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ABSTRACT
Whenever randomness is involved in query processing, confidence

intervals are commonly returned to the user to indicate the statisti-

cal significance of the query answer. However, this problem has not

been explicitly addressed under differential privacy, which must use

randomness by definition. For some classical mechanisms whose

noise distribution does not depend on the input, such as the Laplace

and the Gaussian mechanism, deriving confidence intervals is easy.

But the problem becomes nontrivial for queries whose global sensi-

tivity is large or unbounded, for which these classical mechanisms

cannot be applied. There are three main techniques in the litera-

ture for dealing with such queries: the exponential mechanism, the

sparse vector technique, and the smooth sensitivity. In this paper,

for each of the three techniques we design mechanisms to produce

confidence intervals that are (1) differentially private; (2) correct,

i.e., the interval contains the true query answer with the specified

confidence level; and (3) have a utility guarantee matching that

of the original mechanism, up to constant factors. Then we show

how to apply our techniques to a variety of problems ranging from

simple statistics (e.g., mean, median, maximum) to graph pattern

counting and conjunctive queries.
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1 INTRODUCTION
Differentially private (DP) query processing mechanisms have been

developed for many important and fundamental problems such as

mean/median [20, 28, 38], graph statistics [32, 38, 41], and (certain

classes of) SQL queries [13, 29, 39]. However, all these mechanisms

only return a noisy query answer. For instance, if a data analyst is

interested in the number of orders completed this year such that the

customer is from Asia, s/he may ask the following query (assuming

the TPC-H schema):

SELECT count(*)
FROM Region, Nation, Orders, Customer
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WHERE Orders.Orderdate > 2023-01-01
AND Region.Name = 'ASIA' AND Region.RK = Nation.RK
AND Nation.NK = Customer.NK AND Customer.CK = Orders.CK;

Current DP mechanisms only return a single value, say 101.2,

which leaves the data analyst in limbo: S/he knows that the answer

is inaccurate, but has no idea how inaccurate it is, thus cannot use

the query answer reliably or make decisions with any confidence.

The most common technique for resolving the issue is to provide

a confidence interval (CI), namely, an interval that contains the

true query answer with probability at least 1 − 𝛽 for some given 𝛽 .

Back to the example above, if we can return a CI, say, [99, 102] with
𝛽 = 0.05, then we know our result has high accuracy and this would

allow downstream applications to interpret the result with more

reliability and provenance. Indeed, in the non-private settings, CIs

are a standard requirement for approximate query processing (AQP)
systems, which often use sampling to reduce the query processing

cost [1, 8, 27, 35]. When the returned CI is considered not accurate

enough, the data analyst can instruct the AQP system to increase

the sample size, hence a larger computational cost, to reduce the

CI to a level of satisfaction.

In this paper, we study the CI problem in a DP query processing

system. Here, the CI would play a role as important as that for

AQP systems: It injects statistical significance into the noisy query

answer, allows more confidence in decision-making, and when it is

not accurate enough, the data analyst may decide to spend more

privacy budget to improve its accuracy or abandon the task to avoid

making risky decisions.

Our starting observation is that, if the CI can be derived from

the output of the DP mechanism using only public information,

then solving the CI problem is straightforward. This is the case

for some classical DP mechanisms, such as the Laplace mechanism

and the Gaussian mechanism. For instance, the Laplace mechanism

outputsM(𝐷) := 𝑄 (𝐷) + GS𝑄/Y · Lap(1), where 𝑄 (𝐷) is the true
query result, GS𝑄 is the global sensitivity (formal definition in

Section 2) of the query𝑄 (·), and Lap(1) denotes a random variable

drawn from the unit Laplace distribution. Using a tail bound on

the noise distribution (see Lemma 2.4), it immediately follows that

[M(𝐷) −GS𝑄/Y · log(1/𝛽),M(𝐷) +GS𝑄/Y · log(1/𝛽)] is a (1− 𝛽)-
CI for 𝑄 (𝐷). More generally, a CI can be obtained by evaluating

the cumulative density function (CDF) of the noise distribution at

𝛽/2 and 1 − 𝛽/2. This still satisfies DP, since it can be considered

as a post-processing step onM(𝐷). Most importantly, this works

because the scale of the noise distribution only depends on public

information, i.e., GS𝑄 , Y, and 𝛽 .

However, the global sensitivity for many problems is large or

even unbounded. A prototypical example is the median problem:
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just consider the neighboring pairs of datasets (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
𝑛/2+1

, 𝑁 , . . . , 𝑁⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
𝑛/2

)

and (0, . . . , 0⏞ˉ̄⏟⏟ˉ̄⏞
𝑛/2

, 𝑁 , . . . , 𝑁⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
𝑛/2+1

). This means that GS𝑄 = 𝑁 if all elements

are taken from the domain [𝑁 ] = {0, 1, . . . , 𝑁 }, and GS𝑄 = ∞ if

the domain is unbounded, say N or Z. The issue is more promi-

nent in relational databases: Any query with at least one join has

unbounded GS𝑄 [13, 14].

To deal with such queries, the literature has identified three

main techniques: the exponential mechanism (EM), the sparse vec-

tor technique (SVT), and the smooth sensitivity (SS). Each one can

be applied to a class, but not all, of such queries, with different

and sometimes incomparable utility guarantees. In particular, they

can all be applied to the median problem, which is often used as a

“testbed” for these techniques. In particular, all these non-GS based

mechanisms use instance-specific noise distributions [11, 13, 38, 41],

namely their accuracy depends on the input data, which is private.

For example, on input 𝐷 , the EM draws the output from a distri-

bution where the probability of returning each 𝑦 is proportional

to exp

(︂
Y𝑢 (𝐷,𝑦)
2Δ𝑢

)︂
, where 𝑢 (𝐷,𝑦) is a utility function that assigns a

score to each 𝑦 on input 𝐷 (more details given in Section 3). It is

clear that this noise distribution depends on 𝐷 . For the EM mecha-

nism, it is not possible to produce a CI with only public information.

In fact, the fundamental reason why EM, as well as SVT and SS,

can overcome the issue of a large GS𝑄 is to use a noise distribution

whose scale (and possibly some other properties) varies according

to the hardness of the input. For example, the pair of inputs for the

median problem mentioned above are hard, and a noise scale Ω(𝑁 )
is needed to make them indistinguishable, but most real-world in-

stances do not require such a large noise. However, this introduces

a challenge for the CI problem. On the one hand, the naive CI that

simply adds ±GS𝑄 to the output of the EM satisfies DP, but it loses

all utility. On the other hand, setting the CI proportional to the

scale of the noise distribution violates DP as it depends on 𝐷 .

1.1 Our Contributions
In this paper, for each of the three general techniques, we design

mechanisms to produce confidence intervals that are

(1) differentially private;

(2) correct, i.e., the CI contains 𝑄 (𝐷) with probability 1 − 𝛽 ;

and

(3) have a utility guarantee matching that of the original mech-

anism, up to constant factors.

Note that point (3) above depends on the particular form of guar-

antee. For example, EM has the utility guarantee that the utility

score of the output is smaller than the highest score by at most

𝑂 (Δ𝑢/Y · log(𝑁 /𝛽)) with probability 1− 𝛽 . Then, our EMCI mecha-

nism (Section 3) returns a CI such that every point inside the CI has

such a high score (up to a constant factor). The utility guarantees

of our CIs for SVT and SS have a similar nature, and the exact state-

ments can be found in Section 4 and 5, respectively. Meanwhile, it

is easy to see that (3) is the best one can hope for: If the CI had a

better utility, then we would be improving the original mechanism

as well.

Next, for each technique, we show how our CI mechanisms can

be applied to some representative applications, as listed in Table

1. In particular, they can all be applied to the median problem, but

with different utility guarantees.

Finally, in Section 6 we present an experimental evaluation, in

which we compare the utility of the CIs with the actual errors of

the corresponding mechanisms. Note that the CI cannot be better

than the actual error, by the definition of a CI. However, the actual

errors cannot be published but the CIs can. Thus, the goal of the

experiments is to gauge the (constant-factor) gap between the CI

and best theoretical possible.

1.2 Empirical Setting and Statistical Setting
Differentially private confidence intervals have previously been

studied in the statistical setting [5, 10, 17, 18, 26, 31] on some pa-

rameter estimation problems such as mean estimation. There, the

input dataset 𝐷 is assumed to be an i.i.d. sample drawn from some

underlying distribution P with some unknown parameter \ , and

the goal is to derive a CI for \ . The correctness and utility of the

CI rely on statistical properties of P and the CI should consider

randomness in both 𝐷 and the mechanism.

On the other hand, the focus of this paper is in the empirical
setting, namely, we do not assume that 𝐷 is random and the goal is

to provide a CI on 𝑄 (𝐷) for any given 𝐷 . In this setting, the only

randomness is from the DP mechanism. One can see the empirical

CI problem will no longer exist without DP requirement since in

that case we can output the real query result which is 100% accurate.

These two settings differ by how they view the data. For instance,

if we want to estimate the average score of students in a school,

where 𝐷 consists of a random sample of the students and the scores

follow some distribution, e.g., Gaussian, then it is more appropriate

to use the statistical setting. However, if we compute the average

stock price of a company in the past 5 years, where 𝐷 consists of

daily prices, then the statistical setting will no longer be meaningful

since stock prices do not follow any distribution and are certainly

not i.i.d. We emphasize that the empirical setting is more appropri-

ate for relational databases; in fact, for most problems studied in

this paper, e.g., graph pattern counting and SQL queries, DP mecha-

nisms have not been studied in the statistical setting, because there

are no generally agreed statistical models for these problems.

While the statistical setting and empirical setting are two dif-

ferent problems, we observe that some existing statistical mean CI

mechanisms [31] can be modified to support the empirical setting.

We describe the modification and compare it with our CI mecha-

nisms experimentally in Section 6.2. However, the mechanism on

median CI [10, 17] in the statistical setting cannot be easily modified

to support the empirical setting.

1.3 Other Related Work
We have derived CIs for the three most important techniques for

handling queries with large/unbounded global sensitivity: EM, SVT,

and SS. Another popular technique is the propose-test-release frame-

work [20]. It first proposes a bound, say 𝑏, on the local sensitivity,

and test (in a DP fashion) if the input 𝐷 is far from any instance

that violates the bound. If yes, it releases the query output using

the Laplace mechanism with noise scale 𝑏. Because 𝑏 here is public
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Table 1: Summary of different techniques, here rad(𝐷) is the radius of 𝐷 and SS(𝐷) is the smooth sensitivity, detailed definitions
are given later.

CI Technique Median Other applications

EM Bounded domain with 𝑂 ( log𝑁Y ) rank error Graph pattern counting with special patterns (e.g., triangle, 𝑘-star)

SVT Unbounded domain with 𝑂 ( log rad(𝐷 )Y ) rank error Radius (maximum), mean (sum)

SS Bounded domain with 𝑂 ( SS(𝐷 )Y ) value error Conjunctive queries

information, one can still derive a CI easily in the same manner as

for the Laplace mechanism.

The machine learning community is interested in many high-

dimensional problems [7, 25, 28]. A confidence interval, in high

dimensions, becomes generally a confidence set. Our mechanisms

can still be applied by deriving a CI in each dimension. However,

this may not yield the tightest confidence set, as it is restricted to

axis-parallel boxes. How to derive tighter confidence sets in high

dimensions is an interesting open problem.

2 PRELIMINARIES
2.1 Notation
A database instance 𝐷 is a multiset of 𝑛 tuples. Depending on the

problem, the tuples may take different forms. For simple aggrega-

tion queries like mean, sum, or median, each tuple is an integer, and

we write 𝐷 = {𝑥1, . . . , 𝑥𝑛} and reorder 𝐷 such that 𝑥1 ≤ · · · ≤ 𝑥𝑛 .

We further distinguish the bounded-domain case, where each 𝑥𝑖
is taken from [𝑁 ] = {0, 1, . . . , 𝑁 }, as well as the unbounded do-

main Z. We will use the following notation: Count(𝐷, [𝑎, 𝑏]) :=
|𝐷 ∩ [𝑎, 𝑏] | (multiplicity is considered during counting); rad(𝐷) :=
max𝑖 |𝑥𝑖 | is the radius of 𝐷 ; 𝛾 (𝐷) = 𝑥𝑛 − 𝑥1 is the width; abs(𝐷) :=
{|𝑥𝑖 | : 𝑥𝑖 ∈ 𝐷} (multiplicity is preserved); 𝐷 + 𝑎 is the multiset ob-

tained by adding 𝑎 to all elements of 𝐷 ; 𝐷 − 𝑎 is defined similarly.

For graph pattern counting queries or conjunctive queries, 𝐷 is a

graph with 𝑛 edges or a database containing multiple relations with

a total of 𝑛 tuples, respectively. Note that the former is a special

case of the latter where we use just one relation to store all the

edges.

We use D to denote the input domain of all database instances,

i.e.,D = [𝑁 ]𝑛 (D = Z𝑛 for the unbounded-domain case), all graphs

with 𝑛 edges, or all database instances with 𝑛 tuples, respectively.

While we consider these varieties of input domains, we require

the output domain of the query to be one-dimensional, where the

confidence interval is really an “interval”. Specifically, for mech-

anisms that require a finite output domain (e.g., the exponential

mechanism), we use [𝑁 ]; for mechanisms on an infinite but discrete

domain (e.g., SVT), we use Z; otherwise we take the output domain

to be R (e.g., the Laplace mechanism and smooth sensitivity). All

log’s have base 𝑒 unless specified otherwise.

2.2 Differential Privacy
Definition 2.1 (Differential privacy (DP [21, 22])). For Y > 0, an

algorithmM : D → Y is Y-differentially private, or simply Y-DP,

if for any neighboring database instances 𝐷 ∼ 𝐷′ ∈ D and any

𝑦 ∈ Y,
Pr[M(𝐷) = 𝑦] ≤ 𝑒Y · Pr[M(𝐷′) = 𝑦] .

In this paper, two database instances 𝐷 and 𝐷′ are said to be

neighbors, denoted𝐷 ∼ 𝐷′, if they differ by one tuple. This is known
as replacement-DP where the number of tuples 𝑛 is regarded as

public information.

For the CI problem, the mechanism will return the two endpoints

of the interval, and the joint distribution of the two endpoints

must satisfy the DP requirement above. The (adaptive) composition

property below simplifies the analysis, so that we can focus on

designing amechanism for each endpoint while splitting the privacy

budget:

Lemma 2.2 (Adaptive Composition [22]). LetM1 : D → Y1
andM2 : D×Y1 → Y2 be two mechanisms. IfM1 (·) satisfies Y1-DP
andM2 (·, 𝑦) satisfies Y2-DP for any 𝑦 ∈ Y1, then the mechanism
M(𝐷) := (M1 (𝐷),M2 (𝐷,M1 (𝐷))) satisfies (Y1 + Y2)-DP.

A useful special case of this lemma is when Y2 = 0, which implies

thatM2 (·, 𝑦) only depends on𝑦. In this case, the lemma degenerates

into the post-processing property of DP. Furthermore, the lemma

easily extends to the case where any number of DP mechanisms

are composed.

For any query 𝑄 : D → R, its local sensitivity on database

instance 𝐷 is

LS𝑄 (𝐷) = sup

𝐷 ′ :𝐷∼𝐷 ′
|𝑄 (𝐷) −𝑄 (𝐷′) |,

and its global sensitivity is

GS𝑄 = sup

𝐷

LS𝑄 (𝐷).

When the query 𝑄 is clear from the context, we omit the subscript

𝑄 and simply write LS(𝐷) and GS.

One standard technique for achieving DP is to add a Laplace

noise with scale proportional to GS before releasing 𝑄 (𝐷):

Lemma 2.3 (Laplace Mechanism [24]). The mechanism

M(𝐷) := 𝑄 (𝐷) + GS/Y · Lap(1)
preserves Y-DP, where Lap(1) denotes a random variable drawn from
the unit Laplace distribution.

The following lemma gives the high probability bound on the

magnitude of Laplace noise, immediately yielding a CI for the

Laplace mechanism:

Lemma 2.4 (Laplace tail bound). If 𝑋 ∼ Lap(1), then Pr( |𝑋 | >
log

1

𝛽
) ≤ 𝛽 .
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(a) A counter-example of
well-behaved utility function.

(b) Partially flipping the utility
function assuming 𝑢max (𝐷 ) =

0, 𝑠 = 4, 𝑙 = 1.

Figure 1

3 EXPONENTIAL MECHANISM
The exponential mechanism (EM) [36] is a general DP mechanism.

For a utility function 𝑢 : D × Y → R that assigns a utility

score to each output 𝑦 ∈ Y on instance 𝐷 ∈ D, EM returns a

𝑦 with high utility in a DP manner. More precisely, it samples

𝑦 ∈ Y with probability proportional to exp( Y𝑢 (𝐷,𝑦)
2Δ𝑢 ), where Δ𝑢 :=

sup𝑦∈Y sup𝐷 ′,𝐷 ′′∈D,𝐷 ′∼𝐷 ′′ |𝑢 (𝐷′, 𝑦) − 𝑢 (𝐷′′, 𝑦) |. The utility func-

tion is often designed in a way such that 𝑢 (𝐷,𝑦) maximizes at

𝑦 = 𝑄 (𝐷), so that EM returns 𝑄 (𝐷) with the highest probability.

Denote by EM(𝐷,𝑢, Y) the output of the exponential mechanism

on input 𝐷 with utility function 𝑢. It is known to satisfy Y-DP and

has the following utility guarantee:

Lemma 3.1 ([36]). With probability at least 1 − 𝛽 ,

𝑢 (𝐷, EM(𝐷,𝑢, Y)) ≥ 𝑢 (𝐷,𝑦∗ (𝐷)) − 2Δ𝑢

Y
log

|Y|
𝛽

,

where 𝑦∗ (𝐷) = argmax𝑦∈Y 𝑢 (𝐷,𝑦).

Note that Lemma 3.1 requires a finite Y. Thus we take Y = [𝑁 ]
in this section.

3.1 Private CI for General EM
In this subsection, we describe EMCI, a mechanism for producing a

private confidence interval for the general EM. EMCI will return a

CI [𝐿(𝐷), 𝑅(𝐷)] that (1) satisfies Y-DP, (2) is correct, i.e., Pr[𝑦∗ (𝐷) ∈
[𝐿(𝐷), 𝑅(𝐷)] ≥ 1− 𝛽 , and (3) has a utility guarantee that is as good
as the EM itself (up to a constant factor), i.e., every𝑦 ∈ [𝐿(𝐷), 𝑅(𝐷)]
has high utility.

EMCI works with EM instantiated using any well-behaved utility

function:

Definition 3.2 (Well-behaved utility function). A utility function

𝑢 is well-behaved if it has the following properties:

(1) Unimodality: For any 𝐷 , 𝑢 (𝐷,𝑦) is unimodal reaching max-

imum value at 𝑦 = 𝑦∗ (𝐷), i.e., 𝑢 (𝐷,𝑦) is non-decreasing in

[0, 𝑦∗ (𝐷)] and non-increasing in [𝑦∗ (𝐷), 𝑁 ].
(2) Non-triviality: For any 𝐷 , there exist 𝑦1<𝑦

∗ (𝐷)<𝑦2 such
that 𝑢 (𝐷,𝑦1) and 𝑢 (𝐷,𝑦2) are smaller than 𝑢 (𝐷,𝑦∗ (𝐷)) −
9Δ𝑢
Y log

2𝑁
𝛽
. Otherwise simply returning [0, 𝑁 ] alreadymeets

all three desiderata above.

(3) Continuity:𝑢 (𝐷,𝑦) is 𝑙-Lipschitz in𝑦 for some 𝑙 , i.e., |𝑢 (𝐷,𝑦+
1) − 𝑢 (𝐷,𝑦) | ≤ 𝑙 for any 𝐷,𝑦.

Figure 1a provides a counter-example of well-behaved utility

function. However, we are not aware of any instantiation of the

EM where the utility function has more than one maximum like in

this counter-example. Furthermore, note that the constraints (2)
and (3) in the above definition only affect the CI width and do not

affect its correctness of returned CI.

In general, given an arbitrary utility function 𝑢, it may not be

easy to verify whether it is well-behaved. However, most utility

functions used for EM in reality have nice properties. For the two

specific instantiations considered below, we can easily prove that

they are well-behaved.

The intuition behind EMCI is as follows. To find 𝐿(𝐷), we run
another EM with a different utility function 𝑢𝐿 (𝐷,𝑦) such that it (1)

has small sensitivity; and (2) peaks somewhere on the left side of

but close to 𝑦∗ (𝐷), while taking small values for 𝑦 ≥ 𝑦∗ (𝐷). Thus,
this EM can return an 𝐿(𝐷) = EM(𝐷,𝑢𝐿, Y2 ) that is a close lower
bound of 𝑦∗ (𝐷). Then symmetrically, we use the other half of the

privacy budget to find 𝑅(𝐷).
We construct such an 𝑢𝐿 by partially “flipping” the original 𝑢.

Let 𝑠 := 9Δ𝑢
Y log

2𝑁
𝛽

and 𝑢max (𝐷) := 𝑢 (𝐷,𝑦∗ (𝐷)). We define

𝑢𝐿 (𝐷,𝑦) =
{︄
−|𝑢 (𝐷,𝑦) − 𝑢max (𝐷) + 𝑠 + 𝑙 |, if 𝑦 ≤ 𝑦∗ (𝐷);
𝑢 (𝐷,𝑦) − 𝑢max (𝐷) − 𝑠 − 𝑙, if 𝑦 > 𝑦∗ (𝐷) .

(1)

See Figure 1b for an illustration.

Symmetrically, to find 𝑅(𝐷), we use the utility function

𝑢𝑅 (𝐷,𝑦) =
{︄
𝑢 (𝐷,𝑦) − 𝑢max (𝐷) − 𝑠 − 𝑙, if 𝑦 ≤ 𝑦∗ (𝐷);
−|𝑢 (𝐷,𝑦) − 𝑢max (𝐷) + 𝑠 + 𝑙 |, if 𝑦 > 𝑦∗ (𝐷) .

(2)

It can be shown that 𝑢𝐿 and 𝑢𝑅 have low sensitivity. For the

proof please refer to the full version [40].

Lemma 3.3. For any 𝛽, Y <
9 log(2𝑁 /𝛽 )

2
and any well-behaved

utility function 𝑢 (𝐷,𝑦), we have Δ𝑢𝐿,Δ𝑢𝑅 ≤ 2Δ𝑢.

Then EMCI simply returns the confidence interval [𝐿(𝐷), 𝑅(𝐷)],
where 𝐿(𝐷) = EM(𝐷,𝑢𝐿, Y2 ) and 𝑅(𝐷) = EM(𝐷,𝑢𝑅, Y2 ). Now we

prove the main result on EMCI:

Theorem 3.4. Given 𝛽, Y <
9 log(2𝑁 /𝛽 )

2
, and any well-behaved

utility function 𝑢 (𝐷,𝑦) that is 𝑙-Lipschitz, EMCI is Y-DP, and on any
input 𝐷 , it returns a confidence interval [𝐿(𝐷), 𝑅(𝐷)] such that with
probability at least 1 − 𝛽 ,

𝑦∗ (𝐷) ∈ [𝐿(𝐷), 𝑅(𝐷)],

and for all 𝑦 ∈ [𝐿(𝐷), 𝑅(𝐷)],

𝑢 (𝐷,𝑦) ≥ 𝑢 (𝐷,𝑦∗ (𝐷)) − 17Δ𝑢

Y
log

2𝑁

𝛽
− 2𝑙 .

Proof. Privacy directly follows from the privacy of the EM and

basic composition. Next, we prove correctness and utility.

Let 𝑦∗
𝐿
(𝐷) be the smallest integer such that

𝑢max (𝐷) − 𝑠 − 𝑙 ≤ 𝑢 (𝐷,𝑦∗𝐿 (𝐷)) ≤ 𝑢max (𝐷) − 𝑠 .
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Note that such a 𝑦∗
𝐿
(𝐷) must exist for any well-behaved 𝑢. Accord-

ing to lemma 3.1 and 3.3, with probability at least 1 − 𝛽
2
:

𝑢𝐿 (𝐷, 𝐿(𝐷)) ≥ max

𝑦∈Y
𝑢𝐿 (𝐷,𝑦) −

8Δ𝑢

Y
log

2𝑁

𝛽

≥ 𝑢𝐿 (𝐷,𝑦∗𝐿 (𝐷)) −
8Δ𝑢

Y
log

2𝑁

𝛽

≥ −8Δ𝑢
Y

log

2𝑁

𝛽
− 𝑙 .

On the other hand, according to our design, when 𝑦 ≥ 𝑦∗ (𝐷),
𝑢𝐿 (𝐷,𝑦) ≤ − 9Δ𝑢

Y log
2𝑁
𝛽
− 𝑙 . So we know 𝐿(𝐷) < 𝑦∗ (𝐷). What’s

more,

𝑢 (𝐷, 𝐿(𝐷)) ≥ 𝑢 (𝐷,𝑦∗ (𝐷)) + 𝑢𝐿 (𝐷, 𝐿(𝐷)) − 𝑠 − 𝑙

≥ 𝑢 (𝐷,𝑦∗ (𝐷)) − 17Δ𝑢

Y
log

2𝑁

𝛽
− 2𝑙 .

Similarly, 𝑅(𝐷) > 𝑦∗ (𝐷) and

𝑢 (𝐷, 𝑅(𝐷)) ≥ 𝑢 (𝐷,𝑦∗ (𝐷)) − 17Δ𝑢

Y
log

2𝑁

𝛽
− 2𝑙

with probability at least 1 − 𝛽
2
. In summary, 𝑦∗ (𝐷) falls inside the

interval [𝐿(𝐷), 𝑅(𝐷)] with probability at least 1−𝛽 and both ending
points have utility score at least 𝑢 (𝐷,𝑦∗ (𝐷)) − 17Δ𝑢

Y log
2𝑁
𝛽
− 2𝑙 .

Then all 𝑦 in [𝐿(𝐷), 𝑅(𝐷)] have high utility due to the unimodality

of 𝑢. □

Here we allocate the privacy budget evenly to find the left/right

bounding point. Without further assumption, this is the simplest

choice and maximizes the total utility score on both ending points

of the CI.

3.2 Private CI for Median
We describe two applications of EMCI. The first is the median

problem over a finite domain [𝑁 ], namely, the query 𝑄 (𝐷) returns
the ⌈𝑛/2⌉-th smallest element in𝐷 . We use the negative path length

as the utility function : 𝑢 (𝐷,𝑦) = − len(𝑄, 𝐷,𝑦), where
len(𝑄, 𝐷,𝑦) := min

𝐷 ′

{︁
𝑑

(︁
𝐷, 𝐷′

)︁
: 𝑄

(︁
𝐷′

)︁
= 𝑦

}︁
.

Here 𝑑 (𝐷,𝐷′) denotes the minimal number of tuples that have to

be changed to transform𝐷 to𝐷′. This instantiation of EM had been

a folklore since [9, 36], and was generalized in [2], who termed it

the inverse sensitivity (INV) mechanism. For this utility function,

we have Δ𝑢 = 1. Then Lemma 3.1 immediately implies a rank error
of

2

Y log(𝑁 /𝛽), i.e., the rank of the returned median is between

⌈𝑛/2⌉ ± 2

Y log(𝑁 /𝛽) with probability 1− 𝛽 [3]. However, a technical

issue with this 𝑢 (𝐷,𝑦) is that it has 𝑙 = Ω(𝑛). For example, if 𝐷

consists of 𝑛 0’s, then 𝑢 (𝐷, 0) = 0 but 𝑢 (𝐷, 1) = −⌈𝑛/2⌉.
There is a simple solution to address this issue. First, if it is guar-

anteed that 𝐷 does not contain duplicates, then we have 𝑙 = 1, and

Theorem 3.4 implies that the rank error of any element in the CI is

𝑂 (log(𝑁 /𝛽)/Y). If 𝐷 may contain duplicates, then we de-duplicate

it by expanding the domain from [𝑁 ] to [𝑛 · 𝑁 ]. Specifically, each
𝐷 ∈ [𝑁 ]𝑛 is mapped to a �̂� ∈ [𝑛 · 𝑁 ]𝑛 , where the repetitions of
a value 𝑥 ∈ 𝐷 are mapped to 𝑛𝑥, 𝑛𝑥 + 1, . . . , 𝑛𝑥 + 𝑘 − 1, if 𝑥 has 𝑘

repetitions in𝐷 . Note that any pair of neighboring instances remain

neighbors after the mapping, so privacy is not affected. Therefore,

EMCI can be applied on �̂� with 𝑙 = 1. Finally, we transform the

CI back to the original domain after dividing by 𝑛 and rounding

down. The rank error becomes 𝑂 (log(𝑛𝑁 /𝛽)/Y) as |Y| = 𝑛𝑁 after

the mapping.

EMCI can be implemented efficiently in𝑂 (𝑛) time given a sorted

𝐷 . First, the mapping from 𝐷 to �̂� can be easily done in 𝑂 (𝑛) time.

The utility function𝑢 can be then be constructed in𝑂 (𝑛) time: Note

that there is no need to compute 𝑢 (𝐷,𝑦) for each 𝑦 ∈ [𝑛𝑁 ]. The 𝑛
elements of �̂� partition the domain into 𝑛 + 1 segments, and the

utility score remains the same within each segment. Similarly, 𝑢𝐿
and𝑢𝑅 can also be constructed in𝑂 (𝑛) time. To run EM using𝑢𝐿 or

𝑢𝑅 , we first sample a segment with probability proportional to the

segment length times its utility score, which takes𝑂 (𝑛) time. Then,

we return an element inside the segment uniformly at random.

3.3 Graph Pattern Counting
Zhang et al. [41] applied EM on the graph pattern counting prob-

lem, i.e., given a graph 𝐺 and a pattern 𝑃 , say, a triangle, count

the number of subgraphs of 𝐺 that are isomorphic to 𝑃 . Two

graphs are neighbors if they differ by one edge. The utility func-

tion used, which they call the ladder function, is based on LS(𝐺, 𝑡),
local sensitivities at distance 𝑡 . More precisely, LS(𝐺, 𝑡) is defined as

max𝐺 ′ :𝑑 (𝐺,𝐺 ′ )≤𝑡 LS(𝐺 ′), i.e., the largest local sensitivity attained

on any graph having at most 𝑡 different edges from 𝐺 . Then the

utility function (ladder function) is defined as follows:

• 𝑢 (𝐺,𝑄 (𝐺)) := 0, where 𝑄 (𝐺) is the true count;
• for every 𝑠 ≥ 0, 𝑢 (𝐺,𝑦) := −𝑠 − 1 for all 𝑦 such that |𝑦 −

𝑄 (𝐺) | ∈
(︂∑︁𝑠−1

𝑡=0 LS(𝐺, 𝑡),
∑︁𝑠
𝑡=0 LS(𝐺, 𝑡)

]︁
.

It has been shown that this utility function has sensitivity Δ𝑢 = 1

[41]. Additionally, it is easy to see 𝑢 is |𝑃 |-Lipschitz, where |𝑃 |
denotes the number of edges in the pattern 𝑃 .

For the graph pattern counting problem, the output domain is

[𝑁 ] for 𝑁 = 𝑛 |𝑃 | . Then Theorem 3.4 means that the utility of every

𝑦 in the returned CI is at least

𝑢 (𝐺,𝑦∗ (𝐺))−𝑂
(︃
|𝑃 | log 𝑛

𝛽

)︃
−𝑂 ( |𝑃 |) ≥ 𝑢 (𝐺,𝑦∗ (𝐺))−𝑂

(︃
|𝑃 | log 𝑛

𝛽

)︃
,

which is as good as the utility guarantee of EM itself, up to constant

factors.

Unfortunately, computing LS(𝐺, 𝑡), hence the utility function

above, takes exponential time for an arbitrary pattern (even taking

the pattern size as a constant). Past work has identified some special

patterns for which LS(𝐺, 𝑡) can be computed in polynomial time,

such as as triangle [38] and 𝑘-star [30]. Thus, EMCI also runs in

polynomial time for these patterns.

4 SPARSE VECTOR TECHNIQUE
Suppose each query𝑄𝑖 : D → R has global sensitivity 1. The sparse
vector technique (SVT) [23] runs over a sequence of such queries,

𝑄1, 𝑄2, . . . with a threshold 𝑇 . It aims to find the first index 𝑖∗ (𝐷)
such that𝑄𝑖∗ (𝐷 ) (𝐷) ≥ 𝑇 (assuming that such an 𝑖∗ (𝐷) exists). The
algorithm is shown in Algorithm 1. Note that SVT even supports an

infinite query sequence; in this case, the output domain isY = Z+.
It is known that SVT satisfies Y-DP with the following utility

guarantees:
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Algorithm 1: SVT.
Input: 𝑇, Y,𝑄1 (𝐷), 𝑄2 (𝐷), . . .

1 �̃� ← 𝑇 + Lap(2/Y);
2 for 𝑖 ← 1, 2, . . . do
3 �̃�𝑖 (𝐷) ← 𝑄𝑖 (𝐷) + Lap(4/Y);
4 if �̃�𝑖 (𝐷) > �̃� then Break ;

5 end
6 return 𝑖;

Lemma 4.1 ([24]). Let 𝑘1 be the largest such that 𝑄𝑖 (𝐷) ≤ 𝑇 −
8

Y log (2𝑘1/𝛽) for all 1 ≤ 𝑖 ≤ 𝑘1, assuming it exists. With probability
at least 1 − 𝛽 , SVT returns an 𝑖 > 𝑘1.

Lemma 4.2 ([16]). Let 𝑘2 be the smallest such that 𝑄𝑘2 (𝐷) ≥
𝑇 + 6

Y log(2/𝛽), assuming it exists. With probability at least 1 − 𝛽 ,
SVT returns an 𝑖 ≤ 𝑘2.

Note that these utility guarantees depend on 𝑘1, 𝑘2, which are

highly sensitive: One can easily design neighboring instances on

which 𝑘1, 𝑘2 could change arbitrarily. Thus, they cannot be pub-

lished as a confidence interval for 𝑖∗ (𝐷).

4.1 Private CI for SVT
We now present the mechanism SVTCI that returns a privatized CI

[𝑖𝐿 (𝐷), 𝑖𝑅 (𝐷)] for 𝑖∗ (𝐷) with high utility. The methods for finding

the lower bound 𝑖𝐿 (𝐷) and the upper bound 𝑖𝑅 (𝐷) are slightly

different. Besides, some applications of SVT that we will discuss

later need only one of the two bounds, so we present the two

subroutines in Algorithm 2 and 3 respectively, each using the full

privacy budget Y and failure probability 𝛽 . For applications that

require both the lower and upper bound, each should be invoked

with a privacy budget of Y/2 and failure probability 𝛽/2 instead.

Algorithm 2: SVTCI-L
Input: 𝑇, Y, 𝛽,𝑄1 (𝐷), 𝑄2 (𝐷), . . .

1 𝑇noise = Lap(2/Y);
2 for 𝑖 ← 1, 2, . . . do
3 �̃� 𝑖 = 𝑇 − 4

Y log
𝑖2𝜋2

3𝛽
− 2

Y log
2

𝛽
+𝑇noise;

4 Noise𝑖 = Lap(4/Y);
5 �̃�𝑖 (𝐷) ← 𝑄𝑖 (𝐷) + Noise𝑖 ;
6 if �̃�𝑖 (𝐷) ≥ �̃� 𝑖 then Break ;

7 end
8 return 𝑖𝐿 (𝐷) := 𝑖;

Similar to the original SVT, for each query 𝑄𝑖 , SVTCI-L (resp.

SVTCI-R) compares a noisy �̃�𝑖 (𝐷) with a noisy �̃� 𝑖 , except that in

SVTCI-L (resp. SVTCI-R), we compare with a �̃� 𝑖 that is less (resp.

more) than �̃� by a Θ(log(𝑖/𝛽)/Y) term. Intuitively, this allows the

SVT to stop earlier (later) than 𝑖∗ (𝐷) with high probability, thus

obtaining a valid CI. This gap term is carefully designed in a way

such that 𝑖∗ (𝐷) falls inside [𝑖𝐿 (𝐷), 𝑖𝑅 (𝐷)] with probability 1 − 𝛽

while achieving high utility, as shown in the following theorem:

Algorithm 3: SVTCI-R
Input: 𝑇, Y, 𝛽,𝑄1 (𝐷), 𝑄2 (𝐷), . . .

1 𝑇noise = Lap(2/Y);
2 for 𝑖 ← 1, 2, . . . do
3 �̃� 𝑖 = 𝑇 + 4

Y log
𝑖2𝜋2

3𝛽
+ 2

Y log
2

𝛽
+𝑇noise;

4 Noise𝑖 = Lap(4/Y);
5 �̃�𝑖 (𝐷) ← 𝑄𝑖 (𝐷) + Noise𝑖 ;
6 if �̃�𝑖 (𝐷) ≥ �̃� 𝑖 then Break ;

7 end
8 return 𝑖𝑅 (𝐷) := 𝑖;

Theorem 4.3. Given any𝑇, Y, 𝛽 , and any sequence of sensitivity-1
queries𝑄1, 𝑄2, . . . , SVTCI-L (resp. SVTCI-R) is Y-DP, and on any input
𝐷 , it returns 𝑖𝐿 (𝐷) (resp. 𝑖𝑅 (𝐷)) such that with probability at least
1 − 𝛽 , for all 𝑖 < 𝑖𝐿 (𝐷) (resp. 𝑖𝑅 (𝐷)),

𝑄𝑖 (𝐷) < 𝑇, which implies 𝑖𝐿 (𝐷) ≤ 𝑖∗ (𝐷); and

𝑄𝑖𝐿 (𝐷 ) (𝐷) ≥ 𝑇 −
8

Y
log

𝑖𝐿 (𝐷)2𝜋2
3𝛽

− 4

Y
log

2

𝛽
. (3)(︂

resp. 𝑄𝑖𝑅 (𝐷 ) (𝐷) ≥ 𝑇, which implies 𝑖𝑅 (𝐷) ≥ 𝑖∗ (𝐷); and

𝑄𝑖 (𝐷) < 𝑇 + 8

Y
log

𝑖𝑅 (𝐷)2𝜋2
3𝛽

+ 4

Y
log

2

𝛽
.

)︂
(4)

Proof. We will only prove the theorem for SVTCI-L. A sym-

metric proof works for SVTCI-R.

For privacy, we observe that although SVTCI-L uses a different

�̃� 𝑖 for each 𝑖 , the same privacy proof for SVT in [23] still works.

Fundamentally, the proof only uses the fact that the sequence of

�̃� 𝑖 ’s are (Y/2)-indistinguishable on two neighboring datasets, which
is still the case in SVTCI-L.

Below prove correctness and utility. First, we know with prob-

ability at least 1 − 𝛽
2
, |𝑇noise | ≤ 2

Y log
2

𝛽
. And also for any 𝑖 ∈ Z+,

we know with probability at least 1 − 3𝛽

𝜋𝑖2
, the noise on 𝑄𝑖 (𝐷) has

magnitude bounded by
4

Y log
𝑖2𝜋2

3𝛽
. Since

∑︁∞
𝑖=1

1

𝑖2
= 𝜋2

6
, combined

with a union bound, we know that with probability at least 1 − 𝛽
2

we have

|Noise𝑖 | = |𝑄𝑖 (𝐷) − �̃�𝑖 (𝐷) | ≤
4

Y
log

𝑖2𝜋2

3𝛽

holds simultaneously for all 𝑖 ∈ Z+. So if the algorithm returns

𝑖𝐿 (𝐷), we know for all 𝑖 ∈ [𝑖𝐿 (𝐷) − 1], �̃�𝑖 (𝐷) < �̃� 𝑖 , which implies

with probability at least 1 − 𝛽

𝑄𝑖 (𝐷) < 𝑇 − 4

Y
log

𝑖2𝜋2

3𝛽
− 2

Y
log

2

𝛽
+𝑇noise − Noise𝑖

≤ 𝑇 − 4

Y
log

𝑖2𝜋2

3𝛽
− 2

Y
log

2

𝛽
+ |𝑇noise | + |Noise𝑖 |

≤ 𝑇

Since 𝑖 are integers, we know 𝑖𝐿 (𝐷) ≤ 𝑖∗ (𝐷). Similarly, we have

𝑄𝑖𝐿 (𝐷 ) (𝐷) ≥ 𝑇 −
8

Y log
𝑖𝐿 (𝐷 )2𝜋2

3𝛽
− 4

Y log
2

𝛽
. □
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Algorithm 4: SVTRadius.
Input: Y, 𝛽 , 𝐷

1 𝐷′ ← abs(𝐷);
2 𝑖 ← SVTCI-L (𝑛, Y, 𝛽,𝑄1 (𝐷′), 𝑄2 (𝐷′), . . . as defined);
3 if 𝑖 = 1 then
4 ˜︃

rad(𝐷) = 0

5 else
6 ˜︃

rad(𝐷) = 2
𝑖−1

7 end
8 return ˜︃

rad(𝐷);

To compare the utility guarantees of SVT-CI with those of the

SVT, we compare (3) with Lemma 4.1 and (4) with Lemma 4.2.

Lemma 4.1 says that SVT will stop only after 𝑄𝑖 (𝐷) gets within
a distance of 𝑂 (log(𝑖/𝛽)/Y) to 𝑇 , which is essentially the same as

(3) up to constant factors. On the other hand, Lemma 4.2 says that

SVT must have stopped before 𝑄𝑖 (𝐷) reaches 𝑇 +𝑂 (log(1/𝛽)/Y).
For this case, (4) is slightly weaker by a logarithmic factor when

𝑖𝑅 (𝐷) ≫ 1/𝛽 . Again, without additional public information, here

the best choice is to allocate the privacy budget evenly on the

left/right bounding point which minimizes the total error on both

ending points of the CI.

4.2 Private CI for Radius
We present three applications of SVTCI. The first is to find the

radius rad(𝐷) := max𝑖 |𝑥𝑖 | over an unbounded domain D = Z𝑛 .
Note that in the case where the elements in 𝐷 are all non-negative,

the problem is just the maximum problem. Specifically, we would

like to find a privatized constant-factor approximation of rad(𝐷)
(i.e., a confidence interval whose width is 𝑂 (rad(𝐷))), which in

turn will be a building block for the subsequent applications.

The idea is to run SVTCI-L on the queries

𝑄1 (𝐷) = Count(abs(𝐷), [0, 0]),
𝑄2 (𝐷) = Count(abs(𝐷), [0, 20]),
𝑄3 (𝐷) = Count(abs(𝐷), [0, 21]), . . .

with the threshold 𝑇 = 𝑛. It is clear that the query sequence first

reaches 𝑇 at 𝑖∗ (𝐷) = ⌈log
2
rad(𝐷)⌉ + 2, so that 2

𝑖∗ (𝐷 )−2
is a 2-

approximation of rad(𝐷). According to Theorem 4.3, with high

probability, SVTCI-L will return an 𝑖𝐿 (𝐷) ≤ 𝑖∗ (𝐷), thus 2𝑖𝐿 (𝐷 )−3
is a valid lower bound on rad(𝐷). Meanwhile, the utility guarantee

in Theorem 4.3 implies that this lower bound is not too loose in

the sense that there are only 𝑂 (log log rad(𝐷)) elements (we take

Y and 𝛽 as constants in this intuitive explanation of the algorithm)

in 𝐷 are not covered by [−2𝑖𝐿 (𝐷 )−2, 2𝑖𝐿 (𝐷 )−2]. Unfortunately, this
does not necessarily lead to a constant-factor approximation of

rad(𝐷): If the data is very sparse near rad(𝐷), 2𝑖𝐿 (𝐷 )−2 can be

arbitrarily smaller than rad(𝐷). We formalize this intuition into a

density requirement in Theorem 4.4; later, we also prove that such

density requirement is necessary for obtaining a constant-factor

approximation of the radius privately.

The details of our private radius algorithm are shown in Algo-

rithm 4, with its utility guarantee given in Theorem 4.4.

Algorithm 5: SVTMedianCI.

Input: Y, 𝛽 , 𝐷
1 𝐿(𝐷) ←

SVTCI-L

(︂
⌈𝑛/2⌉, Y

2
,
𝛽
2
, 𝑄1 (𝐷), 𝑄2 (𝐷), . . . as defined

)︂
;

2 𝑅(𝐷) ←
SVTCI-R

(︂
⌈𝑛/2⌉, Y

2
,
𝛽
2
, 𝑄1 (𝐷), 𝑄2 (𝐷), . . . as defined

)︂
;

3 return [𝐿(𝐷) − 1, 𝑅(𝐷) − 1];

Theorem 4.4 (Density Reqirement). For any Y, 𝛽 , SVTRadius
satisfies Y-DP. For any 𝐷 ∈ Z𝑛 such that

Count

(︃
abs(𝐷),

[︃
rad(𝐷)

2

, rad(𝐷)
]︃ )︃

>
24

Y
log

(︃
8⌈log

2
rad(𝐷)⌉
𝛽

)︃
,

(5)

with probability at least 1− 𝛽 , SVTRadius returns a˜︃
rad(𝐷) such that

rad(𝐷) ≤ ˜︃
rad(𝐷) ≤ 4 · rad(𝐷). Then [˜︃rad(𝐷 )

4
,˜︃rad(𝐷)] is a 1 − 𝛽

confidence interval of rad(𝐷).

Proof. The returned value
˜︃
rad(𝐷) is simply a post-processing

of the result of SVTCI-L, so privacy follows directly.

For utility, the case when
˜︃
rad(𝐷) = 0 is trivial. We consider when˜︃

rad(𝐷) ≠ 0. According to Theorem 4.3, with probability at least

1 − 𝛽 we have 𝑖 ≤ ⌈log
2
(rad(𝐷))⌉ + 2 and:

Count(abs(𝐷), [0, 2𝑖−2]) ≥ 𝑛 − 8

Y
log

(𝑖 − 2)2𝜋2
3𝛽

− 4

Y
log

2

𝛽

≥ 𝑛 − 24

Y
log

8⌈log
2
rad(𝐷)⌉
𝛽

On the other hand, by our density assumption (5), for any 𝑖 such

that 2
𝑖 <

rad(𝐷 )
2

:

Count(abs(𝐷), [0, 2𝑖 ]) < 𝑛 − 24

Y
log

8⌈log
2
rad(𝐷)⌉
𝛽

,

which means 𝑖 − 2 ≥ ⌈log
2

rad(𝐷 )
2
⌉. Combine the arguments above,

we have
˜︃
rad(𝐷) = 2

𝑖−1 ∈ [rad(𝐷), 4rad(𝐷)]. □

Remark. It is tempting to use SVTCI-R to get an upper bound

on rad(𝐷). This will not work: Although Theorem 4.3 guarantees

that 𝑖𝑅 (𝐷) is a valid upper bound on 𝑖∗ (𝐷), the utility guarantee is

vacuous since all the queries in the query sequence have𝑄𝑖 (𝐷) ≤ 𝑇
by definition. So it may return an arbitrarily bad upper bound.

4.3 Private CI for Median
The second application is still the median problem, but now over

an unbounded domain. We first consider the domain D = N𝑛 , and
discuss how to handle D = Z𝑛 later.

We simply invoke both SVTCI-L and SVTCI-R with the query

sequence

𝑄1 (𝐷) = Count(𝐷, [0, 0]),
𝑄2 (𝐷) = Count(𝐷, [0, 1]),
𝑄3 (𝐷) = Count(𝐷, [0, 2]), . . .

Details are given in Algorithm 5.
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Theorem 4.5. For any Y, 𝛽 ,𝑛, SVTMedianCI satisfies Y-DP. Let𝛼 =
40

Y log(8rad(𝐷)/𝛽) and assume 𝑛 > 2𝛼 . On any 𝐷 = {𝑥1, . . . , 𝑥𝑛} ∈
N𝑛 , with probability at least 1−𝛽 , we have 𝑥 ⌈𝑛/2⌉ ∈ [𝐿(𝐷)−1, 𝑅(𝐷)−
1] and [𝐿(𝐷) − 1, 𝑅(𝐷) − 1] ⊆ [𝑥 ⌈𝑛/2⌉−𝛼 , 𝑥 ⌈𝑛/2⌉+𝛼 ].

Proof. Privacy follows from that of SVTCI-L and SVTVI-R and

basic composition. Below we prove correctness and utility.

According to Theorem 4.3, correctness is obvious. Namely with

probability at least 1 − 𝛽 we have 𝑥 ⌈𝑛/2⌉ ∈ [𝐿(𝐷) − 1, 𝑅(𝐷) − 1]
since 𝑖∗ (𝐷) − 1 = 𝑥 ⌈𝑛/2⌉ .

For utility, when 𝑛 > 2𝛼 , we should have 𝐿(𝐷) − 1, 𝑅(𝐷) − 1 ≤
rad(𝐷) so according to Theorem 4.3,

Count(𝐷, [0, 𝐿(𝐷) − 1]) ≥ 𝑇 − 16

Y
log

2𝐿(𝐷)2𝜋2
3𝛽

− 8

Y
log

4

𝛽

≥ ⌈𝑛/2⌉ − 16

Y
log

2(rad(𝐷) + 1)2𝜋2
3𝛽

− 8

Y
log

4

𝛽

≥ ⌈𝑛/2⌉ − 40

Y
log(8rad(𝐷)/𝛽) = ⌈𝑛/2⌉ − 𝛼

thus 𝐿(𝐷) − 1 ≥ 𝑥 ⌈𝑛/2⌉−𝛼 and similarly,

Count(𝐷, [0, 𝑅(𝐷) − 2]) < 𝑇 + 16

Y
log

2𝑅(𝐷)2𝜋2
3𝛽

+ 8

Y
log

4

𝛽

≤ ⌈𝑛/2⌉ + 𝛼
Thus𝑅(𝐷)−2 < 𝑥 ⌈𝑛/2⌉+𝛼 . Since𝐷 is in integer domain, although

the value of Count(𝐷, [0, 𝑅(𝐷) − 1]) can be arbitrarily large, the

rank of 𝑅(𝐷) − 1 is bounded. Namely, we have:

𝑅(𝐷) − 1 ≤ 𝑥 ⌈𝑛/2⌉+𝛼 .

Combining the arguments above proves the theorem. □

To deal with D = Z𝑛 , we can find a privatized radius
˜︃
rad(𝐷) ≤

4rad(𝐷). Then we can call SVTMedianCI on 𝐷′ := 𝐷 +˜︃
rad(𝐷).

Finally, we shift the returned CI to the left by
˜︃
rad(𝐷).

Remark. Compared with EMCI, the rank error of SVTMedianCI

is always no worse (up to constant factors), since rad(𝐷) ≤ 𝑁 .

Furthermore, unlike EMCI, SVTMedianCI supports an unbounded

domain (i.e., 𝑁 = ∞).

4.4 Private CI for Mean
The mean problem is to estimate ` (𝐷) := 1

𝑛

∑︁𝑛
𝑖=1 𝑥𝑖 . When the

domain is boundedD = [𝑁 ]𝑛 , the global sensitivity of ` (𝐷) is also
bounded: GS = 𝑁 /𝑛. Then the Laplace mechanism immediately

yields a `̃ (𝐷) with error𝑂 (𝑁 /𝑛 · log(1/𝛽)/Y) with probability 1−𝛽 ,
together with a CI of the same length. However, this has low utility

for large 𝑁 (e.g., 𝑁 = 2
32
); for an unbounded domain D = Z𝑛 , this

does not work at all.

To get around the issue, a standard technique is to clip all values

in 𝐷 into a bounded range [𝑙, 𝑟 ]. More precisely, define

Clip(𝑥, [𝑙, 𝑟 ]) = max (min(𝑥, 𝑟 ), 𝑙)
Let

Clip(𝐷, [𝑙, 𝑟 ]) = {Clip (𝑥𝑖 , [𝑙, 𝑟 ]) | 𝑥𝑖 ∈ 𝐷} .
Then the clipped mean estimator is

ClippedMean(𝐷, [𝑙, 𝑟 ]) = ` (Clip(𝐷, [𝑙, 𝑟 ])).

Algorithm 6: SVTMeanCI.

Input: Y, 𝛽 , 𝐷
1 ˜︃
rad(𝐷) ← SVTRadius(

Y
4
,
𝛽
4
, abs(𝐷));

2 𝐷′ ← 𝐷 +˜︃
rad(𝐷);

3 𝑥 ′ ← SVTCI-L

(︂
𝑛
2
, Y
4
,
𝛽
4
, 𝑄1 (𝐷′), . . . as defined in Sec 4.3

)︂
;

4 𝐷′′ ← 𝐷′ − 𝑥 ′;
5 ˜︃
rad(𝐷′′) ← SVTRadius(

Y
4
,
𝛽
4
, abs(𝐷′′));

6 `̃ (𝐷′′) ← ClippedMean

(︂
𝐷′′, [−˜︃rad(𝐷′′),˜︃rad(𝐷′′)])︂ +

Lap(8˜︃rad(𝐷′′)/Y𝑛)
7 𝛼 ←

8
˜︃
rad(𝐷 ′′ ) log 4

𝛽

Y𝑛 ;

8 return [`̃ (𝐷′′) + 𝑥 ′ −˜︃
rad(𝐷) −𝛼, `̃ (𝐷′′) + 𝑥 ′ +˜︃

rad(𝐷) +𝛼];

It is obvious that ClippedMean(·, [𝑙, 𝑟 ]) has global sensitivity
GS = (𝑟 − 𝑙)/𝑛, on which the Laplace mechanism can be applied to

achieve an error and CI of �̃� ((𝑟−𝑙)/𝑛). The optimal choices for 𝑙 and

𝑟 are 𝑙 = 𝑥1, 𝑟 = 𝑥𝑛 , resulting in an error of𝑂 (𝛾 (𝐷)/𝑛 · log(1/𝛽)/Y)
where 𝛾 (𝐷) = 𝑥𝑛 − 𝑥1 is the width of 𝐷 . However, this violates DP

since 𝑥1, 𝑥𝑛 are sensitive to 𝐷 . Existing private mean estimators

[16, 28] have achieved this error (up to some logarithmic factors),

but they cannot return a privatized CI.

To find a privatized CI, we take the following steps (assuming

the domain is D = Z𝑛):

(1) Use SVTRadius to find a privatized
˜︃
rad(𝐷).

(2) Shift 𝐷 to 𝐷′ := 𝐷 +˜︃
rad(𝐷), so that 𝐷′ ∈ N𝑛 (these two

steps can be skipped if the domain is already N𝑛).
(3) Use SVTCI-L to find a point 𝑥 ′ inside 𝐷′.
(4) Shift𝐷′ to𝐷′′ := 𝐷′−𝑥 ′, thus𝛾 (𝐷) = 𝛾 (𝐷′′) = Θ(rad(𝐷′′)).
(5) Use SVTRadius to find

˜︃
rad(𝐷′′), use ˜︃

rad(𝐷′′) to clip 𝐷′′.
(6) Apply the Laplace mechanism and shift back the returned

CI correspondingly.

The detailed algorithm SVTMeanCI is shown in Algorithm 6, and

the following theorem shows that the length of the CI is optimal,

under two mild conditions: A size requirement on 𝑛, and a density

requirement that 𝐷 is not too sparse in the first or the last quarter

region of [𝑥1, 𝑥𝑛].

Theorem 4.6. Given Y, 𝛽 , for any 𝐷 ∈ Z𝑛 , SVTMeanCI satisfies
Y-DP. If 𝑛 > 80

Y log(16rad(𝐷)/𝛽) and

Count

(︃
𝐷,

[︃
𝑥1, 𝑥1 +

𝛾 (𝐷)
4

]︃ )︃
>

96

Y
log

(︃
32⌈log

2
rad(𝐷)⌉
𝛽

)︃
, (6)

Count

(︃
𝐷,

[︃
𝑥𝑛 −

𝛾 (𝐷)
4

, 𝑥𝑛

]︃ )︃
>

96

Y
log

(︃
32⌈log

2
rad(𝐷)⌉
𝛽

)︃
, (7)

then with probability at least 1 − 𝛽 , it returns a CI containing ` (𝐷)
and the interval length is 𝑂 (𝛾 (𝐷)/𝑛 · log(1/𝛽)/Y).

For the proof please refer to the full version [40].

Note that SVTMeanCI needs two very mild density conditions

(6), (7), that Ω(log log(rad(𝐷))/Y) points in 𝐷 should fall in either

quarter of the data range. It is attempting to modify SVTMeanCI by

checking these conditions first, and simply output (−∞,∞) if these
conditions are not satisfied. However, we show that this violates DP.

In fact, in the next subsection we prove a strong negative result (see
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Theorem 4.7): There is no DPmechanism that is both always correct

(i.e., it returns a correct CI on every dataset 𝐷) and nontrivial (i.e., it

does not always return (−∞,∞)). If we modify SVTMeanCI so that

it returns a good CI when (6), (7) are satisfied, and returns (−∞,∞)
when they are not, then this would be a mechanism that is both

nontrivial and always correct. This contradicts with Theorem 4.7,

so the modified mechanism must not be private.

4.5 Private CI for Mean: Lower bounds
Recall that Theorem 4.6 has two requirements. The first requirement

𝑛 = Ω(log(rad(𝐷))/Y) is in fact needed even for just obtaining any

value in [𝑥1, 𝑥𝑛] under DP, known as the interior point problem [4,

6]. Below, we argue that the density requirement is also necessary.

We first prove a strong negative result, which says that for any

DP mechanism, if it returns a CI with a confidence level ≥ 2/3 on
every 𝐷 ∈ [𝑁 ]𝑛 , then the length of the CI must be Ω(𝑁 /𝑛), i.e., the
same as the naive Laplace mechanism. In particular, this implies

that for an unbounded domain, the CI returned can only be the

trivial one [−∞,∞].

Theorem 4.7. For any Y-DP mechanism M with Y < log 2, if
M(𝐷) outputs an interval [𝐿(𝐷), 𝑅(𝐷)] satisfying

Pr(` (𝐷) ∈ [𝐿(𝐷), 𝑅(𝐷)]) ≥ 2

3

,

for every 𝐷 ∈ [𝑁 ]𝑛 , then

Pr

(︃
𝑅(𝐷) − 𝐿(𝐷) ≥ 𝑁

2𝑛

)︃
≥ 2 − 𝑒Y

3

for every 𝐷 .

Theorem 4.7 means that some condition on 𝐷 is needed for

obtaining any nontrivial CI. Our next lower bound is more quanti-

tative: It shows that in order to achieve the optimal CI width, the

density requirement is also necessary. It is stated for the bounded

domain case D = [𝑁 ]𝑛 ; in the unbounded domain case, it still

holds by replacing 𝑁 with rad(𝐷).

Theorem 4.8. Let D𝑎,𝑛 =
{︁
𝐷 ∈ [𝑁 ]𝑛 | Count(𝐷, 𝑥𝑛

2
, 𝑥𝑛) ≥ 𝑎

}︁
.

If there exists an Y-DP mechanismM such that for any 𝐷 ∈ D𝑎,𝑛 ,
M(𝐷) = (𝐿(𝐷), 𝑅(𝐷)) satisfies

Pr(` (𝐷) ∈ [𝐿(𝐷), 𝑅(𝐷)]) ≥ 11

12

(8)

and

Pr

(︃
𝑅(𝐷) − 𝐿(𝐷) > 𝛾 (𝐷)

3Y𝑛
log log

2
𝑁

)︃
<

1

6

, (9)

then 𝑎 = Ω
(︂
log log

2
𝑁

Y

)︂
.

The proofs are omitted here due to space constraints, for details

please refer to the full version [40].

5 SMOOTH SENSITIVITY
While GS might be large or unbounded, LS(𝐷) is usually small for

most real-world instances. However, Nissim et al. [38] pointed out

that adding a noise scaled to LS(𝐷) violates privacy, as LS(𝐷) can
be highly sensitive to 𝐷 . In addressing this issue, they proposed

smooth sensitivity, which is the third general technique for dealing

with queries with a large or unbounded GS.

The idea is to smooth out LS(𝐷) with an upper bound:

Algorithm 7: SSCI.

Input: Y, 𝛽 , 𝛾 , ˜︁SS(·), 𝐷
1 𝛼 = Y

4(1+𝛾 ) ;

2 calculate ˜︁SS(𝐷);
3 �̃� (𝐷) = 𝑄 (𝐷) + 4(1+𝛾 ) ˜︁SS(𝐷 )

Y Cauchy(𝛾);
4 SS(𝐷) = ˜︁SS(𝐷) · 𝑒Lap( 2𝛼Y )+ 2𝛼

Y
log

2

𝛽
;

5 𝑤 =
4(1+𝛾 )SS(𝐷 )

Y 𝐹−1𝛾 (1 − 𝛽/4);
6 return [�̃� (𝐷) −𝑤, �̃� (𝐷) +𝑤];

Definition 5.1 ([38]). For 𝛼 > 0, a function ˜︁SS : D → R is an

𝛼-smooth upper bound on LS(·) if˜︁SS(𝐷) ≥ LS(𝐷), for all 𝐷 ∈ D; and (10)˜︁SS(𝐷) ≤ 𝑒𝛼 · ˜︁SS(𝐷′), for all 𝐷 ∼ 𝐷′ ∈ D . (11)

It is shown [38] that any such ˜︁SS(·) can be used to achieve DP,

as follows.

Lemma 5.2 ([38]). Fix any constant 𝛾 > 1, and let ˜︁SS(·) be defined
as above with 𝛼 = Y

2(1+𝛾 ) . The mechanism that outputs �̃� (𝐷) =
𝑄 (𝐷) +2(1+𝛾) ˜︁SS(𝐷)/Y ·Cauchy(𝛾) is Y-differentially private, where
Cauchy(𝛾) denotes a random variable drawn from the generalized
Cauchy distribution with parameter 𝛾 .

The generalized Cauchy distribution has a probability density

function 𝑓 (𝑥) ∝ 1

1+|𝑥 |𝛾 , which is a well-defined distribution for any

𝛾 > 1. However, we often choose 𝛾 > 3 for it to have a bounded

variance. The tail bound for the Cauchy distribution leads to the

following utility guarantee:

Lemma 5.3. On any𝐷 and any 𝛽 > 0, 𝛾 > 3, the smooth sensitivity
mechanism outputs a �̃� (𝐷) such that

Pr

[︄|︁|︁�̃� (𝐷) −𝑄 (𝐷)|︁|︁ ≥ Ω

(︄ ˜︁SS(𝐷)
Y · 𝛽1/(𝛾−1)

)
)︄]︄
≤ 𝛽.

Since the noise scale is proportional to ˜︁SS(𝐷), the smooth sensi-
tivity SS(𝐷) is defined to be the minimum over all ˜︁SS(𝐷), which
is the smallest noise scale achievable under this framework. How-

ever, computing SS(𝐷) can be computationally expensive, so one

often settles for some larger ˜︁SS(𝐷) that can be computed efficiently

[13, 29].

5.1 Private CI for SS
Note that Lemma 5.3 does not lead to a private CI, since ˜︁SS(𝐷)
cannot be released. The idea to generate a private CI is to use

property (11) to release a privatized upper bound SS(𝐷) of ˜︁SS(𝐷).
We need SS(𝐷) to be an upper bound of ˜︁SS(𝐷) (w.h.p.) to ensure

correctness, while this upper bound should be as close to ˜︁SS as

possible for good utility. The details of the algorithm, called SSCI,

are shown in Algorithm 7, where 𝐹𝛾 (·) denotes the cumulative

distribution function (CDF) of the generalized Cauchy distribution

with parameter 𝛾 .
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Theorem 5.4. Given any Y, 𝛽,𝛾 > 3, any ˜︁SS(·) as defined above,
SSCI preserves Y-DP. On any 𝐷 ∈ D, with probability at least 1−𝛽 , it

returns a CI containing𝑄 (𝐷) and the length of the CI is𝑂
(︃ ˜︁SS(𝐷 )
Y ·𝛽 (3𝛾−1)/(𝛾2−1)

)︃
.

Proof. For privacy, first, by definition, the sensitivity of log ˜︁SS(𝐷)
is bounded by 𝛼 thus both SS(𝐷) and𝑤 preserve

Y
2
-DP. Besides, by

Lemma 5.2, �̃� (𝐷) preserves Y
2
-DP. Finally, according to composition

rule, Algorithm 7 preserves Y-DP.

For utility, with the tail bound of Laplace distribution, with prob-

ability at least 1 − 𝛽
2
we have:

˜︁SS ≤ SS(𝐷) ≤ ˜︁SS(𝐷) · 𝑒 4𝛼
Y
log

2

𝛽 =

(︃
2

𝛽

)︃
1/(𝛾+1)

· ˜︁SS(𝐷) . (12)

Combining with the tail bound of the Cauchy distribution, we have

that with probability 1 − 𝛽 , 𝑄 (𝐷) ∈ [�̃� (𝐷) −𝑤, �̃� (𝐷) +𝑤] and the

length of the CI is 𝑂

(︂ ˜︁SS(𝐷 )
Y ·𝛽1/(𝛾+1)+1/(𝛾−1)

)︂
= 𝑂

(︃ ˜︁SS(𝐷 )
Y ·𝛽2𝛾/(𝛾2−1)

)︃
. □

5.2 Median
We discuss two applications of SSCI. The first problem is again

the median problem over a bounded domain D = [𝑁 ]𝑛 . For the
median problem, it is known that the real smooth sensitivity is

SS(𝐷) = max

𝑘=0,...,𝑛

(︃
𝑒−𝑘𝛼 max

𝑡=0,...,𝑘+1

(︂
𝑥 ⌈𝑛/2⌉+𝑡 − 𝑥 ⌈𝑛/2⌉+𝑡−𝑘−1

)︂)︃
,

where we define 𝑥𝑖 := 0 for 𝑖 < 0 and 𝑥𝑖 := 𝑁 for 𝑖 > 𝑛. And it

can be computed in 𝑂 (𝑛 log𝑛) time [38]. We can thus just plug˜︁SS(𝐷) = SS(𝐷) into SSCI.

Remark. For the median problem, SSCI returns a CI of length

𝑂 (SS(𝐷)), while EMCI and SVTCI offer a CIwith rank error𝑂 (log𝑁 )
(taking Y, 𝛽 as constants). These two utility guarantees are gen-

erally incomparable. For example, on 𝐷 = {1, 2, . . . , 𝑛}, we have
SS(𝐷) = 𝑂 (1), so SSCI returns a better CI than EMCI/SVTCI.

However, on 𝐷 = {1, 2, . . . , ⌈𝑛/2⌉, ⌈𝑛/2⌉ + 𝑘, . . . } for some large

𝑘 , we have SS(𝐷) = 𝑂 (𝑘) and SSCI would return a CI [⌈𝑛/2⌉ −
𝑂 (𝑘), ⌈𝑛/2⌉ + 𝑂 (𝑘)], while EMCI/SVTCI would return [⌈𝑛/2⌉ −
𝑂 (log𝑁 ), ⌈𝑛/2⌉ + 𝑘 +𝑂 (log𝑁 )]. Finally, EMCI/SVTCI has a better,

logarithmic dependency on 1/𝛽 , while that of SSCI is polynomial.

5.3 Conjunctive Queries
The smooth sensitivity framework has been applied to conjunctive

queries [13, 14], which includes graph pattern counting as a spe-

cial case. In particular, the residual sensitivity [13, 14], which is a

constant-factor upper bound of the smooth sensitivity, can serve as

the ˜︂𝑆𝑆 (·) and is computable in polynomial time for any conjunctive

query. Thus significantly broadening the scope EMCI, which can

only support some special graph patterns efficiently.

6 EXPERIMENTS
In this section, we present an experimental evaluation of our mech-

anisms on various problems and datasets. We mainly compare our

CI width with the actual error of the original DP mechanism, which

only returns a privatized query answer. Note that, however, the

actual error is private information and cannot be released, while

the CI can. Also note that the CI cannot be better than the actual

error by definition. Thus, the goal of the experiments is to gauge the

(constant-factor) gap between the CI and best theoretical possible.

We conduct two series of experiments. Firstly, we compare three

different median CI techniques (namely, SS, EM, and SVT based

median CI) on various datasets and analyze their performances.

Then for each CI technique, we consider some additional problems

to demonstrate the generality of our approaches. For the SS-based

method, we study conjunctive query CI, including both TPC-H

query and graph counting query. For the EM-based method, we

study graph counting query CI. As both SS and EM can provide

graph counting CI, we also make a comparison between them.

For the SVT-based algorithm, we study empirical mean CI on real

datasets and also compare it with the current state-of-the-art statis-

tical mean CI algorithm [31].

6.1 Setup
For median CI, we try two real datasets: the Bank Marketing dataset

(Bank) [37] and the Adult dataset (Adult) [19], with 45, 211 and

48, 842 records, respectively. We focus on the median of clients’

account balances for the Bank dataset, which ranges from −8, 109
to 102, 127 and has a median value of 448. For the Adult dataset, we

calculate the median of final weight, which is the number of people

an entry represents, and ranging from 12, 285 to 1, 490, 400, with a

median value of 178, 147.

For mean CI, we also employ the Bank and Adult datasets, fo-

cusing on the same attribute as median. Due to the presence of

outliers, we remove the top/bottom 5% data to satisfy the density

requirement (7), which is a common practice in real-world data

analysis. Following the removal of the outliers, the actual means

are 903.3 and 183, 014.0, respectively.

For general conjunctive query CI, we use the TPC-H dataset

with scale factor 1. Since TPC-H schema has many foreign key con-

straints, when a tuple is deleted in one relation, we might obtain

a neighbouring instance violating the foreign key constraints. In

order to define a meaningful DP policy, we treat only Customer,

Order, Supplier, PartSupp and Lineitem as private relations and

the remaining as public relations. There are no foreign key con-

straints among these private relations so our DP policy is well

defined. Under this setting, two datasets are neighbours if they

differ by a tuple in the private relations. We run the counting

query |Nation ⊲⊳ Customer ⊲⊳ Orders ⊲⊳ Lineitems ⊲⊳ Supplier|,
which is an analog of Q7 from the benchmark, and the query result

is 6,001,215. Computing the smooth sensitivity for general SQL

queries is challenging; therefore, we adopt the residual sensitivity-

based technique [13] mentioned in Section 5.3.

For graph pattern counting CI, we use the HepPh dataset [34],

which contains 12,008 nodes and 236,978 edges. We treat it as a

directed graph and run both triangle counting query (𝑞△ ) and
3-star counting query (𝑞3★). The real counts are 20,150,994 and

7,661,801,994 respectively. We use the formulas in [30, 38] to com-

pute the ladder function [41].

Experimental Parameters. All experiments are done on a desktop

PC equipped with a 2.8 GHz Intel Core i7 CPU and 16GB memory.

For the privacy budgets, we try Y = 0.125, 0.25, 0.5, 1, 2, 4 and the

default value is 1. For confidence levels, we try 𝛽 = 0.01, 0.025, 0.05,
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Table 2: Results for median CI on real datasets under default setting Y = 1, 𝛽 = 0.1.

Problem Type Data Query Result Technique Average CI Width Error Quantile Relative CI Width(CI/Error ratio) Observed Coverage

Median

Bank 448

SS 42.8 23.8 1.8 0.97

SVT 14.2 1.0 14.2 1

EM 13.8 1.0 13.8 1

Adult 178,147

SS 3,075.6 1,681.4 1.8 0.99

SVT 1,280.5 105.0 12.2 1

EM 1,024.9 47.0 21.8 1

Table 3: Results for other queries, we use default setting Y = 1, 𝛽 = 0.1.

Problem Type Data Query Result Technique Average CI Width Error Quantile Relative CI Width(CI/Error ratio) Observed Coverage

Conjunctive Query TPC-H 6,001,215 SS 33,491.8 20,720.7 1.6 0.98

𝑞△ HepPh 20,150,994

SS 64,655.5 41,885.9 1.5 0.98

EM 418,626 6,310 66.3 1

𝑞3★ HepPh 7,661,801,994

SS 34,559,295.7 22,630,117.2 1.5 0.98

EM 299,647,401 4,196,135 71.4 1

SVT 11.9 7.4 1.6 0.98

Bank 930.3

Statistical [31] 17.3 13.2 1.3 0.95

SVT 352.0 266.7 1.3 0.96

Mean

Adult 183,014.0

Statistical [31] 1030.4 729.7 1.4 0.94

0.1,0.2 and the default value is 0.1. For the SS-based method, we al-

ways fix𝛾 = 4. In median CI problem, we always set𝑁 = 10, 000, 000

while in graph counting problem we set 𝑁 = 𝑛 |𝑃 | . Each experiment

is repeated 100 times.

Utility Measures. We consider several utility measures in our

experiments:

• Average CI Width: The average width of the confidence

interval is a commonly used metric to evaluate the effec-

tiveness of a CI technique. Such measurement is applied in

the works regarding statistical CI [10, 17, 26]. In our exper-

iments, we record half of the average confidence interval

width of 100 trials. Here the width is divided by 2 because

given any CI, we can use the midpoint of this interval as

a point estimation and its error is bounded by half of the

interval width.

• Error Quantile: The 1 − 𝛽 quantile of corresponding point

estimation error (absolute value), here 𝛽 is the desired confi-

dence level of our CI. This is an analog to theMean Absolute

Error(MAE) but fits our task better. Since we’ll compare the

error with the width of a 1 − 𝛽 CI, it’s better to also use the

1 − 𝛽 error quantile.

• Relative CI Width: The relative CI width is the ratio be-

tween the average CI width and the corresponding error

quantile. This ratio indicates the overhead caused by our CI

algorithms and a smaller value means smaller overhead. A

similar metric is also used in the works regarding statistical

CI [10, 17, 26].

• Observed Coverage: The probability that the real query

result indeed lies in our confidence interval, it should be

greater than 1 − 𝛽 as required. This value indicates the

correctness of our CI technique, namely, it indeed returns

a CI as claimed.

We do not record execution time here because all our algorithms

are efficient. Say, each trail can be done in a few seconds.

6.2 Results
Datasets and Queries. The experimental results under default

setting are summarized in Table 2 and 3. In the case of median/graph

counting CI problem, we also investigated the effect of varying Y, 𝛽

and results are presented in Figure 2 and 3. Please note that the

y-axis in these figures represents the CI width or estimation error,

but for simplicity, we only labeled it as error.

Median. Across all parameter settings and datasets, the EM/SVT-

based mechanisms achieve smaller average CI width, while SS-

based mechanism provides a smaller relative CI width, whichmeans

it has smaller overheads. These results are in line with our analysis.

It is important to note that both EM and SVT have rank error

guarantees, with EM guarantees being better than those of SVT.

However, a rank error guarantee does not imply any bound on

CI width and error magnitude, so the ratio between them may be

large. In contrast, SS does not provide any error guarantee. Instead

it bounds the ratio between SS(𝐷) and its privatized upper bound

SS(𝐷). Such a bound transforms into a bound on the ratio between

CI width and error.

Figure 2a shows the effect of varying Y. When increasing the

value of Y, the error of all methods decreases while the CI/Error

ratio roughly remains unchanged. One interesting finding is that as

Y grows, the error (and CI width) of SS decreases faster compared to

EM and SVT. This is because the value of smooth sensitivity has a

strong (roughly exponential) dependency on Y, so increasing Y has

a double effect on the utility of SS-based methods. On the contrast,

increasing Y only decreases the rank error in EM/SVT linearly.

Figure 2b shows how error and CI width change with 𝛽 . For EM

and SVT, the effect of 𝛽 is much smaller than Y since 𝛽 only affects

the rank error by a log factor. So as 𝛽 grows, CI width only slightly

decreases. Table 2 summarizes results under default setting, all the

errors are small compared with the large 𝑁 and the relative error

is smaller than 1%. We can see in all cases, the observed coverage

of our CI is higher than the value indicated by 𝛽 .
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(a) Three techniques with 𝛽 = 0.1 and different Y

(b) Three techniques with Y = 1 and different 𝛽 .

Figure 2: Median CI/estimation errors with varying Y, 𝛽 .

Graph Pattern Counting. For graph pattern counting CI, the sep-

aration between SS and EM becomes clearer as shown in Figure 3a,

3b. We can see EM always achieves smaller error, but it provides

worse confidence interval due to the large CI/Error ratio. That’s

because the standard utility guarantee in lemma 3.1 is quite loose,

which is an intrinsic problem in the analysis of EM, rather our CI

technique. This is also confirmed by the high correct rate (100%),

showing the interval length is more than necessary. In contrast,

SS always provide reasonable result as while as good CI. The rea-

son is that SS is a sensitivity-based technique. Say, it achieves DP

by adding a noise scaled with the smooth sensitivity. Thus the CI

should be tight as long as we use proper tail bounds.

The effect of varying Y, 𝛽 is similar to the case of median CI

problem, details are shown in Figure 3.

Summary of Other Queries. Results of other queries under default
setting are listed in Table 3. For TPC-H query, SS based method

achieves good utility. with less than 1% relative error. For mean

estimation, SVT based CI technique has good utility. This time it

also provides good relavtive CI width (1.6×), unlike inmedian/graph

counting CI (more than 10×). That’s because the underlying mean

estimation algorithm is sensitivity-based, so it can provide good

CI as long as it can give accurate point estimation. Additionally,

we should note that in all cases the observed coverage of our CI is

higher than the value indicated by 𝛽 .

Statistical Mean CIMechanism. The CI problems has been studied

in the statistical setting. Nevertheless, we observe that the statis-

tical mean CI mechanism in [31] can be modified to support the

empirical as well. More precisely, the CI in [31] consists of a bound

on the sampling error plus a bound on the DP noise. By removing

(a) SS and EM with 𝛽 = 0.1 and different Y.

(b) SS and EM with Y = 1 and different 𝛽 .

Figure 3: Graph counting CI/estimation errors with varying
Y, 𝛽 .

the sampling error bound, the mechanism of [31] provides a valid

CI for empirical mean. We compared this mechanism with our SVT-

MeanCI algorithm on two real datasets, and the results are shown

in Table 3. We can see that our empirical method outperforms the

(modified) statistical method on both datasets. The reason is that

the mechanism of [31] is tailored for Gaussian data, which is not

the case in practice. Secondly, the statistical method spends some

additional privacy budget to estimate the variance, thus leading

to worse utility. Additionally, the statistical method has a larger

constant hidden by 𝑂 () notation.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose three general CI techniques with small

utility overhead compared to the point estimation algorithms. And

here we point out two possible future research directions. First, the

DP policy adopted in this paper is commonly known as tuple-DP,
i.e., two datasets are neighboring if they differ by one tuple. In

relational databases, another popular DP policy is known as user-
DP modeled by foreign-key constraints [11, 12, 15, 32, 33], which

includes node-DP for private graph analysis as a special case. How

to derive CIs for such mechanisms is an interesting open problem.

Another future direction is to derive tighter confidence sets in high

dimensions, as mentioned in Section 1.3.
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