the query has a join condition
store_sales INNER JOIN items on ss_item_sk = i_item_sk, in baseline
Spark the filter i_item_sk <= 324000 will be derived on the item
table because the join key is matched to the filter condition. While
for the 90% selectivity case only 10% of the data is additionally
processed on Membrane as the result of disabling this optimization,
this effect is much more prominent for the 10% selectivity case on
baseline Spark, widening the performance gap. This is a result of
deliberately prioritizing our Data Security tenet above goals such as
Performance Parity, when having to make design trade-off choices.

8.3 UDF Placement Implications
We modified selected TPC-DS queries by introducing user-defined
functions, with the goal of measuring the performance impact of
stage separation (Section 6.2), and compared the results based on
where the user code is located in the query plans.

We built the experiment on the 90% selectivity case on a non-
partition column from Section 8.2, with the intent of forcing both
User and System executors to be used within the same query. To
account for the presence of both types of executors, we allocated
a fixed 20 System executors and 20 User executors for Membrane.
In typical production environments, AWS EMR customers have
a choice between fixed-sized and auto-scaled clusters. Although
providing an improved cost/performance ratio, dynamically scaling
clusters introduces a variability into our benchmark that is difficult
to account for. We have thus decided to pre-set the number of
executors in order to eliminate the impact of cluster auto-scaling
on query times. We still ensure a fair comparison with baseline
with this adjustment, as at any given time, there can be at most 20
executors working on the query, all of either System or User type.

The user function used in this experiment is defined as a no-op
scalar UDF identity_udf() that simply returns its input argument
without any additional work. For each query involved in this ex-
periment, we create two variants, differing by UDF placement:

• UDF on SELECT: we apply the UDF to one of the columns
in the final SELECT list, to execute the user function close
to the end of the query execution.

• UDF on FILTER: we introduce an additional filter <col-
umn> = identity_udf(<column>) to the WHERE clause of
store_sales table, to execute the user function close to the
scan of the corresponding table.

We pick 6 queries among all the TPC-DS queries based on their
run time for this experiment: q48 and q70 to represent fast queries,
q47 and q76 to represent medium-ranged run time queries, and
q29 and q67 for slow queries. Figure 12 demonstrates the total
execution time percentage of Membrane compared to the baseline.
The UDF on SELECT case experiences the least overhead since
all these queries already have at least one exchange in their plan,
enabling Membrane to repurpose their final stage to be assigned to
user executors and thus not needing an extra stage separation.

For the UDF on FILTER case, we expect a performance impact
due to the unavoidable additional data exchange that happens im-
mediately after the scan of the store_sales table. This overhead
positively correlates to the size of the data that passes through the
UDF. For example, q76 incurs minimal overhead because less data
is transferred (3.9Kib) due to other filters being evaluated prior to

3823

Figure 12: Total execution time percentage comparison of
Membrane to baseline Spark for selected TPC-DS queries
with data security filters on a non-partitioned column and
90% selectivity, grouped based on query run time.

the UDF, whereas other queries that transfer more data (5.3 GiB for
q67 and q70, 6.5 GiB for q47) experience higher overhead. There is
one exceptional case, q48, that shows better performance on Mem-
brane compared to baseline. When examined closer, we observed
that, due to the security boundary operator separating the UDF
filter from the partition filter, Membrane triggered an additional
dynamic pruning on the store_sales table, reducing the size of the
data that would be later exchanged for the UDF stage. Meanwhile
in the baseline run, the UDF filter’s presence preempted dynamic
pruning from being applied and thus was evaluated against every
single store_sales table entry without any opportunity for optimiza-
tion, resulting in a more prominent performance impact. This is an
opportunity for a future optimization work in open-source Spark.

9 RELATEDWORK
Multiple publications recommend query rewriting for enforcing
FGAC in database systems, with Stonebraker et al. [54] introducing
it and LeFevre et al. [37] defining several ways of implementing it.
The "Truman Model" [50] uses parameterized authorization views
that replace the original table relation, providing each user with a
"personal and restricted view of the complete database." Agrawal et
al. [1] also propose query rewriting by generating a dynamic view
and transforming the user’s query into an equivalent query over the
generated dynamic view. Oracle’s Virtual Private Database [44] is a
commercial implementation of FGAC using query rewriting as the
main technique, with the policy defined as a function associated
with each relation that returns a simple predicate added to the
query’s WHERE clause. Kabra et al. [35] discuss FGAC information
leakage prevention and propose solutions like the generation of a
safe query plan with respect to UDFs or unsafe functions that may
cause an exception (a topic we also covered in Section 5.2). While
some of the techniques presented above served as the foundation for
Membrane, none of the literature we consulted addressed isolating
the execution of user-provided code from the actual enforcement of

FGAC policies. Due to Spark running the user program in the same
memory space as the SQL compiler (where the query rewriting is
being done) and running UDFs in the same processes that perform
data access and filtering, additional work is needed to ensure safe
enforcement of these policies, as presented in this paper.

Spark Connect [19] enables a remote client to connect to a Spark
cluster using Dataset-compatible APIs by providing a frontend
library that is separate from the actual Spark Driver and marshaling
logical plans between the two. We found that a solution leveraging
Spark Connect would have difficulties meeting our Data Security
tenet. As of Spark version 3.5, it does not support for RDDs, UDTs
or provide a mechanism to intercept or sandbox embedded user
code. We decided to trade Spark Connect’s potential benefits for the
flexibility and security benefits of the User-System driver design
described in Section 4. In future work, we may consider using
Spark Connect’s data model and marshaling as the foundation
for the Driver Transfer Marshaller (Section 4.3), but that would be
predicated on it supporting RDDs and UDTs.

In the Spark/Hadoop ecosystem, GuardSpark++ [58] proposes
a modification to Spark that uses query analysis and rewriting
techniques to enforce purpose-aware fine-grained access controls.
It assumes that the data management and sharing platforms are
secure and fully trusted by both the data owners and users, hence
the entire algorithm is inside the Spark SQL compiler.Apache Sentry
[25] and Apache Ranger [24] are middlewares that can be used
to define and apply FGAC rules, but they provide no mechanism
for enforcing it in Spark. Membrane could be a used as a secure
enforcement agent for policies defined in Apache Ranger.

10 CONCLUSION
Data Governance is an increasingly critical feature of modern data-
base systems, with more and more customers opting to define
granular security policies on their datasets and wanting to access
them using popular tools like Apache Spark, with minimal impact
to cost or performance. In this paper we presented Membrane: an
innovative design that brings native fine-grained access controls
into Apache Spark running on AWS EMR, built on the principle of
sandboxing at the query stage boundary and designed to meet the
high security bar for AWS services. The pillars that define it include
securing the Spark SQL compiler and RDD execution pipeline from
the Driver Program, rewriting query plans with logical security
boundaries and employing container affinity techniques to phys-
ically separate user code execution from parts of the system that
handle data governance rules enforcement.

ACKNOWLEDGMENTS
We are grateful to our leadership team and partners at AWS that
made this project happen: Ganapathy (G2) Krishnamoorthy, Rick
Sears, Julien Ellie and Gopinathan Kannan for helping bootstrap
and supporting this project. We thank our teammates for their con-
tributions: Amogh Jahagirdar, Armin Najafi, Chris Olson, Dhanan-
jay Badaya, Fan Yang, Hansae Lee, Henry Mai, Jalpan Randeri, Jia
Zhong, Mani Chandrasekar, Manu Khandelwal, Peter Slawski, Price
Qian, Rajat Bhatt, Sangeet Lohariwala, Sam Zargar, Vineeth Sai
Narajala, Yakov Shafranovich, Yasir Mukhtar, Yifan Zhao; their
work was essential to implementing Membrane in AWS EMR.

3824

REFERENCES
[1] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and W. Rjaibi. 2005.

Extending relational database systems to automatically enforce privacy policies.
In 21st International Conference on Data Engineering (ICDE’05). 1013–1022. https:
//doi.org/10.1109/ICDE.2005.64

[2] Amazon. 2024. Amazon Elastic Kubernetes Service. https://aws.amazon.com/eks.
Accessed: January 22, 2024.

[3] Amazon. 2024. AWS Fargate. https://aws.amazon.com/fargate. Accessed: January
22, 2024.

[4] Amazon. 2024. Big Data Platform – Amazon EMR - AWS. https://aws.amazon.
com/emr. Accessed: February 5, 2024.

[5] Amazon. 2024. Cloud Compute Capacity – Amazon EC2 - AWS. https://aws.
amazon.com/ec2. Accessed: February 5, 2024.

[6] Amazon. 2024. Cloud Object Storage - Amazon S3 - AWS. https://aws.amazon.
com/s3. Accessed: February 5, 2024.

[7] Amazon. 2024. Data Catalog and crawlers in AWS Glue. https://docs.aws.amazon.
com/glue/latest/dg/catalog-and-crawler.html. Accessed: February 27, 2024.

[8] Amazon. 2024. Open-Source Big Data Analytics | Amazon EMR Serverless |
Amazon Web Services. https://aws.amazon.com/emr/serverless. Accessed:
February 5, 2024.

[9] Amazon. 2024. Secure Data Lake – AWS Lake Formation – AWS. https://aws.
amazon.com/lake-formation. Accessed: February 5, 2024.

[10] Amazon. 2024. Serverless and Containers – Logical Separation on
AWS. https://docs.aws.amazon.com/whitepapers/latest/logical-separation/
serverless-and-containers.html. Accessed: January 29, 2024.

[11] Lyublena Antova, Amr El-Helw, Mohamed A. Soliman, Zhongxian Gu, Michalis
Petropoulos, and Florian Waas. 2014. Optimizing queries over partitioned tables
in MPP systems. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’14). Association for Computing Machinery,
373–384. https://doi.org/10.1145/2588555.2595640

[12] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD
’15). Association for Computing Machinery, 1383–1394. https://doi.org/10.1145/
2723372.2742797

[13] Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane
Kuhn, and Paul Francis. 2021. Side-Channel Attacks on Query-Based Data
Anonymization. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21). Association for Computing Machinery,
1254–1265. https://doi.org/10.1145/3460120.3484751

[14] Surajit Chaudhuri. 1998. An overview of query optimization in relational systems.
In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’98). Association for Computing Machinery,
34–43. https://doi.org/10.1145/275487.275492

[15] Chen Dar, Moshik Hershcovitch, and Adam Morrison. 2023. RLS Side Channels:
Investigating Leakage of Row-Level Security Protected Data Through Query
Execution Time. Proc. ACM Manag. Data 1, 1, Article 89 (may 2023), 25 pages.
https://doi.org/10.1145/3588943

[16] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (jan 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[17] Nedim Dedić. and Clare Stanier. 2016. An Evaluation of the Challenges of
Multilingualism in Data Warehouse Development. In Proceedings of the 18th
International Conference on Enterprise Information Systems - Volume 1: ICEIS.
INSTICC, SciTePress, 196–206. https://doi.org/10.5220/0005858401960206

[18] Apache Software Foundation. 2023. Spark Configuration – Stage Level Sched-
uling Overview. https://spark.apache.org/docs/3.5.0/configuration.html#stage-
level-scheduling-overview. Accessed: January 29, 2024.

[19] Apache Software Foundation. 2023. Spark Connect. https://spark.apache.org/
docs/3.5.0/spark-connect-overview.html. Accessed: February 14, 2024.

[20] Apache Software Foundation. 2024. Apache Hadoop YARN. https://hadoop.
apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html. Accessed:
January 22, 2024.

[21] Apache Software Foundation. 2024. Apache Hive. https://hive.apache.org. Ac-
cessed: February 5, 2024.

[22] Apache Software Foundation. 2024. Apache Iceberg. https://iceberg.apache.org.
Accessed: February 27, 2024.

[23] Apache Software Foundation. 2024. Apache Mesos. https://mesos.apache.org.
Accessed: January 26, 2024.

[24] Apache Software Foundation. 2024. Apache Ranger. https://ranger.apache.org.
Accessed: February 16, 2024.

[25] Apache Software Foundation. 2024. Apache Sentry. https://sentry.apache.org.
Accessed: February 16, 2024.

[26] Apache Software Foundation. 2024. Apache Spark. https://spark.apache.org.
Accessed: February 5, 2024.

[27] Apache Software Foundation. 2024. Scalar User Defined Aggregate Functions
(UDAFs). https://spark.apache.org/docs/latest/sql-ref-functions-udf-aggregate.

html. Accessed: January 29, 2024.
[28] Apache Software Foundation. 2024. Scalar User Defined Functions (UDFs).

https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html. Accessed:
January 29, 2024.

[29] Apache Software Foundation. 2024. Spark basicLogicalOperators.scala.
https://github.com/apache/spark/blob/branch-3.5/sql/catalyst/src/main/scala/
org/apache/spark/sql/catalyst/plans/logical/basicLogicalOperators.scala#L316.
Accessed: January 29, 2024.

[30] Apache Software Foundation. 2024. Spark Cluster Mode Overview. https://spark.
apache.org/docs/latest/cluster-overview.html. Accessed: January 29, 2024.

[31] Apache Software Foundation. 2024. Spark QueryExecution.scala.
https://github.com/apache/spark/blob/branch-3.5/sql/core/src/main/scala/org/
apache/spark/sql/execution/QueryExecution.scala. Accessed: January 29, 2024.

[32] Apache Software Foundation. 2024. Spark UserDefinedType. https:
//spark.apache.org/docs/latest/api/java/org/apache/spark/sql/types/
UserDefinedType.html. Accessed: January 22, 2024.

[33] Trino Software Foundation. 2024. Trino | Distributed SQL query engine for big
data. https://trino.io. Accessed: February 5, 2024.

[34] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
{Fine-Grained} Resource Sharing in the Data Center. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11). USENIX Associa-
tion. https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-
resource-sharing-data-center

[35] Govind Kabra, Ravishankar Ramamurthy, and S. Sudarshan. 2006. Redundancy
and information leakage in fine-grained access control. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data (Chicago, IL,
USA) (SIGMOD ’06). Association for Computing Machinery, New York, NY, USA,
133–144. https://doi.org/10.1145/1142473.1142489

[36] Kubernetes. 2024. Kubernetes Overview. https://kubernetes.io/docs/concepts/
overview. Accessed: January 26, 2024.

[37] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong
Xu, and David DeWitt. 2004. Limiting disclosure in hippocratic databases. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30 (Toronto, Canada) (VLDB ’04). VLDB Endowment, 108–119. https:
//dl.acm.org/doi/10.5555/1316689.1316701

[38] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou.
2018. A Measurement Study on Linux Container Security: Attacks and Coun-
termeasures. In Proceedings of the 34th Annual Computer Security Applica-
tions Conference (ACSAC ’18). Association for Computing Machinery, 418–429.
https://doi.org/10.1145/3274694.3274720

[39] Microsoft. 2023. CLR Integration Code Access Security. https://learn.microsoft.
com/en-us/sql/relational-databases/clr-integration/security/clr-integration-
code-access-security. Accessed: February 27, 2024.

[40] Microsoft. 2024. Azure Blob Storage. https://azure.microsoft.com/en-us/
products/storage/blobs. Accessed: February 27, 2024.

[41] Sabyasachi Mitra and Sam Ransbotham. 2015. Information Disclosure and the
Diffusion of Information Security Attacks. Information Systems Research 26, 3
(2015), 565–584. https://doi.org/10.1287/isre.2015.0587

[42] Raghunath Othayoth Nambiar andMeikel Poess. 2006. The making of TPC-DS. In
Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB
’06). VLDB Endowment, 1049–1058. https://dl.acm.org/doi/10.5555/1182635.
1164217

[43] Thomas Neumann. 2021. Evolution of a compiling query engine. Proc. VLDB
Endow. 14, 12 (jul 2021), 3207–3210. https://doi.org/10.14778/3476311.3476410

[44] Oracle. 2002. The Virtual Private Database in Oracle9iR2. https://www.
cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf.

[45] Oracle. 2020. Behind the scenes: How do lambda expressions really work in
Java? https://blogs.oracle.com/javamagazine/post/behind-the-scenes-how-do-
lambda-expressions-really-work-in-java. Accessed: January 26, 2024.

[46] Oracle. 2024. Java Object Serialization. https://docs.oracle.com/javase/8/docs/
technotes/guides/serialization/index.html. Accessed: January 22, 2024.

[47] Hwee Hwa Pang, Hang Jun Lu, and Beng Chin Ooi. 1991. An efficient semantic
query optimization algorithm. In [1991] Proceedings. Seventh International Con-
ference on Data Engineering. 326–335. https://doi.org/10.1109/ICDE.1991.131480

[48] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Priv-
ilege Escalation. In 12th USENIX Security Symposium. USENIX Associa-
tion. https://www.usenix.org/conference/12th-usenix-security-symposium/
preventing-privilege-escalation

[49] Python. 2024. Python object serialization. https://docs.python.org/3/library/
pickle.html. Accessed: January 26, 2024.

[50] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. 2004. Extending
query rewriting techniques for fine-grained access control. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of Data (Paris,
France) (SIGMOD ’04). Association for Computing Machinery, New York, NY,
USA, 551–562. https://doi.org/10.1145/1007568.1007631

[51] Scala. 2024. Case Classes | Tour of Scala | Documentation. https://docs.scala-
lang.org/tour/case-classes.html. Accessed: January 26, 2024.

3825

https://doi.org/10.1109/ICDE.2005.64
https://doi.org/10.1109/ICDE.2005.64
https://aws.amazon.com/eks
https://aws.amazon.com/fargate
https://aws.amazon.com/emr
https://aws.amazon.com/emr
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://aws.amazon.com/emr/serverless
https://aws.amazon.com/lake-formation
https://aws.amazon.com/lake-formation
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/serverless-and-containers.html
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/serverless-and-containers.html
https://doi.org/10.1145/2588555.2595640
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/3460120.3484751
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/3588943
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.5220/0005858401960206
https://spark.apache.org/docs/3.5.0/configuration.html#stage-level-scheduling-overview
https://spark.apache.org/docs/3.5.0/configuration.html#stage-level-scheduling-overview
https://spark.apache.org/docs/3.5.0/spark-connect-overview.html
https://spark.apache.org/docs/3.5.0/spark-connect-overview.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hive.apache.org
https://iceberg.apache.org
https://mesos.apache.org
https://ranger.apache.org
https://sentry.apache.org
https://spark.apache.org
https://spark.apache.org/docs/latest/sql-ref-functions-udf-aggregate.html
https://spark.apache.org/docs/latest/sql-ref-functions-udf-aggregate.html
https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html
https://github.com/apache/spark/blob/branch-3.5/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicLogicalOperators.scala#L316
https://github.com/apache/spark/blob/branch-3.5/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicLogicalOperators.scala#L316
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://github.com/apache/spark/blob/branch-3.5/sql/core/src/main/scala/org/apache/spark/sql/execution/QueryExecution.scala
https://github.com/apache/spark/blob/branch-3.5/sql/core/src/main/scala/org/apache/spark/sql/execution/QueryExecution.scala
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/types/UserDefinedType.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/types/UserDefinedType.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/types/UserDefinedType.html
https://trino.io
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://doi.org/10.1145/1142473.1142489
https://kubernetes.io/docs/concepts/overview
https://kubernetes.io/docs/concepts/overview
https://dl.acm.org/doi/10.5555/1316689.1316701
https://dl.acm.org/doi/10.5555/1316689.1316701
https://doi.org/10.1145/3274694.3274720
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/security/clr-integration-code-access-security
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/security/clr-integration-code-access-security
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/security/clr-integration-code-access-security
https://azure.microsoft.com/en-us/products/storage/blobs
https://azure.microsoft.com/en-us/products/storage/blobs
https://doi.org/10.1287/isre.2015.0587
https://dl.acm.org/doi/10.5555/1182635.1164217
https://dl.acm.org/doi/10.5555/1182635.1164217
https://doi.org/10.14778/3476311.3476410
https://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
https://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
https://blogs.oracle.com/javamagazine/ post/behind-the-scenes-how-do-lambda-expressions-really-work-in-java
https://blogs.oracle.com/javamagazine/ post/behind-the-scenes-how-do-lambda-expressions-really-work-in-java
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/ index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/ index.html
https://doi.org/10.1109/ICDE.1991.131480
https://www.usenix.org/conference/12th-usenix-security-symposium/preventing-privilege-escalation
https://www.usenix.org/conference/12th-usenix-security-symposium/preventing-privilege-escalation
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1145/1007568.1007631
https://docs.scala-lang.org/tour/case-classes.html
https://docs.scala-lang.org/tour/case-classes.html

[52] Shashi Shekhar, Jaideep Srivastava, and Soumitra Dutta. 1992. A formal model
of trade-off between optimization and execution costs in semantic query opti-
mization. Data Knowledge Engineering 8, 2 (1992), 131–151. https://doi.org/10.
1016/0169-023X(92)90034-9

[53] Snyk. 2020. Serialization and deserialization in Java. https://snyk.io/blog/
serialization-and-deserialization-in-java. Accessed: January 26, 2024.

[54] Michael Stonebraker and Eugene Wong. 1974. Access control in a relational
data base management system by query modification. In Proceedings of the 1974
Annual Conference - Volume 1 (ACM ’74). Association for Computing Machinery,
New York, NY, USA, 180–186. https://doi.org/10.1145/800182.810400

[55] TPC. 2021. TPC Benchmark DS. https://www.tpc.org/TPC_Documents_Current_
Versions/pdf/TPC-DS_v3.2.0.pdf. Accessed: February 29, 2024.

[56] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-
dharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin
Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet another re-
source negotiator. In Proceedings of the 4th Annual Symposium on Cloud Com-
puting (SOCC ’13). Association for Computing Machinery, Article 5, 16 pages.

https://doi.org/10.1145/2523616.2523633
[57] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Moti-

vala, and Thierry Cruanes. 2020. Building An Elastic Query Engine on Dis-
aggregated Storage. In 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20). USENIX Association, 449–462. https:
//www.usenix.org/conference/nsdi20/presentation/vuppalapati

[58] Tao Xue, Yu Wen, Bo Luo, Boyang Zhang, Yang Zheng, Yanfei Hu, Yingjiu Li,
Gang Li, and Dan Meng. 2020. GuardSpark++: Fine-Grained Purpose-Aware Ac-
cess Control for Secure Data Sharing and Analysis in Spark. In Proceedings of the
36th Annual Computer Security Applications Conference (ACSAC ’20). Association
for Computing Machinery, 582–596. https://doi.org/10.1145/3427228.3427640

[59] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, 15–28.

3826

https://doi.org/10.1016/0169-023X(92)90034-9
https://doi.org/10.1016/0169-023X(92)90034-9
https://snyk.io/blog/serialization-and-deserialization-in-java
https://snyk.io/blog/serialization-and-deserialization-in-java
https://doi.org/10.1145/800182.810400
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://doi.org/10.1145/2523616.2523633
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://doi.org/10.1145/3427228.3427640

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 Design Goals
	3.2 Challenges
	3.3 Architecture

	4 Driver Separation
	4.1 User Driver
	4.2 System Driver
	4.3 Driver-Transfer Marshalling

	5 Query Plan Manipulation and Optimization
	5.1 Injection of Data Security Filters
	5.2 Security Constraints Guarantee
	5.3 Application of Safe Optimizations

	6 Physical Execution
	6.1 Executor Security Constraints
	6.2 Executor Type Labels and Stage Separation
	6.3 Task Assignment to Executors

	7 Additional Security Measures
	8 Experimental Evaluation
	8.1 Overhead from Membrane Design
	8.2 Impact of Data Security Filters
	8.3 UDF Placement Implications

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

