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ABSTRACT
Distributed databases have been widely researched and developed

in recent years due to their scalability, availability, and consistency

guarantees. The write-ahead logging (WAL) system is one of the

most vital components in a database. It is still a non-trivial prob-

lem to design a replicated logging system as the foundation of a

distributed database with the power of ACID transactions. This

paper proposes PALF, a Paxos-backed Append-only Log File Sys-

tem, to address these challenges. The basic idea behind PALF is

to co-design the logging system with the entire database for sup-

porting database-specific functions and to abstract the functions as

PALF primitives to power other distributed systems. Many database

functions, including transaction processing, database restore, and

physical standby databases, have been built based on PALF primi-

tives. Evaluation shows that PALF greatly outperforms well-known

implementations of consensus protocols and is fully competent

for distributed database workloads. PALF has been deployed as

a component of the OceanBase 4.0 database and has been made

open-source along with it.
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1 INTRODUCTION
Thewrite-ahead logging (WAL) systemwas originally introduced to

recover databases to their previous state after a failure. Beyond this

initial purpose, more requirements have been gradually emerging

from distributed databases. The logging system should be capable

of replicating logs to multiple replicas for durability and failure

tolerance. Several important database features rely on the design of
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the logging system, such as transaction processing [9, 50], redo log

archiving [35], database backup/restore [37], and physical standby

databases [36].

To keep consistent states of multiple database replicas, consen-

sus protocols have been widely used to replicate logs in distributed

databases [9, 42, 48]. Most of these databases were abstracted into

replicated state machines (RSM) for integrating with consensus

protocols. In the typical RSM model, the client first handles all in-

tended operations and generates logs, these logs are then replicated

to all replicas by consensus protocols. After operation logs have

been persisted by majority of replicas, each replica applies them to

its state machine.

The RSM model has been working well for operations that mod-

ify small datasets (e.g., setting a key-value to the Key-Value store).

However, it may be unsuitable for operations that involves a large

amount of data, an example is transactions in distributed databases.

First, databases are usually required to equip additional buffer to

cache temporary data from clients for log generation, therefore,

it is difficult for databases to handle large transactions with data

volume greater than its cache. A compromised approach is to limit

the size of transactions and break up large transactions into small

operating units[8], but at the cost of losing the atomicity of users’

original transactions. Second, reads in a transaction possibly cannot

see previous writes in the transaction, because the writes may have

not been applied to the database[9]. Reading from the cache is a

possible approach; but this will introduce overhead of merging data

from the storage engine and the cache, resulting in a decrease in

read performance.

To address above problems, our design choice is to integrate

consensus protocols into thewrite-ahead loggingmodel. In theWAL

model, a database writes logs using local file system interfaces, the

order of logging and applying operations can be reversed compared

to RSM model. Writes are applied to the storage engine of database

(in-memory state machine) directly, and then redo logs (operations)

are generated and flushed. Therefore, the upper limit of transaction

size is expanded and read requests just need to access the storage

engine. However, designing such a replicated logging system which

provides guarantees like local file system to support theWALmodel

still faces the following challenges:

Leader Election. In practical deployments, the database leader is

usually co-located with the logging system leader to reduce latency

[9, 46, 48]. The requirements of the database should be considered

when electing the leader of the logging system, for example, a

replica located in the same region/IDC as the application system
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should be elected as the leader preferentially. However, whether a

replica could be elected as the leader traditionally depends on the

consensus protocol itself. A leadership transfer extension has been

proposed in Raft [33], but it relies on an external coordinator to

actively transfer leadership to the designated replica, which harms

the availability of the distributed databases.

Uncertain Replication Results. In WAL model, whether a

transaction should be committed or aborted depends on whether

its commit record has been persisted. Data may become inconsistent

if the logging system returns an incorrect result to the transaction

model due to exceptions (e.g., leadership transfer). Local file system

indeed returns explicit write results. However, most consensus

protocol implementations do not return explicit replication results

when exceptions occur [2, 15]. For example, a previous leader had

been transformed to a follower due to temporary network error. If

the previous leader had not received acknowledgements for some

in-flight logs before its retirement, it is not able to perceive whether

the logs have been committed by majority. Therefore, transaction

processing may get stuck because the transaction engine can not

determine whether its commit record has been persisted.

Data Change Synchronization. The log is the database, physi-
cal log synchronization is one of the most common approaches to

export data changes from the database to downstream systems. For

example, physical standby databases (e.g., Oracle Data Guard[36])

provide identical copies of the primary database by transporting

and applying redo logs to standby databases. Unlike copying log

files directly, log replication in distributed databases poses chal-

lenges in synchronizing logs from one replication group in the

primary database to a downstream group in a standby database,

moreover, these groups should be independently available. Some

replication protocols [2, 15] embed cluster-specific information

(e.g., membership) into logs, which breaks the continuity of data

changes and makes the downstream replication groups unable to

reconfigure the cluster independently.

Performance. Formany log replication systems, throughput of a

single replication group is limited. As a result, they resort tomultiple

groups to improve overall throughput by parallel writing [13, 15,

31]. However, numerous replication groups may incur additional

overheads. A data partition in a database is usually bound with a

replication group [9, 42, 46]; more replication groups imply smaller

data partitions. This will result in more distributed transactions

and degrade performance of the entire database [41].

This paper presents PALF, a Paxos-backed Append-only Log File

System. PALF has been co-designed with the OceanBase database

to support its WAL model. It provides typical append-only logging

interfaces, as a result, the database can interact with PALF much

as it interacts with local files. PALF further abstracted database-

specific features into primitives, such a clear boundary between

the log and the database brings benefits in maintainability for a

practical database system, and makes PALF become a building block

to construct higher-level distributed systems. These design choices

led us to address above challenges by balancing the particularity of

databases and the generality of logging systems.

First, PALF decouples leader election from the consensus proto-

col to support database-related election priorities. For instance, a

database replica that closer to upper applications could be elected

as the leader by configuring its election priorities. As a result of

independent election, a log reconfirmation stage is introduced to

PALF for correctness.

Second, PALF returns explicit replication results to the log writer

(database) unless its leader crashes, which makes PALF act like a

local file. The log writer (database) will be notified of whether logs

have been committed by PALF, even if the previous leader has lost

its leadership. To achieve this, a novel role transition stage pending
follower has therefore been introduced into the consensus protocol

to determine the status of pending logs; the role of the previous

leader will not be switched to follower until it receives logs from

the new leader. After that, the state of transactions can be advanced.

For example, the previous leader will roll back a transaction if its

commit record has not been persisted by the new leader.

Moreover, to synchronize data changes between distributed

databases, a downstream Paxos group has been abstracted as a

mirror of the primary Paxos group. It only accepts logs from the

primary group and can be reconfigured independently. This feature

has been used to synchronize redo logs from the primary database

to standby databases in OceanBase. To the best of the authors’

knowledge, this is the first Paxos implementation that supports

synchronizing proposals from one Paxos group to another group.

Finally, to reduce the overhead incurred by distributed transac-

tions, we limit the number of log replication groups to the number

of servers in a cluster. Fewer replication groups require higher

throughput for a single group because it handles logs from multiple

partitions. We maximize write performance with systematic opti-

mizations such as pipeline replication, adaptive group replication,

and lock-free write path.

To summarize, the contributions of this paper are:

• PALF is proposed as the replicated write-ahead logging

system of OceanBase. Its high availability, excellent perfor-

mance, and file-like interfaces are suitable for distributed

databases (§3).

• We abstract database-specific demands as PALF primitives,

such as explicit replication results and change sequence

number, which benefits OceanBase database greatly (§4).

• A novel method has been proposed to synchronize logs

from a Paxos group to others, which powers functions such

as physical standby databases (§5).

• We describe designs for building a high-performance con-

sensus protocol in §6, discuss PALF’s design considerations

in §7. Evaluations under both closed-loop clients and data-

base workloads show excellent performance (§8).

2 BACKGROUND
This section briefly describes the architecture of the OceanBase

database to provide context for how PALF is designed.

2.1 OceanBase Database
OceanBase [46] is a distributed relational database system built on

a shared-nothing architecture. The main design goals of OceanBase

include compatibility with classical RDBMS, scalability, and fault

tolerance. OceanBase supports ACID transactions, redo log archiv-

ing, backup and restore, physical standby databases, and many

other functions. For efficient data writing, a storage engine based

on log-structured merge tree (LSM-tree)[38] has been built from
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the ground up and co-designed with the transaction engine. The

transaction engine ensures ACID properties by using a combination

of pessimistic record-level locks[45] and multi-version concurrency

control; it is also highly optimized for the shared-nothing architec-

ture. For example, the commit latency of distributed transactions

has been reduced to almost only one round of interaction by an

improved two-phase commit procedure [46]. OceanBase relies on a

Paxos-based write-ahead logging system to tolerate failures. This

brings the benefits of distributed systems, but incurs log replication

overhead at the same time.

2.2 Redesigned Architecture
In the previous version of OceanBase [46] (1.0-3.0), the basic unit

of transaction processing, logging, and data storage was the table

partition. As an increasing number of applications have adopted

OceanBase, we found that the previous architecture is not as well-

suited to medium and small enterprises as to large-scale clusters

of large companies. One of the problems is the overhead of log

replication. OceanBase enables users to create tens of thousands

of partitions in each server. This number of Paxos groups consume

significant resources for no real purpose, therefore raising the bar

for deployments and operations. Another challenge is the huge

transaction problem. One such transaction probably spans tens of

thousands of partitions, which means that there are tens of thou-

sands of participants in the two-phase commit protocol, which will

destabilize the system and sacrifice performance.

To address these challenges, the internal architecture of version

4.0 of the OceanBase database was redesigned [47]. A new com-

ponent, Stream, has been proposed, which consists of several data

partitions, a replicated write-ahead logging system, and a transac-

tion engine. The key insight of the Stream is that tables in a database

are still partitioned, but the basic unit of transaction and logging is

a set of partitions in a Stream, rather than a single partition. A table

partition simply represents a piece of data stored in the storage

engine. The transaction engine generates redo logs for recording

modifications of multiple partitions within a Stream and stores logs

in the WAL of the Stream. Multiple replicas of a Stream are created

on different servers. Only one of them will be elected as the leader

and serve data writing requests. The number of replication groups

in a cluster can be reduced to the number of servers to eliminate

the overhead incurred by massive replication groups.

With the abstraction of Stream, version 4.0 of the OceanBase

database achieves comparable performance to centralized databases

in stand-alone mode (for medium and small enterprises) and can

be easily scaled out to distributed clusters by adding machines (for

large enterprises). In default settings, each server has one Stream
whose leader is elected just at the server, therefore, leaders of differ-

ent Stream in multiple servers can process queries simultaneously

as an active-active architecture. Besides strong consistency service

provided by the leader, other replicas of OceanBase database can

serve read requests with eventual consistency guarantee (§4.2).

3 DESIGN OF PALF
The design purpose of PALF is to provide a replicated write-ahead

logging system, which should be capable of serving the Ocean-

Base database and be general enough for building other distributed

systems. This purpose of PALF drove its design: a hierarchical ar-

chitecture for balancing particularity of database and generality

of the logging system. Database-specific requirements have been

abstracted as PALF primitives and integrated in different layers.

This section first describes PALF as the replicated WAL sys-

tem of the OceanBase database, and then introduces the interfaces

provided by PALF. Finally, the implementation of the consensus

protocol is described in detail.

3.1 Replicated WAL Model
In OceanBase database, the replicated logging system is abstracted

as an append-only log file, transaction engine interacts with PALF

much as it interacts with local files. As depicted in Fig. 1, transac-

tions modify data in the in-memory storage engine directly (step

2-3). Therefore, the upper limit of a transaction’s size is greatly

expanded and is bounded only by the capacity of the storage en-

gine. Log records are then generated and appended to PALF (step

4). The transaction engine of the leader treats PALF as a local log

file system, and it is only concerned with whether log records have

been flushed. The responsibility of PALF is to replicate modifica-

tions performed in the leader to followers (step 5). If a log has been

committed by PALF, the leader will inform the transaction engine

of the results (step 6), and followers will replay modifications that

the leader has performed to itself (step 7-8).

Server 1

Transaction Engine

PALF

SQL Engine

4

Server 2

Transaction Engine

PALF

SQL Engine

7

5 ...

1

P Data Partitions Leader Follower
Stream

6 Storage Engine
P1 P2 P3 P4 P5 ...

Storage Engine
P1 P2 P3 P4 P5 ...

3 8

2

Application

Figure 1: Replicated write-ahead logging model

3.2 PALF Architecture
As depicted in Fig. 2, PALF is a replicated logging system consisting

of multiple replication groups called PALF groups. In each PALF

group, multiple PALF replicas are placed on different servers for

fault tolerance. The transaction engine can append logs to a PALF

group and read logs from it, just like a normal append-only file.

PALF consists of three main layers: the interface layer, the PALF

replicas layer, and the PALF runtime environment. The lower two

layers take charge of log replication, reconfiguration, and log stor-

age; the upper one provides user interfaces and coordinates the

states of PALF and the transaction engine.

For each PALF group, records generated by the transaction en-

gine are first appended to the leader. The log sequencer will as-

sign a monotonically increasing log sequence number (LSN) to

each record, which uniquely identifies a log entry within the PALF

group. Records will be encapsulated as log entries and replicated

to and persisted by other PALF replicas (followers) in the order of

LSN through the Paxos protocol. A log entry is committed only
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Figure 2: PALF architecture.

when a majority of PALF replicas have persisted it. Unlike some

Paxos variants that bind the leader election and log replication

together[6, 24, 32, 34], the leader candidate in PALF is elected by an

independent election module. The reconfiguration module manages

membership of the PALF group (§5.3).

On each server, a PALF runtime environment called PALFEnv
is activated to provide remote procedure call (RPC) interfaces and

manage disk resources for PALF replicas. Specifically, all log en-

tries in a PALF replica are stored as several constant-size blocks

in a unique directory in LogStorage. MetaStorage stores meta-

information such as membership of all PALF replicas. BlockGC

is responsible for trimming log blocks when they are no longer

required. All I/O requests issued by PALF replicas are processed by

a uniform I/O worker pool in PALFEnv.
We generalize the interaction between PALF and the transaction

engine into the interface layer. This isolates the impact of database

features on PALF and improves PALF’s generality. The log noti-

fier in the leader informs the transaction engine of whether logs

are committed. The log replayer in followers replays mutations

recorded in log entries to the transaction engine. If the role of a

PALF replica has been switched (i.e., leader to follower or follower

to leader), it will throw a role-changing signal to the role coordina-

tor, the role coordinator forwards signals to transform the role of

the transaction engine.

3.3 System Interfaces
Figure 3 shows a set of data-related APIs, omitting the interfaces

for system management such as bootstrapping and reconfiguration.

PALF offers two methods for writing logs: append and mirror. The
append method submits a record 𝑟 to the leader of a PALF group,

it returns an LSN to identify the log entry. LSNs of log entries are

monotonically increasing, it represents the physical offset of the

log entry on the log block. The change sequence number (CSN) is

another log entry identifier and will be discussed in §4.2. To achieve

high throughput, the append method is asynchronous. When it

returns, the transaction engine is simply guaranteed that the log

entry has been assigned a unique LSN and submitted to the buffer

of the leader. The transaction engine will be informed whether

the log entry has been committed through the callback function

AppendCb. Specifically, the success method will be invoked when

the log entry is committed, meaning that it has been persisted by

int append(Record r, CSN refcsn, AppendCb *cb, LSN &lsn, CSN &csn);
int mirror(LSN lsn, LogEntry l);
int read(LSN lsn, Record &r);
int locate(CSN csn, LSN &lsn);

int monitor_tail(TailCb *cb);
int monitor_role(RoleCb *cb);

int trim(LSN lsn);

class AppendCb
{ virtual int success() = 0;
  virtual int failure() = 0; }
class TailCb
{ virtual int tail(LSN lsn) = 0; }
class RoleCb
{ virtual int to_leader() = 0;
  virtual int to_follower() = 0; }

Figure 3: PALF interfaces.

a majority of replicas and must not be lost; otherwise, the failure
method will be called. PALF guarantees that the callback function

of a log entry will be called at most once.

The mirror method offers another approach for writing logs to

PALF, it is designed for mirrors of the PALF group and only accepts

log entries committed by another PALF group. Only one of these

two methods can write logs to a given PALF group at the same time

(See §5.2).

The read method enables random access to log entries by a given

LSN. A locate method is provided to map the change sequence

number to a log sequence number. To facilitate real-time log con-

sumption in all replicas (e.g., log replayer), themonitor_tail method

is provided to register a callback function TailCb to monitor the tail

of the PALF group. When new logs are committed, PALF replicas

invoke the tail method to notify log consumers of current tail of

logs. The RoleCb function is used to coordinate the role of PALF

replicas and the transaction engine. When the role of a PALF replica

switches from leader to follower (follower to leader), the to_follower
(to_leader) method will be invoked. Finally, the trim method is de-

signed to indicate useless log entries before the given LSN. BlockGC

is responsible for reclaiming these logs.

3.4 Implementation of Consensus
The Paxos protocol and its variants [6, 24, 26, 27, 32, 34] are widely

recognized for resolving consensus in distributed systems [5, 9, 14,

23, 42, 48]. Raft[33] is a typical implementation of Paxos, which

offers good understandability and builds a solid foundation for

practical systems. PALF implements Paxos with a strong leader

approach, it keeps the log replication of Raft for simplicity. Differ-

ent from Raft, PALF decouples leader election from the consensus

protocol to manipulate the location of the database leader without

sacrificing availability. More differences are summarized in §7.

Demands for Leader Election. In distributed databases, the

location of the leader affects almost all functions, such as failure

recovery, maintenance operations, and application preference. For

example, in cross-region deployment, users tend to make the upper

application and the database leader in the same region to reduce

latency. Raft has provided a leadership transfer extension to ma-

nipulate the location of the leader[33]. However, the leadership

transfer extension only works when both the previous leader and

the desired leader are alive. If the previous leader crashed, whether

a replica can be elected as the leader is completely restricted by the

logs that it stores, rather than users’ desires. If an undesired replica
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is elected as the new leader, this relies on an external coordinator

to detect failure and execute leadership transfer operation. This

approach may incur availability risks to databases if the coordinator

crashes.

To address the problem, PALF decouples leader election from

the consensus protocol. Users own the flexibility to specify the

priorities of replicas elected as the leader. If the previous leader

crashed, replicas with second-highest priority will be preferentially

elected as the new leader without any external operations. If the

previous leader recovers from failure and its priority is still higher

than current leader’s, leadership can be automatically transferred

back to the recovered replica.

Role Transition. At any given time, each replica is in one of

four roles: leader, follower, candidate, or pending follower. Figure 4
shows these roles and the transitions among them. The role of a

replica is initiated to be follower when it starts up. Each replica pe-

riodically polls the election algorithm about whether the candidate

is itself. If a follower finds that itself has become the candidate, it

switches to candidate role and performs log reconfirmation, before

taking over as a normal leader. We will introduce why the log recon-

firmation is needed and its procedure in the following paragraph.

If the leader finds that the candidate is not itself anymore or the

leader receives messages from a new leader, it will revoke its lead-

ership and switch to pending follower. The reason for switching to

pending follower rather than follower is that the transaction engine

may have appended some logs to the leader before the leadership

transfer. To determine the replication results of these pending logs,

the previous leader must enter the pending follower role and wait

for logs from the new leader (§4.1). After the status of all pending

logs is clear, the replica will switch to follower.
Leader Election. The candidate is elected by a lease-based elec-

tion algorithm, which ensures that no two or more replicas will be

elected as candidates at the same time. Replicas can be assigned

different election priorities by users, the election algorithm guar-

antees that the replica with the highest priority in a majority of

replicas will be elected as a candidate. The election algorithm is

essentially a variant of Basic Paxos, it reaches a consensus about

which replica owns the highest priority in a majority. To ensure

that, each replica tries to broadcast its priority to all replicas be-

fore proposing a new round of election; A replica will respond to

a request which has the highest priority among all requests the

replica has received in a certain duration. Besides that, the election

algorithm utilizes monotonic timing in each replica to guarantee

that a candidate will be elected within a certain time if any majority

of replicas survives. This paper focuses the design of the replicated

logging system, therefore, we leave implementation details of the

election algorithm for another paper.

Log Reconfirmation. Due to flexible leader election, the candi-

date may have fewer logs than other replicas. Before taking over as

a leader, the candidate should re-confirm the logs appended by the

previous leader to guarantee that its logs are not fewer than any

replica in a majority. The log reconfirmation (Alg.1) is essentially a

complete instance of Basic Paxos [27]. Specifically, the candidate

broadcasts the advanced ProposalID(identifier for the leader’s term)

𝑝𝑖𝑑 + 1 to all replicas with Paxos Prepare messages (line 2). Each

replica will store the 𝑝𝑖𝑑 of the Prepare message, and respond to

the candidate with its logs, only if the 𝑝𝑖𝑑 in the Prepare message is

Follower

Pending
Follower

Candidate

Leader

starts up elected to be candidate

revoke reason 1: candidate has changed
revoke reason 2: discovers new leader with higher ProposalID

receives logs from a new leader ele
cte

d to
 be

can
didate

rev
oke r

eas
on

revoke reason

log reconfirmation

Figure 4: Role transition of PALF replicas.

Algorithm 1 Log Reconfirmation

1: function reconfirm

2: broadcast (𝑃𝑟𝑒𝑝𝑎𝑟𝑒<𝑝𝑖𝑑 + 1>)
3: if majority(𝐴𝐶𝐾𝑝𝑟𝑒𝑝𝑎𝑟𝑒 ) then
4: (𝑚𝑒𝑚𝑏𝑒𝑟 , 𝐿𝑆𝑁𝑚𝑎𝑥 ) =𝑚𝑎𝑥 (𝐴𝐶𝐾𝑝𝑟𝑒𝑝𝑎𝑟𝑒 )
5: getlog (𝑚𝑒𝑚𝑏𝑒𝑟 , 𝐿𝑆𝑁𝑚𝑎𝑥 )

6: for all 𝑙𝑜𝑔 ∈ (𝐿𝑆𝑁𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 , 𝐿𝑆𝑁𝑚𝑎𝑥 ) do
7: broadcast (𝐴𝑐𝑐𝑒𝑝𝑡<𝑝𝑖𝑑 , 𝑙𝑜𝑔>)

8: broadcast (𝑆𝑊 <𝑝𝑖𝑑 ,𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝>)

9: upon receive 𝑃𝑟𝑒𝑝𝑎𝑟𝑒<𝑝𝑖𝑑> from 𝑟 :
10: if 𝑝𝑖𝑑 > 𝑝𝑖𝑑𝑚𝑎𝑥 then
11: 𝑝𝑖𝑑𝑚𝑎𝑥 ← 𝑝𝑖𝑑

12: Send(𝑟 , 𝐴𝐶𝐾𝑝𝑟𝑒𝑝𝑎𝑟𝑒<𝑠𝑒𝑙 𝑓 , 𝐿𝑆𝑁𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑>)

larger than the maximum ProposalID 𝑝𝑖𝑑𝑚𝑎𝑥 the replica has seen

(line 9). To avoid transporting useless logs, the acknowledgement

of Prepare message only contains the tail LSN of logs.

Once the candidate receives votes from any majority of replicas

(line 3), it starts the Paxos accept phase: selecting the replica with

the longest logs (line 4), getting logs from it (line 5), and replicating

these logs to all replicas (line 6). Finally, the candidate replicates a

StartWorking log to all replicas (line 8). Note that the StartWorking
log is a special reconfiguration log (§5.3), it is used to roll back

the possible uncommitted membership of the previous leader. The

candidate will serve as the leader as long as the StartWorking log

reaches majority.

Log Replication. Once a leader takes over successfully, it takes
the responsibility for replicating and committing logs. Log repli-

cation in PALF resembles that in Raft [34]. Briefly, log entries are

appended to the leader, replicated by the leader, acknowledged by

followers, and committed by the leader in the order of LSN. When

records are appended to the leader, a log sequence number (LSN)

will be assigned to each log entry by the log sequencer. The LSN

indicates the physical offset at which the log entry is stored in log

blocks. As shown in Fig. 5, log blocks in LogStorage continuously

store log entries, the LSN of the next log entry is equal to the sum

of the current log’s LSN and the log size. The way of identifying

log entries with LSN makes clients operate PALF just like a normal

file and facilitates redo log consumption in databases.

When a log entry arrives at a follower, the follower will not

accept it until all preceding logs have been accepted. If existing

logs conflict with new logs with higher proposal number, PALF

will truncate the conflicting logs in the same way as Raft. This

mechanism establishes the log matching property [34].
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Figure 5: Log structure in PALF.

Correctness. Benefiting from the safety argument in Raft, we

simply need to validate whether PALF ensures the following prop-

erties: election safety, leader append-only, log matching, leader com-
pleteness, and state machine safety. The leader append-only and log
matching are provided by PALF naturally because it borrows the

same log replication scheme from Raft. The key difference between

Raft and PALF is the log reconfirmation. The candidate performs

an instance of Basic Paxos to learn missing logs from the replica

that accepted the most logs in a majority. If a log entry submitted

by the previous leader has been accepted by a majority, it must

be seen and learned by the candidate, and therefore election safety
and leader completeness are ensured. We leave the proof of the state
machine safety property in §4.1, because it is related to the way of

applying logs to the transaction engine.

4 INTERACTIONWITH TRANSACTION
ENGINE

This section introduces the features of PALF designed for the trans-

action engine of OceanBase database based on the implementation

of consensus protocol.

4.1 Explicit Replication Results
If the leadership has been transferred away due to a network hiccup,

the previous leader may be unclear about whether appended log

entries are committed, these logs are referred to as pending logs.
Pending logs may incur complexities for the transaction engine.

For example, the transaction engine generates a commit record of a

transaction and appends it to PALF. If the leader loses its leadership

unexpectedly, the transaction engine must decide whether to com-

mit or rollback the transaction according to whether the commit

record has been persisted.

PALF guarantees that the transaction engine will be explicitly

notified of replication results unless the leader crashes or the net-

work is interrupted permanently. The leader is responsible for com-

mitting logs and notifying of results. If the leadership has been

transferred to another replica, the previous leader switches itself to

pending follower. When the pending follower receives logs from the

new leader, the replication results of pending logs become explicit

(committed or truncated). Replication results of committed logs

will be notified by calling the success function, truncated logs will

be notified as failed replications by invoking the failure function.
This is why the previous leader must switch to pending follower
and wait for logs from the new leader before it becomes a follower.
For each record, only one of the callback functions will be invoked,

and it will be called at most once.

As depicted in Fig. 6a, the previous leader A committed log1, log2

and log3 have been appended to replica A, but have not been repli-

cated. Then A has been partitioned off from B and C temporarily,

C was elected as the leader and reconfirmed log2 from B (Fig. 6b).

After the network recovers (Fig. 6c), replica A has been transformed

to pending follower because its election lease has expired. It receives

logs from the new leader C, log2 in A will be accepted because

it has been committed by the new leader. As a result, replica A

informs the database of replication results about log2 by calling

success function. In contrast, log3 in A will be truncated because

another log3 from C contains larger ProposalID. The log3 replicated

by the previous leader A fails to reach consensus, therefore replica

A invokes failure function to notify the database.

Note that if the leader A crashes in Fig. 6a, PALF does not need to

notify the database of replication results directly, because all states

in memory will be lost. When it starts to recover, the transaction

engine switches to follower, receives logs from the new leader, and

replays local logs to recover transactions. The previous leader can

not provide replication results if its network is interrupted, because

the new leader can not reach it. If the network recovers, the previous

leader can receive logs and determine whether in-flight logs have

been committed.

The state machine safety property of the consensus protocol is

ensured by the explicit replication results. If a log has been com-

mitted, it must have been applied to the leader and will be replayed

to the follower. If PALF fails to reach consensus on the log, state

machine of the previous leader will be rolled back by calling the

failure function.

1
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1 committed
uncommitted

(a)

1 1

1

1

1
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reconfirm

1 1

1
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1

(c)

2

2

truncate

success failure

1 2 3 1 2 3 1 2 3

network partition

Figure 6: Previous leader A returns explicit replication results
to the database. The number in each box is the ProposalID
of the leader when the log is appended.

4.2 Change Sequence Number
Data synchronization tools (such as Change Data Capture) usu-

ally consume transactions in the order of logs; however, the LSN

is incompetent for tracking the order of transactions because it

is locally ordered within single PALF group. For scalability, data

partitions are usually distributed among multiple Streams. If dif-
ferent transactions modify data partitions in different Streams, the
LSNs of their logs are incomparable. To track the order of transac-

tions with logs across PALF groups, a natural approach is to record

commit versions of transactions in the payloads of log entries, as

some systems have done [18, 42]. This approach does work, but it

has disadvantages. For instance, commit versions may not strictly

increase with LSN due to parallel executions of transactions (i.e.,

assigning smaller LSN to logs of transactions with greater commit
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version). This approach requires log consumers to parse payloads

of logs, which incurs additional overhead.

PALF provides another log entry identifier, Change Sequence

Number (CSN), which maintains consistency with LSN and reflects

the order of transactions across multiple PALF groups. CSN is a 64-

bit integer stored in the header of each log entry. PALF does not infer

the meaning of CSN, meaning that the overhead of maintaining

and recognizing CSN is very small. The log sequencer in the leader

allocates LSN and CSN to logs when the append method is invoked.

PALF maintains an invariant on CSN: monotonic increasing within

a PALF group. Within each PALF group, for any two logs 𝛼 and 𝛽 ,

if the LSN of 𝛼 is greater or equal to the LSN of 𝛽 , then the CSN of

𝛼 must be greater or equal to the CSN of 𝛽 . Formally,

𝐿𝑆𝑁𝛼 ≥ 𝐿𝑆𝑁𝛽 → 𝐶𝑆𝑁𝛼 ≥ 𝐶𝑆𝑁𝛽 , ∀𝛼, 𝛽.

The invariant guarantees that CSN increases monotonically within

PALF group and thereby keeps consistent with the order of LSN.

Figure 5 shows a visualization of the relationship between LSN and

CSN of logs. The 𝐶𝑆𝑁 is persisted along with the log entry. As a

result, the above invariant is always valid even if the leader crashes.

PALF provides another key guarantee: for the append method,

its input argument 𝑅𝑒 𝑓𝐶𝑆𝑁 and its output argument 𝐶𝑆𝑁 always

follow𝐶𝑆𝑁 >= 𝑅𝑒 𝑓𝐶𝑆𝑁 . 𝑅𝑒 𝑓𝐶𝑆𝑁 serves as a causal reference; the

guarantee indicates that the log entry must be appended after the

event happened at 𝑅𝑒 𝑓𝐶𝑆𝑁 . Therefore, the𝐶𝑆𝑁 of a log can reflect

the system-wide order if the 𝑅𝑒 𝑓𝐶𝑆𝑁 is a globally-meaningful

value.

The OceanBase database provides globally meaningful commit

versions to transactions using CSN. When a transaction is going to

be committed, the transaction engine fetches a timestamp from a

global timestamp oracle and appends the commit record with the

timestamp as 𝑅𝑒 𝑓𝐶𝑆𝑁 . The 𝐶𝑆𝑁 returned by the append method

tracks the order indicated by 𝑅𝑒 𝑓𝐶𝑆𝑁 and acts as the commit ver-

sion of the transaction. Note that the 𝐶𝑆𝑁 is not generated by

the global timestamp oracle, which may have a value greater than

the current global timestamp. As a result, the transaction may

be invisible to a future read request that fetches a smaller read-

able version from the global timestamp oracle. To avoid this, the

transaction engine will not respond to the client until the global

timestamp is greater than the 𝐶𝑆𝑁 . Through cooperation between

the transaction engine and PALF, CSN successfully tracks the order

of transactions across PALF groups.

Another database feature that benefits from CSN is follower

reads. Follower reads enable follower replicas to serve read-only

requests with an eventual consistency guarantee to reduce latency.

Read requests with 𝑇 that can read complete data in followers re-

quire that all logs with CSN less than 𝑇 have been replayed in the

follower and commit versions of any future write should be greater

than 𝑇 . The monotonic increasing property of CSN provides this

guarantee naturally. Logs are replicated and replayed to followers

in the order of LSN, which is consistent with the order of CSN.

If the log with CSN 𝑇 has been replayed in the follower, CSN of

the following logs must be greater than 𝑇 . Compared to other dis-

tributed databases that advance readable timestamps in followers

by broadcasting special commands periodically (e.g., closed times-

tamps [43]), the follower read feature of the OceanBase database

does not require additional mechanisms.

5 DATA CHANGE SYNCHRONIZATION
Besides serving transactions, distributed databases also act as the

source of data flow. Downstream applications can be deployed to

provide various services by synchronizing data changes recorded

in physical logs. This section introduces two typical physical log

synchronization scenarios in OceanBase, describes what challenges

they bring to PALF, and depicts how to address these challenges by

utilizing features of PALF.

5.1 Overview
When clients write data to databases, records of modifications are

appended to the leader of the PALF group and replicated to follow-

ers. Besides replicating logs within the database, data changes can

be synchronized out of the database for richer functions. There are

two typical scenarios in the OceanBase database: physical standby

databases and database restore.

As shown in Figure 7, the physical standby database is an inde-

pendent database in which the data are identical to the primary

database. It could serve part of read requests to relieve pressure

on the primary database. Compared to traditional primary-backup

architecture, it offers higher availability because each database clus-

ter can tolerate failures. One of the most important features of the

physical standby database is database-level data protection and dis-

aster recovery, a physical standby database can be switched to be

the primary database by a failover operation if the original primary

database becomes unavailable, which distinguish it from replica-

level protection such as Paxos learners [7]. In production databases,

database restore is a core component of the high-reliability feature.

If data have been lost due to storage media damage or human errors,

archived logs stored in offline storage (such as NFS or Cloud Object

Stores) could be used to restore an identical database.

The basic idea behind physical standby databases or database

restore is similar: synchronizing data changes recorded in physical

logs from the primary database or external storage to the standby

database or the restoring database. For the OceanBase database, one

of the challenges in implementing these features is synchronizing

logs from one PALF group (or external storage) to another PALF

group. In addition, these PALF groups should be independently

available. A naïve solution is to read log entries from the PALF group

in the primary database and append the logs to the corresponding

PALF group in the standby database as 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 (Fig. 3). However, the

consensus protocol will attach a log header to the appended record

for replication, which results in inconsistency between the log

format of the primary database and that of the standby databases.

5.2 PALF Group Mirror
We abstracted the requirements of synchronizing data changes

across PALF groups as a primitive: the PALF group mirror, which is

an independent PALF group that performs the same consensus pro-

tocol as described in §3.4. It maintains a mirror of the data change

prefixes, which are stored in the primary PALF group or external

storage. The PALF group mirror can be reconfigured independently

and be switched to a primary group as needed.

One of the most important differences between the primary

PALF group and PALF group mirrors is the pattern of writing log

records. In primary PALF group, a log record is appended to the
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Figure 7: Data change synchronization in OceanBase.

PALF group, attached with a log header, and replicated to replicas

by the consensus protocol. As for the PALF group mirror, it only

accepts logs committed by a primary PALF group. When a com-

mitted log is mirrored to the leader, some fields of the log header

(e.g., ProposalID) will be replaced with the leader’s own values. The

leader reuses the LSN and CSN of the original log entries, stores

logs to the LSN, and replicates logs to followers.

Two access modes Primary and Mirror were proposed to dif-

ferentiate the primary PALF group from its mirrors. The access

mode of a PALF group can be switched by failover or switchover

operations. The problem is how to broadcast the new access mode

to all replicas atomically. Obviously, the atomic broadcast of access

mode is equivalent to the consensus problem [12]. Hence, a basic

Paxos was implemented to switch the access mode of PALF groups

and store each replica’s access mode to MetaStorage.

With the PALF groupmirror primitive, constructing a data change

synchronization architecture for OceanBase database becomes nat-

ural. As shown in Figure 7, all PALF groups in the physical standby

database are mirrors of PALF groups in the primary database, and all

PALF groups in the restoring database are mirrors of data changes

stored in external storage. After transaction logs have been commit-

ted by the primary PALF group, log archivers read logs from each

PALF group and then store them in external storage or transport

them to the standby database. In the physical standby database,

restorers receive logs from the archivers (fetch logs from external

storage) and mirror logs to the leader of PALF group mirrors. After

logs have been committed by the leader, they will be replayed to

the transaction engine in all replicas (including the leader). As a

result, transactions that execute in the primary database will be

synchronized to the physical standby database; database restore

performs a similar procedure.

It is worth noting that the interaction between the transaction

engine and the PALF group in standby databases is different from

that in primary databases. In standby databases, the transaction

engines perform the standard RSM model, and all replicas simply

read log records from PALF replicas and replay data changes to

data partitions. Therefore, the role of a transaction engine is always

follower, even though the role of the PALF replica may be leader.

5.3 Independent Reconfiguration
Many implementations of consensus protocols [2, 15] store and

replicate reconfiguration commands as normal log entries; how-

ever, this embedded approach may be harmful to the usability of

PALF group mirrors. First, the transaction engine must filter use-

less reconfiguration commands because they only concern the data

changes that they wrote. Second, the membership of a PALF group

mirror is different from that of the primary PALF group, and it

should be capable of being reconfigured independently. However,

a PALF group mirror can only accept logs from its primary group.

As a result, physical standby databases cannot be reconfigured by

writing reconfiguration commands as common log records.

The reconfiguration of PALF resembles the single-server ap-

proach described in Raft [33], only one replica can be added or re-

moved at a time. The leader replicates a reconfiguration log which

records new membership and commits it with the acknowledge-

ments of new membership. Each replica updates its own mem-

bership upon receiving a newer reconfiguration log. To make the

PALF group mirror can be reconfigured independently, PALF stores

the reconfiguration log in MetaStorage, which is separated from

LogStorage.

Independent meta-storage is not as simple as it seems, it may

harm the safety of the consensus protocol, following examples

demonstrate some thorny problems caused by independent meta-

storage. As shown in Figure 8a, all logs with LSN less than or equal

to 5 has been committed by leader A, where A, D, and E have the

latest logs, but B and C are behind. Leader A wants to remove

replicas D and E from the group by replicating new membership to

replicas that are in new membership; a safety risk that committed

logs are lost may occur. Specifically, some committed logs (3, 4, 5)

have not been flushed by any majority of new membership (A, B,

C). If replica A crashes after D and E have been removed, these logs

will be lost. Figure 8b illustrates a possible split-brain[11] situation

when reconfiguring clusters successively. After replacing replica E

with replica F by removing replica E and adding replica F, replica B

and F could vote for A, but replica C and E vote for D. As a result,

two leaders, A and D, will be elected.
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1 2
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Figure 8: Anomalies caused by independent reconfiguration.
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PALF introduces constraints on reconfiguration and leader elec-

tion to address these anomalies. For reconfiguration, the leader

issues a new configuration along with a log barrier to followers.

The barrier is the tail of logs in the leader when it issued the con-

figuration. Each follower refuses to accept a configuration until

its flushed logs before the barrier. Therefore, replica B or C will

not accept a new configuration until it accepts all logs (3, 4, and

5) before the barrier (Fig. 8a). For leader election, PALF maintains

config version to indicate the version of membership; reconfigura-

tion operation will increment it. The config version acts as the chief

election priority, therefore replica D will not be elected as the leader

because its config version is lower than that of replica C (Fig. 8b).

It is argued here that even though independent meta-storage

incurs extra complexities to consensus protocol, it is advantageous

because it makes meta-information invisible to log consumers and

enables PALF group mirrors to reconfigure clusters independently.

6 PERFORMANCE OPTIMIZATION
As described in §2.2, the transaction engine imposes massive redo

logs of multiple data partitions on a single PALF group, which may

make PALF become a bottleneck. This section introduces how PALF

is designed systematically for maximizing the performance of PALF.

Pipelining Replication. To improve throughput, PALF pro-

cesses and replicates logs concurrently by exploiting modern mul-

ticore processors. The consensus-related states of multiple logs are

cached in an in-memory sliding window to avoid CPU cache miss.

Therefore, replication stages of multiple logs can be overlapped.

Adaptive Group Replication The consensus protocol incurs

additional overhead to database, which contains at least two net-

work messages (log replication and acknowledgement) and some

CPU cycles. Batching multiple log entries in one instance is a com-

mon way to dilute the overhead incurred by consensus. At the heart

of batching logs lies how to determine an appropriate batch size.

Batching logs periodically or batching logs immediately when the

I/O worker is idle (feedback) are two common approaches. However,

the former may incur additional latency under low concurrency.

The latter may harm throughput because a massive number of small

requests may overwhelm I/O devices under high concurrency.

PALF replicates logs with adaptive group size to balance latency

and throughput. The leader caches appended logs within a group

buffer. The freeze operation will pack cached logs into a group

log entry and then replicates it to followers. The number of log

entries within a group log entry (group factor) depends on how

often the freeze operation is performed. The key idea of adaptive

group replication is to freeze logs periodically under low concur-

rency and freeze logs according to I/O worker feedback under high

concurrency, but the concurrency of clients is difficult to measure

directly. Suppose that 𝑛 clients are appending records 𝑟 to PALF

concurrently. If logs of all clients are appended, but have not been

committed, these cached logs should be frozen to a group log 𝑔𝑙

immediately, without waiting for a constant interval. Therefore,

the degree of concurrency (𝑛) correlates with the group factor (𝑔𝑓 ,

the number of cached logs), which is easy to measure by counting

logs. The relation can be formalized as:

𝑔𝑓 =
𝑠𝑖𝑧𝑒 (𝑔𝑙)
𝑠𝑖𝑧𝑒 (𝑟 ) ∝

𝑛 ∗ 𝑠𝑖𝑧𝑒 (𝑟 )
𝑠𝑖𝑧𝑒 (𝑟 ) = 𝑛 ∝ 𝐶𝑃𝑈𝐶𝑜𝑟𝑒𝑠.

Experimentally, the degree of concurrency is proportional to

the number of CPU cores occupied by PALF, and hence the group

factor threshold could be determined by hardware resources rather

than manually tuning a batch size. If the group factor is smaller

than the threshold, this means that concurrency is low, and PALF

will freeze logs if the I/O worker is idle, otherwise, PALF will freeze

logs at a constant interval (1 ms by default). Compared to existing

batching algorithms [20], adaptive group replication is simple and

predictable enough, and is suitable for production deployment.

Lock-Free Write Path Instead of improving throughput, a high

level of concurrency may degrade performance if severe contention

occurs. A lock-free write path has therefore been designed for PALF

to avoid contention among threads. The main components in the

write path are the log sequencer and the group buffer. The log

sequencer assigns LSNs to log entries sequentially. We have imple-

mented a lock-free log sequencer to avoid it becoming a bottleneck.

When a thread appends a log to PALF, it loads the value of the

LSN tail atomically to a temporary variable, updates the temporary

value, and stores it to the LSN tail with an atomic compare-and-

swap operation. If the compare-and-swap operation fails due to

concurrent appending, then the thread reloads the LSN tail and

loops around to acquire LSN again [21].

After acquiring the LSN, multiple threads fill log entries into the

group buffer concurrently. The LSN not only acts as a log entry’s

address on disk, but also serves as the offset of the log entry in the

group buffer, which means that the reserved buffer for a log entry

never overlaps with another log entry. As a result, the group buffer

is not a competing resource, and multiple threads can fill log entries

to different offsets concurrently without any lock overheads.

7 DESIGN CHOICES AND DISCUSSIONS
Raft vs. PALF. Raft and PALF are essentially implementations of

the Paxos protocol[27]. PALF adopted the log replication of Raft

for simplicity, here are some differences worth discussing.

• StateMachineModel. PALF adopt the replicatedWALmodel

for serving OceanBase database (§3.1), Raft is built at the

setting of RSM model.

• Leader Election. In Raft, leader’s logs must be at least as

up-to-date as logs of any replica in a majority. In PALF,

election priorities manipulate which replica can be elected

as the leader, the config version acts as the chief election

priority (§5.3). For correctness, the log reconfirmation is

introduced (§3.4) to ensure that the candidate will hold the

longest logs in a majority before it takes over as a leader.

• Pending Follower. PALF adds a new stage to the transi-

tion from leader to follower for determining the replication

results of logs (§3.4) when some failures occur.

• Reconfiguration. A reconfiguration command of Raft is a

normal log entry, but PALF decouples it as a meta entry for

independent PALF group mirror (§5.3).

• Log Index. Raft adopts a continuous numeric log index for

log replication. PALF adopts two log entry identifiers, LSN

and CSN. The continuous LSN is used to replicate and store

logs, the CSN is used to track the order of operations across

multiple PALF groups.
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PALF Group Mirror vs. Paxos Learners. An intuitive question

may be why we choose to construct physical standby databases by

streaming between PALF groups, rather than synchronizing logs to

physical standby databases as Paxos learners. In practice, two main

reasons motivates the design of the PALF group mirror.

The first reason is failover. If the primary database crashed, the

standby database should be able to be switched as new primary

database and start to serve user requests. However, it is complicated

for Paxos learners to be elected as the leader of new primary data-

base because learners are not the part of the Paxos membership. In

contrast, PALF group mirror is an independent Paxos group, it can

be easily switched to a primary PALF group by changing its access

mode. The second reason is maintainability. Most reconfiguration

algorithms in consensus protocols are executed by the leader. If

the standby databases depend on Paxos learners, reconfiguring

a standby database must require it to contact with the primary

database, it is unacceptable when the network between them is

broken. For PALF group mirror, independent reconfiguration en-

ables administrators to reconfigure the standby database even if

the primary database crashes.

8 EVALUATION
In this section, we evaluate PALF performance experimentally. More

specifically, we seek to answer the following questions:

• What level of performance could PALF achieve?

• Howdoes the optimization in PALF impact its performance?

• Does log reconfirmation impact failure recovery?

• Is PALF competent as the WAL of OceanBase database?

8.1 Overall Performance
Testbed. All experiments (except §8.4) were performed on a cluster

of three commodity servers. Each server is equipped with a 32-

core 2.5GHz Intel Xeon CPU, 256 GB memory, and four SSD disks,

all connected via 10 Gigabit Ethernet with 0.2𝑚𝑠 average latency.

Three replicas were placed on different servers.

Baselines. We compared PALF with etcd-raft[15] and braft[2],

which are two open-source implementations of Raft[33], upon

which some industrial distributed systems[14, 42] have been built.

The main differences in system design are multicore scalability

and group replication. For instance, in etcd-raft, clients propose

logs to raft node through a Go channel, which facilitates its usage

but limits throughput under high concurrency. Even though both

etcd-raft and braft implement some batching optimizations, such

as batching disk I/O requests and reducing the number of network

packets, they still process log entries one by one in the consensus

protocol, which limits throughput.

Client Model.We built closed-loop clients for PALF, etcd-raft, and

braft. Each client does not append new logs to the leader until its

previous appended log has been committed. To emulate common

use cases of the write-ahead logging system (as an inner component

of the distributed database), clients are co-located with the leader

and append logs to the leader directly.

Throughput. PALF scales throughput greatly as the number of

clients increases. As illustrated in Fig. 9a, PALF handles 478K append
requests per second with 1500 clients and 1480K requests per sec-

ond with 8000 clients. These throughput numbers are much higher

than the baselines. The speedup ratio of PALF is 5.98 when the

number of clients increases from 500 to 8000, whereas the speedup

ratios of etcd-raft and braft are 1.386 and 1.8 respectively. This

means that PALF can make full use of modern multicore hardware.

There are several reasons for this. First, PALF’s lock-free write path

minimizes the overhead caused by lock contentions. Second, the

group buffer could be filled concurrently, and a fleet of cached logs

could be replicated within one consensus instance.

We further evaluated the impact of log size on I/O bandwidth

and throughput. As shown in Fig. 9b, etcd-raft achieves comparable

I/O bandwidth to braft and PALF, especially for small log sizes.

This seems to be inconsistent with the result depicted in Fig. 9a. To

discover the reason, we further plotted the relationship between

throughput and log size in Fig. 9c. The result shows that the valid

throughput of braft is much higher than that of etcd-raft, but that

their I/O bandwidths are of the same order of magnitude. This

implies that the real I/O size for each log may be amplified by etcd-

raft. Write amplification depicted in Fig. 9d validates the previous

reasoning. It was also found that the real I/O size of each log in

PALF is larger than that of each log in braft when log size is smaller

than 128 bytes. The reason for this is group replication. Besides the

log header (Fig. 5), an additional group log header will be attached

to each group log, which amplifies the real I/O size of logs.

Latency. As illustrated in Fig. 9e, the latency of PALF is about 2

𝑚𝑠 when the number of clients is less than 1500. Although PALF

has been evaluated to be friendly to high concurrency, latency still

increases slightly with the number of clients, up to 4.8𝑚𝑠 under

8000 clients. In the write path of PALF, LSN and CSN allocation

is a procedure that must execute sequentially. If a thread fails to

allocate LSN due to concurrent requests, the retry operation will

incur additional latency. We performed an evaluation to determine

whether the log sequencer is the bottleneck under high concurrency.

Our evaluations showed that the log sequencer can handle 5.88

million requests per second under 1000 threads. Therefore, the LSN

allocator is far from being a bottleneck.

The replication latency consists of memory copy, disk flushing,

and network transmission; these overheads are all correlated to the

log size. Therefore, it is reasonable that larger logs incur higher

latency (Fig. 9f).

8.2 Adaptive Group Replication
We evaluated the effect of adaptive group replication under different

concurrency levels. The threshold of the group factor was set to 10

because 10 workers were handling clients’ requests. In Figure 10a,

fewer consensus instancesmean less overhead. PALF proposesmore

consensus instances when group replication is disabled; it must

consume more computing resources than group replication. As

the number of clients increases, adaptive group replication sharply

reduces the number of consensus instances. The performance im-

provement is visually depicted in Fig. 10b. When throughput is

low, the adaptive group replication tracks the low latency property

of the feedback group replication. As the degree of concurrency

increases, PALF switches to periodic group replication and achieves

significant throughput. In conclusion, the adaptive group replica-

tion combines the advantages of two aggregation strategies, which

allows PALF to perform well under different concurrency levels.
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Figure 9: Performance with different clients and log size.
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Figure 10: Log Aggregation Evaluation.

8.3 Failure Recovery
Besides peak performance, we also measured the performance trace

and recovery time when the leader crashes, which is critical for

database availability. Figure 11a shows that PALF recovers from

leader failure within a short time, and the new leader achieves

equivalent throughput to the previous leader. PALF recovery con-

sists of two stages: leader election and log reconfirmation. The

duration of leader election is mainly subject to lease (4 s as default);

log reconfirmation takes up extra time compared to Raft. Figure

11b illustrates the cumulative distribution function (CDF) of the

reconfirmation time. The median and 90-th percentile were 32.2 ms

and 32.5 ms respectively. Even the reconfirmation time is related

to the gap of log size between the new leader and the replicas that

own the most logs, election restriction (in §5.3) guarantees that the

logs of the new leader will not fall far behind. Moreover, the effi-

cient write path of PALF further shortens the recovery time. These

optimizations make the overhead of log reconfirmation negligible.
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Figure 11: Failure recovery of PALF.

8.4 Evaluating PALF within OceanBase
To validate how log replication affects database performance, we

measured OceanBase 4.0 under both benchmarking tools and pro-

duction environments. To exert enough pressure on PALF, we chose

two Sysbench [25] cases (insert and update) and TPC-C[10] (200

warehouses) as workloads, evaluated PALF with key-value mode

of OceanBase under YCSB batch insert workloads, and measured

PALF performance in a production cluster. The benchmarking ex-

periment was performed on a cluster of three commodity servers,

which are equipped with a 96-core 2.5GHz Intel Xeon CPU and

the same hardware as in the earlier experiments; The production

cluster consists of 46 Aliyun ECS r5.16xlarge instances.

The results of transactional performance are depicted in Figure

12a and Figure 12b. Compared to stand-alone performance, log repli-

cation slightly reduces the performance of three-replica OceanBase

by 8.8% on average (For fairness, only one replica of the database

can process transactions). This result proves the efficiency of PALF.

Note that the performance of OceanBase scales with the number

of clients under Sysbench, but experiences a little decrease under

TPC-C. The reason for this is the proportion of write transactions.

The logging system greatly impacts the performance of write trans-

actions, but have minimal impact on read transactions. Therefore,

the performance of write-intensive workloads in Sysbench scales

well due to the scalability of PALF. In comparison, the performance

on hybrid workloads in TPC-C is limited to the database itself. This

result shows that log replication is not a bottleneck for OceanBase.

The profiling of PALF within OceanBase during the benchmark-

ing experiments (three-replica) and the production workloads are

exhibited in Table 1, Figure 12c, and Figure 12d. The results are

much lower than PALF’s peak performance described in §8.1, which

can achieve 1.4 million append operations per second with 512-byte

payloads. Therefore, the performance of PALF is more than suffi-

cient for OceanBase to serve intensive writes.

9 RELATEDWORK
In this section, we discuss other contributions and how they relate

to the features of PALF.

WAL in Distributed Databases.Many distributed databases

have been built on top of replicated logging for fault tolerance and

availability. The Raft protocol [33, 34] is widely used to synchronize

logs among replicas, such as CockRoachDB [42] and YugabyteDB

[48]. Spanner [9] implements a replicated state machine with Paxos

on top of each tablet. Their transaction engines interact with the

logging system through the replicated state machine model [39].

The choice made by PALF is to provide file-like interfaces, which

makes the integration between consensus protocol and the typical
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Figure 12: Performance under different workloads.

WAL model possible. Aurora[44] is a shared-storage database, the

database engine takes charge of log replication and offloads the log

processing to log storage, by contrast, PALF fits in a shared-nothing

architecture, the database appends logs to PALF by file-like APIs

and is unaware of consensus protocol.

These distributed databases adopt the approach of bundling log

replication with data partition (tablet in Spanner, range in Cock-

RoachDB, etc.), which achieves high throughput by parallelizing

multiple partitions, but incurs more distributed transactions. A sin-

gle replication group of PALF provides excellent performance, it

can replicate logs of multiple data partitions concurrently, this way

indirectly reduces the number of distributed transactions.

Socrates [1] uses an unbundled log service XLOG built on the

Azure storage service to support an upper database tier. Founda-

tionDB [50] adopts another unbundled architecture in which log

servers are decoupled from transaction processing and logs are repli-

cated across log servers in the charge of proxies in the transaction

system. PALF provides file-like interfaces for bundled architectures.

In bundled architectures, even if additional performance gains

could be attained by coupling WAL and the database tightly (e.g.

making WAL transaction-aware to commit buffered logs[29], dis-

tributed transaction optimizations [17, 19]), PALF still abstracts

database-specific functions as filesystem-like APIs to keep a clear

boundary between the log and the database, this will bring main-

tainability and stability benefits to a practical database system.

xCluster[49] of YugabyteDB supports asynchronous replication

between databases by transmitting logical logs with the change data

capture tool, but imposing many constraints; for example, it does

not support synchronizing DDL statements. CockroachDB[42] only

Table 1: Profiling of PALF within OceanBase

Workloads LogSize Throughput RT(𝜇s) I/OPS

Insert 499 B 472181 3312 1125

Update 433 B 484061 3111 1111

TPC-C 3386 B 27975 3878 1929

YCSB 1993 B 41481 2024 1090

Production 1060 B 23253 4752 1129

supports replica-level asynchronous replication by non-voting repli-

cas. These schemes are not suitable for physical standby databases,

which provide an identical copy of the primary database and should

be independently available. PALF offers the PALF group mirror to

construct the standby database naturally.

Replicated Logging Systems. Replicated logging systems are

widely used to persist and order updates in distributed systems.

Many replicated logging protocols sequence records by a distin-

guished leader [9, 18, 22, 30, 34]. A shared log abstraction has been

proposed to funnel all updates through a global ordering layer, such

as CORFU [4] and Scalog[13]. For distributed databases, the order

of logs is essentially determined by the transaction engine rather

than the logging system. Some logging systems [18, 42] pack trans-

action identifiers into log records, which may incur inconsistency

between the transaction order and the logging order. PALF provides

a change sequence number primitive that tracks the transaction

order with the logging order.

As for independent reconfiguration, another promising solution

is separating configuration management from log replication, as

in Vertical Paxos[28] and Delos[3]. Most of these studies give the

responsibility for reconfiguring clusters to another service; the ap-

proach may introduce additional availability risk to systems [16].

These systems are often internal services of big companies rather

than a common software product like the OceanBase database. The

PALF approach achieves both independence and generality of recon-

figuration. MongoRaftReconfig[40] also stores reconfiguration logs

separately like PALF, but its motivation is to recover a consensus

group from majority failures. In that scenario, safety properties of

Raft reconfiguration may not be ensured; MongoRaftReconfig pro-

posed an extended reconfiguration protocol and proved its safety.

10 CONCLUSION
This paper has presented PALF, which acts as the replicated write-

ahead logging system of OceanBase and is expected to serve as a

building block for many other distributed systems. The key idea

is to abstract database-specific requirements to PALF primitives.

Specifically, PALF provides typical file system interfaces and ex-

plicit replication results at a consensus level, which facilitate the

integration between the transactional system and WAL. The CSN

primitive helps to track the order of transactions by the order of logs.

Data change synchronization has been abstracted as PALF group

mirrors; downstream applications would benefit from this. Under

typical OLTP workloads, PALF serves the OceanBase database in a

comfortable manner and offers space for future advances.
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