LavaStore: ByteDance’s Purpose-built, High-performance,
Cost-effective Local Storage Engine for Cloud Services

Hao Wang" Yi Wang” Jianyang Hu" Lixun Cao” Lei Zhang’
Jiaxin Ou* Qizhong Mao® Jingwei Zhang” Heng Zhang" Jian Liu*
Ming Zhao* Zhengyu Yang® Jinrui Liu* Hongde Li* Guanghui Zhang"
Sheng Qiu” Yang Liu* Jiagiang Chen" Ming Li* Fei Liu*
Yizheng Jiao* Jianshun Zhang" Yong Shen* Yue Ma* Jianjun Chen*
ByteDance
ABSTRACT 1 INTRODUCTION

Persistent key-value (KV) stores are widely used by cloud services
at ByteDance as local storage engines, and RocksDB used to be
the de facto implementation since it can be tailored to a variety of
workloads and requirements. In this paper, we provide key insights
into local storage engine usage at ByteDance, explain why the
combination of highly write-intensive workloads and stringent
requirements on cost efficiency and point lookup tail latency may
pose challenges to a general-purpose local storage engine such as
RocksDB, and present the design and implementation of LavaStore,
a high-performance cost-effective local storage engine purpose-
built to address these challenges.

LavaStore achieves its design goals by selectively customizing a
few components of a RocksDB-based, general-purpose local storage
engine, including a distinct KV separation design that decouples
garbage collection from compaction, a specialized engine type for
the commonly recurring Write-Ahead-Logging workload, and a
customized user-space append-only filesystem. LavaStore has been
deployed to production with hundreds of thousands of running
instances, storing more than 100 PB of data and serving billions
of requests per second, bringing significant performance improve-
ments and cost reductions to customers over their original local
storage engines. For example, a ByteDance proprietary distributed
OLTP database service has experienced a reduction in average write
and read latency by 61% and 16%, respectively, and a ByteDance
proprietary caching service has gained an 87% increase in write
throughput with no more than 6% space overhead.

PVLDB Reference Format:

Hao Wang, Jiaxin Ou, Ming Zhao, Sheng Qiu, Yizheng Jiao, Yi Wang,
Qizhong Mao, Zhengyu Yang, Yang Liu, Jianshun Zhang, Jianyang Hu,
Jingwei Zhang, Jinrui Liu, Jiaqiang Chen, Yong Shen, Lixun Cao, Heng
Zhang, Hongde Li, Ming Li, Yue Ma, Lei Zhang, Jian Liu, Guanghui Zhang,
Fei Liu, and Jianjun Chen. LavaStore: ByteDance’s Purpose-built,
High-performance, Cost-effective Local Storage Engine for Cloud Services.
PVLDB, 17(12): 3799 - 3812, 2024.

doi:10.14778/3685800.3685807

*{hao.wang, oujiaxin, zhaoming.274, sheng.qiu, yizhengjiao, wangyi.ywq, qizhong.mao,
zhengyu.yang, yangliul, zhangjianshun, hujianyang, zhangjingwei.831, liujin-
rui.yummy, chenjiagiang.0, shenyong.sy, caolixun, zhangheng.he, lihongde, lim-
ing.1018, mayue.fight, zhanglei.michael, liujian kv, zhangguanghui, fei.liu, jianjun.chen
}@bytedance.com

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

3799

Persistent Key-Value (KV) stores are widely used by cloud services
at ByteDance as local storage engines. For example, ByteNDB, a
proprietary OnLine Transaction Processing (OLTP) system, stores
database page versions in persistent KV stores; ABase, a proprietary
distributed NoSQL database, also implements Redis-compliant data
structures on top of persistent KV stores.

RocksDB [25] is a Log-Structured Merge (LSM) tree [62] based,
high-performance persistent KV store developed for large-scale
distributed systems and optimized for Solid State Drives (SSDs).
Due to its configurability, RocksDB can be tailored to a variety of
workloads and requirements, and became the de facto local storage
engine implementation for many cloud services at ByteDance.

With the tremendous growth of popular ByteDance applications,
however, some cloud services began to encounter performance
and cost issues with their RocksDB-based local storage engines.
After numerous attempts in tuning RocksDB configuration, we
came to the conclusion that the unique workload characteristics,
performance requirements, and cost objectives of these cloud ser-
vices demand a local storage engine design with some distinctly
different trade-offs from that of RocksDB. In 2019, ByteDance ac-
quired TerarkDB [9], a RocksDB-based general-purpose KV store
with customized indexing and compression algorithms, and set
out to develop LavaStore, a high-performance and cost-effective
local storage engine based on TerarkDB but purpose-built for cloud
services at ByteDance. In this paper, we describe the challenges for
local storage engines at ByteDance, explain why existing designs
in RocksDB fall short, and present the design and implementation
of LavaStore that address these challenges.

Write throughput was one of the first major bottlenecks that
emerged early on due to the unique workload characteristics at
ByteDance. Specifically, ByteDance applications aggressively de-
ployed in-memory caches (e.g., Redis and Memcached) at multiple
layers of their architecture to reduce read latency, leaving only a
small fraction of read requests for local storage engines to handle.
Furthermore, with applications commonly batching write requests
for higher throughput, the write workload is dominated by large
value writes. Unfortunately, RocksDB’s write throughput under
such a workload is severely limited by the inherently large write
amplification of LSM-tree for large value sizes. Even with B1obDB,

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685807

https://doi.org/10.14778/3685800.3685807
mailto:hao.wang@bytedance.com
mailto:oujiaxin@bytedance.com
mailto:zhaoming.274@bytedance.com
mailto:sheng.qiu@bytedance.com
mailto:yizhengjiao@bytedance.com
mailto:wangyi.ywq@bytedance.com
mailto:qizhong.mao@bytedance.com
mailto:zhengyu.yang@bytedance.com
mailto:yangliu1@bytedance.com
mailto:zhangjianshun@bytedance.com
mailto:hujianyang@bytedance.com
mailto:zhangjingwei.831@bytedance.com
mailto:liujinrui.yummy@bytedance.com
mailto:liujinrui.yummy@bytedance.com
mailto:chenjiaqiang.0@bytedance.com
mailto:shenyong.sy@bytedance.com
mailto:caolixun@bytedance.com
mailto:zhangheng.he@bytedance.com
mailto:lihongde@bytedance.com
mailto:liming.1018@bytedance.com
mailto:liming.1018@bytedance.com
mailto:mayue.fight@bytedance.com
mailto:zhanglei.michael@bytedance.com
mailto:liujian.kv@bytedance.com
mailto:zhangguanghui@bytedance.com
mailto:fei.liu@bytedance.com
mailto:jianjun.chen@bytedance.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685807

which is the RocksDB implementation of the commonly used tech-
nique of KV separation to improve write throughput for large value
sizes, the write throughput still falls significantly short of appli-
cation requirements. In order to address this challenge, we opted
for a distinct KV separation design that decouples Garbage Col-
lection (GC) from compaction, which enables more flexible trade-
offs among space usage, read performance and write performance.
Compared with the design of B1obDB in RocksDB, which ties GC to
compaction, LavaStore can achieve much better write performance
with comparable space usage and read performance.

As applications in ByteDance enjoyed continued exponential
growth, the resource consumption by the cloud services, in terms
of the volume of data stored, CPU usage, etc., gradually grew to a
scale for which cost reduction became a major concern. In order to
improve resource efficiency, LavaStore introduced various GC opti-
mizations to its KV separation implementation. In particular, for the
commonly recurring Write-Ahead-Logging (WAL) workload, we
added a specialized local storage engine, LavaLog, to exploit the fact
that these data are mostly written and expired in a First-In-First-Out
(FIFO) fashion, and rarely read, in order to achieve near-optimal
write amplification and GC overhead. Moreover, some applications
would like to enable RocksDB “sync” write to guarantee data dura-
bility, but the ensuing throughput and latency penalty is so large
that most of them opted for “non-sync” write with increased repli-
cation, effectively trading resource efficiency for durability. For
such applications, LavaStore employed cross-layer optimization be-
tween the KV store and the underlying filesystem to eliminate the
“sync write” performance penalty, which helps these cloud services
restore resource efficiency while maintaining data durability.

Finally, as cloud services continued to pursue aggressive cost re-
ductions, the previously abundant in-memory caches got more and
more scarce, so read performance optimization began to gain im-
portance. With a careful study of application requirements and read
performance metrics, we found that point lookup queries are the
main pain point. Specifically, due to their interactive nature, many
popular ByteDance applications have stringent Service Level Agree-
ments (SLAs) on both the average and tail (e.g., the 99-percentile)
latencies. Although the average read latencies of most cloud ser-
vices were well below SLA, tail latencies were orders of magnitude
above SLA. Since resources must be provisioned to meet SLAs on
both average and tail latencies, average resource utilization became
very low. Reducing the tail latency of point lookup queries thus
became the key to improving resource efficiency. To this end, Lava-
Store introduced a new index type that is very memory efficient
with outstanding point lookup performance. Together with a more
refined caching strategy, this new index type enables LavaStore to
achieve near-optimal read amplification for point lookup queries,
thus drastically closing the gap between average and tail latencies
for point lookup queries, and leading to substantial cost savings for
such cloud services.

As of this writing, LavaStore has been successfully deployed to
three widely used cloud services at ByteDance, with more than
100,000 running instances in production, storing more than 100
PB of data and serving an aggregate of over 2 billion Queries Per
Second (QPS). Customers of LavaStore have enjoyed great benefits
over their original local storage engines. Specifically, ByteNDB has
seen its average write latency reduced by 61% and its read latency

3800

by 16%. The write QPS of ABase is increased by 87% while keeping
the total garbage ratio between 1% and 6%. Flink also reduces its
CPU usage by up to 67% after switching from its previous RocksDB-
based state backend to one based on LavaStore.

In summary, our key contributions are as follows:

We provide insights into local storage engine usage by cloud
services at ByteDance, and explain why the combination of
highly write-intensive workloads and stringent requirements on
cost efficiency and point lookup tail latency may pose challenges
to a general-purpose local storage engine such as RocksDB;
We show how these challenges can be effectively addressed by
selectively customizing a few components of a RocksDB-based,
general-purpose local storage engine. Specifically,

— We present LavaKV, with a distinct KV separation design
that decouples garbage collection from compaction, which
enables more flexible trade-offs among space usage, read
performance, and write performance than RocksDB;

We present Lavalog, a specialized local storage engine for
the commonly recurring Write-Ahead-Logging workload,
which significantly outperforms RocksDB in terms of write
amplification and garbage collection overhead;

We present LavaFS, a user-space append-only filesystem,
which provides much lower write amplification and syn-
chronous write latency than the in-kernel filesystem Ext4
when used by LavaKV and LavaLog;

Using both synthetic and production workloads, we validate
LavaStore’s design and implementation by showing that it suc-
cessfully meets the performance requirements and cost objec-
tives of cloud services at ByteDance;

We share the lessons we have learned while developing LavaS-
tore and running it in production at scale.

The rest of the paper is organized as follows. Section 2 presents
the background and motivation of this work. Section 3 describes
the design of LavaStore, with Section 3.2 focusing on improving
write performance, Section 3.3 on improving cost-effectiveness,
and Section 3.4 on improving read performance. In Section 4, we
evaluate LavaStore’s performance and cost-effectiveness using both
synthetic and production workloads. Section 5 discusses our lessons
learned and future work. Section 6 reviews the related work. Finally,
Section 7 concludes our work.

2 BACKGROUND AND MOTIVATION

In this section, we first describe three cloud services that represent
typical use cases of persistent KV stores as local storage engines at
ByteDance, with a focus on their workload characteristics, perfor-
mance requirements, and cost objectives. We then explain why the
existing designs in RocksDB does not adequately address these use
cases, which also motivates the design of LavaStore.

2.1 Local Storage Engine Usage at ByteDance

2.1.1 ByteNDB. ByteNDB, short for ByteDance NewSQL Database,
is a cloud-native, distributed OLTP database suite engineered for full
compatibility with MySQL [26] and PostgreSQL [57]. Moving away
from MySQL’s traditional non-distributed InnoDB storage engine,
ByteNDB’s storage layer comprises two key components: LogStore
and PageStore [15]. LogStore leverages append-only distributed

User write
MemTable

Memory Flush

Disk

Ptr (fio, off; len)

s

RocksDB

LavaKV

Memory

k: key; v: small value; V: large value; SST
p: pointer to blob; I: index. Ly
Other details omitted, such as ' Blob
value / compression type. :
Retam @ Compact Retain,
[sst][sst][ssT |

(a) SST/blob format

y i Flush
User write MemTable lush

: pgl NN .

{[ssT |[ssT][ssT |

(b) RocksDB (blob GC with SSTable compaction) (c) LavaKV (independent SSTable compaction and blob GC)

Figure 1: Comparison of key-value separation between RocksDB and LavaKV.

blob storage to provide fast redo log persistence with large capacity,
while PageStore, through a collection of page servers, handles the
persistence of redo logs from LogStore and their application in
constructing data pages. Each PageStore, managing 16 KB database
page versions and indexing them by unique IDs, places significant
demands on local storage engines for large value management.

To ensure high availability, page servers persist redo logs from
LogStore using unique Logical Sequence Numbers (LSNs), and use a
gossip protocol [6] to retrieve missing logs from peers. This allows
for mostly sequential log insertions with occasional out-of-order
entries. Immediate durability is critical, ensuring that log appends
are persistently stored before user confirmation.

2.1.2 ABase. ABase is ByteDance’s distributed KV storage system,
supporting services like advertising, e-commerce, recommendation,
search, and video platforms. It caches large datasets beyond in-
memory capacity, such as Redis [12], using a disk-based approach
for handling large KV pairs and terabyte-scale data. ABase ensures
high throughput, essential disk-based data preservation, and low
cost. Its critical operations are Set (inserting/overwriting values)
and Get (retrieving values).

LavaStore’s KV separation significantly boosts write through-
put and reduces tail write latency, aligning with ABase’s perfor-
mance expectations. Yet, as ByteDance’s online services expand, the
challenge of tail read latency emerges, particularly as in-memory
caching becomes increasingly expensive. The objective is to reduce
disk accesses in Sorted-Sequence/String Tables (SSTables) within
LavaStore, ideally limiting it to a single I/O to retrieve a value from
the blob file, thereby minimizing tail read latencies.

2.1.3 Apache Flink. Flink, a framework and distributed process-
ing engine for stateful computations on unbounded and bounded
data streams [11], is instrumental at ByteDance, powering over
30,000 streaming and 100,000 batch jobs daily across various busi-
ness units. Flink’s demand for high write throughput, focusing on
lookup queries with occasional scans, requires efficient resource
utilization. Deployed via YARN [77] or Kubernetes [8], Flink config-
urations often involve multiple storage engine instances per process
on shared CPU and memory, sometimes exceeding 100 instances

3801

on a single machine. Each engine, running within containers, has
a predefined quota for CPU and memory allocation. Given Flink’s
substantial need for computational resources, optimizing the stor-
age engine to minimize CPU and memory consumption is critical,
enabling more resources for computation-heavy tasks.

2.2 Problems with Existing Systems

2.2.1 KV Separation in RocksDB. Adjusting compaction settings,
such as increasing flush size or switching to universal compaction,
are common methods to mitigate RocksDB’s write amplification.
However, these approaches often fall short in sufficiently improv-
ing tail write latencies. The KV separation technique, introduced
by Lu et al. [48], offers a more effective solution by storing large
values in separate blob files and reducing their involvement in com-
pactions but increasing space amplification. It decreases compaction
frequency and size, thus reducing write amplification and necessi-
tating specialized garbage collection to preserve space efficiency.
While it improves write performance through reduced SSTable sizes
and potentially better cache efficiency, it may increase disk I/O for
accessing separated values, negatively impacting read performance.

RocksDB quickly incorporated the concept of KV separation
through BlobDB [55]. It stores a triplet of blob file number, value
offset, and value length within SSTables (Figure 1a), requiring a
space overhead of approximately 24 bytes per key and facilitat-
ing efficient read access, as values in a blob file could be directly
retrieved using the offset and length without the need for a sep-
arate index. However, blob GC requires rewriting all valid values
to new files and updating their triplets of blob file number, value
offset, and value length in the associated SSTables, changes that
can only be made during compaction. This inadvertently increases
write and space amplification since retained blob files must wait
for future compactions of associated SSTables for reclamation, as
shown in Figure 1b. Despite attempts to strike a balance among
write, read, and space efficiencies, BLobDB did not fulfill our strin-
gent requirements for ultra-low write amplification and minimized
tail write latency. In 2019, PingCAP released the initial version of
Titan, a RocksDB plugin with a slightly different KV separation
design [67, 84]. Titan’s strategy is similar to BlobDB but uses an

EventListener callback to re-insert GC’ed KVs as updates after
compactions. Although Titan was more usable and outperformed
B1obDB, its write performance still fell short of our requirements.
For a more in-depth comparison of KV separation between B1obDB
and Titan, please refer to [81].

In addition to the write performance bottleneck of BlobDB and
Titan, their instability and unavailability between 2018 and 2019
precluded their direct application in our production settings, com-
pelling us to devise our own KV separation method, which is elab-
orated upon in Section 3.2. Our initial KV separation approach sur-
passed both B1obDB and Titan in write throughput and reduced tail
write latency but incurred greater space use and read amplification.
These issues are further discussed in Section 3.3 and Section 3.4,
respectively. For the remainder of this paper, unless otherwise spec-
ified, RocksDB will refer to RocksDB B1obDB.

2.2.2 Ineffective Synchronous Writes. To ensure high reliability,
WAL must be used for synchronous writes on every insert. More-
over, specific workloads, such as ByteNDB’s log shipping, demand
low synchronous write latency with a Write Amplification Factor
(WAF) near 1. RocksDB, however, can only achieve a minimum
WAF of 2 with synchronous writes and WAL. This limitation led
to the development of a new local storage engine, LavaLog, tai-
lored for workloads that are highly sequential and require strong
durability and low write latency. Despite this, both RocksDB and
the new LavaLog experience significant tail latencies due to fsync
operations on the standard kernel filesystem Ext4, severely impact-
ing performance. Consequently, users like ByteNDB were forced to
disable synchronous writes and rely on additional server replicas to
maintain system durability, which significantly increased the cost
of operations. To tackle these issues, there’s a pressing need for
a filesystem capable of delivering outstanding synchronous write
performance along with ensuring strong durability.

3 LAVASTORE DESIGN
3.1 System Architecture

Cloud Services ByteNDB

Engines
angmes LY LavaStore e --ocf-c---
LavaFS
. | User Space
Filesystem Kernel Space
____________________________ \J-emmme e
1/0 Control
. e —
Device

Figure 2: LavaStore Architecture

Considering various design choices and compromises, we created
LavaStore at ByteDance— a purpose-built, high-performance, and
cost-effective local storage engine. LavaStore stands out for its
modular and flexible architecture, divided into an upper engine
layer and a lower filesystem layer, as shown in Figure 2.

3802

LavaKYV serves as a direct substitute for RocksDB, targeting
general write-heavy workloads. It incorporates a refined KV sepa-
ration strategy, significantly reducing write amplification and tail
latency, while delivering comparable or superior read performance
to RocksDB. Additionally, LavaKV employs an adaptive GC ap-
proach to optimize the balance between space efficiency and write
performance, considering the current disk utilization. As indicated
by the gray arrows, LavaKV runs on top of either Ext4 or LavaFS.

LavaLog, entirely developed anew, caters specifically to log-style
workloads with high sequentiality. It leverages an LSM-tree-based
approach for metadata management, enabling a near 1 WAF with
support for immediate durability. Distinct from RocksDB’s WAL,
which is append-only during writes and read-only during recovery,
LavaLog also facilitates real-time searches and scans, making it
suitable for applications like ByteNDB’s log shipping. As indicated
by the gray arrow, LavaLog runs on top of LavaFS only for now.

LavaF8, a user-space filesystem, is specially designed to accom-
modate the append-only write patterns of both LavaKV and Lava-
Log. By fully managing the I/O pathway within LavaStore, we have
implemented enhancements that previously required kernel modi-
fications, thus improving the performance of synchronous writes
in ways that are not feasible with kernel filesystems like Ext4.

3.2 Optimizing Write Performance

This section outlines our strategies to enhance LavaStore’s write
performance, showcasing a distinct KV separation approach that
diverges from RocksDB’s B1obDB, achieving exceptionally low write
amplification and reduced tail latency. Additionally, we introduce
a specialized user-space, append-only filesystem LavaFS designed
specifically for achieving low latency in synchronous writes.

3.2.1 LavaKV’s KV Separation. Launched in 2019, LavaKV imple-
mented a KV separation technique aimed at surpassing RocksDB
in write throughput, making a deliberate trade-off for space ef-
ficiency in its design phase. This approach has led to outstand-
ing write performance, along with competitive read functionality
and greater flexibility in configuration. As illustrated in Figure 1c,
LavaKV uniquely separates GC processes from compactions, with
compactions merely updating information about garbage (e.g., the
garbage ratio in blob files), while dedicated tasks execute the actual
1/0 operations for GC. This separation offers multiple advantages: it
allows for even smaller compactions, facilitating quicker merges of
SSTables to lower levels in high write-intensive scenarios and miti-
gating write stalls by speeding up L0 to L1 compactions. Moreover,
it provides flexibility in tuning compactions and GC independently,
enabling users to optimize for higher disk utilization or prioritize
quicker write operations based on current disk usage and the bal-
ance of write and read demands.

In practical terms, LavaKV utilizes the same SSTable format for
blob files, incorporating a fully sorted index within each blob file, as
shown in Figure 1a. Therefore, only the blob file number is needed
in the original SSTables, effectively reducing their file sizes. During
GC, rewritten valid values in new blob files are tracked in a manifest
file alongside old numbers, creating a manageable inheritance tree
that’s pruned periodically to maintain efficiency. During the GC
process, new blob file numbers are documented in a manifest file
along with their former numbers,creating a manageable inheritance

[ssT#l | [ssT# | [ssT#5 | [ssT#l | [ssT# | [ssT#s

@ Compact

{} Compact + Gc

[ssT#6 | [ssT#8 | [SST#10 |

<

(a) Compaction without GC (b) Compaction with GC

Figure 3: Resolving SSTable and blob dependencies.

tree that’s pruned periodically to maintain efficiency. Through this
innovative structure, LavaKV has successfully decoupled blob GCs
from compactions, attaining a write amplification that is 23% less
than that seen in a finely tuned RocksDB.

3.2.2 On-demand Correlated Compaction and GC. Always exe-
cuting blob GCs separately from SSTable compactions presents a
significant challenge, as demonstrated in Figure 3a. For instance,
consider a scenario where SSTables 1, 3, and 5 undergo compaction
without including the blobs (2 and 4) they reference. This process
redistributes keys from SSTable 1 that reference blob 2, and keys
from SSTable 3 that reference blob 4, across the three resultant
SSTables (6, 7, and 8), increasing the total reference count from 2
to 6 among them. This situation leads to two main issues:

e If'blob 2 or 4 is later selected for GC, identifying still-valid
keys becomes highly time-consuming as it necessitates re-
verse searches across more SSTables (6, 7, and 8), potentially
taking minutes even hours for large datasets with numerous
SSTables and blobs.

Post-compaction, the keys in SSTables 6, 7, and 8 are sorted,
enhancing scan performance due to improved locality. How-
ever, since the values in the blobs remain in their original,
unsorted order, this negates the locality benefits from the
SSTables, degrading the overall scan performance.

To address these challenges, LavaKV optionally performs blob
file reconstruction during SSTable compactions. When SSTables are
selected for compaction, their associated blobs are also chosen based
on criteria like garbage ratio and blob overlapping ratio, aiming
to reclaim space and reduce blob-SSTable links while enhancing
sequentiality across blobs. During this SSTable compaction, selected
blob files are compacted too, creating new blobs as depicted in
Figure 3b, which aids in reducing the cost of reverse querying for
future compactions and GCs, and improves blob locality to enhance
scan performance. This approach is similar to that of B1obDB, but
with a critical distinction: if a blob in B1obDB is not selected during
an SSTable compaction, it must wait for the referenced SSTables to
be compacted again, which could be a lengthy process. Conversely,
in LavaKV, blobs can be garbage collected either independently
or jointly with SSTable compaction, offering greater flexibility to
adapt to changes in write throughput and space constraints.

3.2.3 Performance Results. Figure 4, detailed in Table 1 in Sec-
tion 4.1.2, illustrates the trade-offs between write performance and
space utilization among vanilla RocksDB, RocksDB B1obDB, Titan
and LavaKV. Since db_bench does not directly measure write and

3803

@ RocksDB () RocksDB BlobDB A Titan ¢ LavaKV

100 e
52 75)<
§§ 50
gé D5 e O
T T T ‘I
0 100 200 300 400 500

Final Data Size (GB)

Figure 4: Evaluating the trade-offs in write performance and
space utilization between RocksDB, Titan and LavaStore with
KV separation (A - Compact in Table 1).

space amplification, these are inferred from the total compaction
time (with longer duration indicating higher write amplification)
and the final data size post-compaction (where larger size suggests
greater space amplification). Vanilla RocksDB shows the longest
compaction time but the smallest data size, highlighting its focus on
minimizing space use at the expense of write efficiency. In contrast,
both Titan and LavaKV opt to use more disk space to achieve lower
write amplification (they are almost identical), positioning B1obDB
in a middle ground. This demonstrates LavaKV’s aim for signifi-
cantly reduced amplification, a goal not attainable by RocksDB.

I RocksDB (BlobDB) 3 Titan I LavaStore
619 1.2 7
400 0.8
338 ’
200 A 0.4 -
57
- 0 - 0.0
Hist. of Avg. Avg. Lat. (us) Hist. of p99 p99 Lat. (ms)
Lat. (ms) Lat. (ms)

Figure 5: Comparing overwrite performance (B in Table 1).

Furthermore, Figure 5 compares performance in an overwrite-
centric workload, also outlined in Table 1 in Section 4.1.2. With
BlobDB, Titan and LavaStore operating under a uniform write rate
limit of 60 MB/s, B1obDB’s GC operations during compactions are
insufficient for handling large concurrent write traffic, leading to
frequent write stalls in about half of the twelve runs. In its best runs,
BlobDB’s average and tail write latencies are similar to Titan’s, but
both are significantly higher than LavaStore’s. In the majority of
runs, BLobDB’s latencies are several orders of magnitude higher than
those of Titan and LavaStore. Titan performs better than B1obDB
in most runs, but its reinsertion of KVs after compactions causes
higher write amplification, resulting in average and tail latency
numbers that are twice as high as those of LavaStore. This under-
scores the effectiveness of LavaStore’s KV separation technique in
enhancing write efficiency.

This design outperformed RocksDB and Titan in write efficiency
but introduced extra challenges, including the need for precise
adjustments in the standalone GC process to maintain write perfor-
mance and the complex index searches required by LavaKV’s blob
files, which often led to increased tail read latencies. Addressing

‘chmcm‘ ‘chmcm‘ ‘ Segment ‘
e ™~ / N/~ >~
MetaData Op Log Record
Logical | |Logical Log Record Index Record Aggregator| Aggregator
Log
oo
Garbage Collector
In-memory Metadata Me‘adf‘a Operation
ogging Logical Log Record
Full Record Incremental N Append J
Index Record Index
Checkpoint Persistence h
Physical Log (Meta)| | Physical Log (Data)
\ Logical File Metadata / .
AN S Persistence Layer

L

Figure 6: LavaLog Internals

these issues to enhance space utilization and read performance
within LavaKV’s KV separation framework and the solutions de-
vised will be discussed in Sections 3.3 and 3.4.

3.3 Cost-Effectiveness Improvements

This section details how LavaLog reduces write costs for sequential
log-style workloads, outlines the development of blob GC strategies
to enhance space efficiency in LavaKV, and discusses the optimiza-
tions for synchronous writes in LavaFS.

3.3.1 Efficient Log Management with Lavalog. LavaLog provides
a set of APIs for users to create, open, and delete log files (called
logical logs in LavaLog’s context). After a logical log is created and
opened, a user can append new records to it by specifying an LSN
and a buffer that holds log data. A user can also trim all stale data
before a given LSN in a log. Additionally, a user can read the data
with an LSN, or scan a log after a given LSN.

Design Goals. The design of LavaLog focuses on the following as-
pects to serve in production. First, LavaLog needs to accommodate
log records with both sequential incremental LSNs and occasion-
ally non-sequential LSNs. While most LSNs ingested to LavaLog
are in order, some of them might be out of order, e.g., when a
recovering replica is doing missing logs catch-up. The ability to
handle log records with non-sequential LSNs distinguishes LavaLog
from systems like LogDB [46]. Second, LavaLog should prioritize
the performance of frequent operations. The most frequently used
operations in LavaLog are append, trim, delete, and read. Third,
LavaLog has to be resource efficient. LavaLog should avoid resource
contention with other co-located services on the same machine. In
fact, ByteNDB requires LavaLog to keep its memory consumption
under 1% of the total log data size it stores. In addition, LavaLog
needs to reclaim the space from trimmed records promply.

Overview. LavaLog logs user operations with two shared logs [3],
i.e., metalog and datalog. The metalog logs create, delete, and
trimoperations, while the datalog records append operations. Lava-
Log buffers log operations from different users in a queue, while a
background task coalesces and flushes the logs to the disk.

LavaLog stores the metalog and datalog in physical logs, which
are files in filesystem with a configurable capacity (e.g., 256 MB).
When a physical log outgrows the capcity, LavaLog seals that file,
and opens a new one for writes.

Two-Level Indexing. To locate a user log record in physical logs,
LavaLog maintains two mappings. The in-memory namespace maps

3804

Users

Append

Isn: <fid, off, len> /o Insert

Lo

end_lsn: <fid, off, len>
To checkpoint

LI

© Add IndirectMapping

Memory B R
@ MetaFlush -

‘ {MetaFlush, on disk mappings} ‘ ‘ Checkpoint file ‘

Physcial Log (Meta)

Storage ‘

Figure 7: LavaLog Metadata Management

logical log names to physical file IDs, and metadata maps an LSN
to the location of that log record in a physical file. Because of the
size of the metadata, LavaLog organizes it into a two-level index, as
illustrated in Figure 7. LavaLog only keeps part of the metadata in
memory as direct mapping (L0), while MetaFlush the rest mappings
into a physical log. The indirect mapping (L1) maps an end LSN to
the physical location of MetaFlush records, each of which encodes
a group of mappings of (Isn, log_data_location).

Checkpoint and Garbage Collection. LavaLog utilizes fuzzy check-
points [70] to minimize user request obstruction. It checkpoints
both L1 and namespace data in the background for quick recov-
ery. This involves merging incremental MetaFlush records from
physical logs with a base checkpoint to create a new checkpoint.

LavaLog reclaims space in the datalog by moving valid logical
log records from the old log files to the active physical log. When
garbage exceeds a threshold, the oldest physical log is targeted for
garbage collection. Instead of scanning the entire physical log, Lava-
Log uses a reverse index at the end of each physical log, mapping
[logical log id, LSN, offset, size]. This allows quick validation of logi-
cal log records and locating valid records via offsets, significantly
reducing read amplification.

Performance. Figure 8 compares the performance of immediate
durable writes in RocksDB and LavaLog, where LavaLog has much
lower average and tail latencies than RocksDB.

I RocksDB 3 Lavalog
'Z:? 80 600 -
£ 40 300 o
T o0~ 0 -
Average Latency (us) p99.99 Latency (us)
€ 1.0 44
2
£ 0.5 A 2 1
=)
< 0.0 - 0 -

4KB 16 KB
p99.99 Latency (ms)

4 KB 16 KB
Average Latency (ms)

Figure 8: Latencies of writes with immediate persistence for
RocksDB and LavaLog (WriteOnly in Section 4.1.3).

3.3.2 Optimizations for Space Utilization for LavaKV. We also in-
troduce techniques to increase space efficiency of LavaKV. Specif-
ically, we have implemented two techniques: calculating a blob

file’s garbage ratio to identify optimal candidates for space recov-
ery (Accurate GC), and increasing the number of concurrent GC
tasks through additional threads guided by an adaptive strategy
based on disk usage (Adaptive GC). When disk usage is low, our ap-
proach focuses on minimizing write amplification by conservatively
managing GC, delaying actions on files with lower garbage ratios
until they meet set thresholds. Conversely, high disk usage prompts
an increase in aggressive GC activities, utilizing more threads to
maintain SLA standards, with GC thread priority adjusted below
compaction tasks to balance operational needs. Figure 9 illustrates
the relationship between GC thread count and garbage ratio as disk
usage grows. In the optimized version, the number of GC threads
begins to rise once disk usage surpasses the 75% threshold, effec-
tively limiting the overall garbage ratio to approximately 13%, a
significant improvement from the 20% observed in the prior, non-
optimized version. As a result, disk usage stabilized at around 77%,
leaving more usable space.

@ Original Y Optimized
- 9
g 3 * < 20 A 0 ®
£ 2 * & &
3 1| fodee00 O | &
I+ 0 T T T T T o 0 AI T T T T

60 65 70 75 80 85 90 60 65 70 75 80 85 90
Disk Usage (%)

Figure 9: Scatter plot of the number of GC threads and overall
garbage ratio versus disk usage (WriteOnly in Section 4.1.3).

Overall, our GC optimizations have improved space efficiency,
demonstrated by write-only workloads, for which our GC tech-
niques increase effective garbage ratio by 7% and reduces the num-
ber of GC occurrences by 30%. Moreover, peak disk usage is dropped
by 8%, which increases the storage capacity provisioned to users
by 8%, thus lowering storage costs.

3.3.3 Optimizations for Synchronous Writes via LavaFS. To tackle
the write performance issues mentioned earlier, we introduce the
optimizations for synchronous writes in LavaFS.

Lightweight Journaling. Ext4 uses the jbd2 mechanism [34] for
metadata journaling, where a transaction includes a header block
(4 KB), one or more journal blocks (4n KB), and the transaction
commit block (4 KB), as illustrated in Figure 10a. The inode group-
ing, together with the extra bookkeeping metadata blocks in jbd2
transaction records, introduce substantial write amplification, in
particular for applications that frequently issue synchronous writes.
LavaFS, on the other hand, employs a more lightweight journaling
mechanism and commits metadata changes to disk by flushing them
to a dedicated journal file only, without in-place metadata updates.

Synchronous Write Optimization. LavaStore further improves
synchronous write performance through a customized fdatasync
implementation. Although the concept of fdatasync itself is not
novel, using fdatasync in kernel filesystems such as Ext4 for
append-only writes behaves the same as using fsync, due to the
need to synchronize file metadata to update file size after each
append. In contrast, the fdatasync implementation in LavaFS does

3805

not flush file metadata for file size changes, unless there is also a
change in file extents, e.g., when a new extent is allocated. Figure 10
compares the fdatasync implementations of Ext4 and LavaFS, sug-
gesting a WAF of 8 and ~1, respectively, for 4 KB synchronous
writes. Figure 11 shows the actual WAF measurement of ~6.7 and
~1, respectively, using 4 KB writes up to a 256 MB file. Figure 11
also shows that the fsync WAF of Ext4 is the same as fdatasync,
and almost doubles for LavaFS due to the additional metadata syn-
chronization in this case.

It is worth noting that with fdatasync, users can no longer rely
on the inode information to retrieve the accurate file size (e.g., via
stat), and must identify the boundary between valid and invalid
data through other means. This is less of an issue, however, for the
targeted applications that LavaFS supports. For instance, in case of
recovery during OpenDB, LavaKV scans the extents of its WAL to
validate record checksums. If the validation fails for a record, both
the failed record and any subsequent records will be discarded.

Although it is possible to achieve effects similar to the fdatasync
optimization entirely within LavaKV, e.g., by utilizing sparse files
initialized to a large size, we note that decoupling the low-level,
storage-related optimizations into a user-space filesystem has ad-
ditional benefits. For one thing, these optimizations can be easily
re-used to improve performance and cost for any other systems
using LavaFS. For another, having a user-space filesystem makes it
easier to adopt technologies such as SPDK and ZNS SSDs for the
future evolution of LavaStore.

LavaFS Performance. We compare the performance of sequential
write and random read, the two access patterns cared by LavaLog
and LavaKV, with FIO tests on LavaFS and Ext4. The sequential
write tests include two cases. As shown in Figure 12, the first case
uses one thread to create 400 files and write 256 MB worth of
data to each file consecutively, and each write is followed by an
fsync to simulate the writes for a WAL. The second case uses 20
threads and each thread does the same work as the first case, to
simulate SSTable writes in an LSM-tree KV store (i.e., writes that do
not require immediate durability). The only difference is that each
write is not followed by an fsync. The read tests use one thread or
20 threads to randomly read data from 400 pre-created files, and
the total size of read data for each thread is 100 GB. For all tests,
we vary the I/O size from 4 KB to 512 KB. To eliminate the effect of
kernel page cache, both Ext4 and LavaFS use direct I/O.

In the case of sequential write operations, LavaFS outperforms
Ext4 for single-threaded synchronous writes due to its much lower
WAF. E.g., for 4 KB I/O, LavaFS has a WAF of 2 when using f'sync,
while Ext4 has a WAF of ~6.7, as shown in Figure 11. Additionally,
for multi-threaded non-synchronous writes, LavaFS also exhibits su-
perior performance compared to Ext4 thanks to its lower overhead
due to kernel bypassing.

Regarding random read operations, both in single-threaded and
multi-threaded tests, LavaFS shows a slight advantage over Ext4,
particularly for small I/O sizes. However, in most scenarios, their
performance remains comparable.

Figure 13 shows the write and read performance of LavaKV
on LavaFS and Ext4 with db_bench. In both workloads, LavaKV
performs better on LavaFS than Ext4 with lower average and tail
latencies. Compared with Ext4, LavaFS has in-memory metadata.

WAF=4KB+12KB+4KB+12KB)*250/1MB=8

I
r Al
: write(fd, buffer,) ! i kworker thread 3 jbd2 kworker thread 3 :
(a) EXT-4 Write dirty data to TxI | Data Commit Tx1 Metadata T Commit Tx2 Commit Tx2 Ret
fdatasyne | | userspace write buffer | §| 4KB 12KB § 4KB 12KB ; 12KB N
@ (2] [3) o © L I a - I
4 fdatasync fdalasy’,ue"""
(4KB+12KB+4KB+12KB) .- (4KB+ 12 KB 4KB + 12KB)
; fdatasync tdatasyne - fdatasync fdat'gsy’r'n'c
: append() '3 (4KB +4KB) -~ {4KB) ; (4KB) 4
(b) LavaFS Write dirty data to E Data Metadata Data i Data
fdatasync userspace write buffer 4KB 4KB 4KB

WAF:(4KB*250+4KB)/] MB = 1.004

Figure 10: 1MB appending fdatasync Ext4 v.s. LavaFS.
(a) Ext4 fdatasync regresses to fsync with WAF = 8; (b) LavaFS fdatasync with WAF =~ 1.
Sync write operations. (D) and (5): Add inode updates to journal transactions (Tx1 and Tx2); (2) and (7): Write dirty data to disk; 3) and (6):
Commit transaction, 12 KB (4 KB transaction header + 4 KB log block + 4 KB commit block); 3 Update Ext4 on-disk inode metadata; and

Write inode update transaction log to disk.

6719 6:719
Ext4
2000 LavaFs .ﬂ
fsync fdatasync

Figure 11: Actual WAF comparison of fsync and fdatasync
between Ext4 and LavaFS for 4 KB writes up to a 256 MB file.

I Ext4

60
30
0_

Avg. Sync-Write Latency
(us, 1 thread)

150
75 4
0_

4KB 16 KB

Rand-Read Throughput
(MB/s, 1 thread)

3 LavaFS

3.0
" ﬂ_ﬂ
0.0 -

Seq-Write Throughput
(GB/s, 20 threads)

3.0

1.5 l ’
0.0 -
4KB 16 KB

Rand-Read Throughput
(GB/s, 20 threads)

Figure 12: FIO performance comparison for Ext4 and LavaF8.

Therefore, its read and write paths do not require metadata lookup
and thus reduce average read and write latency. The better write
performance also stems from the asynchronous journal compaction
and fdatasync-based co-design.

3.4 Read Performance Optimizations

Our aim was to reduce the I/O cost for a Get query to 1, meaning
that the index and data blocks from SSTables, as well as the blob
index, should be accessible directly from the block cache. Thanks

3806

I Ext4 [LavaFS

1.0

400 16 200

200 0.8 100 0-5

0 — 0.0 - 0 0.0
Avg. Write P99 Write Avg. Get p99 Get
Lat. (us) Lat. (ms) Lat. (us) Lat. (ms)

B - Write C - Read

Figure 13: Write and read performance comparison
of LavaKV on different filesystems (B and C in Table 1).

to KV separation leading to reduced SSTable sizes and an efficient
compaction strategy, entire SSTables should easily fit into the block
cache. Nonetheless, the fully sorted index in LavaKV’s blob files
is too extensive and redundant, mirroring SSTable indexes and
proving useful only during GCs.

To integrate the blob index into the block cache efficiently, we
utilized a memory-efficient Crit-bit Tree (CBT) [39] index. The
CBT index, using just 2.3 bytes per key, incurs a negligible space
overhead of only 1.6%. according to our db_bench test. This is
significantly more efficient than the space overhead reported by
RocksDB for a similar-purpose Data Block Hash Index [54] (~4.6%),
making the CBT index only ~% of this size. It facilitates efficient
blob file lookups, enabling the quick retrieval of desired values.
As a result, caching only needs to accommodate the CBT index.
In contrast to RocksDB’s approach, which uses a 24-byte triplet,
LavaKV’s method employs only 11 bytes on average (including an
8-byte blob file number common to both RocksDB and LavaKV),
resulting in a better cache hit ratio and improved read performance.

In pursuit of optimizing block cache efficiency, we implemented
an innovative cache system known as the unified cache, which
operates atop any existing caches, including RocksDB’s built-in
clock and LRU caches. This system uniquely allocates a specific
segment for indexing blocks, enabling dynamic size adjustment

I Sorted Index EEE CBT Index BB CBT Index + Unified Cache

250 1.0 43‘

200 038 5

150 0-6 1 -
Avg. Get P99 Get # Disk I/0
Lat. (us) Lat. (ms) Per Get

Figure 14: Comparing Get performance using the CBT index
and unified cache (C in Table 1) with LavaKV (I/O size 4 KB).

between index block and data block caches to optimize storage. To
guarantee that each Get request results in no more than one disk
1/0, indexing blocks are given priority in caching due to their higher
importance. This prioritization is facilitated by the introduction
of the CBT index for blob files. The integration of the CBT index
alongside the unified cache system has led to a notable reduction in
both average and tail Get latencies by approximately 20% to 30%, as
well as a reduction in the average disk I/O for a Get operation from
4 to below 2, even in scenarios that favor RocksDB over LavaStore,
enhancing overall efficiency and performance in data retrieval (as
shown in Figure 14). It is noteworthy that this unified cache can
function independently of KV separation, although the performance
gains are not as pronounced as when used in conjunction with KV
separation and the CBT index.

4 PERFORMANCE EVALUATION

This section begins with a comparison of end-to-end I/O perfor-
mance between upstream RocksDB and LavaStore using two stan-
dard benchmarks, db_bench and SysBench, in Section 4.1. We then
assess the performance of LavaStore in our real-world production
environment, with ABase and Flink, in Section 4.2.

4.1 Standard Benchmarks

4.1.1 Hardware Environment.

We use machines with identical hardware configurations to eval-
uate the performance of RocksDB, Titan and LavaStore. Each test
machine features an Intel Xeon Silver 4314 CPU with 64 cores,
377 GB of DRAM, and 5 Intel SSDPF2KX038TZ NVMe SSDs, each
with a capacity of 3.84 TB. The test machines all run a 64-bit De-
bian 10 operating system with Linux kernel version 5.15.103. Both
db_bench and SysBench, which will be discussed in 4.1.2 and 4.1.3
respectively, use these same hardware equipment.

4.1.2 Performance Evaluation using db_bench.

Configurations. We employ db_bench, the benchmarking tool
commonly used for assessing the performance of RocksDB and its
derivatives, to evaluate and compare the performance of RocksDB
version 8.5.3 and Titan version 7.1 (the latest versions as of this
writing) with LavaStore. For all our tests, we utilize the original
benchmark. sh script from RocksDB version 8. 5. 3, as referenced in
the RocksDB Wiki [56]. Our evaluation compares the performance
about three types of operations: write operation, read operation,
and short/long-range scans.

We conduct tests across 5 distinct workloads based on the orig-
inal benchmark. sh script with default parameters, as detailed in

3807

Tables 1 and 2. It is worth noting that the USE_O_DIRECT flag is set
to enable direct I/O for read, flush, and compaction in RocksDB,
thereby avoiding the use of the system’s page cache, to ensure a
fair comparison with LavaStore, which operates in direct I/O mode.
This is because in our production environment, a larger block cache
is prioritized over the page cache. In all workloads except A, the
MB_WRITE_PER_SEC parameter is limited to 60 MB/s to restrict the
write rate and prevent write stalls, with a maximum running time
of 30 minutes. In Table 2, the SSTable cache is a SecondaryCache
in RocksDB and a block cache in Titan, storing SSTable blocks.
Conversely, in LavaStore, it stores both SSTable blocks and the blob
CBT indexes. The blob cache stores blocks of blob files in RocksDB
and Titan, whereas in LavaStore, it only stores the values of blobs.
Averages are based on twelve runs for RocksDB, and six runs for
Titan and LavaStore. RocksDB required more runs due to unstable
write performance, while the other two showed consistent results.

I RocksDB (BlobDB) 3 Titan I LavaStore
900 21 A —]
-] 400
Z 150 - 06 - 100
z 5
v 30 0.1 - 50 200
®]
0- — 0 - - —= 0 ===
Avg. Write p99. Write Avg. Get p99 Get
= Lat. (us) Lat. (ms) Lat. (us) Lat. (us)
<
K 1(])(5)8- 26 1 1.6 A= 3.0 w7
5] 0.6
2 307 0.1 0.8 1.5
@
a 0- — 0 - = 0.0 P 0.0 ==
Avg. Write p99. Write Avg. Iter. p99 Iter.
- Lat. (us) Lat. (ms) Lat. (ms) Lat. (ms)
g 1100 16 1 150 4 ——=mm| 200 =17
en 150 0.6 4
g 304 0.1 75 100
-
= 0- =0 - - = =
Avg. Write p99. Write Avg. Iter. p99 Iter.
Lat. (us) Lat. (ms) Lat. (ms) Lat. (ms)

Figure 15: Read / Scan while Writing Workloads Comparison
(Y-axes of the first two columns are log-scaled)

Performance Results. We have the following three observations:

(1) Write Performance: Similar to workload B, LavaStore out-
performs RocksDB and Titan in workloads C, D, and E.
LavaStore’s average and 99th percentile write latencies are
67% to 80% lower than Titan’s and several orders of magni-
tude lower than RocksDB’s. Note that RocksDB’s numbers
are averages from twelve runs, but actual values fluctuate
significantly, similar to Figure 5. The write performance
gain demonstrates that we have successfully achieved our
design goal of handling highly write-intensive workloads.
Read Performance of Lookups: In the given settings, all
data except for the values in blobs can be fully cached in
the SSTable cache. As a result, retrieving a value typically
requires only one disk read in a blob file. Consequently, the
average Get latencies for RocksDB, Titan, and LavaStore
are similar, with RocksDB being marginally faster. However,
LavaStore supports cache warming by proactively caching

@

Table 1: Summary of db_bench workloads.

Name benchmark.sh Workload | Description
A | Load bulkload 1 thread doing batched writes without syncing and WAL (fillrandom workload),
followed by manual compaction (compact workload) for fast preconditioning.
B | Write overwrite 16 threads doing random Put’s.
C | Read readwhilewriting 16 threads doing random Gets, while 1 thread doing random Puts.
D | Short Scan | fwdrangewhilewriting 16 threads doing random iterator Seeks, followed by 10 or 1000 iterator Nexts, while 1
E | Long Scan thread doing random Puts.

Table 2: RocksDB, Titan and LavaStore key parameters in
db_bench. Other parameters are kept default.

Table 3: Comparison of WriteOnly and ReadWrite on By-
teNDB using SysBench.

KVs during compactions, which results in a slightly better
99th percentile latency compared to Titan.

Read Performance of Range Scans: LavaStore performs com-
parably or even slightly better than RocksDB and Titan in
short-range scans but is less efficient in long-range scans,
as illustrated in the third row of Figure 15. This is because
our KV separation design, unlike RocksDB, decouples GC
and compaction to achieve higher write throughput. How-
ever, this leads to less frequent compactions (Titan is sim-
ilar), resulting in poorer locality for range queries com-
pared to RocksDB. We note, however, that cloud services
at ByteDance rarely rely on range queries, so this does not
adversely impact LavaStore’s performance in production.

4.1.3 Performance Evaluation using SysBench.

While db_bench can evaluate the I/O performance of single local
storage engines, it is also important to conduct a broader evaluation
of LavaStore in a cluster environment. Thus, we used SysBench [38]
to benchmark a ByteNDB cluster comprising 3 nodes, each equipped
with 5 NVMe SSD drives. These drives supported either 5 RocksDB
instances on Ext4 or 5 LavaStore instances. Our setup handled 6
datasets, each containing 250 tables with 25 million rows of 200
bytes each, as detailed in Section 4.1.1.

The SysBench test has two workloads: WriteOnly workload
employs the oltp_write_only script to write all 25 million rows
to all tables; and ReadWrite utilizes the oltp_read_write script to
both read and write to all rows in all tables. This setup allowed us to
showcase the performance gains achieved with LavaStore, including
the purpose-built LavaLog, comparing outcomes from persistent
volumes and ByteNDB clients across these distinct storage solutions
in a single, comprehensive paragraph.

Parameter Value WriteOnly ReadWrite
Key / Value Length 36 / 16,000 bytes RocksDB l LavaStore | RocksDB | LavaStore
Compression 50% ratio; ZSTD WritelLog (ms) 3.6 1.4 1.4 0.7
Total Operations 68,565,205 ReadPage (ms) N/A N/A 1.2 1.0
Total Raw KV Size 1 TB (500 GB compressed) DB Lat. (ms) 3.8 3.6 62.3 56.5
KV Separation Threshold 512 (min_blob_size) DB TPS (x1000) 200.5 212.5 12.3 13.6
Total Cache Size 1 GB (1:500 cache-to-total data size ratio) DB QPS (x1000) 1202.8 1275.3 246.6 271.6
SSTable Cache 800 MB, compressed, LRU E2E WAF 73 56 35.94 20.25

Blob Cache 224 MB, uncompressed, LRU

3808

Table 3 presents the performance metrics for two essential inter-
nal operations, WritelLog and ReadPage, comparing RocksDB and
LavaLog specifically in log-style workloads. Additionally, it includes
common end-to-end performance indicators such as throughput,
latency, and overall WAF for a comprehensive assessment.

The table reveals that, compared to RocksDB, LavaLog decreases
WritelLog latency by 61% in the WriteOnly workload and 48% in
the ReadWrite workload, showcasing LavaLog’s efficient design
that targets reducing write amplification from at least 2 to nearly
1. Additionally, the ReadPage operation witnesses a 16% reduction
in average latency during the ReadWrite test. This improvement
highlights LavaLog’s effective read path implementation, especially
when compared to reading SSTables in such specific workloads.

From a comprehensive end-to-end viewpoint, the overall aver-
age latency of combined operations sees a reduction of 6% in the
WriteOnly workload and 10% in the ReadWrite workload. Thus,
the database’s overall throughput, in terms of Transactions Per
Second (TPS) and QPS, experiences enhancements of 6% and 10%,
respectively. This more pronounced improvement in the ReadWrite
workload aligns with observations from similar db_bench work-
loads, such as C—E, indicating that LavaStore delivers superior write
performance, particularly under heavy read pressure. Furthermore,
the end-to-end WAF for ByteNDB shows a substantial decrease of
24% in WriteOnly and 44% in ReadWrite tests, further highlighting
the impact of our optimization efforts on write efficiency.

4.2 Production Performance Results

In Figure 16, LavaStore demonstrates marked enhancements for
Abase in production, which maintains ~100 GB to ~1 TB data
per instance on average, with a read:write ratio of 3.6:1 and an
average value size of ~1 to ~2 KB. The efficient KV separation of
LavaStore leads to an 87% increase in overall QPS for write (Set)
operations, nearly doubling the performance compared to RocksDB.

I RocksDB 3 LavaStore
< 8- 807
<
o | 0
5 16 1.0 -
O 8 0.5 1
0 - 0.0 -

QPS (x1000) P99 Latency (ms)

Figure 16: RocksDB v.s. LavaStore on ABase.

I RocksDB [LavaStore
w 80 2 —] 1.0
E 40 A 1+ 0.5
0 - 0 - 0.0 -
% 500 2 4 | 1.2 4
0 - .0

0 - 0.0 -
CPU (# Cores) Memory (TB) Data Size (TB)

Figure 17: RocksDB v.s. LavaStore on Flink.

Furthermore, tail write latency sees a 38% reduction, thanks to
synchronous write optimizations jointly engineered in LavaKV and
LavaFS. Regarding read (Get) performance, LavaStore achieves a
comparable QPS to RocksDB, with a slight 3% improvement. But
more importantly, the CBT index and the unified cache significantly
reduce tail read latency by 28%, underscoring the combined efficacy
of these technologies in supporting lookup-centric workloads.

Figure 17 compares LavaStore and RocksDB for a Flink online
joiner of an advertising service in production, which features a
multi-instance setup with ~6 GB data per instance and ~3000 in-
stances per server, with a read:write:delete ratio of 1:1:1 and an
average value size of ~70 KB. Compared with RocksDB, LavaStore
enjoys a 26% and 67% reduction in average and peak CPU usage,
respectively. This is primarily due to LavaStore’s more efficient KV
separation, which significantly reduces both the frequency and the
size of CPU-heavy compactions. While average memory usage of
LavaStore sees a minor increase of 1%, peak memory usage remains
unchanged. Furthermore, both average and peak data sizes are re-
duced by 15% using LavaStore, highlighting the effectiveness of our
optimized GC strategies in enhancing space efficiency.

5 DISCUSSIONS

5.1 Lessons Learned

Specializing vs. Generalization: While common configura-
tions like RocksDB suffice for many scenarios, specific cases high-
light performance issues, such as high write amplification and
significant tail latency. Databases that demand high write through-
put and immediate disk flush, while maintaining read performance
and capacity efficiency, benefit from specialized engines designed
for particular I/O streams. These tailored solutions address perfor-
mance challenges more effectively than a one-size-fits-all approach.

Building on Existing Foundations: Though crafting special-
ized software can offer performance gains, simplify the software

3809

stack, and enhance code quality, it introduces significant challenges.
These include the substantial effort required for development from
the ground up, as opposed to modifying existing systems. This
approach also bypasses the benefits derived from mature testing
frameworks, well-established benchmarks, and a plethora of utility
tools inherent in existing solutions, which are crucial for maintain-
ing high stability standards, especially for infrastructure software
like local storage engines where stability is often paramount.

Avoid Over-engineering: Efficient resolutions often emerge
from uncomplicated and nimble approaches. For example, although
KV separation effectively lowers write amplification during com-
paction, it inherently requires a balance between read performance
and space usage. Our experience has shown that rather than resort-
ing to intricate models, employing a straightforward strategy based
on disk usage to dynamically regulate GCs can adeptly manage this
balance, thereby enhancing overall performance.

Emphasizing Modular Design: Maintaining a comprehensive,
yet modular design is crucial. This approach facilitates adaptability
to emerging challenges. As priorities shifted from write throughput
and space utilization to optimizing for lookup tail latency, we were
compelled to reevaluate certain design and implementation aspects
of LavaKV’s KV separation strategy. Modularity is thus indispens-
able for facilitating such evolutionary development processes.

5.2 Future Directions

Evolving Local Storage Engine Optimization: Future enhance-
ments may involve categorizing query requests into point lookup
queries and range queries, each handled by distinct algorithms. This
differentiation allows for optimizing sequential chunks, thereby
improving write amplification and Total Cost of Ownership (TCO).

Refining LavaLog’s GC:. The current FIFO-based GC strategy
in LavaLog shows limitations with out-of-order Trim requests from
applications. We plan to develop and incorporate new GC strategies
that intelligently adapt to varying Trim patterns, moving beyond a
sole reliance on FIFO.

Adapting to New Storage Technologies: Data streams with a
sequential-intensive nature stand to benefit from append-optimized
filesystems and storage devices. A potential avenue for exploration
is the integration of append-friendly technologies like ZNS [7] SSDs,
explicitly designed to cater to log-style data streams.

Optimize Cross-layer GC:. Our efforts have aimed at unifying
GC processes at the KV and filesystem layers. However, considering
the SSD still operates its own GC, which may introduce additional
write amplification and impact performance and device lifespan,
future work will focus on enhancing coordination across all layers,
especially leveraging advancements in ZNS and SPDK technologies.

6 RELATED WORK

Significant research has aimed at improving write, read, and space
efficiencies in LSM-tree-based KV stores like RocksDB. Key studies
in [50, 71, 72] examine the trade-offs among these aspects, providing
a thorough overview of applicable techniques. Our discussion nar-
rows down to related work in the following four specific categories,
focusing on the optimization of LSM-tree-based systems.

Improving Write Performance. KV separation has emerged
as a prevalent technique for boosting write performance within
database systems. Initially introduced by WiscKey [48] and later
adopted by platforms such as [13, 21, 43, 55, 84], this approach has
been effective in reducing write amplification to some extent. De-
spite its effectiveness, these implementations fall short of achieving
the ultra-low levels of write amplification desired in some applica-
tions. This shortfall is largely due to the necessity of integrating
blob GCs with compactions, which leads to a compromise: either
the write amplification remains higher than ideal or there is an
increase in space amplification. Consequently, while KV separation
marks a significant advancement in minimizing write amplification,
the challenge of optimizing it alongside space efficiency persists,
highlighting the need for further innovations in this area. Various
alternative approaches focus on the improvement of compaction
methodologies, as explored in [18, 20, 23, 33, 52, 63, 78]. These
strategies often require a compromise between space or processing
time to boost write efficiency. Although such methods might not
reduce write amplification as significantly as KV separation does,
they serve as valuable adjuncts to KV separation. By integrating
these compaction strategies with KV separation techniques, it is
possible to achieve a more refined equilibrium among write speed,
read performance, and efficient use of storage space.

Improving Read Performance. In LSM architectures, where
queries may necessitate accessing multiple SSTables, filters like
[19, 22, 28, 44, 69, 75, 86] are frequently employed to limit the
SSTables accessed. These mechanisms generally exchange space,
memory, or CPU resources to diminish read amplification from
SSTable access for lookup queries. However, they fall short in al-
leviating the read costs associated with accessing blob files in KV
separated LSM trees. Other widely used techniques involve opti-
mizing block cache data structures to enhance data locality and
minimize resource contention caused by concurrency control mech-
anisms to improve upon or replace the commonly used LRU cache
[10, 25, 27, 32, 68, 79], which are orthogonal to our unified cache.
Additionally, specialized hash indexes and partitioning strategies
are employed for workloads with stringent performance demands
for lookup queries [2, 5, 16, 41, 47, 82]. We are also investigating
techniques that could improve range scan performance, areas where
LavaStore ties or even lags behind RocksDB. This includes explor-
ing technologies such as [37, 51, 58, 76, 80], which leverage filters
to boost short range query efficiency. Additionally, REMIX [85]
offers a redesigned index structure that presents a globally sorted
view of KV data across multiple table files, aiming to enhance the
efficiency of range queries. FenceKV [74] introduces a key-range
GC strategy to reduce GC overhead and ensure sequential access
for range queries in KV separated LSM trees. Despite the potential
of these advancements, they have not been the main focus of our
efforts due to their marginal applicability to the core workloads of
our direct users, who seldom require long range scans.

Handling Special Workloads. Local storage engines are faced
with a diverse range of unique workloads that require special-
ized management. For instance, several studies tackle the chal-
lenges posed by sequential, log-style workloads, including WAL in
RocksDB [14, 35, 36, 45, 46, 73]. However, these methods either in-
cur a WAF of at least 2 due to writes to WALs and SSTables, or they

3810

necessitate strictly sequential data. As a result, they either under-
perform or fail to fulfill the durability criteria of LavaLog. Others
examine Write-Once-Read-Many (WORM) workloads essential for
storage engines [1, 29, 30, 64]. Additionally, there are proposals
for data structures, algorithms, and implementations tailored to
multi-dimensional data like time series and spatial-temporal data,
which are crucial for analytic applications [49, 53, 60, 65]. Beyond
these specific workload types, [17, 18, 31, 40, 59, 83] are dedicated
to adjusting system parameters to optimize performance for a range
of changing and diverse workloads. These efforts are complemen-
tary to our own and could potentially be leveraged to broaden the
customer base of LavaStore.

Cross-layer Storage Stack Optimization. Cross-layer storage
stack optimization is essential for reducing redundant and uncoor-
dinated overheads, such as compaction and GC, thereby enhancing
disk efficiency and durability, as highlighted in a recent survey [24].
For instance, RStore [42] leverages modern storage technologies to
achieve low tail latency in multi-core KV stores. exF2FS [61] intro-
duces transaction support for log-structured filesystems, showing
notable performance and scalability improvements. ScaleStore [87]
offers a fast and cost-effective storage engine utilizing DRAM,
NVMe, and RDMA. Viper [4] combines a DRAM-based hash index
with a PMem-aware storage layout to capitalize on DRAM’s rapid
random-write speed and PMem’s efficient sequential-write capa-
bility. Research by [43] explores differentiated KV storage manage-
ment to balance I/O performance. SpanDB [14] employs high-speed
SSDs selectively, allowing data placement across different SSD tiers
based on TCO and SLA. [66] delves into LSM management within
computational storage environments. Our approach, tailored to
specific needs, shows that our append-friendly LavaFS improves
write performance in local storage engines.

7 CONCLUSION

This paper presents LavaStore, a high-performance cost-effective
local storage engine purpose-built for cloud services at ByteDance.
We demonstrate how to effectively handle a highly write-intensive
workload with stringent requirements on resource efficiency and
point lookup tail latency, by strategically customizing components
of a RocksDB-based general purpose local storage engine. Although
our implementation is based on RocksDB, the design techniques
employed by LavaStore could be generally applicable to other LSM-
tree-based persistent KV stores to handle workloads with similar
characteristics and requirements.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments. We are grateful to our shepherd for the extensive help in
revising the paper. The CBT index is implemented by Guoshun Ma
utilizing some components from the original version of TerarkDB.
We would like to thank all those who have contributed to the
design and development of LavaStore, in particular Changlong
Chen, Yunxiao Du, Kuankuan Guo, Peng Lei, Jianchuan Li, Yuanjin
Lin, Yangming Liu, Yu Miao, Chi Zhang and Maosen Zhang.

REFERENCES

(1]

A

=

8

=

[10]

==
o

[14]

[15]

[16]

[17]

[20]

[21

[22]

[23]

[24

[25

Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s talk about
storage & recovery methods for non-volatile memory database systems. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. 707-722.

Nikolas Askitis and Ranjan Sinha. 2007. HAT-trie: a cache-conscious trie-based
data structure for strings. In Proceedings of the thirtieth Australasian conference
on Computer science-Volume 62. Citeseer, 97-105.

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-
hakaran, Michael Wei, John D Davis, Sriram Rao, Tao Zou, and Aviad Zuck.
2013. Tango: Distributed data structures over a shared log. In Proceedings of the
twenty-fourth ACM symposium on operating systems principles. 325-340.
Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An efficient
hybrid PMem-DRAM key-value store. Proceedings of the VLDB Endowment 14, 9
(2021), 1544-1556.

Robert Binna, Eva Zangerle, Martin Pichl, Giinther Specht, and Viktor Leis.
2018. HOT: A height optimized trie index for main-memory database systems. In
Proceedings of the 2018 International Conference on Management of Data. 521-534.
Ken Birman. 2007. The promise, and limitations, of gossip protocols. ACM
SIGOPS Operating Systems Review 41, 5 (2007), 8-13.

Matias Bjerling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien
Le Moal, Gregory R Ganger, and George Amvrosiadis. 2021. ZNS: Avoiding
the block interface tax for flash-based SSDs. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 689-703.

Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Evenson. 2022. Kuber-
netes: up and running. O’Reilly Media, Inc.

ByteDance. 2019. TerarkDB. Retrieved January 18, 2024 from https://github.
com/bytedance/terarkdb

Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020. Characterizing,
modeling, and benchmarking RocksDB key-value workloads at Facebook. In
18th USENIX Conference on File and Storage Technologies (FAST 20). 209-223.
Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a
single engine. The Bulletin of the Technical Committee on Data Engineering 38, 4
(2015).

Josiah Carlson. 2013. Redis in action. Simon and Schuster.

Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li, Wenjia He, Patrick PC Lee,
Lianjie Zhu, Yaozu Dong, Yinlong Xu, Yu Xu, Jin Jiang, et al. 2018. HashKV:
Enabling Efficient Updates in KV Storage via Hashing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 1007-1019.

Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB:
A fast, cost-effective LSM-tree based KV store on hybrid storage. In 19th USENIX
Conference on File and Storage Technologies (FAST 21). 17-32.

Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui
Wei, Lixun Cao, Dan Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu,
Shangyu Luo, Jason Sun, and Yuming Liang. 2022. ByteHTAP: ByteDance’s
HTAP system with high data freshness and strong data consistency. Proc. VLDB
Endow. 15, 12 (aug 2022), 3411-3424. https://doi.org/10.14778/3554821.3554832
Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020. From WiscKey to
Bourbon: A Learned Index for Log-Structured Merge Trees. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 155-171.
Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
navigable key-value store. In Proceedings of the 2017 ACM International Conference
on Management of Data. 79-94.

Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superfluous merging. In
Proceedings of the 2018 International Conference on Management of Data. 505-520.
Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-
Tree. In Proceedings of the 2021 International Conference on Management of Data.
365-378.

Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov,
and Moshe Twitto. 2022. Spooky: granulating LSM-tree compactions correctly.
Proceedings of the VLDB Endowment 15, 11 (2022), 3071-3084.

Dgraph. 2019. BadgerDB. Retrieved January 18, 2024 from https://dgraph.io/
docs/badger/

Peter C Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than
Bloom and Xor. arXiv preprint arXiv:2103.02515 (2021).

Chen Ding, Ting Yao, Hong Jiang, Qiu Cui, Liu Tang, Yiwen Zhang, Jiguang Wan,
and Zhihu Tan. 2022. TriangleKV: Reducing write stalls and write amplification
in LSM-tree based KV stores with triangle container in NVM. IEEE Transactions
on Parallel and Distributed Systems 33, 12 (2022), 4339-4352.

Krijn Doekemeijer and Animesh Trivedi. 2022. Key-Value Stores on Flash Storage
Devices: A Survey. arXiv preprint arXiv:2205.07975 (2022).

Siying Dong, Andrew Kryczka, Yangin Jin, and Michael Stumm. 2021. Evolution
of Development Priorities in Key-value Stores Serving Large-scale Applications:

3811

&~
2,

[30

(31]

[36]

(37]

[42]

[43]

[44

[45]

[46]

[47]

[48

[49]

[50]

The RocksDB Experience. In 19th USENIX Conference on File and Storage Technolo-
gies (FAST 21). USENIX Association, 33-49. https://www.usenix.org/conference/
fast21/presentation/dong

Paul DuBois. 2013. MySQL. Addison-Wesley.

Gil Einziger, Roy Friedman, and Ben Manes. 2017. TinyLFU: A highly efficient
cache admission policy. ACM Transactions on Storage (ToS) 13, 4 (2017), 1-31.
Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo filter: Practically better than Bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
75-88.

Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gémez-Luna, and
Onur Mutlu. 2019. Processing-in-memory: A workload-driven perspective. IBM
Journal of Research and Development 63, 6 (2019), 3-1.

Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and
How to Exploit It: High-Performance I/O for High-Performance Storage Engines.
Proceedings of the VLDB Endowment 16, 9 (2023), 2090-2102.

Yichen Jia and Feng Chen. 2020. Kill two birds with one stone: Auto-tuning
RocksDB for high bandwidth and low latency. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 652-664.

Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache performance. ACM
SIGMETRICS Performance Evaluation Review 30, 1 (2002), 31-42.

Peiquan Jin, Jianchuan Li, and Hai Long. 2021. DLC: A New Compaction Scheme
for LSM-tree with High Stability and Low Latency.. In EDBT. 547-557.

The kernel development community. 2023. Journal (jbd2). Retrieved January 18,
2024 from https://www.kernel.org/doc/html/latest/filesystems/ext4/journal html
Jongbin Kim, Hyeongwon Jang, Seohui Son, Hyuck Han, Sooyong Kang, and
Hyungsoo Jung. 2019. Border-Collie: a wait-free, read-optimal algorithm for
database logging on multicore hardware. In Proceedings of the 2019 International
Conference on Management of Data. 723-740.

Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young-ri Choi, Alan
Sussman, and Beomseok Nam. 2022. ListDB: Union of Write-Ahead logs and
persistent SkipLists for incremental checkpointing on persistent memory. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22).161-177.

Eric R Knorr, Baptiste Lemaire, Andrew Lim, Sigiang Luo, Huanchen Zhang,
Stratos Idreos, and Michael Mitzenmacher. 2022. Proteus: A self-designing range
filter. In Proceedings of the 2022 International Conference on Management of Data.
1670-1684.

Alexey Kopytov. 2012. SysBench manual. MySQL AB (2012), 2-3.

Adam Langley. 2008. Crit-bit Trees. Retrieved January 18, 2024 from https:
//www.imperialviolet.org/binary/critbit.pdf

Jieun Lee, Sangmin Seo, Jonghwan Choi, and Sanghyun Park. 2024. K2vTune: A
workload-aware configuration tuning for RocksDB. Information Processing &
Management 61, 1 (2024), 103567.

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38-49.

Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. En-
abling low tail latency on multicore key-value stores. Proceedings of the VLDB
Endowment 13, 7 (2020), 1091-1104.

Yongkun Li, Zhen Liu, Patrick PC Lee, Jiayu Wu, Yinlong Xu, Yi Wu, Liu Tang,
Qi Liu, and Qiu Cui. 2021. Differentiated Key-Value Storage Management for
Balanced I/O Performance. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). 673-687.

Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. 2019. ElasticBF:
Elastic Bloom Filter with Hotness Awareness for Boosting Read Performance in
Large Key-Value Stores. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). 739-752.

Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 2016. Towards
Accurate and Fast Evaluation of Multi-Stage Log-structured Designs. In 14th
USENIX Conference on File and Storage Technologies (FAST 16). 149-166.
LogDevice. 2023. LogDB. Retrieved January 18, 2024 from https://logdevice.io/
docs/LogsDB.html

Kai Lu, Nannan Zhao, Jiguang Wan, Changhong Fei, Wei Zhao, and Tongliang
Deng. 2021. TridentKV: A read-Optimized LSM-tree based KV store via adaptive
indexing and space-efficient partitioning. IEEE Transactions on Parallel and
Distributed Systems 33, 8 (2021), 1953-1966.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. WiscKey: Sepa-
rating keys from values in SSD-conscious storage. ACM Transactions on Storage
(TOS) 13, 1 (2017), 1-28.

Ziyi Lu, Qiang Cao, Hong Jiang, Shucheng Wang, and Yuanyuan Dong. 2022.
p?KVS: a portable 2-dimensional parallelizing framework to improve scalability
of key-value stores on SSDs. In Proceedings of the Seventeenth European Conference
on Computer Systems. 575-591.

Chen Luo and Michael] Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (2020), 393-418.

https://github.com/bytedance/terarkdb
https://github.com/bytedance/terarkdb
https://doi.org/10.14778/3554821.3554832
https://dgraph.io/docs/badger/
https://dgraph.io/docs/badger/
https://www.usenix.org/conference/fast21/presentation/dong
https://www.usenix.org/conference/fast21/presentation/dong
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.html
https://www.imperialviolet.org/binary/critbit.pdf
https://www.imperialviolet.org/binary/critbit.pdf
https://logdevice.io/docs/LogsDB.html
https://logdevice.io/docs/LogsDB.html

[51

[52

[53

[54]

o
S

[56

[57]

[58

[59]

[60]

[61]

[62

[63]

[64

o
)

[66]

[67

[68]

[69]

[70

Sigiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and
Stratos Idreos. 2020. Rosetta: A robust space-time optimized range filter for key-
value stores. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 2071-2086.

Qizhong Mao, Steven Jacobs, Waleed Amjad, Vagelis Hristidis, Vassilis] Tsotras,
and Neal E Young. 2021. Comparison and evaluation of state-of-the-art LSM
merge policies. The VLDB Journal 30 (2021), 361-378.

Qizhong Mao, Mohiuddin Abdul Qader, and Vagelis Hristidis. 2023. Comparison
of LSM indexing techniques for storing spatial data. Journal of Big Data 10, 1
(2023), 51.

Meta. 2018. RocksDB Wiki: Data Block Hash Index. Retrieved January 18, 2024
from https://github.com/facebook/rocksdb/wiki/Data-Block-Hash-Index

Meta. 2022. RocksDB Wiki: BlobDB. Retrieved January 18, 2024 from https:
//github.com/facebook/rocksdb/wiki/BlobDB

Meta. 2022. RocksDB Wiki: Performance Benchmarks. Retrieved January 18,
2024 from https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-
Wesley New York.

Bernhard Mof8ner, Christian Riegger, Arthur Bernhardt, and Ilia Petrov. 2022.
bloomRF: On performing range-queries in Bloom-Filters with piecewise-
monotone hash functions and prefix hashing. arXiv preprint arXiv:2207.04789
(2022).

Ju Hyoung Mun, Zichen Zhu, Aneesh Raman, and Manos Athanassoulis. 2022.
LSM-Tree Under (Memory) Pressure. In Proceedings of the International Workshop
on Accelerating Data Management Systems Using Modern Processor and Storage
Architectures (ADMS).

Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimanyi. 2017. Time
series databases and InfluxDB. Studienarbeit, Université Libre de Bruxelles 12
(2017), 1-44.

Joontaek Oh, Sion Ji, Yongjin Kim, and Youjip Won. 2022. exF2FS: Transaction
Support in Log-Structured Filesystem. In 20th USENIX Conference on File and
Storage Technologies (FAST 22). 345-362.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351-385.
Fengfeng Pan, Yinliang Yue, and Jin Xiong. 2017. dCompaction: Delayed com-
paction for the LSM-tree. International Journal of Parallel Programming 45 (2017),
1310-1325.

Satadru Pan, Theano Stavrinos, Yungiao Zhang, Atul Sikaria, Pavel Zakharov,
Abhinav Sharma, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei
Cao, et al. 2021. Facebook’s tectonic filesystem: Efficiency from exascale. In 19th
USENIX Conference on File and Storage Technologies (FAST 21). 217-231.

Gotze Philipp, Baumann Stephan, and Sattler Kai-Uwe. 2018. An NVM-aware
storage layout for analytical workloads. In 2018 IEEE 34th International Conference
on Data Engineering Workshops (ICDEW). IEEE, 110-115.

Ivan Luiz Picoli, Philippe Bonnet, and Pinar Tézitin. 2019. LSM management on
computational storage. In Proceedings of the 15th International Workshop on Data
Management on New Hardware. 1-3.

PingCAP. 2023. Titan. Retrieved January 18, 2024 from https://github.com/tikv/
titan

Aleksandar Prokopec. 2018. Cache-tries: concurrent lock-free hash tries with
constant-time operations. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 137-151.

Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A space-
efficient key-value storage engine for semi-sorted data. Proceedings of the VLDB
Endowment 10, 13 (2017), 2037-2048.

Kenneth Salem and Hector Garcia-Molina. 1989. Checkpointing memory-resident
databases. In ICDE. 452-462.

3812

(71

[72

(73]

[76

(7]

[78

[79

(81

(82

[83

&
=)

(85

[86

[87

Subhadeep Sarkar and Manos Athanassoulis. 2022. Dissecting, designing, and
optimizing LSM-based data stores. In Proceedings of the 2022 International Con-
ference on Management of Data. 2489-2497.

Subhadeep Sarkar, Niv Dayan, and Manos Athanassoulis. 2023. The LSM design
space and its read optimizations. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 3578-3584.

Hemant Saxena, Lukasz Golab, Stratos Idreos, and Thab F Ilyas. 2023. Real-time
LSM-trees for HTAP workloads. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 1208-1220.

Chenlei Tang, Jiguang Wan, and Changsheng Xie. 2022. FenceKV: Enabling
efficient range query for key-value separation. IEEE Transactions on Parallel and
Distributed Systems 33, 12 (2022), 3375-3386.

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. 2011. Theory
and practice of bloom filters for distributed systems. IEEE Communications
Surveys & Tutorials 14, 1 (2011), 131-155.

Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos
Idreos, and Tim Kraska. 2022. SNARF: a learning-enhanced range filter. Proceed-
ings of the VLDB Endowment 15, 8 (2022), 1632-1644.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. 2013. A%ache Hadoop YARN: Yet another resource negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing. 1-16.

Xiaoliang Wang, Peiquan Jin, Bei Hua, Hai Long, and Wei Huang. 2022. Reducing
write amplification of LSM-tree with block-grained compaction. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 3119-3131.
Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi Vinayak. 2023.
FIFO queues are all you need for cache eviction. In Proceedings of the 29th
Symposium on Operating Systems Principles. 130-149.

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical range
query filtering with fast succinct tries. In Proceedings of the 2018 International
Conference on Management of Data. 323-336.

Jianshun Zhang, Fang Wang, Sheng Qiu, Yi Wang, Jiaxin Ou, Junxun Huang,
Baoquan Li, Peng Fang, and Dan Feng. 2024. Scavenger: Better Space-Time
Trade-Offs for Key-Value Separated LSM-trees. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). IEEE, 4072-4085.

Qiang Zhang, Yongkun Li, Patrick PC Lee, Yinlong Xu, Qiu Cui, and Liu Tang.
2020. UniKV: Toward high-performance and scalable KV storage in mixed
workloads via unified indexing. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 313-324.

Chenxingyu Zhao, Tapan Chugh, Jaechong Min, Ming Liu, and Arvind Krishna-
murthy. 2022. Dremel: Adaptive Configuration Tuning of RocksDB KV-Store.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 2
(2022), 1-30.

Zhiquan Zheng. 2019. Titan: A RocksDB Plugin to Reduce Write Amplification.
Retrieved January 18, 2024 from https://www.pingcap.com/blog/titan-storage-
engine-design-and-implementation

Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX: Efficient
Range Query for LSM-trees. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). 51-64.

Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021.
Reducing Bloom filter CPU overhead in LSM-trees on modern storage devices.
In Proceedings of the 17th International Workshop on Data Management on New
Hardware. 1-10.

Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A fast and
cost-efficient storage engine using DRAM, NVMe, and RDMA. In Proceedings of
the 2022 International Conference on Management of Data. 685-699.

https://github.com/facebook/rocksdb/wiki/Data-Block-Hash-Index
https://github.com/facebook/rocksdb/wiki/BlobDB
https://github.com/facebook/rocksdb/wiki/BlobDB
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/tikv/titan
https://github.com/tikv/titan
https://www.pingcap.com/blog/titan-storage-engine-design-and-implementation
https://www.pingcap.com/blog/titan-storage-engine-design-and-implementation

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Local Storage Engine Usage at ByteDance
	2.2 Problems with Existing Systems

	3 LavaStore Design
	3.1 System Architecture
	3.2 Optimizing Write Performance
	3.3 Cost-Effectiveness Improvements
	3.4 Read Performance Optimizations

	4 Performance Evaluation
	4.1 Standard Benchmarks
	4.2 Production Performance Results

	5 Discussions
	5.1 Lessons Learned
	5.2 Future Directions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

