
Towards Resource E�iciency: Practical Insights into
Large-Scale Spark Workloads at ByteDance

Yixin Wu∗
ByteDance Inc.

Xiuqi Huang∗
Shanghai Jiao Tong

University

Zhongjia Wei
ByteDance Inc.

Hang Cheng
ByteDance Inc.

Chaohui Xin
ByteDance Inc.

Zuzhi Chen
ByteDance Inc.

Binbin Chen
ByteDance Inc.

Yufei Wu
ByteDance Inc.

Hao Wang
ByteDance Inc.

Tieying Zhang
ByteDance Inc.

Rui Shi†
ByteDance Inc.

Xiaofeng Gao
Shanghai Jiao Tong

University

Yuming Liang
ByteDance Inc.

Pengwei Zhao
ByteDance Inc.

Guihai Chen
Shanghai Jiao Tong

University

ABSTRACT
At ByteDance, where we execute over a million Spark jobs and
handle 500PB of shu�ed data daily, ensuring resource e�ciency
is paramount for cost savings. However, achieving optimization of
resource e�ciency in large-scale production environments poses
signi�cant challenges. Drawing from our practical experiences, we
have identi�ed three key issues critical to addressing resource ef-
�ciency in real-world production settings: ¨ slow I/Os leading to
excessive CPU and memory idleness, ≠ coarse-grained resource
control causing wastage, and Æ sub-optimal job con�gurations
resulting in low utilization. To tackle these issues, we propose a
resource e�ciency governance framework for Spark workloads.
Speci�cally, ¨ we devise the multi-mechanism shu�e services, in-
cluding Enhanced External Shu�e Service (ESS) and Cloud Shu�e
Service (CSS), where CSS employs a push-based approach to en-
hance I/O e�ciency through sequential reading. ≠ We modify the
Spark con�guration parameter protocol, allowing for �ne-grained
resource control by introducing several new parameters such as
milliCores and memoryBurst, as well as supporting operators with
additional spill modes. Æ We design a two-stage con�guration auto-
tuning method, comprising rule-based and algorithm-based tuning,
providing more reliable Spark con�guration optimizations. By de-
ploying these techniques on millions of Spark jobs in production
over the last two years, we have achieved over 22% CPU utilization
increase, 5% memory utilization increase, and 10% shu�e block
time ratio decrease, e�ectively saving millions of CPU cores and
petabytes of memory daily.

PVLDB Reference Format:
Yixin Wu, Xiuqi Huang, Zhongjia Wei, Hang Cheng, Chaohui Xin, Zuzhi
Chen, Binbin Chen, Yufei Wu, Hao Wang, Tieying Zhang, Rui Shi,
Xiaofeng Gao, Yuming Liang, Pengwei Zhao, and Guihai Chen. Towards
Resource E�ciency: Practical Insights into Large-Scale Spark Workloads at
ByteDance. PVLDB, 17(12): 3759 - 3771, 2024.
doi:10.14778/3685800.3685804
∗Yixin Wu and Xiuqi Huang contributed equally to this work.
†Dr. Rui Shi is the corresponding author, shirui@bytedance.com.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.

1 INTRODUCTION
At ByteDance, Apache Spark [10] is the most widely used compute
engine for large-scale data processing, with more than 1.7 million
Spark jobs executed daily by various teams across the company.
Despite several prior attempts [21, 35, 37, 41] to optimize Spark
workloads, such large-scale and diverse applications at ByteDance
bring unique and complex challenges to resource e�ciency.

Figure 1: An Example of Production Resource E�ciency- It
shows ByteDance’s resource utilization for millions of Spark jobs in
the �rst 10 days of 2022. Data scan and shu�le block time consume
more than 45% of the total compute time. The average CPU utiliza-
tion is 47.98% and the memory utilization is 42.95%.

In Figure 1, we show the resource utilization and time proportion
of ByteDance production workloads before implementing resource
e�ciency enhancements, where CPU and memory utilization re-
mains in a low range. Primary factors that impact resource e�-
ciency include Hadoop Distribute File System (HDFS) slowness,
shu�e fetch failures [34], coarse-grained resource control [38] and
sub-optimal job con�gurations [24]. This highlights the primary
directions for our work towards resource e�ciency, including reduc-
ing slow I/Os, re�ning resource control, and tuning con�guration
parameters. However, previous methods [7, 15, 21, 24] are not su�-
cient to handle the large-scale Spark workloads at ByteDance, as
the following special challenges need to be addressed.

¨ Expensive I/O costs. Spark’s data scan and shu�e oper-
ations are both resource-intensive and time-consuming. On the
one hand, when reading remote data from HDFS, waiting for I/O
operations causes certain periods of CPU and memory idleness.
On the other hand, Spark’s External Shu�e Service (ESS) shares

doi:10.14778/3685800.3685804

3759

https://doi.org/10.14778/3685800.3685804
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685804

the disk resources with other computing processes on the same
node, which may result in fetch failures due to high disk pressure.
Moreover, as a single ESS process serves all of the intermediate
shu�e data on a compute node, the abnormality of a single job can
potentially exacerbate faults and impact other shu�e tasks on the
same node. Although some approaches [15, 32, 34, 42] have been
proposed to improve shu�e e�ciency, they cannot meet stability
and performance needs at our scale.

≠Coarse-grained resource control.With the explosive growth
in Spark workloads, there is an urgent need to further enhance the
resource e�ciency of production clusters by reducing both resource
allocation and actual usage. Previous methods are mostly focused
on choosing server speci�cations to match jobs’ demands [7, 37] or
combining resource utilization and cost as the optimization goal [5],
which is hard to handle resource requirements variation of di�erent
stages. Although Spark provides stage-level resource settings using
ResourcePro�le [8], adoption is hindered by the required changes
to user code and the lack of support for SQL. Besides, Spark’s min-
imum granularity of resource allocation is one CPU core, that a
task is allocated at least one core, potentially resulting in ine�cient
CPU and memory utilization.

Æ Sub-optimal Spark con�guration. Confronted with diverse
business needs, manually setting the appropriate parameters for
Spark jobs is extremely time-consuming, given the varying charac-
teristics and resource demands of Spark applications. In large-scale
production clusters, job interference, bandwidth �uctuations, and
workload changes further increase the di�culty for automatic con-
�guration tuning methods to adapt to various applications and a
dynamic production environment. However, the majority of con-
�guration tuning methods focus on performance optimizations
[4, 22, 24, 41, 44], with relatively fewer approaches considering
resource e�ciency [5, 21], particularly rare [35] enabling Spark’s
dynamic allocation feature [11].

Our Methodologies. We design a resource e�ciency gover-
nance framework for Spark workloads. This framework is designed
to enhance the stability, performance, and resource utilization of
Spark jobs through a series of techniques implemented from the
bottom up. Among them, there are three main techniques to solve
the above challenges. ¨ We provide multi-mechanism shu�e ser-
vices to improve the stability of shu�e and reduce I/O delay. ≠
We design a �ne-grained resource control mechanism to accurately
adjust job resource allocations according to their actual usage. Æ
We devise a two-stage con�guration auto-tuning method to provide
appropriate parameters for various jobs. These three techniques
work in tandem to improve the overall resource e�ciency of Spark
workloads. In particular, the multi-mechanism shu�e services free
up idle CPU and wasted memory caused by slow shu�es, which
are then leveraged by �ne-grained resource control and two-stage
con�guration tuning.

Contribution. For large-scale Spark workload, we summarize
four key contributions are as follows:

• Based on the characteristics of ByteDance production clusters,
we design the multi-mechanism shu�e services which include
Enhanced ESS with request throttling and executor rolling, as
well as a push-based Cloud Shu�e Service (CSS). This design

improves shu�e stability and e�ciency, signi�cantly reducing
shu�e fetch failures and shu�e block time. (Sec. 3)

• We enable �ne-grained resource control by modifying underly-
ing Spark core modules by introducing new CPU and memory
allocation parameters. Also, we support additional spill modes for
Spark operators to reduce memory footprint and out-of-memory
(OOM) failures. (Sec. 4)

• We establish an end-to-end online tuning pipeline, which em-
ploys a two-stage con�guration auto-tuning method combining
both rule-based and algorithm-based tuning. This method is
most e�ective for enhancing CPU and memory utilization in
production environments while prioritizing stability. (Sec. 5)

• These techniques have been widely applied across ByteDance
production clusters, yielding a signi�cant improvement in re-
source e�ciency. Over 1.7 million Spark jobs, we have improved
CPU utilization from 48% to over 70% and memory utilization
from 43% to 50%. During the month of March 2024, we have
optimized more than 530,000 jobs, reducing the average job exe-
cution time by 11.1 minutes, with over 1 million CPU cores and
4.6 PB memory saved daily. (Sec. 6)

2 OVERVIEW AND SYSTEM DESIGN
In this section, we provide an overview of Spark at ByteDance and
our proposed resource e�ciency governance framework.

2.1 Overview of Spark at ByteDance
Figure 2 illustrates the lifecycle of a Spark application. Upon a user’s
submission, a driver initializes and interprets the submitted appli-
cation into multiple jobs, and generates a Directed Acyclic Graph
(DAG) for each job. Each DAG, consisting of various stages requir-
ing data shu�ing in between, is scheduled by the DAGScheduler.
Each stage consists of parallel tasks performing identical functions,
all of which are scheduled to execute on executors. Both executors
and ESS run on containers allocated in the clusters managed by
Yodel (YARN on Gödel [40]). Typically, the active tasks interact with
the HDFS for data scanning. Below, we provide detailed background
information pertinent to the Spark jobs at ByteDance.

At ByteDance, clusters are categorized into two types: dedicated
andmixed. Dedicated clusters, equippedwith solid-state disks (SSD),
o�er stable resources for high-priority jobs. Despite SSDs o�ering
improved I/O performance, maintaining shu�e stability in large-
scale workloads still remains challenging. Mixed clusters, on the
other hand, share disk resources with various services, such as on-
line services and HDFS. The sharing leads to increased competition
for disk I/Os and capacity, which exacerbates shu�e stability issues.

Gödel, a resource management and scheduling system based
on Kubernetes [3], is deployed across the aforementioned clusters,
o�ering a uni�ed computing infrastructure and resource pool. Prior
to Gödel’s deployment, cluster resources were managed by YARN.
To facilitate the smooth transition of Spark from YARN to Kuber-
netes, Yodel was developed, providing a YARN-compatible interface
atop Gödel. These Yodel clusters, with tens of millions of CPU cores,
are responsible for processing large-scale Spark workloads.

With over 1.7 million daily Spark applications, of which 75%
are periodic jobs, optimizing Spark con�gurations to improve uti-
lization and performance is crucial for our company. However,

3760

Figure 2: Design of Resource E�ciency Governance Framework - It shows three optimizations we proposed for enhancing resource
e�ciency within Spark, including multi-mechanism shu�le services (purple, Sec. 3), �ne-grained resource control (pink, Sec. 4), and two-stage
con�guration auto-tuning (orange, Sec. 5). These optimizations are implemented in the lifecycle (white) of Spark applications.

manually tuning the jobs poses a signi�cant challenge due to the
vast number of jobs and a limited understanding of Spark among
most users. Furthermore, the iterative tries of tuning to achieve opti-
mal con�gurations result in resource wastage. Consequently, there
is a strong demand for auto-tuning solutions for these periodical
jobs by leveraging historical metrics.

2.2 System Design for Resource E�ciency
As mentioned in Sec. 1, there are three main challenges that a�ect
resource e�ciency when running Spark jobs, including expensive
I/O costs, coarse-grained resource control, and sub-optimal Spark
con�guration. To meet these challenges, we have built a resource
e�ciency governance framework as shown in Fig. 2, including
multi-mechanism shu�e services, �ne-grained resource control,
and two-stage con�guration auto-tuning.
Multi-Mechanism Shu�le Services. Shu�e consumes a lot of
time during the execution of Spark jobs [45] and is an e�ciency and
stability bottleneck for large-scale Spark clusters [14]. At ByteDance,
the amount of daily shu�e data exceeds 500 PB, with individual
jobs exceeding hundreds of TB. At this scale, increasing shu�e
stability and e�ciency results in large amounts of resource savings.
According to the two types of clusters, we providemulti-mechanism
shu�e services including Enhanced ESS and CSS. Enhanced ESS
leverages request throttling and executor rolling strategies to re-
duce cases of shu�e fetch failures and retries when using ESS in
dedicated clusters. The CSS is a remote shu�e service that decou-
ples shu�e performance and stability from limited disk I/O and
space in mixed clusters. Therefore, we improve the performance
and stability of Spark shu�e on these clusters.
Fine-grained Resource Control. The resource utilization of Spark
applications is a�ected by user-speci�ed resource requirements and
actual resource usage during application execution. While Spark
tasks across di�erent stages can have large variations in CPU and
memory needs, they are all executed on executors under the iden-
tical resource con�guration. Hence, users often set their resource
requirements based on the most resource-intensive stages, leading

to excessive resource wastage in other stages. With the introduc-
tion of ResourcePro�les in Spark v3.1.1 [8], users can specify the
resource requirements of tasks and executors at the stage level.
However, this feature lacks support for SQL and heavily relies on
users’ manual tweaks, therefore can not be applied widely at large
scale. To this end, by taking advantage of Yodel’s elastic scaling
mechanism, we enhanced the Spark Core module to introduce the
support for milliCores and memoryBurst, enabling �ner resource
allocation and improving resource utilization. For the actual usage
of resources, we have added some new spill modes with con�gu-
ration parameters for operator spill, which can further reduce the
maximum memory usage and OOM failures.
Two-Stage Con�guration Auto Tuning. Spark con�guration
parameter settings signi�cantly in�uence resource e�ciency, par-
ticularly in large-scale workloads. Sub-optimal job con�gurations
can lead to substantial resource wastage. We devise an end-to-end
auto-tuning pipeline, relieving job owners of the burden of studying
and tuning a large number of Spark con�gurations. Our auto-tuning
pipeline employs a two-stage auto-tuning method that leverages
metrics collecting and aggregating from applications to deliver
tuned con�gurations tailored to each job’s requirements. These
con�gurations encompass parameters related to shu�e operations,
alongside newly introduced parameters by �ne-grained resource
control. The rule-based tuning draws upon the extensive expertise
of Spark experts to devise heuristic rules from performance metrics,
facilitating quick job con�guration tuning. The con�gurations will
be iteratively tuned with each job execution. When jobs occur OOM
failures, these jobs would temporarily disable tuning rules, and use
the algorithm-based tuning to explore con�gurations with better
resource e�ciency.

3 MULTI-MECHANISM SHUFFLE SERVICES
Shu�e involves expensive all-to-all data transfer between tasks
of adjacent stages. Remote fetch failure and retries due to shu�e
instability can cause signi�cant resource wastage and low CPU
utilization or stage retries. We propose multi-mechanism shu�e
services that speci�cally address shu�e issues of dedicated clusters

3761

and mixed clusters. For dedicated clusters, we deploy Enhanced
ESS, which improves ESS with request throttling and executor
rolling. For mixed clusters, we develop our own push-based CSS
that enables shu�e partitions to be pushed to andmerged by remote
servers. The Enhanced ESS and CSS improve the stability of shu�e
services and reduce the shu�e block time.

3.1 Enhanced External Shu�le Service (ESS)
Enhanced ESS is used in dedicated clusters where disk resources are
mainly SSDs which provide much higher disk I/Os and throughput.
We equip ESS with two capabilities: request throttling and execu-
tor rolling, aimed at improving stability. Request throttling serves
to prevent shu�e service overload by excessive requests from ab-
normal applications. Executor rolling promotes a more uniform
distribution of shu�e data across nodes within the cluster.
Request Throttling. This feature prevents a single application
from exhausting the resources of an ESS node and a�ecting the
shu�e performance of other applications in the cluster. Applica-
tions with an excessively large number of shu�e tasks produce
numerous small chunks during shu�e write, subsequently leading
to a large number of fetch requests to the ESS nodes during the
shu�e read stage. Such cases result in millions of shu�e requests
to be queued on an ESS node, with an average chunk size of less
than 20KB, causing high random I/Os on the node. As a result, the
impacted ESS nodes are unable to handle shu�e requests from
other applications due to some miscon�gured applications.

Shu�e block fetch latency ! is used as a metric to identify shuf-
�e congestion. Every 5 seconds, ESS reads the recently collected
shu�e latency statistics on the node to obtain the overall fetch la-
tency !4BB . When !4BB exceeds a latency threshold !\ of 10 seconds,
request throttling will be triggered on the ESS node. Then, for each
application, an allocated chuck fetch rate 5 A0ˆ is calculated based
on the maximum overall chuck fetch rate 5 A4BB within the last 5
minutes of the ESS node.

5 A0ˆ =
max)��)) 5 A4BB

(1 + log#) ⇥ ? (1)

Among Eq. 1,) denotes the current time, while �) = 5 minutes
signi�es the time interval. The ? 2 [1, 2, 3, 4, 5] denotes the appli-
cation priority code, where 1 is of the highest priority. # is the
number of applications fetching shu�e chunks on the ESS node.
We establish an exponential relationship between 5 A0 and # , based
on production experience.

Applications with an observed chuck fetch rate 5 A0 exceeding
its allocated chuck fetch rate 5 A0ˆ will have their allowed queued
chunks limited at @2̂ . We use the largest 5 A0 within the last 5 min-
utes, multiplied by the latency threshold !\ , to calculate@2̂ as shown
in Eq. 2.

@2̂ =
)��)max

)
5 A0 ⇥ !\ ⇥ _? (2)

With !\ = 10 seconds, the calculated @2̂ is the expected queued
chunks the application is able to handle within 10 seconds.

Periodically every 30 seconds, the throttling limits @2̂ will be
recalculated based on the latest 5 A0 , and the current !4BB will be
comparedwith themaximum observed !4BB . If the latency continues
to deteriorate, @2̂ will be reduced by a ratio _? , proportional to the
job priority, resulting in lower limits for lower priority applications.

_? is initially 1, and when the overall fetch latency !4BB returns to
normal, _? will be reset to the initial value and applications that are
previously limited will remain limited for up to 30 minutes since
the initial time of the initial throttling, to prevent impacting other
applications.
Executor Rolling. Through statistical analysis of historical appli-
cations with slow shu�es, we have observed that there is a high
correlation between slow shu�e reads and the volume of shu�e
data written on nodes. Speci�cally, the nodes with the top 5 shu�e
write volumes contribute to half of the slow reads, and the top 2
nodes account for 35% of the slow reads. Therefore, ensuring even
distribution of shu�e write data on ESS nodes can signi�cantly
improve shu�e performance.

An executor rolling strategy is introduced to limit the total shu�e
write size of each executor. When a task ends, the driver accumu-
lates the shu�e write size reported by each executor. When an
executor’s shu�e write reaches a speci�ed threshold, the execu-
tor is released and a new executor will be requested subsequently.
At ByteDance, the threshold for triggering executor rolling is set
to 20GB, which is the 95th percentile (P95) of all executor shu�e
write sizes measured previously. Additionally, scheduling policies
are implemented on the scheduler to provide soft constraints for
distributing containers evenly across the cluster.

The uneven distribution of shu�e write data on ESS hosts can
be attributed mostly to two reasons. Firstly the shu�e write sizes
of di�erent applications are highly skewed, leading to some ap-
plications with extremely large shu�e write sizes, leaving large
shu�e data on the nodes that they run on. Also due to resource
constraints, some applications may only use a fraction of their re-
quested executors at earlier stages, leading to uneven distribution
of shu�e data on those allocated executors. The executor rolling ap-
proach is helpful in both cases. For the �rst case, taking advantage
of ByteDance’s large cluster scale, data can be distributed across
more nodes in the cluster through the strategy. For example, a large
application previously using 2,000 executors can have its shu�e
data spread more evenly across more than 2,000 nodes using the
rolling strategy. For the second one, by releasing and acquiring new
executors on di�erent nodes, the shu�e data can be distributed
more evenly.

3.2 Cloud Shu�le Service (CSS)
The shu�e stability issues due to fetch failure and slow shu�e read
I/Os in mixed resource clusters are usually much more severe than
those in dedicated clusters. To this end, we have developed CSS 1, a
push-based remote shu�e service, to eliminate the dependence of
jobs on local disks. CSS allows sequential fetch during shu�e read,
while disaggregating the compute and storage nodes for shu�e,
therefore improving the performance and reliability of Spark shu�e
on mixed clusters.

The components of a typical CSS cluster are shown in Fig. 3.
(1) The Cluster Manager is responsible for resource allocation and
maintaining the status of registered workers and applications. State-
ful information can be persisted on Zookeeper or external storage
to achieve high availability and fault tolerance. (2) CSS Workers
accept incoming data from shu�e applications and support two

1CSS Open-Source Codebase: https://github.com/bytedance/CloudShu�eService

3762

https://github.com/bytedance/CloudShuffleService

Figure 3: Overview of Cloud Shu�le Service

data persistence modes, namely HDFS and local disk storage. Shuf-
�e data of the same partition is written to one primary worker and
one backup worker to achieve fault tolerance. A CSS cluster can
be scaled by adding more active workers. (3) The CSS Manager
Client is a shu�e application lifecycle manager running on the
Spark Driver. It is responsible for reporting the heartbeats of each
running application and ongoing shu�es. It also sends requests
for workers from the Cluster Manager and tracks progress and
metadata information for each shu�e stage, including the status
and location of each shu�e partition. (4) CSS Worker Client im-
plements Spark’s Shu�eManager interface and is used by shu�e
tasks running on executors to write and subsequently fetch data
from the CSS workers. During shu�e write stages, each map task
writes output shu�e data of the same partition to the same pair
of CSS workers. During shu�e read stages, each reducer task can
sequentially fetch its corresponding partition data in large chunks
from any of the CSS workers and switch over to the other when
encountering failures or slowness.

CSS has the following key features that contribute to its perfor-
mance and stability improvements in mixed clusters.
(1) Unlike ESS, CSS shu�e tasks push data of the same partition

to the same group of remote servers. The servers bu�er re-
ceived data in memory for each partition before �ushing them
to disk in chunks, resulting in merged data �les for partition
data. Subsequent tasks can read the data �les for each parti-
tion sequentially, which can signi�cantly reduce the I/O cost
compared to random I/Os.

(2) Partition Groups can be used to allocate multiple partitions on
the same group of remote servers. This allows tasks to push
shu�e data from multiple partitions in a batch during shu�e
write, reducing the number of I/O requests during shu�e write.

(3) Fast in-memory data replication is used to increase shu�e
fault tolerance at a lower cost. Due to the merging of task
partitions with CSS workers, data loss can be costly to retry as
it requires all tasks that write to the partition to retry during
the stage retry. Data replication reduces the chance of shu�e
stage failure when data lost on a CSS worker occurs. During
shu�e write, each partition data % pushed by shu�e tasks
also has a replica % 0 pushed to another worker simultaneously.
CSS increases the speed of data replication by returning after
successful in-memory writes and subsequent asynchronous

disk �ushing, allowing tasks to continue processing data push
without waiting for disk �ushing after each write request. This
mechanism has proved to be very e�ective in increasing shu�e
write speed with a low failure rate in production.

(4) Load balancing through the Cluster Manager, which periodi-
cally collects statistics and performance metrics reported by
each CSS worker. During requests from applications to allocate
CSS worker resources, the Cluster Manager allocates workers
with lower shu�e push or fetch I/Os, increasing the overall
utilization and performance of the cluster.

4 FINE-GRAINED RESOURCE CONTROL
We enhanced Spark by modifying its con�guration parameters
and interaction protocols for �ne-grained resource control to bet-
ter leverage Yodel’s capabilities. For resource allocation, with the
executor elastic scaling mechanism provided by Yodel, we add mil-
liCores and memoryBurst parameters to align resource settings
more closely with average utilization. Besides, the introduction
of milliCores facilitates the decoupling of resource requests and
task parallelism. For actual resource usage, we introduce new spill
modes to Spark operators with relevant parameters, making data
spilling to disk more �exible and reducing the maximum mem-
ory usage. These two mechanisms can signi�cantly reduce OOM
failures while improving resource e�ciency through �ne-grained
resource control over both allocation and actual usage.

4.1 Resource Allocation Control
As mentioned in Sec. 2, resource requirements of Spark applica-
tions vary greatly at di�erent stages. Spark v3.1.1 introduces the
ResourcePro�le feature, enabling users to specify executor resource
requirements at the stage level through executor reallocation among
di�erent stages. However, this functionality is currently limited to
RDDs and does not extend to SQL. Reallocating executors repre-
sents a signi�cant expense that can adversely a�ect performance.
Additionally, the utilization of this feature requires modifying user
codes with the RDD.withResources and ResourcePro�leBuilder
APIs, rendering it less appropriate for large-scale applications.

In contrast to utilizing ResourcePro�le, our solution avoids the
reallocation of executors and is con�gurable without code changes.
Leveraging Kubernetes resource management, speci�cally regard-
ing requests and limits, we can control container resource utiliza-
tion through request and limit parameters for CPU and memory,
enabling more elasticity in executor resources. If a node where
the container is running has enough resources available, it’s pos-
sible (and allowed) for a container to use more resources than the
requested resources. However, a container is not allowed to use
more than its resource limit. While con�guring Spark applications’
resource setting, the request parameter is determined according to
historical average CPU utilization, and the limit parameter is based
on historical peak CPU utilization. To facilitate this, we adapted the
resource protocol of Yodel, incorporating support for related Spark
con�gurations to con�gure request and limit settings for actual
scheduled containers’ CPU and memory.

For CPU resources, the minimum granularity of CPU per task
is one core in Spark, during I/O waiting periods, available CPU
resources will be underutilized. To address this issue and decouple

3763

Table 1: Supporting Operators with New Spill Modes for Resource Usage Control

Operator Supported Spill Modes Con�guration Parameters Example Values

Shu�e Write
/

Sort

Force Spill by Number of Records spark.shuffle.spill.numElementsForceSpillThreshold 1000000
Force Spill by Memory Used spark.{shuffle, unsafe.sorter}.spill.recordsSizeForceSpillThreshold 512m, 1g, 2g
Force Spill by Fraction of Memory Used spark.{shuffle, unsafe.sorter}.spill.recordsSizeForceSpillFraction 0.1, 1.0
Allow Spill by Memory Used spark.{shuffle, unsafe.sorter}.spill.recordsSizeAllowSpillThreshold 512m, 1g, 2g
Allow Spill by Fraction of Memory Used spark.{shuffle, unsafe.sorter}.spill.recordsSizeAllowSpillFraction 0.1, 1.0

Shu�e Read Control memory when fetching data spark.executor.memoryDirect 4096m, 8192m

Aggregate Force Spill by Memory Used spark.sql.TungstenAggregate.forceFallbackBytes 512m, 1g, 2g
Force Spill by Fraction of Memory Used spark.sql.TungstenAggregate.forceFallbackFraction 0.1, 1.0

resource allocation from task parallelism, we introduced a new con-
�guration parameter called spark.executor.milliCores. This
parameter is solely used to specify the CPU request for the executor,
taking precedence over spark.executor.cores, while task paral-
lelism is still determined by the values of spark.executor.cores.
Besides, spark.executor.milliCores supports a granular unit
of 1/1000 CPU core, allowing for more precise resource require-
ments settings. Hence, we can increase CPU utilization by re-
ducing CPU requests while maintaining task parallelism. Subse-
quently, to optimize application performance following the reduc-
tion in CPU requests, the CPU limit is typically set to a multiple
of spark.executor.milliCores. The speci�c multiplier for each
cluster can be con�gured and is empirically set to 2 without jeopar-
dizing the overall users’ experience.

The memory resource used by Spark executors can be divided
into two parts: JVM memory and memory overhead, which are de-
termined by the parameters spark.executor.memory and spark.

executor.memoryOverhead, respectively. In the default on-heap
memory mode, the majority of execution memory resides in the
JVM memory. Given that the JVM lacks elasticity in managing this
part of memory, con�guring JVM memory carries a high risk of
causing out-of-memory exceptions. Conversely, con�guring over-
head memory poses lower risks since its use is more �exible. Similar
to CPU, we added spark.executor.memoryBurst.ratio to spec-
ify the ratio that Spark uses to decrease the request setting for the
overhead memory portion of the total executor memory while keep-
ing the limit setting unchanged. We can consider that the actual
memory overhead X allocated to executors after memory overhead
optimization is equal to:

X = G<4<$ �min{G<4< + G<4<$ ⇥ (G<4<⌫ � 1), G<4<$ } (3)

whereG<4<$,G<4< , andG<4<⌫ represent the corresponding spark.
executor.memoryOverhead, spark.executor.memory, and spark.
executor.memoryBurst.ratio parameters. The setting of spark.
executor.memoryBurst.ratio considers the balance between sta-
bility and memory utilization. By default, the value is set to 1.2,
which improves memory utilization while preventing the job from
OOM failures.

4.2 Resource Usage Control
In Spark, the MemoryManager monitors the memory usage of task
operators while an executor is running. Each task operator can
request and utilize memory up to its allocated limit. The strat-
egy, also known as “lazy spill”, only triggers spill operations when
the task’s available memory becomes insu�cient. Under certain
circumstances, operators may spill their in-memory data to disk.

Alternatively, when a task requests memory from the MemoryMan-
ager and faces memory scarcity, the MemoryManager may instruct
other operators supporting spilling to free up memory by spilling
their data to disk. However, Spark’s memory management using
this strategy is relatively coarse, which is a signi�cant cause of
OOM failures.

In comparison to memory, there is ample space available in
disks to accommodate spilled data. To this end, We have improved
Spark’s memory management by introducing new spill modes for
underlying Spark operators, such as sort and aggregation, enabling
�ne-grained resource usage control. Speci�cally, in addition to
Spark’s existing “Force Spill by Number of Records” mode, we have
introduced four additional spill modes. The meanings of new spill
modes are as follows:

(1) Force Spill by Memory Used: Forces this operator to spill data
to disk when its number of records in memory exceeds the
speci�ed amount.

(2) Force Spill by Fraction of Memory Used: Forces this operator
to spill data to disk when the amount of execution memory
used is greater than the speci�ed fraction of the maximum
execution memory.

(3) Allow Spill by Memory Used: The operator can be triggered
to spill by other operators when the amount of execution
memory used is greater than the speci�ed amount.

(4) Allow Spill by Fraction of Memory Used: The operator can
be triggered to spill by other operators when the amount of
execution memory used is greater than the speci�ed fraction
of the maximum execution memory.

Table 1 shows the spill operators and currently supported modes.
Both shu�e write and sort operators support one of the original
and all four new spill modes, with similar related parameters. The
memory of the shu�e read operator is directly controlled when
fetching data, while the aggregate operator adds two force spill
modes. With improvements made to spill, we can accurately control
the memory used by Spark operators, ensuring that memory is
allocated and released more e�ciently.

5 TWO-STAGE CONFIG AUTO TUNING
The con�guration parameters of Spark jobs have a signi�cant in-
�uence over resource utilization. However, in production environ-
ments, conducting parameter-tuning experiments for each job is
impractical, especially with methods [19, 24, 37] that incur addi-
tional execution costs. Thus, we have established an online tuning
pipeline speci�cally for periodical jobs that takes full advantage of
running metrics. Instead of pre-tuning parameters, we start with

3764

default or user-de�ned parameters (usually sub-optimal) and record
the running metrics of each job. These metrics are then analyzed to
improve the parameters for the next execution of the job. To achieve
quick and stable convergence of online tuning, we have developed
a two-stage con�guration auto-tuning method as shown in Fig. 4.
The �rst stage is rule-based tuning, leveraging manually crafted
rules by Spark experts, thus circumventing ine�cient exploration.
The second stage involves algorithm-based tuning, wherein the
Bayesian optimization algorithm is re�ned for stability. It aims to
�nd better parameters while minimizing the probability of OOM
failures in production.

5.1 Online Tuning Pipeline
Figure 4 illustrates the work�ow of our online tuning pipeline fea-
turing the two-stage con�guration auto-tuning method. It consists
of four components: (1) Tuning API is responsible for interacting
with the data platform and end users, which allows users to mon-
itor and select tuning options of CPU, memory, and shu�e. (2)
JobAnalyzer analyzes Eventlog data during Spark job execution
and other data from clusters to generate job running metrics in real
time. (3) Rule-Based Tuning is composed of several heuristic rules,
which take the running metrics of jobs as input and generate tuned
parameters based on the relationships of the heuristic rules in the
rule tree. (4) Algorithm-Based Tuning is specially optimized for
the stability requirements of online parameter tuning. It explores
parameters with better performance based on the running metrics
of historical parameters.

Figure 4: Overview of Two-Stage Con�g Auto Tuning

Users can �exibly enable or disable con�guration auto-tuning
via the Tuning API. When auto-tuning is activated for a periodical
job, the Tuning API receives the job and initiates the entire tun-
ing process. Before each job execution thereafter, the Tuning API
retrieves the latest tuned con�gurations.

The Spark Eventlog is generated continuously throughout the
job execution process. The JobAnalyzer analyzes these Eventlogs
and aggregates them into real-time metrics. There are more than
200 running metrics in total, covering various dimensions such as
application, executor, and stages. Table 2 presents key metrics.

Our two-stage con�guration auto-tuning method combines rule-
based and algorithm-based tuning. Both leverage real-time metrics
obtained from JobAnalyzer to calculate tuned parameters for jobs.
These metrics and parameters are stored for subsequent use by the
Tuning API, enabling it to update parameters for future job execu-
tion. This iterative process allows for the continuous optimization
of con�gurations for resource e�ciency.

5.2 Rule-Based Tuning
Rule-based tuning can quickly improve the con�guration for a
multitude of production jobs. After Job Analyzer aggregates metrics
for each job, we obtain a rough pro�le of the job, such as how
many tasks it has, how much data it inputs, what the average
and maximum CPU utilization is, etc. Leveraging these metrics,
rule-based tuning employs heuristic rules to adjust con�guration
parameters for the job. In ByteDance production environments,
with an increasing number of heuristic rules, we use a rule tree
to describe the relationship among rules. These rules are typically
categorized into CPU, memory, and shu�e groups, delineated by
the parameters they target, as illustrated in Table 3.

The basic heuristic rule for CPU and memory tuning can be
summarized as follows: when the average and maximum utilization
are low, the corresponding resource application amount is reduced
while maintaining constant job concurrency. Conversely, when the
utilization is too high, the resource application amount is increased.
To better handle various corner cases, we have incorporated addi-
tional metrics to provide a better understanding of the job’s current
running status. For example, the “executor_duty_factor” metric
helps di�erentiate between low CPU utilization due to long idle
executors or low utilization of the job thread itself.

As mentioned in Sec. 3, a cause of shu�e problems is the pres-
ence of a large number of random I/Os in ESS. By using optimized
shu�e-related parameters, the number of random I/Os can be e�ec-
tively reduced. Our heuristic rules observe the number of partitions
in each stage of the job. If the number of partitions signi�cantly
exceeds the number of cores the job can apply for, it is consid-
ered unnecessary concurrency. By adjusting parameters such as
spark.sql.files.maxPartitionBytes and spark.sql.adaptive.
maxNumPostShufflePartitions, the number of partitions in the
read stage and shu�e stage can be controlled, thereby avoiding
the generation of excessive small shu�e �les. Similarly, additional
metrics are used to assess the impact of shu�e-related parameter
tuning. For example, memory spill data size in stages is measured
to predict whether an increase in the amount of data processed by
a single task will result in more severe performance degradation.

All heuristic rules are designed in pairs, comprising both in-
creasing and decreasing rules for each parameter. These symmetric
tuning conditions and directions ensure convergence inmost tuning
rules. Furthermore, there is an independent e�ect evaluation and of-
�ine analysis outside the rules to follow up on non-convergence and
negative tuning. In cases of negative tuning, the system automati-
cally stops the related tuning rules or switches to algorithm-based
tuning to minimize the impact on online production.

5.3 Algorithm-Based Tuning
To address jobs that cannot be e�ectively optimized through the
heuristic rule-based tuning, we have developed an algorithm-based
tuning method using Bayesian optimization. First, We make a for-
mal de�nition of Spark con�guration tuning, which can be regarded
as a black-box optimization problem:

Ĝ argmin
G

5 (G) (4)

where G 2 '= represents the Spark parameters for tuning, as listed
in Tab. 3, and 5 (G) 2 ' represents the parameter evaluation. The

3765

Table 2: Spark Job Running Metrics

Catalogs Key Metrics Descriptions Units

Application

status Job status (SUCCEEDED/KILLED/FAILED) -
app_total_duration_ms Total runtime of all tasks ms

app_total_tasks Total number of tasks -
avg_{tasks, input}_run_time Average runtime of {all tasks, input tasks} min
app_total_input_{tasks, bytes} Total input {tasks, data size} -

app_total_shu�e_read_{tasks,bytes} Total shu�e read {tasks, size} -

Executor

executor_mem_alloc_total Total memory allocated amount of all executors G · h
executor_mem_max_alloc_total Maximum memory allocated amount of all executors in last 3 days G
executor_mem_usage_{avg, max} {Average, Maximum} memory utilization of executors -
executor_cpu_usage_{avg ,max} {Average, Maximum} CPU utilization of executors -
avg_executor_alloc_rate_{3d, 7d} Maximum executor allocated rate in last {3, 7} days -

executor_duty_factor Load rate of executors

Stage

stage_avg_tasks_runtime_max Maximum average runtime of all stages ms
stage_run_time_max_avg_input_memory_bytes_spilled Average memory spill of tasks in the slowest stage G

stage_max_avg_{tasks, input}_run_time Average runtime of the largest {task, input task} in stages min
stage_avg_input_task_runtime_max Maximum runtime of the average runtime of input tasks in stages min

stage_total_input_tasks_max Maximum number of tasks in the input stages -
stage_total_input_tasks_max_avg_runtime Average runtime of the input stage with the largest number of tasks min

stage_avg_input_task_runtime_max_avg_memory_bytes_spilled Average amount of memory spill data in the slowest input stage G
stage_avg_shu�e_read_task_runtime_max Maximum runtime of the average runtime of tasks in shu�e read stages min

stage_shu�e_read_bytes_max Maximum shu�e read size in shu�e read stages G
stage_run_time_max_total_shu�e_read_tasks Number of tasks in the slowest stage -

Table 3: Tuned Con�guration Parameters and Value Ranges

Types Con�guration Parameters Ranges

CPU

spark.dynamicAllocation.minExecutor 1 ⇠ 5
spark.dynamicAllocation.initialExecutors 1 ⇠ 5

spark.dynamicAllocation.maxExecutor 5 ⇠ 2000
spark.executor.instances 1 ⇠ 2000

spark.executor.cores 1 ⇠ 4

spark.executor.milliCores
spark.executor.

cores ⇥ (125 ⇠ 2000)

Memory

spark.executor.memory 4g ⇠ 64g
spark.executor.memoryOverhead 1g ⇠ 4g

spark.executor.memoryBurst.enabled True/False
spark.executor.memoryBurst.ratio 1 ⇠ 1.4

Shu�e spark.sql.files.maxPartitionBytes 64M ⇠ 16G
spark.sql.adaptive.maxNumPostShufflePartitions 500 ⇠ 100000

goal is to �nd the con�guration Ĝ that minimizes the objective
function. To pursue the improvement of utilization, we de�ne the
evaluation indicator as the reciprocal of the product of CPU and
memory utilization. Additionally, in cases where job performance
is exceptionally poor, resulting in issues like OOM failures or exces-
sively long execution time, an additional substantial penalty will
be imposed. Note that 5 is an unknown function that only allows a
limited number of evaluations. As the tuning is performed online,
each evaluation is actually a single execution of a periodical Spark
job in production.

Based on Bayesian Optimization, we have developed an algo-
rithm that e�ectively utilizes the evaluation results of historical
parameters to recommend better ones. This algorithm aims to im-
prove the e�ciency and e�ectiveness of the tuning process by
leveraging the information gained from previous evaluations. The
algorithm follows these steps:

(1) Fit a surrogate model: We choose the Gaussian Process (GP)
as a surrogate model to approximate unknown function 5 , thereby
the evaluation results of unseen parameters can be inferred. Let
- 2 ':⇥= be the : sets of historical parameters, . 2 ': be the
historical evaluation results, and be the covariance function, then

the evaluation result of parameter G obeys the Gaussian distribution
(` (G),f2 (G)), where the predictive expectation and variance are
calculated as Eq. 5:

` (G) = (G,-) �1 (- ,-).
f2 (G) = (G, G) � (G,-) · �1 (- ,-) · (- , G)

(5)

(2) Minimize an acquisition function: The Expected Improvement
(EI), as de�ned in Eq. 6, is usually adopted as an acquisition function
in Bayesian Optimization. It measures themathematical expectation
of evaluation result improvement that the unseen parameter G can
bring. The EI achieves a good trade-o� between exploitation (`) and
exploration (f2), enabling e�ective comparisons among di�erent
unseen parameters.

⇢� (G) =max(` (G) � 5 (Ĝ), 0) + f (G)k (` (G) � 5 (Ĝ)
f (G))

� |` (G) � 5 (Ĝ) |�(` (G) � 5 (Ĝ)
f (G)

(6)

wherek is the standard normal probability density function, � is
the standard normal cumulative distribution function, and Ĝ is the
best parameter in historical runs.

Considering that online tuning has a strong aversion to risks
[21, 39, 43], we restrict the optimization of the acquisition function
in a region with limited variance, so that the tuning trajectory can
be smoothed, i.e., parameters far away from historical parameters
will not be explored immediately. Therefore, the recommended
parameters G⇤ for the next run are formulated as below:

G⇤ argmin
G
⇢� (G)

s.t. f2 (G)  `2 (G)
(7)

Di�erent from traditional works using the gradient descent method
[21] or quasi-Newton’s method [2, 20] to optimize the acquisition
function, which may fall into a local optimum, we employ the
genetic algorithm to solve the Eq. 7. This approach allows for a more
e�cient and targeted exploration of the parameter space, improving
resource utilization of Spark jobs while ensuring stability.

3766

6 EVALUATIONS
In this section, we validate the e�ectiveness of these techniques
using ByteDance production workloads. We will analyze and an-
swer the following questions from the perspectives of stability,
performance, and resource utilization:
• How much performance improved by shu�e services?
• How does resource control help stability and utilization?
• How many resources can be saved by con�guration tuning?
• What are the advantages of these techniques in production?

6.1 Enhanced ESS and CSS Evaluations
This section evaluates the e�ects brought by multi-mechanism
shu�e services, including evaluating the stability of Enhanced ESS
through production workloads and evaluating the performance of
CSS using the TPC-DS benchmark [30].
Enhanced ESS. The request throttling is evaluated through its
performance in production clusters. Figure 5 shows the e�ect of
request throttling on a job that sends massive shu�e requests to
the ESS node over a period of time. When the ESS server’s shu�e
latency starts deteriorating due to increasing shu�e requests, re-
quest throttling takes e�ect for the job contributing the most shu�e
requests, reducing the number of subsequent shu�e requests sent
by the job. Within a few minutes, the ESS can �nish serving its
queued requests, and shu�e latency is back to normal shortly.

Figure 5: Example of Shu�le Request Throttling

The executor rolling is also evaluated on a product cluster. As
shown in Fig. 6, we compare the disk usage before and after the
executor rolling is launched. Here, “Max Disk Used” represents the
maximum shu�e data size on all physical machines in a day in the
cluster. “Avg Disk Used” represents the average shu�e data size.
“Disk Used P50“, “Disk Used P90”, and “Disk Used P99” represent the
50th, 90th, and 99th percentiles of the shu�e data size, respectively.
We select the disk usage data for one day in January 2023 before
and one day in January 2024 after the executor rolling launch.
With the growth of the business, the median disk used for shu�e
on each physical machine has increased from 0.7TB to 1.2TB, the
average has increased from 1.8TB to 2.6TB, and the maximum
has decreased from 48T to 23T. The 99th percentile has decreased
slightly. Therefore, it can be concluded that after the launch of
executor rolling, the usage of disks is more evenly distributed,
avoiding large amounts of shu�e data written to a few executors.
CSS. This experiment is conducted on a 40-node cluster featuring
Intel Xeon Gold 6130 CPUs @ 2.10GHz, equipped with 64GB *
16 DRAM, 16 13T HDDs, and 2 * 25GB network interface cards

Figure 6: Executor Rolling Balances Disk Usage

to ensure network transmission e�ciency. The dynamic executor
allocation is enabled and the executor resource con�gurations are
the same to ensure similar resource allocation from the cluster for
all shu�e services. The CSS remote shu�e cluster is deployed on a
9-node cluster with Intel Xeon Gold 6230 CPUs @ 2.10GHz, 64GB *
16 DRAM, 12 13T HDDs, and 2 * 25GB network interface cards.

In our comparative analysis, we assess the execution time and
resource utilization of three shu�e services - ESS, Magnet (Spark
3.2’s push-based shu�e service [34]), and CSS - using a 1TB TPC-DS
benchmark [30]. Figure 7 illustrates that CSS improves the speed
by over 10% for certain SQLs compared to both ESS and Magnet,
with signi�cant performance enhancements observed in nearly 30%
of the queries. Table 4 attests to this improvement, showing CSS
reduces total execution time by 0.4 hours relative to ESS and 1.3
hours against Magnet. Moreover, CPU and memory allocation and
usage are notably decreased with Magnet and CSS.

Both CSS and Magnet leverage a push and merge-based shu�e
strategy. Queries 14a, 14b, 48, 62, and 68, characterized by large shuf-
�e write stages followed by smaller read stages, bene�t most from
this approach. While both exhibit improvements, CSS outperforms
Magnet by bu�ering reducer partitions in memory and �ushing
data blocks when exceeding block size thresholds. Its e�cient in-
memory ack mechanism mitigates push overhead and minimizes
shu�e write times, thus enhancing overall performance. Besides,
Magnet shows performance degradation compared to ESS due to
its additional waiting time incurred during merge result reception
and block merging at map task completion, which is particularly
disadvantageous when dealing with smaller shu�e data sizes.

6.2 Resource Control Evaluations
This section evaluates the e�ects of �ne-grained resource control.
However, it is essential to note that the e�cacy of these features
hinges on the con�guration parameters’ appropriate set and tuned.
Consequently, the optimization outcomes combine the two-stage
con�guration tuning method. These features provide the ability to
con�gure �ne-grained resources, and the two-stage con�guration
tuning method maximizes the bene�ts of these features.
Resource Allocation Control. Before the implementation of the
milliCores, we enhanced the average CPU utilization of approxi-
mately 240,000 jobs to 56.31% by employing shu�e optimization
and rule-based con�guration tuning. On 2023-08-16, the milliCore-
sis was introduced in grayscale alongside corresponding parameter
tuning as a new feature. We have selected a batch of production
jobs from 2023-07-01 to 2024-02-24, with the total number increased
from 211,816 to 360,720. Concurrently, as shown in Fig. 8, the num-
ber of enabled jobs rises from 0 to 350,108 during the same period.
Remarkably, as the proportion of enabled jobs surged, the average

3767

Figure 7: Execution Time Comparison of Shu�le Services in 1TB TPC-DS

Table 4: Resource Comparison

ESS Magnet CSS

Total Execution Time (h) 3.69 4.59 3.29
Total Impro Ratio (%) - -9.90% +10.93%

CPU Allocated (Cores) Max 1240 1190 1080
Avg 463 464 443

CPU Used (Cores) Max 819 589 623
Avg 94.4 79.8 97.6

Memory Allocated (TB) Max 4.83 4.86 4.22
Avg 1.82 1.82 1.74

Memory Used (TB) Max 2.95 1.99 2.39
Avg 0.85 0.72 0.80

CPU utilization gradually climbed to 94.8%. This highlights the
critical role of the milliCores in improving resource e�ciency.

Figure 8: CPU Utilization Improvements with milliCores

As shown in Fig. 9, we quantify the reduction in memory allo-
cation by the implementation of the memoryBrust. This feature
reduces users’ memory allocation by reducing the value of memory
overhead while ensuring stability. We use Eq. 3, multiplied by each
job’s duration to calculate the bene�ts in memory allocation. This
feature was launched in October 2023, and since then, the number of
enabled jobs has progressively increased from 3,753 to 474,692. By
the end of January 2024, ByteDance had achieved a daily savings of
55,130 TB · hour in memory allocation. These �ndings underscore
the e�ectiveness of the memoryBurst feature in reducing memory
demands and saving resources.

Figure 9: Memory Savings with memoryBurst

Resource Usage Control. Spill optimization is widely used in
production jobs, we analyze several typical jobs for improvements
brought by the shu�e write, shu�e read, and sort operators. For
instance, in a data warehousing job with heavy shu�e write opera-
tions, the spill otimization results in a 55.52% reduction in allocated
memory (from 3.26TB to 1.45TB) and a 56.20% decrease in actual
memory usage (from 1.21TB to 0.53TB). In another case, considering
a shu�e-read-intensive job, spill optimization leads to a signi�cant
decrease in the number of OOM tasks within a stage, dropping from
7482 to 27, alongside a reduction in execution time from 29 minutes

to 11 minutes. Moreover, memory used can see a substantial decline
of 65% (from 23.1TB to 8.16TB). Notably, the shu�e operators’ spill
capability evolves from passive spilling when container memory
reaches full capacity to active spilling when the memory used hits a
speci�c threshold, resulting in smoother �uctuations with increased
spill frequency but consistent shu�e performance. This transition
notably enhances memory resource utilization. Lastly, taking a sort
job as an example, the memory allocation decreases from 330TB to
214TB, with actual memory used dropping from 300TB to 129TB,
constituting a 57% reduction. The job duration remains relatively
stable, changing from 2.1h to 2.2h. Additionally, disk spill occur-
rences shifted from being triggered solely upon memory reaching
full capacity to a regular triggering mechanism once the memory
threshold of 1GB is reached.

6.3 Con�guration Tuning Evaluations
Both the rule-based and algorithm-based tuning methods are de-
ployed in ByteDance production environments. In this section, we
present various results associated with resource utilization by our
tuning methods, where utilization is calculated by dividing the total
CPU or memory used by the total CPU or memory allocated.
Rule-Based Tuning. The rule-based tuning has undergone several
iterations and optimizations throughout the online process. Initially,
it primarily manages job resource allocation by adjusting CPU pa-
rameters such as spark.dynamicAllocation.maxExecutor, spark.
vcore.boost.ratio, spark.executor.cores, andmemory param-
eters like spark.executor.memory and spark.executor.memory
Overhead. As depicted in Fig. 10, during the �rst period stage 2022-
07 to 2023-08 CPU utilization has risen from 51.4% before 2023-03
to 59.4% after 2023-03 on average. Similarly, the memory utilization
rate has increased from 43.2% to 46.3%.

Subsequently, with the implements of the milliCores (refer to
Fig. 8) and the memoryBrust (refer to Fig. 9) features, the rule-
based tuning maximizes the bene�ts of these additions by adjust-
ing corresponding parameters like spark.executor.milliCores,
spark.executor. memoryBurst.enabled, and spark.executor.

memoryBurst.ratio. It is evident that after 2023-08 and 2023-10,
there has been a notable improvement in CPU utilization during
the second period and memory utilization during the third period,
correlating with the increase in tuned jobs. With the re�nement of
the rules, the CPU utilization of all tuned jobs reached 90.0%, and
memory utilization reached 52.7%, encompassing nearly one-third
of production jobs and yielding signi�cant improvements.

3768

milliCoresWithout milliCores & memoryBrust milliCores & memoryBrust

Figure 10: Rule-Based Tuning

Text

Start Algorithm-Based
Tuning

Figure 11: Algorithm-Based Tuning

Rule Based Tuning Rule Based and Algorithm-Based Tuning

Figure 12: Two-Stage Tuning

Algorithm-Based Tuning. The algorithm-based tuning serves as
a supplement to rule-based tuning in production environments. For
some online Spark jobs, rule-based tuning may not occur due to
stability considerations or the rules may not cover the current state
of the job. As a result, the job may not be tuned or the tuning e�ect
may not be signi�cant. In such cases, these jobs are sent to the
algorithm-based tuning to further improve resource utilization. We
set the maximum iteration as 25 times for algorithm-based tuning
of online jobs in production.

Figure 11 shows the online performance of jobs tuned by algorithm-
based tuning. There are a total of approximately 3000 jobs, and
algorithm-based tuning has taken over these jobs from 2023-12-
28. Before the algorithm’s intervention, due to the limitations of
rule-based tuning, the utilization of this batch of jobs was not high,
with average CPU and memory utilization hovering around 31%
and 21%, respectively. After the algorithm’s takeover, the CPU and
memory utilization of these jobs gradually improved and eventually
stabilized at 58% and 45% respectively.
ATwo-StageTuningCase. Figure 12 shows the utilization changes
of all jobs in a project, with approximately 5% of jobs being taken
over by algorithm-based tuning after 2023-12-28. Therefore, the
utilization of the �rst half of the curve represents the result of the
project using only rule-based tuning, while the latter half repre-
sents the combined results of rule-based tuning for some jobs and
algorithm-based tuning for a few jobs. It can be observed that there
is little change in CPU utilization between using rules only and
employing a two-stage combination. This is because the CPU utiliza-
tion of this batch of jobs is already relatively high when using rules.
However, in terms of memory utilization, the former is around 21%
while the latter is around 26%, showing a signi�cant improvement.
This is because the proportion of memory usage is relatively high
for the 5% of jobs, and after further optimization with the algorithm,
the memory utilization of the project signi�cantly improved.

Algorithm-based tuning can further improve the results obtained
from rule-based tuning. However, due to its time-consuming nature
and slower tuning speed, algorithm-based tuning needs to be used
with rule-based tuning to achieve better results in production.

6.4 Overall Tuning Performance
These techniques have undergone extensive iteration, optimization,
and deployment. In this section, we will use data over two years to
conduct a statistical analysis of these techniques in enhancing the
resource e�ciency of large-scale Spark workloads at ByteDance.

Figure 13 illustrates the improvement in resource e�ciency
across all Spark jobs spanning from 2022 to 2023. Regarding CPU
utilization, iterative optimizations of rule-based con�guration tun-
ing have led to an increase from 48.5% in 2022 to 60% in 2023,

Figure 13: Overall Resource E�ciency Improvements

subsequently increased to over 70% with the introduction of the
milliCoresfeature. Similarly, memory utilization has increased from
43.3% in 2022 to 46% through rule-based con�guration tuning, fur-
ther bolstered to nearly 50% with the memoryBrust feature. The
continuous iteration of rule-based con�guration tuning and the
launch of algorithm-based con�guration tuning, as well as the ex-
pansion of the enabled job scope, are still ongoing. The shu�e
block ratio, representing the proportion of time waiting for shuf-
�e, initially stood at approximately 14% in 2022-01, reduced to
about 4%-6% through enhancements in shu�e speed and stability
via Enhanced ESS and CSS, and drove down to 2% by subsequent
parameter tuning.

Table 5: Resources Saved by Optimized Jobs

Month # of
Users

of
Jobs

of Jobs
with CPU

Util.
� 60%

of Job
with MEM

Util.
� 50%

Saved
CPU
Alloc.

(core · day)

Saved
MEM
Alloc.

(PB · day)

Avg. Job
Exec.
Time
(min)

Avg. Job
Exec.
Time #
(min)

2023-03 9657 255639 151218 103615 695588 14.7 28.9 19.1
2023-04 9856 226733 163538 96838 597411 12.0 27.8 17.1
2023-05 10148 292357 180306 122761 718819 13.7 26.9 18.3
2023-06 10689 341912 182876 106604 701394 9.2 28.3 15.0
2023-07 11031 363587 195663 102353 557278 8.1 28.2 13.9
2023-08 11734 441064 275763 123287 597583 9.5 28.9 11.0
2023-09 12548 523290 294565 125514 938821 7.4 28.8 10.5
2023-10 12765 478943 258175 112404 865428 9.6 27.1 11.5
2023-11 13092 489371 261811 131240 811081 10.3 30.6 6.4
2023-12 13478 502325 280444 143940 897858 7.2 29.2 6.9
2024-01 13771 545687 292727 151612 930637 5.7 27.3 8.3
2024-02 14004 533445 308475 143541 1049231 4.6 24.7 11.1

= “The Number”, Util. = “Utilization”, MEM = “Memory”, Alloc. = “Allocation”, Avg.
= “Average”, Exec. = “Execution”, # = “Reduction”

As shown in Tab. 5, we calculate the average number of opti-
mized jobs and resource allocation savings per day for each month
from 2023-03 to 2024-02. Notably, our techniques have yielded sub-
stantial e�ects, with the number of service users exceeding 9,657 to
14,004 and optimized jobs surging from 255,639 to 533,445. Corre-
spondingly, the daily average of jobs with CPU utilization exceeding

3769

60% increased from 151,218 in 2023-03 to more than 300,000 in 2024-
02, while jobs with memory utilization surpassing 50% have also
reached around 150,000. The daily savings in CPU and memory
resource allocation have peaked at 1,049,231 core · day and 4.6 PB ·
day respectively. Besides, the average job execution time has also
dropped signi�cantly, reaching an 11.1-minute reduction in 2024-
02, accounting for 31% of the average job execution time before.
Meanwhile, it can also be seen that the resource bene�ts �uctuate
in di�erent months.

7 LESSONS LEARNED
We brie�y summarize the experience and lessons learned from
deploying the resource e�ciency governance framework in pro-
duction since 2022. Below is a representative list.
Choosing appropriate shu�le services. In our production envi-
ronments, we extensively deploy Enhanced ESS in dedicated clus-
ters and CSS in mixed clusters. As the disk resources in dedicated
clusters are SSDs, disk I/O is not a bottleneck for shu�e. In this
context, we have observed that leveraging Enhanced ESS e�ectively
meets the requirements of our users. Therefore, it is not necessary
to switch all jobs to a remote shu�e service.
Decoupling CPU and memory optimization. Initially, to en-
hance CPU utilization, we pursued a strategy involving utilizing
a single core to handle more tasks and capitalize on idle CPU re-
sources. However, this strategy caused a higher probability of OOM
failures in some production clusters, due to concurrent tasks re-
quiring increased memory allocation. Consequently, we have intro-
duced milliCores to optimize CPU utilization while still maintaining
task parallelism. This allows the con�guration tuning of CPU and
memory parameters more independently.
Minimizing user-visible parameters. We have discussed using
the request and limit parameters to enhance resource utilization
while ensuring execution speed. However, we ultimately decided
not to expose CPU and memory limit parameters to users. If users
are allowed to freely set the limit, the actual amount of resources
consumed could become uncontrollable. Additionally, when a large
number of such jobs run simultaneously, it could lead to excessive
machine utilization and severely degrading job performance.

8 RELATEDWORK
Resource e�ciency involves the coordinated work of many compo-
nents. Thus, we discuss the related work for the following aspects.
Shu�le Mechanism. In large-scale spark workloads, fast I/O sup-
port is one of the basic necessities [18]. Many solutions [25, 34]
about shu�e mechanisms focus on optimizing disk I/O and pipeline.
Sail�sh [32] is centered around aggregating intermediate data to
improve performance by batching disk I/O. Ri�e [42] merges frag-
mented intermediate shu�e �les into larger block �les, converting
small, random disk I/O requests into large, sequential ones. iShu�e
[15] presents a shu�e-on-write operation to push map output data
to nodes proactively. Magnet [34] and Apache Celeborn [9] are
remote push and merge-based shu�e services. Our enhancements
alleviate the I/O bottleneck and improve resource e�ciency by
optimizing ESS, CSS, and tuning relevant parameters.
Resource Optimization. Maroulis et al. [26] orchestrate the exe-
cution order of Spark applications and tune the computing nodes’

CPU frequencies to minimize energy consumption. Islam et al. [17]
use reinforcement learning to place the executors of jobs while
leveraging VM instance prices. AutoExecutor [33] predicts query
run times to determine the optimal number of executors, guiding
the right-sizing of resources. SimCost [5, 6] introduces resource
time representing both the utilization and cost to assist in making
cost-e�ective decisions on resource con�guration. Asemen et al.
[1] propose MILP and LP models to predict runtime in di�erent ma-
chine types with a cost-aware resource recommendation algorithm
to select the best con�guration. The techniques we propose delve
into the Spark engine with �ner granularity, enabling control over
resource allocation and usage. Concurrently, we integrate parame-
ter tuning methods to optimize resource parameters, larger than
the types or range optimized by [1, 5, 7].
Con�guration Tuning. The goal of most research is performance
optimization, that is, reducing the execution time of spark jobs.
Following the survey [16], they can be categorized into six types
including rule-based approach [12], cost modeling approach [4,
13, 22, 36],simulated-based approach [31], experiment-driven ap-
proach [29, 44], machine learning approach [7, 23, 27] and adaptive
approach [24, 41]. Some methods consider multi-objectives, such as
using cloud-level parameters to control server costs [7, 37], tuning
MLlib parameters to optimize memory consumption and accuracy
[28], and Bayesian optimization (BO) based solutions [21, 35] for
multiple targets. However, these methods typically do not enable
Spark’s dynamic allocation [11] and are only suitable for a �xed
number of executors in smaller-scale clusters. Even Li et al. [21]
have production job tuning evaluations that have not turned on
this feature. We enable this unignorable feature coupled with our
unique parameters, making tuning more e�ective.

9 CONCLUSIONS
In this paper, we propose a series of techniques aimed at enhanc-
ing resource e�ciency for Spark workloads, particularly focusing
on stability, performance, and utilization in large-scale production
environments. Throughout the complete lifecycle of Spark jobs,
we present multi-mechanism shu�e services adapted to complex
production environments, employ �ne-grained resource control
to minimize resource allocation and usage and utilize a quick and
stable two-stage con�guration auto-tuning method. Through vari-
ous experiments and production metrics, our proposed techniques
demonstrate substantial resource savings with millions of CPU
cores and petabytes of memory daily. In the future, we plan to
further re�ne and expand these technologies, such as improving
HDFS performance, incorporating more tuning algorithms, etc.

ACKNOWLEDGMENTS
Wewould like to thank all those who have contributed to the design
and development of our resource e�ciency governance framework
including Yadong Zhang, Xin Gao, Xuewei Lin, Lei Liu, Chang Liu,
Zilong Zhou, Jiahuan He, Mourang Han, Cheng Peng, Fan Zeng,
Min Zhang, Bo Li, Xiaofei Li, Huixiang Wang, Wei Wang, Shaofei
Yang, and Dongyang Wang. This work was supported in part by
National Natural Science Foundation of China [U23A20309] and
ByteDance Research Project [CT20211123001686].

3770

REFERENCES
[1] Mohammad-MohsenAseman-Manzar, Soroush Karimian-Aliabadi, Reza Entezari-

Maleki, Bernhard Egger, and Ali Movaghar. 2022. Cost-aware Resource Recom-
mendation for DAG-based Big Data Work�ows: An Apache Spark Case Study.
IEEE Transactions on Services Computing (TSC) 16, 3 (2022), 1726–1737.

[2] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham,
Andrew G Wilson, and Eytan Bakshy. 2020. BoTorch: A Framework for E�cient
Monte-Carlo Bayesian Optimization. Advances in Neural Information Processing
Systems (NeurIPS) 33 (2020), 21524–21538.

[3] Brendan Burns, Brian Grant, David Oppenheimer, Eric A. Brewer, and John
Wilkes. 2016. Borg, Omega, and Kubernetes. Communications of the ACM
(CACM) 59, 5 (2016), 50–57.

[4] Yuxing Chen, Peter Goetsch, Mohammad Ashraful Hoque, Jiaheng Lu, and Sasu
Tarkoma. 2022. d-Simplexed: Adaptive Delaunay Triangulation for Performance
Modeling and Prediction on Big Data Analytics. IEEE Trans. Big Data 8, 2 (2022),
458–469.

[5] Yuxing Chen, Mohammad A Hoque, Pengfei Xu, Jiaheng Lu, and Sasu Tarkoma.
2024. SimCost: Cost-E�ective Resource Provision Prediction and Recommen-
dation for Spark Workloads. Distributed and Parallel Databases 42, 1 (2024),
73–102.

[6] Yuxing Chen, Jiaheng Lu, Chen Chen, Mohammad Hoque, and Sasu Tarkoma.
2019. Cost-E�ective Resource Provisioning for Spark Workloads. In ACM Inter-
national Conference on Information and Knowledge Management (CIKM). ACM,
2477–2480.

[7] Guoli Cheng, Shi Ying, and Bingming Wang. 2021. Tuning Con�guration of
Apache Spark on Public Clouds by Combining Multi-Objective Optimization
and Performance Prediction Model. Journal of Systems and Software 180 (2021),
111028.

[8] Apache Software Foundation. 2022. SPARK-27495. https://issues.apache.org/
jira/browse/SPARK-27495 SPIP: Support stage level resource con�guration and
scheduling.

[9] Apache Software Foundation. 2024. Apache Celeborn. https://celeborn.apache.
org/ Celeborn is an intermediate data service for big data compute engines.

[10] Apache Software Foundation. 2024. Apache Spark. http://spark.apache.org
Spark is a uni�ed engine for large-scale data analytics.

[11] Apache Software Foundation. 2024. Job Scheduling Spark 351 Documen-
tation. https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-
resource-allocation Spark provides a mechanism to dynamically adjust the
resources your application occupies based on the workload.

[12] Apache Software Foundation. 2024. Tuning Spark 351 Documentation. https:
//spark.apache.org/docs/latest/tuning.html A short guide for tuning Spark.

[13] Enrico Gallinucci and Matteo Golfarelli. 2019. SparkTune: Tuning Spark SQL
through Query Cost Modeling. In International Conference on Extending Database
Technology (EDBT). OpenProceedings, 546–549.

[14] Rong Gu, Xu Huang, Haipeng Dai, Xiaoyu Geng, Xiaofei Chen, Yihua
Huang, Fu Xiao, and Guihai Chen. 2022. E�cient. Scalable and Robust
Data Shu�e Service for Distributed MapReduce Computing on Cloud. In
HPCC/DSS/SmartCity/DependSys. IEEE, 337–346.

[15] Yanfei Guo, Jia Rao, Dazhao Cheng, and Xiaobo Zhou. 2016. iShu�e: Improving
Hadoop Performance with Shu�e-On-Write. IEEE Transactions on Parallel and
Distributed Systems(TPDS) 28, 6 (2016), 1649–1662.

[16] Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu. 2020. A Survey on Au-
tomatic Parameter Tuning for Big Data Processing Systems. ACM Computing
Surveys (CSUR) 53, 2 (2020), 1–37.

[17] Muhammed Taw�qul Islam, Shanika Karunasekera, and Rajkumar Buyya. 2021.
Performance and Cost-E�cient Spark Job Scheduling Based on Deep Reinforce-
ment Learning in Cloud Computing Environments. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 33, 7 (2021), 1695–1710.

[18] Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dhabaleswar K DK
Panda. 2016. E�cient Data Access Strategies for Hadoop and Spark on HPC
Cluster with Heterogeneous Storage. In IEEE International Conference on Big
Data (Big Data). IEEE, 223–232.

[19] Md Muhib Khan and Weikuan Yu. 2021. Robotune: High-Dimensional Con�gu-
ration Tuning for Cluster-Based Data Analytics. In International Conference on
Parallel Processing (ICPP). ACM, 1–10.

[20] Shibo Li, Robert Kirby, and Shandian Zhe. 2021. Batch Multi-Fidelity Bayesian
Optimization with Deep Auto-Regressive Networks. Advances in Neural Infor-
mation Processing Systems (NeurIPS) 34 (2021), 25463–25475.

[21] Yang Li, Huaijun Jiang, Yu Shen, Yide Fang, Xiaofeng Yang, DanqingHuang, Xinyi
Zhang,Wentao Zhang, Ce Zhang, Peng Chen, and Bin Cui. 2023. Towards General
and E�cient Online Tuning for Spark. Proceedings of the VLDB Endowment
(VLDB) 16, 12 (2023), 3570–3583.

[22] Yuhao Li and Benjamin C Lee. 2022. Phronesis: E�cient Performance Modeling
for High-dimensional Con�guration Tuning. ACM Transactions on Architecture
and Code Optimization (TACO) 19, 4 (2022), 1–26.

[23] Yan Li, LiweiWang, ShengWang, Yuan Sun, and Zhiyong Peng. 2022. A Resource-
Aware Deep Cost Model for Big Data Query Processing. In IEEE International

Conference on Data Engineering (ICDE). IEEE, 885–897.
[24] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, and Guoliang

Li. 2022. Adaptive Code Learning for Spark Con�guration Tuning. In IEEE
International Conference on Data Engineering (ICDE). IEEE, 1995–2007.

[25] Frank Sifei Luan, Stephanie Wang, Samyukta Yagati, Sean Kim, Kenneth Lien,
Isaac Ong, Tony Hong, Sangbin Cho, Eric Liang, and Ion Stoica. 2023. Exoshu�e:
An Extensible Shu�e Architecture. In ACM International Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM). 564–577.

[26] Stathis Maroulis, Nikos Zacheilas, and Vana Kalogeraki. 2017. A Framework for
E�cient Energy Scheduling of Spark Workloads. In IEEE International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2614–2615.

[27] Dimitra Nikitopoulou, Dimosthenis Masouros, Sotirios Xydis, and Dimitrios
Soudris. 2021. Performance Analysis and Auto-Tuning for Spark In-Memory
Analytics. In Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 76–81.

[28] M Maruf Öztürk. 2024. Tuning parameters of Apache Spark with Gauss–Pareto-
based multi-objective optimization. Knowledge and Information Systems 66, 2
(2024), 1065–1090.

[29] Panagiotis Petridis, Anastasios Gounaris, and Jordi Torres. 2016. Spark Parameter
Tuning via Trial-and-Error. In Advances in Big Data. 226–237.

[30] Meikel Pöss, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why You
Should Run TPC-DS: A Workload Analysis. In The International Conference on
Very Large Data Bases. ACM, 1138–1149.

[31] David Buchaca Prats, Felipe Albuquerque Portella, Carlos HA Costa, and
Josep Lluis Berral. 2020. You Only Run Once: Spark Auto-Tuning From a Single
Run. IEEE Transactions on Network and Service Management (TNSM) 17, 4 (2020),
2039–2051.

[32] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and
Damian Reeves. 2012. Sail�sh: A Framework for Large Scale Data Processing. In
ACM Symposium on Cloud Computing (SOCC). ACM, 1–14.

[33] Rathijit Sen, Abhishek Roy, Alekh Jindal, Rui Fang, Je� Zheng, Xiaolei Liu, and
Ruiping Li. 2021. AutoExecutor: Predictive Parallelism for Spark SQL Queries.
Proceedings of the VLDB Endowment (VLDB) 14, 12 (2021), 2855–2858.

[34] Min Shen, Ye Zhou, and Chandni Singh. 2020. Magnet: Push-based Shu�e Service
for Large-scale Data Processing. Proceedings of the VLDB Endowment (VLDB) 13,
12 (2020), 3382–3395.

[35] Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng, Yang
Li,Wentao Zhang, and Bin Cui. 2023. Rover: An Online Spark SQL Tuning Service
via Generalized Transfer Learning. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD). ACM, 4800–4812.

[36] Rekha Singhal and Praveen Singh. 2017. Performance Assurance Model for Appli-
cations on SPARK Platform. In Technology Conference on Performance Evaluation
and Benchmarking. Springer, 131–146.

[37] Fei Song, Khaled Zaouk, Chenghao Lyu, Arnab Sinha, Qi Fan, Yanlei Diao,
and Prashant J. Shenoy. 2021. Spark-based Cloud Data Analytics using Multi-
Objective Optimization. In IEEE International Conference on Data Engineering
(ICDE). IEEE, 396–407.

[38] Yixin Song, Junyang Yu, JinJiang Wang, and Xin He. 2023. Memory Management
Optimization Strategy in Spark Framework based on Less Contention. The
Journal of Supercomputing 79, 2 (2023), 1504–1525.

[39] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. iBTune: Individualized Bu�er
Tuning for Large-scale Cloud Databases. Proceedings of the VLDB Endowment
(VLDB) 12, 10 (2019), 1221–1234.

[40] Wu Xiang, Yakun Li, Yuquan Ren, Fan Jiang, Chaohui Xin, Varun Gupta, Chao
Xiang, Xinyi Song, Meng Liu, Bing Li, Kaiyang Shao, Chen Xu, Wei Shao, Yuqi
Fu, WilsonWang, Cong Xu, Wei Xu, Caixue Lin, Rui Shi, and Yuming Liang. 2023.
Gödel: Uni�ed Large-Scale Resource Management and Scheduling at ByteDance.
In ACM Symposium on Cloud Computing (SOCC). ACM, 308–323.

[41] Jinhan Xin, Kai Hwang, and Zhibin Yu. 2022. LOCAT: Low-Overhead Online
Con�guration Auto-Tuning of Spark SQL Applications. In ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD). ACM, 674–684.

[42] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J Freedman.
2018. Ri�e: Optimized Shu�e Service for Large-Scale Data Analytics. In European
Conference on Computer Systems (EuroSys). ACM, 1–15.

[43] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In ACM SIGMOD International Conference
on Management of Data (SIGMOD). ACM, 2102–2114.

[44] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestCon�g: Tapping the Per-
formance Potential of Systems via Automatic Con�guration Tuning. In ACM
Symposium on Cloud Computing (SOCC). ACM, 338–350.

[45] Chen Zou, Hui Zhang, Andrew A Chien, and Yang-Seok Ki. 2021. PSACS: Highly-
Parallel Shu�e Accelerator on Computational Storage. In IEEE International
Conference on Computer Design (ICCD). IEEE, 480–487.

3771

https://issues.apache.org/jira/browse/SPARK-27495
https://issues.apache.org/jira/browse/SPARK-27495
https://celeborn.apache.org/
https://celeborn.apache.org/
http://spark.apache.org
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/tuning.html
https://spark.apache.org/docs/latest/tuning.html

	Abstract
	1 Introduction
	2 Overview and System Design
	2.1 Overview of Spark at ByteDance
	2.2 System Design for Resource Efficiency

	3 Multi-Mechanism Shuffle Services
	3.1 Enhanced External Shuffle Service (ESS)
	3.2 Cloud Shuffle Service (CSS)

	4 Fine-Grained Resource Control
	4.1 Resource Allocation Control
	4.2 Resource Usage Control

	5 Two-Stage Config Auto Tuning
	5.1 Online Tuning Pipeline
	5.2 Rule-Based Tuning
	5.3 Algorithm-Based Tuning

	6 Evaluations
	6.1 Enhanced ESS and CSS Evaluations
	6.2 Resource Control Evaluations
	6.3 Configuration Tuning Evaluations
	6.4 Overall Tuning Performance

	7 Lessons Learned
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

