
GaussDB: A Cloud-Native Multi-Primary Database with
Compute-Memory-Storage Disaggregation

Guoliang Li
Tsinghua University

liguoliang@tsinghua.edu.cn

Wengang Tian
Huawei Company

tianwengang@huawei.com

Jinyu Zhang
Huawei Company

zhangjinyu.zhang@huawei.com

Ronen Grosman
Huawei Company

ronen.grosman@huawei.com

Zongchao Liu
Huawei Company

liuzongchao@huawei.com

Sihao Li
Huawei Company

sean.lisihao@huawei.com

ABSTRACT
Cloud-native databases have been widely deployed due to high
elasticity, high availability and low cost. However, most existing
cloud-native databases do not support multiple writers and thus
have limitations on write throughput and scalability. To alleviate
this limitation, there is a need for multi-primary databases which
provide high write throughput and high scalability.

In this paper, we present a cloud-native multi-primary database,
GaussDB, which adopts a three layer (compute-memory-storage)
disaggregation framework, where the compute layer is in charge of
transaction processing, the memory layer is responsible for global
buffer management and global lock management, and the storage
layer is used for page and log persistence. To provide multi-primary
capabilities, GaussDB logically partitions the pages to different com-
pute nodes and then assigns the ownership of each page to a com-
pute node. For each transaction posed to a compute node, if the
compute node owns all relevant pages of this query, the compute
node can process the query locally; otherwise, GaussDB transfers
the ownership of relevant pages to this node. To capture data affinity
and reduce page transmission costs, GaussDB designs a novel page
placement and query routing method. To improve recovery perfor-
mance, GaussDB employs a two-tier (memory-storage) checkpoint
recovery method which uses memory checkpoints combined with
on-demand page recovery to significantly improve recovery per-
formance. We have implemented and deployed GaussDB internally
at Huawei and with customers, and the results show that GaussDB
achieves higher throughput, lower latency, and faster recovery than
state-of-the-art baselines.

PVLDB Reference Format:
Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen Grosman, Zongchao Liu,
and Sihao Li. GaussDB: A Cloud-Native Multi-Primary Database with
Compute-Memory-Storage Disaggregation. PVLDB, 17(12): 3786 - 3798,
2024.
doi:10.14778/3685800.3685806

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685806

1 INTRODUCTION
Cloud-native databases have attracted significant attention from
both industry and academia due to their high elasticity, high avail-
ability, and low cost. Many cloud databases have been launched,
e.g. Amazon Aurora [29], Google AlloyDB [12], Microsoft Azure
SQL Database [2, 22], Huawei Taurus [9], and Alibaba PolarDB [5].
Many customers have moved their on-premise databases to cloud
databases [1–5, 8, 9, 12, 14, 14, 15, 17–21, 23, 23, 26, 27, 29, 32, 34–
36, 36–38].

Most existing cloud-native databases adopt a primary-standby
architecture where only the primary node supports writes and all
other standby nodes can only perform reads (i.e., single writer,
multiple readers). Obviously, this primary-standby architecture
has limitations on write throughput, scale-out and scale-in, and
continuous availability. Thus, there is a need for multi-primary
(a.k.a. multi-writer) databases, where each node can write and read,
thus providing high write scalability and enhanced availability.
Although Aurora [30], Taurus [10] and PolarDB[31] offer the multi-
primary capabilities, they have some limitations. Aurora [30] uses
the logs and optimistic concurrency control to detect write conflicts,
and thus has high abort rates and lower performance. Taurus [10]
adopts pessimistic concurrency control for cache coherence, but it
suffers from high concurrency control overhead. PolarDB [31] uses
a stateful memory layer for transaction/buffer/lock fusion where
each compute node interacts with the memory layer for transaction
processing, but it is inefficient to recover the memory layer.

Generally, there are two classes of multi-primary architectures,
shared-nothing architecture and shared-storage architecture. The
former physically partitions the data into different shards (e.g. hash,
range, list partitions), and it uses two-phase locking to support
single shard transactions and two-phase commit to support cross-
shard transactions. The example systems include Spanner [6, 11, 33],
CockroachDB [28], and TiDB [13]. These systems involve two-
phase commit that may lead to low performance and high latency
for cross-shard transactions. Moreover, they require specifying the
sharding keys (i.e. partition columns and functions) to partition
the data into different nodes, but it is difficult to find appropri-
ate sharding keys especially for complex workloads (e.g. ERP or
CRM), and those sharding keys may only be optimal for a subset of
queries. On the other hand, shared-storage architectures logically
partition pages onto different writers, relying on conflict detection
and cache coherence mechanisms. The example systems include
Oracle RAC [25] and IBM Db2 PureScale [24]. They do not disaggre-
gate compute-memory-storage, and have limitations on scale-out

3786

https://doi.org/10.14778/3685800.3685806
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685806


and scale-in abilities [10]. We adopt the shared-storage architecture
and extend it to build a cloud-native multi-primary database.

The big challenge for multi-primaryarchitectures is high perfor-
mance transaction management from multiple nodes (detecting the
transaction conflicts, guaranteeing consistency, and achieving fast
failure recovery). To address this challenge, we propose a three layer
(compute-memory-storage) disaggregation system GaussDB with
efficient and elastic multiple writer capabilities, as shown in Fig-
ure 1. Three-layer disaggregation can make GaussDB more elastic
by independently scaling compute, memory and storage resources.
GaussDB logically partitions the pages into different compute nodes,
and each compute node owns a subset of pages. The compute layer
is in charge of SQL optimization and execution, transaction man-
agement, and recovery. For each transaction issued to a compute
node, if all the relevant pages of this transaction are owned by this
compute node, then the compute node can directly process the
transaction; otherwise, the compute node obtains the ownership of
all relevant pages and then processes the transaction. To capture
data affinity and reduce page transmission costs, GaussDB designs
an effective page placement and query routing method. The mem-
ory layer is in charge of page ownership management (maintaining
a page ownership directory, i.e. the ownership of each page), global
buffer management (i.e. warm pages that cannot be maintained
in compute nodes), and global lock management (e.g. the holding
and waiting on global locks). The memory layer is stateless and
can be rebuilt from the compute node state. Most importantly, the
memory layer allows near instant compute elasticity by separating
compute growth and page ownership growth. The storage layer is
responsible for page persistence, log persistence, and failure recov-
ery. GaussDB utilizes two-tier failure recovery over both memory
and storage checkpoints. If a compute node is down, GaussDB first
uses a memory checkpoint to recover the node; if the memory layer
fails, then GaussDB uses a storage checkpoint. Each compute node
has a log stream and GaussDB only utilizes the logs of the failed
compute node and does not need to access the logs of other nodes. If
multiple nodes fail, GaussDB employs an efficient parallel recovery
method to simultaneously recover different nodes.

In summary, GaussDB has several advantages. First, GaussDB
achieves higher transaction throughput and lower latency with
much fewer aborts compared to storage-layer log transaction con-
flict detection. Second, GaussDB achieves much faster recovery.
Third, GaussDB has better scale-out and scale-in ability.

To summarize, we make the following contributions.
(1) We propose a cloud-native multi-primary database system,

GaussDB, which uses a three layer (compute-memory-storage) dis-
aggregation framework to support multiple writers.

(2) We devise a two-tier (memory checkpoint and storage check-
point) recovery algorithm for fast recovery.

(3) We design a smart page placement method that judiciously
assigns pages to different compute nodes and smartly routes queries
to appropriate compute nodes in order to capture data affinity.

(4) We have deployed GaussDB internally at Huawei and with
customers. The results show that GaussDB achieves higher perfor-
mance and faster recovery, outperforming state-of-the-art baselines.

Figure 1: GaussDB Architecture

2 GAUSSDB ARCHITECTURE
GaussDB has three disaggregated layers: compute, memory and
storage as shown in Figure 1. The compute layer logically and dy-
namically assigns page ownership to different compute nodes, and
each compute node manages the pages assigned to the node; the
memory layer provides global shared memory, and holds page own-
ership meta data; and the storage layer provides a globally shared
storage. Compute nodes are in charge of SQL optimization, execu-
tion, and transaction processing. For each transaction on a compute
node, the compute node gets the ownership of all the related pages
and processes them on this node. Memory nodes provide unified
shared memory which maintains global page ownership (i.e. which
compute node owns which page), global buffers (i.e. data and index
pages), global locks, and memory checkpoints. GaussDB can use
memory checkpoints to accelerate failure recovery. Storage nodes
are responsible for page and log persistence via a POSIX interface
with the shared-storage file system. Storage nodes maintain storage
checkpoints, which are used for failure recovery. The difference
between a memory checkpoint and a storage checkpoint is that
the former uses the pages in the shared memory and the memory
checkpoint to recover while the latter uses the pages in storage
nodes and the storage checkpoint to recover. Obviously, the for-
mer has faster recovery performance. If memory recovery fails,
GaussDB uses storage checkpoints to continuously recover. Next
we introduce the GaussDB modules as shown in Figure 2.
Compute Layer. Compute nodes are in charge of transaction pro-
cessing. To support multiple writers, each compute node canmodify
any page once it acquires the page ownership. As with standard
write-ahead logging it writes its changes to a redo log stream. To
avoid page conflicts, each compute node manages a subset of pages,
that is, each page has an owner node, and only the owner node has
write privileges for this page. If a non-owner node wants to access
a page, the node must get the write/read privilege from the owner
node of this page. Thus, the compute node has a local buffer
manager for maintaining the pages it owns in its local buffer pool
and a local lock manager for access control to these pages. Given
a transaction posed to a compute node, if the node owns all the rele-
vant pages for this transaction (i.e. they all reside in its local buffer),
GaussDB directly processes the transaction using its local buffers
and local locks; if the node does not own all the pages, the compute
node needs to find the pages (via the page ownership directory at
the memory layer) and acquire ownership of these pages.

For recovery, the compute node has a write-ahead log manager
and a undo segment manager for atomicity and durability. Note

3787



Figure 2: GaussDBModules

that each compute node has an individual redo log stream while the
undo segments are shared by all compute nodes. The redo logs are
individually owned by each node for performance reasons. If the
redo logs were shared, it would be prohibitively expensive to syn-
chronize access across compute nodes, and node recovery would
need to filter a significant amount of irrelevant logs. Hence individ-
ual redo logs were chosen. The undo segments are shared, but each
transaction is assigned an individual undo segment for write dur-
ing a transaction. This way an undo segment has only one writer,
but any transaction can read and reconstruct any MVCC version
by reading the appropriate shared undo segment pages. GaussDB
uses an undo segment to maintain all the undo versions in the stor-
age layer. The compute node has a two-tier recovery manager
which includes a memory checkpoint manager for recovery from
memory nodes and a storage checkpoint manager for recov-
ery from storage nodes. We will discuss transaction processing in
Section 3 and recovery in Section 4.

Pages have data affinity, i.e. some pages will be co-accessed
by a transaction and some pages will not. It is inefficient to ran-
domly assign an owner node for each page. Thus, the pages that are
frequently co-accessed should have the same owner node. Smart
query routing manager is used for routing the queries to appro-
priate nodes that own most of the pages of a query. The routing
method is deployed at the JDBC/ODBC layer and updated at com-
pute nodes. We will discuss the details in Section 5.
Memory Layer. The memory layer is stateless and can be fully
reconstructed from compute node state, and hence does not re-
quire log based recovery. It has the following functionality. First,
it maintains page ownership information. To find the ownership
of a page, GaussDB uses a page owner directory (POD) to maintain
the owner node of each page. It is expensive to maintain the POD
of all pages because there could be a huge number of pages. To
address this issue, POD only maintains the owner node for pages
that are already loaded into memory. If a page is not in memory,

then when a node accesses the page, GaussDB will load the page
from storage and assign the page ownership to this node. The POD
is maintained in the shared-memory layer. As there could be a large
number of pages and the POD could be large, to avoid single-node
bottlenecks and failures, GaussDB distributes the POD to all active
memory nodes by using a consistent hashing strategy which par-
titions the POD over multiple nodes. Each local POD maintains a
subset of page owners. There are several issues in maintaining the
POD, including POD update and POD recovery. We will discuss
POD update in Section 5 and POD recovery in Section 4.

Second, the memory layer is also used for global object/table
lock management. Note that global page locking is maintained in
the POD. To efficiently check whether a node can access a shared
object GaussDB uses the lock manger to maintain lock information.
If a node wants to lock an object it can acquire the lock at the global
lock manager. As the global lock hash table could be large, GaussDB
also uses a consistent hashing scheme to implement the global lock
table. We will discuss lock recovery in Section 4. Note that when a
transaction updates a tuple, it needs to first lock the page via the
POD and then lock the tuple via the on page tuple lock. Then if the
transaction updates the page, the compute node can release the page
lock but still reserve the tuple lock until the transaction commits.
In this way, other transactions can lock the page to update other
tuples in this page that are not locked. Transactions wait on locked
tuples using the lock manager to wait on the locking transaction id.

Third, the memory layer is also responsible for warm page
caching.When the buffer pool of a compute node is full, GaussDB se-
lects a page from the compute node for replacement to the memory
layer. To accelerate performance, GaussDB can remove clean pages
(the unmodified pages in memory which are the same as those in
the storage nodes) into the memory layer. When a compute node
accesses this page, GaussDB can directly return the page from the
memory layer without loading from the storage layer. Note that
GaussDB will not remove dirty pages to the memory layer because

3788



the memory layer is stateless and if the memory layer fails, the
updates on the dirty pages will be lost. If the compute node has to
select a dirty page to replace, GaussDB will first flush the page to
the storage layer and then put the page in the memory layer for
performance acceleration.

Fourth, the memory layer is responsible for memory elasticity.
The shared buffer pool in the memory layer is shared by different
compute nodes. In other words, the memory buffer pool is used
on-demand by different compute nodes. If the memory buffer pool
is full, GaussDB can on-the-fly expand the memory buffer pool.

Fifth, the memory layer can accelerate failure recovery. GaussDB
flushes dirty pages into the memory layer and records a memory
checkpoint. For a compute node failure, GaussDB uses memory
checkpoints to recover. We will discuss the details in Section 4.
Storage Layer. The storage layer is used for page and log per-
sistence. GaussDB maintains an individual redo log stream and a
storage checkpoint for each compute node which are used for redo.
GaussDB maintains a shared undo segment to maintain all the old
versions of MVCC updates. Note that GaussDB partitions undo seg-
ments into fine-grained blocks. Each transaction applies for a block
via the global lock manger and maintains the old versions in this
block. When the transaction completes, it releases the lock and
the block can be repeatedly used by other transactions. In our cur-
rent design, we persist the pages to the storage layer because the
network between the compute layer and storage layer is not a bot-
tleneck. If the network is a bottleneck, we can write only the logs to
the storage layer and replay the pages from the redo logs. However,
this log-is-data idea requires additional compute resources in the
storage layer to replay the pages.
Deployment. The storage layer is implemented by a block-based
shared storage filesystem with a file interface. The compute layer
is provided by the compute cloud. The memory layer can be pro-
vided individually or hybrid deployed with the compute layer. For
example, if each node has 512GB memory, then we can deploy a
compute node with 256GB local memory and the other 256GB can
be organized as a shared memory block. Different layers can com-
municate with each other through TCP or RDMA. We use RDMA
in our evaluation. We do not use local SSDs.
Lamport Clock. In distributed environments, the clocks of differ-
ent nodes may not be well aligned. To address this issue, we use
a page-level transfer based Lamport clock to synchronize the log
sequence number (LSN) and a global lamport clock for the commit
sequence number (CSN). GaussDB uses a background thread to syn-
chronize the Lamport CSNs, and the compute nodes obtain CSNs
from the background thread.

3 GAUSSDB TRANSACTION PROCESSING
In this section, we present how to support transaction processing
as shown in Figure 3. Given a transaction routed to a compute
node, GaussDB first gets the ownership of all relevant pages for
this transaction, uses two-phase locking to lock the corresponding
tuples, and then executes the transactions on this node1. Note that
each page can be distributed into three types of nodes: (1) a compute
node (the owner of the page); (2) a memory node (the owner of
the page); or (3) the storage node (the page has no owner yet).

1Note that there are different levels of locks, e.g., spinlock, latch, and lock. For ease of
presentation, we do not distinguish them if there is no ambiguity.

In compute nodes and memory nodes, for each page in the node,
GaussDB uses a flag to denote (1) the page is owned by the node; (2)
the page is a read-only cached page for accelerating read; or (3) the
page is a past image (e.g., the page owner is transferred to another
compute node and the node records the page content before the
transferring, which will be discussed later for accelerating recovery
in Section 4). To find a page, GaussDB first finds the page in the
local buffer pool of the compute node. If not in the local buffer pool,
GaussDB uses the page ownership directory (POD) to find the page
as the POD keeps page owner information.
POD Structure. The POD maintains a mapping from a page ID to
its owner node ID as well as the lock information of this page (e.g.,
which node locks this page and which pages wait for the lock). As
the POD may be rather large, we use a consistent hashing scheme
to implement a distributed POD in the memory layer. For example,
(𝑃0 : 𝑁0,𝑇1,𝑊 ) in Figure 3 denotes that the owner of page P0 is
N0, and P0 is write-locked by transaction T1.
Global Lock Structure. The global lock structure maintains a
mapping from an object (e.g., table lock) to its current locking node,
locking transaction, and locking privileges (read or write), and also
a waiting lock queue of waiting transactions on this object.

Next, we discuss how to process a page based on different cases
– (1) read or write and (2) whether the node is the page owner.
(1) PageWrite. The transaction wants to write this page. The node
checks the local buffer pool to verify whether the node is the page
owner.
(1.1) The Node is Page Owner. If the page is in the local buffer
pool and the node is the page owner (using a flag to denote whether
this node is the page owner), the node gets the write lock from the
local lock manager and writes the page on this node. For example,
transaction T1 in node N0 can write page P0 with a local lock.
(1.2) The Node is Not Page Owner. The page is not in the local
buffer pool, or the page is in the local buffer pool but the node is
not the owner (based on the flag to denote the owner, in which case
the page is a read-only cached page or a past image). The node uses
the consistent hashing function to get the corresponding POD from
the memory node. Based on the POD, it checks whether the page
already has an entry in the POD. If yes, the node can obtain the
page ownership from either the memory node, or another compute
node; if no, then the page is in the storage node.
(1.2.1) Page Owner is a Memory Node. The page owner is a
memory node. The compute node gets the ownership of the page
from the memory node (via the POD) and moves the page from the
memory node to its local buffer pool. It then sets itself as the page
owner in the POD. If the node cannot get ownership, i.e. the page
is locked by another node, then the compute node needs to wait
for page access privileges in the POD. For example, transaction T2
in node N0 cannot directly write page P13 and has to get the lock.
(1.2.2) Page Owner is Some Other Compute Node. The page
owner is some other compute node. The compute node gets the
ownership of the page from the corresponding compute node (via
the POD) and moves the page from the other compute node to its
local buffer pool. Note that it also sets itself as the page owner in
the POD. Similarly, if the node cannot get the lock, it needs to wait
on the POD. For example, transaction T3 in node N0 cannot directly
write page P9 and has to get the ownership of P9 from N1.

3789



Figure 3: GaussDB Page Owner Directory and Transaction Processing

(1.2.3) There is No Page Owner. This page is in the storage layer
and has no owner node yet. The compute node loads the page from
the storage layer to its local buffer pool and then processes the page
similar to case (1.1). It also sets itself as the page owner by adding
a (page, this node) entry to the POD. For example, transaction T4
in node N0 cannot directly write page P16 and has to load the page
from the storage layer.
(2) Page Read. The transaction wants to read a page. The node
checks the local buffer pool to verify whether the node is the page
owner.
(2.1) Node is Page Owner. If the page is in the local buffer pool
and the node is the page owner (using a flag to denote this), the
node gets the read lock and reads the page. For example, transaction
T5 in N1 can read page P2 as N1 is the owner of P2.
(2.2) Node is Not Page Owner. The page is in the local buffer pool
but the node is not the page owner. If the node is read authorized
(i.e. the node is granted a read privilege, see below about read
authorization), the node can also safely read the page. If the node
is not read authorized, or the page is not in the local buffer pool,
the node must read the page from the corresponding owner node.
The node gets the POD from the memory node. Based on the POD,
it checks whether the page is in the POD. If yes, the node can get
the page ownership for this page, from either a memory node or
another compute node; if no, the page is in the storage node. For
example, transaction T6 in node N1 can directly read page P3 as it
has a read authorization.
(2.2.1) Page Owner is a Memory Node. The page owner is a
memory node. The node copies the page from the memory node
to its local buffer pool. Note that in this case, the owner of this
page will not be changed. The node is only read authorized, and the
page owner needs to keep track of which node is granted with read
authorization because when the page is updated, the owner needs
to invalidate all read authorizations. If the node cannot get read
authorization (i.e. locked by another node for a write operation),

the node has to wait on the POD. For example, transaction T7 in
node N2 can read page P14 from the memory layer.
(2.2.2) Page Owner is Some Other Compute Node. The page
owner is some other compute node. The node copies the page from
the corresponding compute node to its local buffer pool. Similar
to case (2.2.1), the page owner will not be changed and the node is
only read authorized. The node has to wait if it cannot get the read
lock. For example, transaction T8 in N2 can read P2 from N1.
(2.2.3) There is No Page Owner. This page is in the storage layer
and has no owner node yet. The node loads the page from the
storage layer to its local buffer pool and gets the ownership of this
page. GaussDB adds a (page, this node) entry to the POD to set page
ownership. For example, T9 in N2 reads P15 from the storage layer.
Read Authorization. To improve the performance for read-heavy
and write-light pages, we can grant read authorization for non-page
owner nodes that frequently read a page. In this way, when a node
reads a page in its local buffer pool, if the page is not invalidated,
the node can safely read the page. When the owner node updates
this page, it will invalidate all the read authorizations.
Two-Phase Locking. When processing a transaction, GaussDB
gets the page access (read/write) privilege and processes the cor-
responding tuples. For tuple processing, GaussDB uses two-phase
locking (2PL) to lock the tuples. For example, suppose a transaction
updates two tuples, 𝑡1 and 𝑡2, on two pages, 𝑃1 and 𝑃2. GaussDB
gets the lock of page 𝑃1, gets the 2PL lock of tuple 𝑡1, updates tuple
𝑡1 on page 𝑃1, releases the lock of page 𝑃1, gets the lock of page 𝑃2,
gets the 2PL lock of tuple 𝑡2, updates tuple 𝑡2 on page 𝑃2, releases
the lock of page 𝑃2, and implicitly releases the 2PL locks of 𝑡1 and
𝑡2 when committing.
OnPage Tuple Locking. GaussDB performs tuple locking bymark-
ing a tuple with the transaction id that is currently modifying the
tuple. As such if a transaction updates a tuple 𝑡 on page 𝑃 , it locks
page 𝑃 , and then updates tuple 𝑡 with its transaction id and then re-
leases the lock on page 𝑃 . When other transactions want to also lock

3790



tuple 𝑡 they can use the lock manager to check if the transaction id
is still active, (and consequently wait on it), or determine that it’s
committed and then lock the row themselves. Each transaction id
is composed of two parts (𝑢𝑛𝑑𝑜𝑆𝑒𝑔𝑚𝑒𝑛𝑡, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑁𝑢𝑚𝑏𝑒𝑟 ). Each
node at a node level owns undo segments (using the global lock
manager), and then assigns an undo segment to a transaction locally
during its first update; incrementing the associated sequence num-
ber to form a unique transaction id. The transaction then obtains a
local transaction id lock (in the local lock manager only to avoid
communications with the global lock manager). When another
transaction wants to wait on a transaction id it first determines the
correct node holding the lock by querying the associated global
undo segment lock (in the global lock manager) and then sending
the transaction id lock request to the appropriate node. On page
tuple locks are cleaned up in an opportunistic fashion when access-
ing a page. This can be done cheaply using the minimum active
transaction per undo segment which is synchronized periodically
across nodes.
Two Layer Lock Management. GaussDB employs a two layer
locking mechanism: the local lock at each compute node and the
global lock at the memory layer. If a compute node accesses a
page owned by itself, the node can get the read/write privilege via
its local lock and without needing to check the global lock. If a
node accesses a page owned by another node, it needs to get the
privilege from both the global lock and its local lock. Specifically,
it first checks the global lock, and if the page is not locked in the
global lock, then it checks the local lock of the corresponding owner
node; if the page is not locked by the local lock of the page owner,
the node can get the privilege, otherwise it must wait for the lock
to be released. Note that the global lock is also distributed and
maintained via consistent hashing. When a page access is complete,
the corresponding local locks must also be released.
Past-Image Page Caching for Fast Failure Recovery.When we
transfer the page ownership from node N1 to N2, we also keep the
page content in N1 and mark it as a past image. This is because
if N2 fails, we can get the page information from N1 and do not
need to recover from the logs in N1. We will discuss the details in
Section 4. For example, P9 is transferred from N1 to N0, and the
version at N1 is used to accelerate the recovery.
Buffer Replacement. (1) For a compute node, if its buffer pool is
full, it needs to select a page to replace. If it selects a clean page (the
page in the buffer pool is the same as that in the storage layer), it
can safely move this page to a memory node (it also needs to update
the page owner information in the POD); if it selects a dirty page,
it has to write the page to both a memory node and a storage node.
It also needs to update the corresponding page owner entry in the
POD. This is because if we move a dirty page to a memory node but
not to the storage layer, then if the memory node crashes, the dirty
page will be lost. (2) For a memory node, if its buffer pool is full, it
needs to select a page from the buffer pool to replace. If it selects
a clean page, it can safely remove this page as the storage layer
also has the same page. Note that it cannot replace a dirty page,
because the compute node is in charge of flushing dirty pages and
the memory layer is stateless. Thus, the clean pages in the memory
layer are used for maintaining warm pages that are replaced from
compute nodes; the dirty pages are used for accelerating compute
node recovery based on memory checkpoints. Existing systems, e.g.,

IBM Db2 and SQL Server, also use the idea of buffer pool extensions
that move pages from compute nodes to memory nodes in order to
avoid moving them to storage nodes. We extend the idea to support
fast failure recovery.
Page Ownership Optimization. For read-heavy pages, we can
utilize read authorization to improve the performance. For pages
whose owners are frequently updated (i.e. frequently accessed by
different compute nodes), we can put their page ownership in mem-
ory nodes and utilize single-side RDMA to update such pages. For
other pages, we put their ownership in the compute nodes.
Discussion on Log-is-Data. Log-is-data is widely used in cloud
databases if the network between the compute and storage layer
is the bottleneck, and we can address this issue by only writing
logs and without writing dirty pages. In Huawei, the network is
not a bottleneck, especially in the current high-speed network en-
vironment. So, we do not use log-is-data. GaussDB can be extended
to support log-is-data: GaussDB will not flush dirty pages to the
storage layer and the dirty pages will be replayed from the logs. We
leave this as future work.
API and Compatibility. GaussDB has its own APIs and also sup-
ports some MySQL or PostgreSQL compliance.

4 GAUSSDB RECOVERY
We present GaussDB recovery as shown in Figure 4. We first discuss
the stateless data structure recovery, and then discuss page recovery.
POD Recovery at the Memory Layer. The POD records the
owners of each page and is stored in the memory layer. If a memory
node fails and the POD is lost, GaussDB reconstructs the POD by
scanning the compute nodes as each compute node keeps the page
owned by the node. In other words, each compute node contains the
(node, page) information. We use this information to generate the
(page, owner node) information, like inverted indexes. If a compute
node fails, we scan the POD to get pages owned by this node. If
both the POD and compute nodes are down, we can reconstruct
the POD when accessing (non-ownership) pages from the storage
layer during log recovery.
Global Lock Recovery at the Memory Layer. The global lock
manager keeps lock information for all objects, and similar to the
POD, it is maintained in the memory layer. If the global lock man-
ager fails, we can reconstruct it by scanning the local locks of
compute nodes.
Page Recovery at the Memory Layer. When a memory node
fails, we do not need to recover the pages in the memory layer as
the memory node is stateless and all the pages in the memory layer
are also kept in the storage node with the same content.
Lock Recovery at the Compute Layer. If the local lock is down:
(1) if the lock is also maintained in the global lock, we can scan the
global lock to get the locks of objects owned by the node; (2) if the
lock is not in the global lock, then when the compute node restarts,
the local lock is lost and we can re-apply the lock when required.
Page Recovery at the Compute Layer.When a compute node
fails, we need to recover the pages in the compute node. We first
select a new node, fetch the log, and replay the log as follows. To re-
cover the pages in the compute node, GaussDB uses redo/undo logs
to achieve fast failure recovery. Different from the Aries recovery
algorithm [16], GaussDB records checkpoints on both the memory
layer and the storage layer. If a compute node fails, GaussDB first

3791



Figure 4: GaussDB Recovery

uses the memory checkpoint to recover. Only when a memory node
fails does GaussDB use the storage checkpoint to continue the recov-
ery. As the memory checkpoint is newer and the shared memory is
faster than shared storage, recovering from the memory checkpoint
is much faster. Even if memory recovery fails, recovering from the
storage checkpoint guarantees correctness. This is because the redo
log is idempotent, recovering redo logs can override the redo replay;
the undo log has the compensation log and will not undo again.
Logging. Each compute node has an individual log stream to record
the page insert/delete/update operations. (Note that for multiple
tenants, each tenant has a log for tenant recovery and migration.)
Each log record has a log sequence number (LSN). Ideally, GaussDB
can recover a compute node page using its own log. However, the
page may be transferred across different nodes, and page updates
from different nodes can be distributed in different logs. To recover
a page, we need to replay its related logs in a sequential order. To
get a sequential order of related transactions, the LSNs of these
related transactions should follow a partial order. However, the
clocks of different nodes may not be aligned and some clocks may
have drift, and thus to synchronize LSNs of different compute nodes,
we use Lamport clocks to generate LSNs. When a transaction at
node A transfers the page ownership of a page from node B and
gets an LSN to generate a log entry, we set the LSN as max(A.LSN,
B.LSN+1). In this way, we can guarantee a partial order of related
transactions.
Undo Segment. GaussDB uses a separate undo segment to record
the old versions for data update as well as all the active transactions.
For each update, GaussDB records the redo logs at the write-ahead
logging stream and the undo logs at the undo segment. In this
way, for failure recovery, we can get all the active (incomplete)
transactions by scanning the undo segment and then undo the
operators of these active transactions by scanning the undo log
entries from the end to the beginning. Besides, for undo operations,
the undo segment also keeps multi-versions to support MVCC. Note
that the undo segment can be reused, and old versions that will not
be used by any transactions can be recycled by garbage collection.

Memory Checkpoint Recovery. GaussDB uses a separate thread
to flush dirty pages to the memory layer. Note that it requires
flushing the pages based on their LSNs in an ascending order, i.e.
for a log entry with 𝐿𝑆𝑁 = 100, if its corresponding updated page
is flushed, all the page updates for 𝐿𝑆𝑁 < 100 must also be flushed.
After we keep the latest LSN in the memory checkpoint, for failure
recovery, we can analyze the log from the flushed latest LSN and
skip the log entries occurring before this LSN. Note that the flushed
dirty pages (for failure recovery) are different from the replaced
clean pages (for buffer replacement). The former have no owner
node and are used for improving the performance and accelerating
the failure recovery by caching them on shared memory. The latter
have owner nodes and are used to accelerate transaction processing.
Storage Checkpoint Recovery. GaussDB uses a separate thread
to flush dirty pages to the storage layer. Note that it also requires
flushing the pages based on LSN in an ascending order. After we
keep the latest LSN in the storage checkpoint, for failure recovery,
we can analyze the log from the flushed latest LSN and then skip
the log entries occurring before this LSN.
Two-Tier Failure Recovery. When a compute node fails, if the
compute node can restart quickly, GaussDB recovers the node by
recovering the POD, lock, and pages (using a memory checkpoint).
If the compute node cannot be restarted quickly, GaussDB selects
another compute node (with the smallest workload) to recover.
Note that the selected node uses a separate log stream to recover
the failed node. GaussDB also contains analysis-redo-undo phrases.
The log analysis phase analyzes the logs from the memory (or
storage) checkpoints and detects the redo log entries (completed
transactions after the checkpoint) and undo entries (incomplete
transactions). Next we discuss the redo and undo phases.
Past-Image Based Redo. For page recovery, if there is a single
log, we can recover the log in LSN order (i.e. ascending order for
redo and descending order for undo). We first consider the redo
operation. A log entry (𝐿𝑆𝑁, 𝑃𝐼𝐷,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) records the operation
of updating a page with identifier PID, where 𝐿𝑆𝑁 is a log sequence
number, and the operation field records the before image and after

3792



Figure 5: GaussDB Page Recovery Example

image of the operation. In traditional page recovery, if the page with
PID is in-memory, then it is the latest version, and page recovery
applies the operation on this page; otherwise, page recovery loads
the page from storage. However, if a page is updated in different
compute nodes and the update log entries are distributed in different
logs, then there are two challenges. Firstly, the newest page may
not be in the current node and possibly not even in the storage
layer. Instead it may be on another compute node, and thus it
is challenging to get the newest page for recovering a log entry.
Secondly, a page may be updated on different compute nodes, and
it is challenging to replay the logs that update the same page in
order from different log streams.

First, given a log entry (𝐿𝑆𝑁, 𝑃𝐼𝐷, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛), to replay the log,
we need to first get the latest page identified by PID. The page
may be in this node, another compute node, a memory node, or a
storage node. We need to get the newest page, i.e. the page with
the largest PageLSN (when updating a page via a log record with
LSN, we update the PageLSN with the log entry LSN), because the
newest page can minimize the number of newest redo operations
and avoid replaying them from multiple log streams. To get the
newest page, a straightforward method first scans all the buffer
pools of each compute node. If it cannot find the newest page in
the buffer pools, it gets the page from the storage node. Moreover,
given the newest page and log entry, if there are some updates for
this page on other compute nodes before this log entry, we cannot
replay this log entry on the newest page, because we need to first
replay all other logs before this log entry. However it is expensive
to find such logs. To this end, for each compute node, we do not
remove the previous versions of a page; instead, we maintain them
in the buffer pools of compute nodes, i.e. when we transfer a page
owner from node N1 to node N2, we keep the page at N1 (called
the past image, PI). In this way, if a single compute node is down,
we can prove that the newest page contains all the updates in the
logs of other compute nodes, i.e. we do not need to replay other
logs. To efficiently identify the newest page, in the POD, we also
keep a list of past-image pages, which include the page LSN and
compute node IDs for this page LSN. In this way, when we find a
page, we efficiently identify its past image based on the POD. Note
that when a page is flushed to the storage layer, we remove all past

images of this page (including any past images at compute nodes
and the past-image list at POD).

Second, if multiple compute nodes fail, we recover the page fol-
lowing the LSN order that may be in different log streams. Specif-
ically, when we replay a log entry that updates a page, we need
to know whether there is another log entry that updates this page
before the LSN. If yes, we wait until all log entries before this LSN
that have updated the pages have been replayed. Here, a challenge
is how to know whether there is a log entry that updates the same
page before the LSN. To this end, for each page, we record the latest
LSN that updates the page; and for each log entry, we also record
the previous page LSN that records the page status when the log
entry reads the page content. In this way, when we replay a record,
if the previous page LSN is equal to the page LSN, we can replay
the log entry. If the previous page LSN is larger than the page LSN,
i.e. another compute node updated the page before this log entry,
then we need to wait until the other compute node replays its log
entries; if the previous page LSN is smaller to the page LSN, we
skip the log entry since the page is newer than the log entry.

In summary, if two or more nodes fail, GaussDB can recover
them in parallel. The POD and locks have no conflicts between
different compute nodes, and thus they can be recovered fully in
parallel. Specifically, for each failed compute node, GaussDB scans
the log entries from the checkpoint in an ascending order. For each
log entry (𝐿𝑆𝑁, 𝑃𝐼𝐷, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, PrePageLSN), which records that
the operation of this log entry updates the page whose PageLSN is
PrePageLSN, GaussDB compares log LSN and PageLSN. If PageLSN
> log LSN, GaussDB skips this log; otherwise, GaussDB compares
PageLSN and PrePageLSN, if PageLSN = PrePageLSN, GaussDB re-
does this operation on this page; otherwise, there is another update
before this log in other compute nodes, GaussDB needs to wait on
this page until PageLSN = PrePageLSN.
Undo-SegmentBasedUndo. For undo operations, for each aborted
transaction, we undo its operations from its last undo log entry (in
undo segments). For each undo log entry, we undo the operations.
Note that we undo the update operators in a reversed order of the
undo log entries. We first get the active transactions from undo
segments, get the last log entry of each active transaction and undo
the log entries of these active transactions from the last log entry

3793



following the previous LSN order until reaching the first LSN (e.g.,
the transaction start). Note that the log entries of a transaction
must be in the same log stream and cannot be across different log
entries. Thus we can undo the logs in one compute node and do not
consider other nodes. When we do the redo operations, we have
already obtained the newest page in this node, thus we can easily
undo the operations.
Example. Figure 5 shows a running example of page recovery.
Page P5 is first updated at compute node N0 with LSN of 105 and
then updated at N1 with LSN of 106. Note that P5 with PageLSN
of 105 is also cached at N0 (called past image). This is because if
N1 is down, we can recover P5 from PageLSN of 105 and log entry
106 at N1 without accessing the log on N0. If P5 with PageLSN of
105 is not cached at N0, it also needs to replay the log entry 105
at N0 which is rather expensive. In addition, we can see that with
a memory checkpoint, we only need to recover P4 at N0 with log
entry of 107 and P9 at N1 with log entry of 109. If we recover from
a storage checkpoint, we need to replay many more log entries.
On-Demand Recovery. If a compute node fails, another node
takes over and replays the log. At this time, if there is a transaction
that accesses a page that has not been replayed yet, the full-log
replay method that replays all the logs needs to wait for a long
time. To provide instant query processing for this transaction, we
propose an on-demand log recovery method, which only replays
the required pages and can skip log entries for updating other pages.
To this end, GaussDB first identifies the log entries that updates this
page, and then only redoes these relevant log entries.

5 GAUSSDB SMART ROUTING
Given a SQL query, GaussDB uses JDBC/ODBC to route the query to
an appropriate compute node which then processes the SQL query.
A random routing method may not capture the data affinity, e.g.
sending a query to a compute node which does not own the pages
involved in the query, thus involving page ownership transfer and
page transmission, leading to poor performance. To address this
issue, we propose a smart routing method.
Graph Partitioning for Page Affinity. We model the pages as a
graph where each vertex is a page. There is an edge between two
pages if the two pages are co-accessed by a query, and the weight
of this edge is the co-access frequency. The graph captures the
page affinity. We can use existing graph partitioning algorithms to
partition the graph into subgraphs (e.g. strong connected compo-
nents), and then the pages in each subgraph can be assigned to the
same owner node. As it is expensive to build the page graph, we
simplify this problem by grouping multiple pages (e.g. 1K) into a
single node based on the (primary and foreign) keys in the pages.
We periodically update the graph and graph partitions.

Different from [7] that optimizes scalability of shared-nothing
databases by partitioning the data, GaussDB aims to dynamically
group the pages based on their affinity. We propose a light-weight
method that can judiciously route the query to appropriate nodes.
Query Routing. Given a query, we need to route this query to
an appropriate compute node. A straightforward method is to first
calculate the pages involved in this query, and then route the query
to the node that owns most of the accessed pages for this query.
However it is expensive to obtain the accessed pages of a query.
To this end, we propose a multi-layer perceptron (MLP) to predict

the accessed pages. The input is the query encoding to encode
the query features and database schema (including column name,
operators, predicate values, and distinct values). The output is an
access vector, where each element denotes the access possibility of
a page group. Since there could be a large number of pages, each
element in the vector does not denote a single page. Instead, each
element denotes a page group with multiple pages (e.g. 1K pages),
which is the same as the node grouping. Similarly, we can obtain an
owned vector of a compute node to capture the pages in each node,
where the value of each element in the vector is the percentage
of pages owned by this node out of the number of pages in the
element. Based on the predicted access vector of each query and the
owned vector of each node, we compute the similarity (e.g. cosine)
and route the query to the node with the largest similarity.
Lightweight Query Routing.One question is where to deploy the
routing module in the database system. The first option is to deploy
it at a compute node. However, this method requires re-routing
the query if the compute node is not the best choice for the query,
which is rather expensive. The second option is to deploy it into the
JDBC/ODBC layer, which is very efficient. However, JDBC/ODBC
has limited computing resources, i.e. we cannot put model training
at the JDBC/ODBC layer. To this end, we deploy the lightweight
model inference procedure (i.e. query routing) at the JDBC/ODBC
layer and deploy the model training and update procedures at the
server side. The query routing model is periodically updated at the
compute nodes and synchronized to the JDBC/ODBC layer.
Smart Routing Workflow. Given a query, we use the lightweight
query routing model at the JDBC/ODBC layer to route the query
to a compute node. Then the compute node processes the query.
Note that the compute node will asynchronously send the query
and its access page vector to the model fine-tuning module, which
will fine-tune and update the routing model based on the query.
The server will periodically use the server side model to update the
inference model at the JDBC/ODBC layer.

6 GAUSSDB SCALING
Compute Node Expansion/Shrink. If each compute node is busy,
we can add new compute nodes to grow compute capacity and re-
duce the burden on the compute nodes. GaussDB only needs to
move some pages to new nodes and then assign page ownership to
the new nodes. We also need to update the page routing method
that routes queries to new nodes. Note that even if the smart rout-
ing method initially directs a query to a sub-optimal compute node,
this node has the capability to reroute the query to the optimal
node or process the query locally. Consequently, the smart routing
method ensures the optimal performance. To this end, we can peri-
odically update the smart routing model. Similarly, we can shrink
the compute nodes.
Memory Node Expansion/Shrink. If each memory node is busy,
we can add new memory nodes. This requires expanding the POD
and global lock manager. For the POD, we use consistent hashing
to do the expansion. We first use virtual nodes to get more hash
buckets (each bucket corresponds to a virtual node), and then map
the virtual nodes to physical nodes. Thus, for POD expansion, we
only adjust the POD buckets (virtual nodes). In case we want to
move a virtual POD bucket to another node, we just lock the bucket
(even if there are active transactions) and move all related POD

3794



entries to the new node, and then release the lock. Since each POD
bucket is very small, the POD can be updated online. Note that we
do not move the pages and instead the pages are moved to the new
node only if there is a relevant query in this new node that writes
the page. We expand the global lock manager in a similar manner.
We can also shrink the memory nodes using a reverse procedure.
Storage Layer Expansion/Shrink.Aswe design a distribute block
file system, it is easy to expand and shrink the storage layer.

7 EXPERIMENTS
7.1 Experimental Setting
Experimental Environment. We performed all experiments on
Huawei cloud, where each underlying physical server was equipped
with Intel 6248R*2 CPU with 96 physical cores, 512GB RAM, 192TB
SSD disk, Mellanox ConnectX-6 100GE network card, and running
EulerOS operating system. We built a compute-memory-storage
disaggregation system on the cloud.
Datasets. We conducted the experiments on two standard bench-
marks, TPC-C and Sysbench. For TPC-C, we used 10,000 ware-
houses. For Sysbench, we tested write only, 80% write/20% read,
50% write/50% read, and 20% write/80% read. TPC-C is a well parti-
tionable dataset while Sysbench is a less partitionable dataset. We
also evaluated our system on customer workloads in Section 7.7.
Baselines. We compared with two state-of-the-art multi-primary
databases, a shared-everything multi-primary database System-X
(latest version, anonymized due to legal compliance) and a shared-
nothing multi-primary database CockRoachDB (version 23.2). Note
that multi-primary Aurora, multi-primary PolarDB and Purescale
were not available at the time of this writing, and thus we could
not compare with them. As CockRoachDB used a shared-nothing
architecture, it can be physically deployed on multiple nodes by
sharding the data. As GaussDB adopts a compute-memory-storage
disaggregation architecture, we deployed it logically on multiple
nodes, i.e. the resource of each node was locally partitioned to
3 parts and each part was respectively used to deploy compute,
memory, and storage layers. For System-X, we deployed it on these
servers and with an all-SSD shared storage file system OceanStor
Dorado2. We tuned the performance of System-X (e.g., the global
and local buffer size) and CockRoachDB (e.g., partition methods)
and reported their best performance.

7.2 End-to-End Performance
We compared the end-to-end performance of GaussDBwith System-X
and CockRoachDB on TPC-C with 10,000 warehouses. We used four
metrics: 90% latency, QPS (query per second), TPS (transaction per
second), and tpmC (new order transactions per minute). Table 1
shows the results on three nodes. We had the following observa-
tions. First, GaussDB achieved lower latency than System-X and
CockRoachDB, even 4-30 times better. For example, the latency of
GaussDB was only 11 milliseconds, and those of System-X and
CockRoachDB were respectively 40 milliseconds and 300 millisec-
onds. System-X and GaussDB were better than CockRoachDB be-
cause CockRoachDB required two-phase commit for distributed
transactions which was costly to synchronize across multiple nodes
while System-X and GaussDB did not require two-phase commit

2https://e.huawei.com/en/products/storage/all-flash-storage

Table 1: Performance on TPC-C.

Systems 90%Latency(ms) QPS TPS tpmC
System-X 39.68 500603 56693 1530723

CockRoachDB 302.02 37920 4294 115952
GaussDB 11.01 958549 108556 2931011

Write Only 80%W 20%R 50%W 50%R 20%W 80%R
Read-Write Ratio

100

101

102

103

90
%

 L
at

en
cy

 (m
s)

GaussDB System-X CockRoachDB

(a) 90% Latency (ms)

Write Only 80%W 20%R 50%W 50%R 20%W 80%R
Read-Write Ratio

103

104

105

106

TP
S

GaussDB System-X CockRoachDB

(b) TPS
Figure 6: Performance on Sysbench.

and thus had lower latency. GaussDB was better than System-X
because System-X involved many page transmissions across differ-
ent nodes while GaussDB significantly reduced page transmission
based on smart routing and shared memory. Second, in terms of
QPS and TPS, GaussDB was better than System-X, which was in
turn better than CockRoachDB. This was attributed to the transac-
tion processing of GaussDBwhich did not use two-phase commit
and reduced page transmission across multiple nodes.

We also evaluated the end-to-end performance on the Sysbench
dataset. Figure 6 shows the results on three nodes. We had the
following observations. First, GaussDB was better than System-X,
which in turnwas better than CockRoachDB in terms of both through-
put and latency. For example, the throughput of GaussDB was 4
times that of of System-X and 20 times that of CockRoachDB. The
latency of GaussDB was 1/4 of that of System-X and 1/30 of that of
CockRoachDB. This was because GaussDB had an effective transac-
tion processing method by reducing the overhead of storage access
and page transmission. Second, for both write-only and read-write
workloads, GaussDB was better than System-X and CockRoachDB.
This was attributed to our effective transaction processing method.
Third, the three databases achieved higher performance on read-
write workloads than on write-only workloads because read-write
workloads had less transaction conflicts.

7.3 Evaluation on Scale-out
Weevaluated the scale-out of GaussDB, CockRoachDB and System-X
by varying the number of nodes and then measuring 90% latency,
QPS, TPS, and tpmC on TPC-C. Figure 7 shows the experimental
results. We made the following observations.

First, we could see that with the increase of the number of nodes,
the throughput (including tpmC, QPS, and TPS) of all the systems
increased. This was because all of these systems were able to take
advantage of more resources to process queries.

Second, GaussDB outperformed System-X which outperformed
CockRoachDB for throughput. GaussDB had 2.5 times higher TPS
than System-X and 20 times higher than CockRoachDB. The reasons
were three-fold. Firstly, CockRoachDB used two-phase commit for
distributed transaction processing, which was rather costly, while
GaussDB and System-X did not involve two-phase commit. Sec-
ondly, GaussDB achieved much better page affinity based on smart

3795



1 node 2 nodes 3 nodes 6 nodes
Number of Nodes

104

105

106

107

tp
m

C

GaussDB System-X CockRoachDB

(a) tpmC

1 node 2 nodes 3 nodes 6 nodes
Number of Nodes

104

105

106

107

QP
S

GaussDB System-X CockRoachDB

(b) QPS

1 node 2 nodes 3 nodes 6 nodes
Number of Nodes

103

104

105

106

TP
S

GaussDB System-X CockRoachDB

(c) TPS

1 node 2 nodes 3 nodes 6 nodes
Number of Nodes

101

102

103

90
%

 L
at

en
cy

 (m
s)

GaussDB System-X CockRoachDB

(d) 90% Latency (ms)
Figure 7: Evaluation of Scale-out on TPC-C

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Seconds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

1e6

tpmTotal tpmC

(a) GaussDB Recovery Curves

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Seconds

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

1e6

tpmTotal tpmC

(b) System-X Recovery Curves

0 20 40 60 80 100
120
140
160
180
200
220
240
260
280
300
320
340

Seconds

0

1

2

3

4

5

6

7

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

1e5

tpmTotal tpmC

(c) CockRoachDB Recovery Curves

Figure 8: Recovery for Compute Node Failure on TPC-C

routing and thus reduced the page transmission cost compared to
System-X. Thirdly, GaussDB used shared memory to reduce latency
and addressed the data skew problem because if a page was not
in the compute nodes, GaussDB got the page from shared memory,
but System-X might have to fetch the page from the storage layer,
which was rather slow. Especially for data skew, GaussDB used the
smart routing method that judiciously assigned pages into different
nodes and used a shared buffer pool to improve the performance.

Third, GaussDB had much lower latency than System-X, which
in turn had much lower latency than CockRoachDB. For example,
the latency of GaussDB was only 11 milliseconds, that of System-X
was 50 milliseconds, and that of CockRoachDBwas 300 milliseconds.
GaussDB had lower latency because (1) GaussDB used smart routing
to organize the data so that it had high probability to use the local
cache to answer queries and did not need to fetch data from the
storage layer; (2) even if data was not in the local cache, GaussDB
used the shared memory layer to achieve low latency.

Fourth, with the increase of the number of nodes, GaussDB still
achievedmuch higher performance than System-X and CockRoachDB.
This was attributed to our disaggregation architecture and smart
routing method. The former allowed for high scalability and elastic-
ity, and the latter reorganized the data based on page affinity. With
the increase of the number of nodes, the latency of CockRoachDB
was reduced because CockRoachDB had more resources to pro-
cess the queries in parallel by partitioning the data; the latency
of System-X was increased because System-X needed to get all
relevant data to a compute node to process queries; the latency of
GaussDB was stable because GaussDB used a local buffer pool and
shared memory to reduce the latency.

7.4 Evaluation on Failure Recovery
7.4.1 Compute Node Failure. We evaluated our recovery method
for compute node failure, i.e. we killed a compute node after three

seconds of running and evaluated recovery performance. We com-
pared GaussDB with System-X and CockRoachDB on the TPC-C
dataset. Figure 8 shows the results. We made the following obser-
vations. First, as shown in Figure 8b, System-X had much longer
recovery time than GaussDB because it needed to recover the failed
node from the storage layer. As shown in Figure 8a, GaussDB had
much better recovery speed. The RTO (recovery time object) of
GaussDB was about 8 seconds, while the RTO of System-X was 70
seconds. This was because GaussDB could use the memory check-
points to recover failed nodes, which was fairly efficient. As shown
in Figure 8c, CockRoachDB had much longer recovery time, and
the RTO was longer than 300 seconds, because CockRoachDB had
to synchronize different nodes. Second, GaussDB had much better
long-term stability, i.e. the performance fluctuation was very low.
This was attributed to the smart routing method that reduced the
query routing overhead and page transmission overhead. Third,
the performance of System-X and CockRoachDB degraded to zero
during recovery while GaussDB did not. This was because GaussDB
designed an on-demand recovery technique which only recovered
targeted pages and did not need to replay all the redo logs.

7.4.2 Memory Node Failure. Next, we evaluated the case of mem-
ory node recovery by killing a memory node. As only GaussDB had
a memory layer, we only evaluated GaussDB. Figure 9 shows the
results. GaussDB achieved very high recovery speed for memory
node recovery. This was because the memory layer was stateless,
and the memory node recovery did not affect transaction process-
ing. Moreover, the memory node recovery speed was better than
compute node recovery because the memory nodes were stateless.

7.4.3 Compute andMemory Node Failure. We evaluated the case of
both compute andmemory node recovery by killing a compute node
and a memory node simultaneously. Figure 10 shows the results.
We could see that GaussDB achieved high recovery speed even for
concurrent compute and memory recovery. This was attributed to
our shared memory and transaction processing technique.

3796



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Seconds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

1e6

tpmTotal tpmC

Figure 9: GaussDB Recovery for Memory
Failure on TPC-C

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Seconds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

1e6

tpmTotal tpmC

Figure 10: GaussDB Recovery for Compute
and Memory Failure on TPC-C

0 5 10 15 20 25 30 35 40 45 50
Seconds

0
1
2
3
4
5
6
7

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

1e6

tpmTotal tpmC

Figure 11: GaussDB Node Expansion Elas-
ticity on TPC-C

Table 2: Evaluation with/without Smart Routing on TPC-C

without with
90% Latency (ms) 17.36 11.01

QPS 453998 958549
TPS 51415 108556
tpmC 1388217 2931011

7.5 Evaluation on Elasticity
We evaluated the elasticity of GaussDB by expanding the cluster
from 1 node to 2 nodes, and then to 3 nodes. Figure 11 shows
the results. GaussDB achieved high elasticity performance as we
expanded the cluster with more nodes. The expansion time was
about 10 seconds. This was because GaussDB had a memory layer to
reduce the repartition overhead and thus achieved high elasticity.

7.6 Ablation Study
7.6.1 Evaluation on Smart Routing. We evaluated our smart rout-
ing method. We compared GaussDB with smart routing and with-
out smart routing. Table 2 shows the results. We could see that
GaussDB with smart routing achieved much higher performance
than GaussDB without smart routing. For example, the throughput
was doubled by using smart routing. This was because without
smart routing, GaussDB might route a query to a suboptimal com-
pute node and thus this node had to pull pages from remote nodes
to satisfy the query; with smart routing, GaussDB routed the queries
to most relevant compute nodes and reduced the query routing
across different compute nodes. In addition, with smart routing, the
relevant pages (co-accessed by transactions) were grouped together,
and thus it significantly reduced the number of page transmissions
across nodes. Note that System-X also had routing strategies. Even
without smart routing, GaussDB was still better than System-X on
latency. We also added the overhead of the model learning cost
and the model maintaining cost. We only used one core to fine-tune
the model and updated the model, and thus the overhead was very
small, only about 1% (1 core vs 96 cores).
7.6.2 Evaluation on Page Ownership Management and Read Autho-
rization. We compared our method with and without page owner-
ship management and read authorization. Table 3 shows the results.
We could see that GaussDB with page ownership management and
read authorization improved the performance by 2.2 times. This
was because page ownership management and read authorization
reduced page transmission across different compute nodes, and
moreover read authorization avoided remote page access.
7.6.3 Evaluation on Past Images. We evaluated the effectiveness of
keeping past images of pages. First, past images would be eliminated
if they were flushed to the storage layer, and thus they only took up

Table 3: Evaluation on GaussDBwith/without Page Ownership
Management and Read Authorization on Sysbench

TPS without with
Write only 46734 90343

80% W 20% R 52981 113934
50% W 50% R 53326 113762
20% W 80% R 57467 129439

limited space (only about 1% in our experiments). Second, the aver-
age retention time of keeping past images was 10 minutes. Third,
past images can improve the recovery time by 1.8 times.

7.7 Customer Use Cases
We also evaluated the performance of GaussDB on customer scenar-
ios. First, consider an airline company with 162 TB data and 116 mil-
lion users. There were multiple business scenarios on this database,
including ticket booking, arrival and departure, seat reservation,
passenger check-in, etc, and thus this was a less partitional dataset.
The TPS of GaussDB and System-X were respectively 12,870 and
5,993. So GaussDB outperformed System-X by 115%. Second, con-
sider a power grid company with 45 TB data and 252 million users.
This was also a less partitional dataset. The TPS of GaussDB and
System-X were respectively 3,961 and 1,878, and GaussDB outper-
formed System-X by 111%. The two customer scenarios showed that
GaussDB achieved higher performance on customer workloads.

8 CONCLUSION
We present a cloud-native multi-primary database GaussDB, which
is a compute-memory-storage disaggregation system that provides
multi-writer capabilities. GaussDB logically partitions the pages to
different compute nodes and assigns the ownership of each page
to a compute node. GaussDB designs an effective transaction pro-
cessing method across multiple nodes. GaussDB adopts an effective
page placement and query routing method to capture data affinity.
GaussDB devises a two-tier failure recovery method to improve re-
covery performance. We have implemented and deployed GaussDB
internally at Huawei and with customers, and the results showed
that GaussDB achieved much higher throughput, lower latency, and
faster failure recovery compared to several state-of-the-art multi-
primary databases.

ACKNOWLEDGMENTS
This paper was supported by National Key R&D Program of China
(2023YFB4503600), NSF of China (61925205, 62232009, 62102215),
Zhongguancun Lab, Huawei, TAL education, and Beijing National
Research Center for Information Science and Technology (BNRist).
Guoliang Li is the corresponding author.

3797



REFERENCES
[1] Daniel Abadi, Anastasia Ailamaki, David G. Andersen, Peter Bailis, Magdalena

Balazinska, Philip A. Bernstein, Peter A. Boncz, Surajit Chaudhuri, Alvin Cheung,
AnHai Doan, Luna Dong, Michael J. Franklin, Juliana Freire, Alon Y. Halevy,
Joseph M. Hellerstein, Stratos Idreos, Donald Kossmann, Tim Kraska, Sailesh
Krishnamurthy, Volker Markl, SergeyMelnik, Tova Milo, C. Mohan, Thomas Neu-
mann, Beng Chin Ooi, Fatma Ozcan, Jignesh M. Patel, Andrew Pavlo, Raluca A.
Popa, Raghu Ramakrishnan, Christopher Ré, Michael Stonebraker, and Dan Su-
ciu. 2022. The Seattle report on database research. Commun. ACM 65, 8 (2022),
72–79.

[2] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, et al. 2019. Socrates:
The New SQL Server in the Cloud. In SIGMOD. 1743–1756.

[3] Wei Cao, Feifei Li, and et al. 2022. PolarDB-X: An Elastic Distributed Relational
Database for Cloud-Native Applications. In ICDE. IEEE, 2859–2872. https:
//doi.org/10.1109/ICDE53745.2022.00259

[4] Wei Cao, Yang Liu, Zhushi Cheng, et al. 2020. POLARDB Meets Computational
Storage: Efficiently Support Analytical Workloads in Cloud-Native Relational
Database. In FAST. USENIX Association, 29–41.

[5] Wei Cao, Yingqiang Zhang, Xinjun Yang, et al. 2021. PolarDB Serverless: A Cloud
Native Database for Disaggregated Data Centers. In SIGMOD. 2477–2489.

[6] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed
Database. In OSDI, Chandu Thekkath and Amin Vahdat (Eds.). USENIX Associa-
tion, 251–264. https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/corbett

[7] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010. Schism:
a Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1 (2010), 48–57. https://doi.org/10.14778/1920841.1920853

[8] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, et al. 2016. The Snowflake
Elastic Data Warehouse. In SIGMOD. 215–226.

[9] Alex Depoutovitch, Chong Chen, Jin Chen, et al. 2020. Taurus Database: How to
be Fast, Available, and Frugal in the Cloud. In SIGMOD. 1463–1478.

[10] Alex Depoutovitch, Chong Chen, Per-Åke Larson, Jack Ng, Shu Lin, Guanzhu
Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu, Yuchen Zhang, and
Calvin Sun. 2023. Taurus MM: bringing multi-master to the cloud. Proc. VLDB
Endow. 16, 12 (2023), 3488–3500. https://doi.org/10.14778/3611540.3611542

[11] Haowen Dong, Chao Zhang, Guoliang Li, and Ji Sun. 2024. Cloud-Native
Databases: A Survey. IEEE Transaction Knowledge Data Engineering 34, 3 (2024),
1096–1116.

[12] Andi Gutmans. 2022. Introducing AlloyDB for PostgreSQL: Free yourself from
expensive, legacy databases. https://cloud.google.com/blog/products/databases/
introducing-alloydb-for-postgresql.

[13] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[14] Guoliang Li, Haowen Dong, and Chao Zhang. 2022. Cloud Databases: New
Techniques, Challenges, and Opportunities. VLDB 15, 12 (2022), 3758–3761.

[15] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo
Li, Tianqing Wang, and Shifu Li. 2021. openGauss: An Autonomous Database
System. Proc. VLDB Endow. 14, 12 (2021), 3028–3041. https://doi.org/10.14778/
3476311.3476380

[16] C. Mohan, DonHaderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans. Database
Syst. 17, 1 (1992), 94–162. https://doi.org/10.1145/128765.128770

[17] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD.
115–130.

[18] Vivek R. Narasayya and Surajit Chaudhuri. 2021. Cloud Data Services:Workloads,
Architectures and Multi-Tenancy. Foundations and Trends in Databases 10, 1
(2021), 1–107.

[19] Vivek R. Narasayya and Surajit Chaudhuri. 2022. Multi-Tenant Cloud Data
Services: State-of-the-Art, Challenges and Opportunities. In SIGMOD. 2465–
2473.

[20] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden.
2020. Starling: A Scalable Query Engine on Cloud Functions. In SIGMOD. 131–
141.

[21] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. 2021. Magic
Quadrant for Cloud Database Management Systems. Gartner (2021, December
13) (2021), 1–37.

[22] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and
Ajay Kalhan. 2022. Moneyball: Proactive Auto-Scaling in Microsoft Azure SQL
Database Serverless. VLDB 15, 6 (2022), 1279–1287.

[23] Adam Prout, Szu-PoWang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan
Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, et al. 2022. Cloud-Native
Transactions and Analytics in SingleStore. In SIGMOD. 2340–2352.

[24] IBM DB2 PureScale. [n.d.]. DB2 pureScale: Best Practices for Performance and
Monitoring. Technical Report. IDUG DB2 Technical Conference, Denver, CO,
USA.

[25] Oracle RAC. [n.d.]. Oracle Real Application Clusters 19c Technical Architec-
ture. https://www.oracle.com/webfolder/technetwork/tutorials/architecture-
diagrams/19/rac/pdf/rac-19c-architecture.pdf.

[26] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, João Carreira,
Neeraja Jayant Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. 2021. What serverless computing is and should become: the
next phase of cloud computing. Commun. ACM 64, 5 (2021), 76–84.

[27] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, et al. 2020. Cloudburst:
Stateful Functions-as-a-Service. VLDB 13, 11 (2020), 2438–2452.

[28] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database.
In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,
Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1493–1509. https://doi.org/
10.1145/3318464.3386134

[29] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, et al. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational Databases.
In SIGMOD. 1041–1052.

[30] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, et al. 2018. Amazon Aurora:
OnAvoidingDistributed Consensus for I/Os, Commits, andMembership Changes.
In SIGMOD. 789–796.

[31] Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing Fang,
Chuan Sun, and Yuhui Wang. 2024. PolarDB-MP: A Multi-Primary Cloud-
Native Database via Disaggregated Shared Memory. In SIGMOD, Pablo Barceló,
Nayat Sánchez Pi, Alexandra Meliou, and S. Sudarshan (Eds.). ACM, 295–308.
https://doi.org/10.1145/3626246.3653377

[32] Yifei Yang, Matt Youill, Matthew E. Woicik, et al. 2021. FlexPushdownDB: Hybrid
Pushdown and Caching in a Cloud DBMS. VLDB 14, 11 (2021), 2101–2113.

[33] Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for
HTAP Databases. Proc. VLDB Endow. 17, 5 (2024), 939–951. https://www.vldb.
org/pvldb/vol17/p939-zhang.pdf

[34] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In SIGMOD. 415–432. https://doi.org/10.1145/3299869.3300085

[35] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, et al. 2021. Towards Cost-Effective
and Elastic Cloud Database Deployment via Memory Disaggregation. VLDB 14,
10 (2021), 1900–1912.

[36] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei Li, Bo
Wang, Jing Fang, Yuhui Wang, Jingze Huo, et al. 2021. Towards cost-effective
and elastic cloud database deployment via memory disaggregation. Proceedings
of the VLDB Endowment 14, 10 (2021), 1900–1912.

[37] Weixing Zhou, Qi Peng, Zijie Zhang, Yanfeng Zhang, Yang Ren, Sihao Li, Guo
Fu, Yulong Cui, Qiang Li, Caiyi Wu, Shangjun Han, Shengyi Wang, Guoliang
Li, and Ge Yu. 2023. GeoGauss: Strongly Consistent and Light-Coordinated
OLTP for Geo-Replicated SQL Database. SIGMOD 1, 1 (2023), 62:1–62:27. https:
//doi.org/10.1145/3588916

[38] Tobias Ziegler, Philip A Bernstein, Viktor Leis, and Carsten Binnig. 2023. Is
Scalable OLTP in the Cloud a Solved Problem?. In CIDR.

3798

https://doi.org/10.1109/ICDE53745.2022.00259
https://doi.org/10.1109/ICDE53745.2022.00259
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/3611540.3611542
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3626246.3653377
https://www.vldb.org/pvldb/vol17/p939-zhang.pdf
https://www.vldb.org/pvldb/vol17/p939-zhang.pdf
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3588916
https://doi.org/10.1145/3588916

	Abstract
	1 Introduction
	2 GaussDB Architecture
	3 GaussDB Transaction Processing
	4 GaussDB Recovery
	5 GaussDB Smart Routing
	6 GaussDB Scaling
	7 Experiments
	7.1 Experimental Setting
	7.2 End-to-End Performance
	7.3 Evaluation on Scale-out
	7.4 Evaluation on Failure Recovery
	7.5 Evaluation on Elasticity
	7.6 Ablation Study
	7.7 Customer Use Cases

	8 Conclusion
	Acknowledgments
	References

