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ABSTRACT
Recent years have witnessed a growing trend toward employing

deep reinforcement learning (Deep-RL) to derive heuristics for com-

binatorial optimization (CO) problems on graphs. Maximum Cover-

age Problem (MCP) and its probabilistic variant on social networks,

Influence Maximization (IM), have been particularly prominent

in this line of research. In this paper, we present a comprehensive

benchmark study that thoroughly investigates the effectiveness and

efficiency of five recent Deep-RL methods for MCP and IM. These

methods were published in top data science venues, namely S2V-

DQN, Geometric-QN, GCOMB, RL4IM, and LeNSE. Our findings

reveal that, across various scenarios, the Lazy Greedy algorithm

consistently outperforms all Deep-RL methods for MCP. In the case

of IM, theoretically sound algorithms like IMM and OPIM demon-

strate superior performance compared to Deep-RL methods in most

scenarios. Notably, we observe an abnormal phenomenon in IM prob-

lem where Deep-RL methods slightly outperform IMM and OPIM

when the influence spread nearly does not increase as the budget

increases. Furthermore, our experimental results highlight common

issues when applying Deep-RL methods to MCP and IM in prac-

tical settings. Finally, we discuss potential avenues for improving

Deep-RL methods. Our benchmark study sheds light on potential

challenges in current deep reinforcement learning research for

solving combinatorial optimization problems.
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1 INTRODUCTION
Combinatorial optimization problems play a pivotal role in address-

ing complex challenges across diverse domains. The Maximum
Coverage Problem (MCP) and its probabilistic variant, Influence
Maximization (IM), stand out as representative challenges in this

realm. The primary goal of MCP is to identify a set 𝑆 of 𝑘 nodes from
a given input graph𝐺 to maximize node coverage. On the other hand,

IM focuses on maximizing influence spread in social networks by

selecting a strategic set of nodes. The significance of MCP and IM

transcends theoretical domains, finding practical applications in

scheduling [1, 2], opinion formation and election [3], facility loca-

tion [4, 5], recommendation systems [6–8], viral marketing [9–13],

and sensor placement [14, 15]. Therefore, devising effective and effi-

cient algorithms for solving MCP and IM has drawn great attention

from the data management and data mining research communities.

Existing studies have made creditable strides in understanding

the algorithmic complexities of MCP and IM. A simple greedy algo-

rithm can return a solution of (1− 1

𝑒 )-approximation guarantee and

Feige [16] had demonstrated that achieving a better approximation

ratio than 1 − 1

𝑒 is unlikely unless P = NP. The greedy algorithm’s

applicability extends to IM, as illustrated by [9]. Borgs et al. [17]

proposed a Reverse Influence Sampling (RIS) method that can achieve

1 − 1

𝑒 − 𝜖 approximation for IM when equipped with the greedy

search. RIS algorithm has a time complexity of𝑂 ((𝑚 +𝑛) log𝑛/𝜖2),
which is nearly optimal (up to a logarithmic factor) with respect to

network size. Tang et al. further enhanced the practical efficiency

of the RIS-based algorithms [18, 19]. Tang et al. utilized the online

approximation bound of submodular functions [20] to return online

approximation bounds of RIS-based algorithms. As with MCP, any

approximation ratio better than 1− 1

𝑒 is implausible unless P ≠ NP.
Despite the substantial theoretical advancements in MCP and

IM, recently, there has been a notable surge in the application of

Deep-RL to these combinatorial optimization problems [21–27].

This contemporary approach seeks to harness the power of data-

driven learning, aiming to derive heuristics that can surpass the

performance of theoretically grounded algorithms in practice. In

these studies, Graph Neural Networks (GNNs) initially learn node

embeddings, followed by the integration of reinforcement learning

components like Q-learning to approximate the objective func-

tion. Empirical studies of these works reveal instances where they

outperform traditional algorithms for both MCP and IM.
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Figure 1: Performance overview of methods on MCP and IM:
Values represented as Method (Coverage standard deviation,
Runtime standard deviation). Geometry-QN was excluded
from (b) due to the scalability issues on most graphs.

An aspect of concern in the application of Deep-RL lies in the

treatment of training time. Notably, the prevailing practice of ex-

cluding training time from computation cost evaluations raises

valid questions. Viewing training as akin to pre-processing, it is
customary in rigorous data management research to consider the

pre-processing time in an amortized manner within query compu-
tation cost assessments [28]. The exclusion of training time might

be justifiable only in scenarios where training is performed on a

dataset of size independent of subsequent queries, rendering the

training time a theoretically constant factor [29, 30]. However, even

in such cases, the impact of constant-time training or pre-processing

might be limited in boosting the efficiency of a broader range of

queries [31]. Consequently, there arises a legitimate concern about

the actual effectiveness and efficiency of these Deep-RL methods,

prompting a closer examination of their claimed benefits.

To this end, this paper conducts a thorough benchmark study on

recent Deep-RL methods [21–24, 27]. Fig. 2 presents a comprehen-

sive overview of the benchmarking framework. The pre-processing

phase initiates the generation of training data as needed, and prop-

agation probabilities are assigned as edge weights in IM based on

diverse edge weight models [9, 24, 32]. Deep-RL solvers, catego-

rized into global and subgraph exploration types, undergo train-

ing and validation before their applications. In tandem, traditional

solvers encompass both approximate and heuristic approaches. Sub-

sequently, a solution scorer is deployed to calculate coverage. In

the case of IM, the scorer estimates the influence spread 𝐹R (𝑆)
based on RIS-based simulations. Meanwhile, for MCP, the coverage

𝐹 (𝑆) is directly calculated on the input graph. We evaluate on 20

commonly-used datasets and test 4 edge weight models. Finally,

a thorough analysis of the results is conducted from diverse per-

spectives, enabling a nuanced understanding of the strengths and

limitations of Deep-RL methods compared to traditional solvers.

The contributions of this paper are summarized as follows:

(1) We summarize the general pipeline of recent Deep-RL meth-

ods [21–24, 27] for MCP and IM in § 3. Additionally, in § 3.4 and

3.5, we articulate concerns regarding the exclusion of training time

and the absence of a strong baseline, Lazy Greedy, for MCP in the

Deep-RL studies, which motivate our study.

(2) § 4 details an extensive benchmark study aimed at examining

recent Deep-RL methods for MCP and IM. We successfully repro-

duce some of the experimental results reported in prior studies [21–

24, 27] and expand more. Our findings, illustrated in Fig. 1, reveal

that, despite reported successes, traditional and well-established

MCP and IM algorithms often outperform these Deep-RL methods

in terms of both effectiveness and efficiency.

(3) § 5 delves deeper into the practical challenges faced by Deep-

RL methods. We highlight common issues, such as the difficulty in

determining the suitability of a testing graph for a trained Deep-

RL model and the observed performance fluctuations concerning

training time and data size.

(4) Our experimental findings prompt a discussion on the chal-

lenges that must be addressed for Deep-RL methods to provide

effective and efficient solutions for MCP and IM, offering insights

for future research in this domain (§ 8).

For conciseness, certain details are omitted from the main text.

These include the algorithms discussed, additional variants of MCP,

certain evaluations such as those for GCOMB’s noise predictor,

strategies to enhance LeSNE’s efficiency, and outcomes from more

datasets. Readers are encouraged to refer to the appendices in our

full version [33].

2 PRELIMINARIES
In this section, we formally revisits theMaximum Coverage Problem
(MCP) and its probabilistic variant Influence Maximization (IM).

2.1 Problem Statements
Problem 1 (Maximum Coverage Problem (MCP) on Graphs).

Given a graph 𝐺 = (𝑉 , 𝐸), let 𝑓 (𝑆) = |𝑋𝑆 |
|𝑉 | be the coverage function

where 𝑋𝑆 = { 𝑗 | 𝑗 ∈ 𝑆 ∨ ∃(𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝑆}. For a given budget 𝑘 , we
aim at selecting a set 𝑆 ⊆ 𝑉 , |𝑆 | = 𝑘 to maximize the coverage 𝑓 (𝑆).

The IM problem can be viewed as a maximum coverage or reach-

ability problem on a probabilistic graph [34]. IM primarily revolves

around modeling the dynamics of influence diffusion within a net-

work. In this particular paper, our focus is on the Independent

Cascade IC model [9], which is widely recognized as the most

popular influence diffusion model in the literature.

Independent Cascade (IC) Model. Given a weighted and directed

graph 𝐺 = ⟨𝑉 , 𝐸,𝑊 ⟩, we assume that the edge weight 𝑝𝑢𝑣 on an

edge (𝑢, 𝑣) represents its influence probability 𝑝𝑢𝑣 , i.e., 0 ≤ 𝑝𝑢𝑣 =

𝑤𝑢𝑣 ≤ 1. An influence diffusion starts from a seed set 𝑆 ⊆ 𝑉 .

𝑆𝑖 denotes the set of nodes that are active in time-step 𝑖 , 𝑖 ∈ N,
𝑆0 = 𝑆 . Each newly-activated vertex 𝑢 in the previous step 𝑖 − 1

has a single chance at the current step 𝑖 to influence its inactive

out-neighbor 𝑣 independently with a probability 𝑝𝑢𝑣 . The diffusion

process continues until there are no further activations, i.e., 𝑆𝑡 =

𝑆𝑡−1. The influence spread of 𝑆 , 𝐼 (𝑆), is the expected number

of active nodes at the end of the diffusion initiated from 𝑆 . As IC

model is the most popular influence model, we employ IC model to

formulate the IM problem.

Problem 2 (Influence Maximization (IM)). Given a social net-
work𝐺 = (𝑉 , 𝐸,𝑊 ), a budget 𝑘 , we want to select a set 𝑆 ⊆ 𝑉 , |𝑆 | = 𝑘

such that the influence spread 𝐼 (𝑆) under IC model is maximized.

2.2 Characteristics of MCP and IM
Intractability. Both MCP and IM problems are known to be NP-
hard [9]. An essential characteristic shared by both is the presence

of monotonicity and submodularity in their objective functions [9].

These properties enable the development of efficient approximation
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algorithms efficient approximation algorithms, guaranteeing a per-

formance ratio of 1− 1

𝑒 [9, 19]. The established understanding is that

achieving an approximation ratio higher than 1 − 1

𝑒 is implausible

unless the complexity classes P and NP are equal [9].

Influence Spread Estimation. In addition to the NP-hardness,
computing the influence spread under the IC model for IM problem

is known to be #P-hard [35]. To address this challenge, the polling

method [17] emerges as an efficient solution, ensuring a 1 − 1

𝑒 − 𝜖

approximation guarantee for IMwith high probability. In the Polling

method, the estimation of influence spread involves the sampling

of Reverse Reachable (RR) sets [18], outlined as follows. Each edge

(𝑢, 𝑣) in the graph is independently preserved with a probability

𝑝𝑢𝑣 . The RR set for vertex 𝑣 consists of all nodes that can reach 𝑣

through the preserved edges. To estimate the influence spread, the

polling method involves sampling a specified number, denoted as

𝑀 , of random RR sets. Each RR set is constructed as described above.

The quantity 𝐷 (𝑆) represents the number of RR sets that contain at

least one vertex from a given set 𝑆 . It has been shown that
|𝑉 |𝐷 (𝑆 )

𝑀
provides an unbiased estimation of the influence spread 𝐼 (𝑆) [17, 18].
In practical applications, a large sample size𝑀 ensures an accurate

estimation of the influence spread 𝐼 (𝑆) with a high probability.

2.3 Edge Weight Models in IM
The IM problem involves a weighted graph where edge weights

𝑝𝑢𝑣 denote the direct influence from node 𝑢 to node 𝑣 . However,

acquiring accurate data for learning these edge weights is often

challenging. In the IM literature, predefined models are commonly

employed to address this issue:

Tri-valency (TV) Model [24]. The weight of an edge is chosen

randomly from a set of weights {0.001, 0.01, 0.1}.

Constant (CONST) Model [24]. In this model, The weight of an

edge is set as a constant value, e.g., 0.1.

Weighted Cascade (WC) Model [9]. The weight of the edge (u,
v) is set as

1

|𝑁 𝑖𝑛 (𝑣) | , where 𝑁
𝑖𝑛 (𝑣) is the set of 𝑣 ’s in-neighbors.

Learned (LND) Model [24].When we have historical data of user

interactions, we learn edge weights. One representative method to

learn the weights is the Credit Distribution Model [36].

Remark. It’s noteworthy that for theoretically sound algorithms [18–

20], the specific choice of edge weight setting doesn’t impact the effec-
tiveness of the algorithms. However, our benchmark study reveals

that the choice of edgeweight setting can influence the performance

of Deep-RL heuristics §4.3.

3 ALGORITHMS REVISITED
In this section, we delve into the foundational concepts of Deep-

RL and reflect upon the Deep-RL techniques and other traditional

algorithms used for the MCP/IM benchmarks in our experiments,

and we also raise concerns on these studies.

3.1 Deep-RL with GNNs
GNNs.Graph Neural Networks (GNNs) [37] are designed to process
data in graph structures, capturing relationships and features of

nodes and edges. Unlike traditional neural networks, GNNs handle

irregular structures, making them ideal for graph-structured data

like social networks. By propagating information through the graph,

GNNs capture both local and global structures.

Deep-RL. Reinforcement Learning (RL) [38] is a prominent branch

of machine learning where agents learn optimal strategies through

interactions with an environment, receiving feedback in the form

of rewards or penalties. The fundamental goal of RL is to deduce a

policy that maximizes the expected cumulative reward over time,

emphasizing decision-making to achieve specific objectives. In this

dynamic process, an agent, situated in a given environmental state,

takes actions and receives rewards based on the outcomes, com-

monly modeled as a Markov Decision Process (MDP). However,

dealing with intricate or high-dimensional environments poses

challenges. To address this, Deep-RL integrates deep neural net-

works, enabling the extraction of features from raw data and the

approximation of complex functions. This fusion enhances RL’s

capability to tackle large-scale, high-dimensional problems.
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3.2 Deep-RL Methods for MCP/IM
We outline a systematic approach for employing Deep-RL meth-

ods to address coverage problems on graphs, illustrated in Fig. 3.

The procedure initiates with a GNN encoder, tasked with learning

the graph’s embedding. Subsequently, an MLP layer utilizes this

embedding to compute scores for each node, represented as either

the node embedding matrix or the vector of node scores, denoted

as 𝑓𝐺 . Using the generated node scores, a series of seed sets are

randomly created, serving as training data for the RL model. In the

RL environment, the feature 𝑓𝐺 defines the state, facilitating reward

computation. The RL agent, guided by a learned policy, iteratively

seeks the optimal solution set 𝑆 that maximizes the overall reward,

with a cardinality of |𝑆 | = 𝑘 . Subsequent paragraphs elaborate on

how the methods discussed in this paper tailor this general pipeline

to address specific aspects of the coverage problem on graphs.

S2V-DQN [21]. It first maps the input graph 𝐺 into node em-

beddings via Struc2Vec [39]. A deep Q-network (DQN) [40, 41]

is learned to construct a solution set that maximizes the coverage

based on the node embedding.

RL4IM [22]. Unlike S2V-DQN, RL4IM utilizes Struc2Vec to encode

graph-level features rather than node-level ones. The input graph

𝐺 is randomly selected from a set of training graphs G in each itera-

tion. The reward for each action is calculated by Monte Carlo (MC)

simulations on the fly. Two novel tricks, namely state abstraction

and reward shaping, are used to improve performance.

Geometric-QN [23]. Starting from a randomly initialized seed set 𝑆 ,

Geometric-QN iteratively enlarges a subgraph 𝑔 by a random walk

over the input graph 𝐺 . Then DeepWalk [42] is used to generate

node features and a GCN [43] encoder excavates the structural

information. Lastly, a DQN selects the node with the highest Q

value and adds it into 𝑆 , making it possible to expand 𝑔 to cover

more potentially influential nodes.

GCOMB [24]. Rather than unsupervised learning, GCOMB trains

a GCN network [43] in a supervised manner, where the label of

each node is generated by calculating its marginal cover (influence

spread) based on a probabilistic greedy method. A DQN then finds a

solution set to maximize the cover (influence spread). Node pruning

techniques are also adopted to remove noisy nodes to reduce the

search space, which makes GCOMB scalable to large-scale graphs.

LeNSE [27]. Similar to Geometry-DQN, LeNSE aims to find a

smaller optimal subgraph containing the optimal solution set. It

generates multiple subgraphs with a fixed number of nodes, cate-

gorizes them into labels based on the likelihood of containing the

optimal solution, and trains a GNN to cluster similar subgraphs.

By leveraging both node-level and graph-level features generated

by GNN, a DQN constructs the subgraph iteratively. Finally, a pre-

existing heuristic is applied to discover a solution set from the

constructed subgraph.

3.3 Traditional Algorithms for MCP/IM
Greedy for MCP. Greedy algorithm [9] sequentially selects a node

that covers the most remaining uncovered elements. Leveraging

the submodularity of coverage functions, Lazy Greedy (also known
as CELF [14]) distinguishes itself by strategically minimizing com-

putational overhead. After initial marginal gain computations for

all nodes, it selectively updates and reevaluates only the top con-

tenders in subsequent iterations. This approach retains the (1 − 1

𝑒 )
approximation guarantee while delivering a significant speedup

over the traditional greedy algorithm. (More details can be found

in Appendix of our full paper [33].)

Degree Discount [44]. The Degree Discount (DDiscount) algo-
rithm selects seed nodes based on their degree. Initially, the node

with the highest degree is chosen. After selecting a seed, the degrees

of its neighbors are adjusted to account for the influence of the

already chosen seed. In each subsequent iteration, the node with

the highest adjusted degree is selected as the next seed. A variation

of DDiscount, the Single Discount (SDiscount) algorithm, ensures

that the connectivity of direct neighbors decreases by one for each

chosen seed. This adjustment ensures that a node’s influence isn’t

counted twice, providing a nuanced approach to seed selection in

influence maximization.

IMM [19]. IMM distinguishes itself by providing a guaranteed ap-

proximation ratio while maintaining efficiency, particularly suited

for large-scale networks. The algorithm follows a two-phase ap-

proach. Firstly, it utilizes the Reverse Influence Sampling (RIS)

method to generate samples, assessing the reachability of nodes.

Subsequently, in a greedy fashion, it judiciously selects seed nodes

using these samples to maximize influence.

3.4 Concerns on Training in Deep-RL Methods
In all the aforementioned Deep-RL methods [21–24, 27], it’s crucial

to note that the training time for Deep-RL models is typically not

considered in the computation cost. Treating the training time as a

form of pre-processingmight present a concern, as it could poten-

tially affect the fairness of computational performance assessments.
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Table 1: Summary of datasets (K=103 M = 10
6, B = 10

9). Datasets marked with ∗ are only used in LND edge weight model.

Dama-
scus Israel Cond-

Mat Digg Flixster* Bright-
Kite Gowalla Twitter* DBLP Amazon Higgs You-

tube Pokec Skitter Wiki-
Topcats

Wiki-
Talk Stack* Orkut Live-

Journal
Friend-

ster

|𝑉| 3K 3K 23K 26K 95K 58K 196K 323K 317K 334K 456K 1.1M 1.6M 1.7M 1.8M 2.4M 2.6M 3.1M 4.8M 65.6M

|𝐸| 7.7K 8.3K 186K 200K 484K 214K 846K 2.1M 1.0M 925K 14.9M 4.2M 30.6M 11.1M 28.5M 5.0M 36.2M 117M 69M 1.8B

Density 2.54 2.25 4.04 7.5 5.05 3.68 4.83 6.65 3.31 2.76 32.53 2.63 18.75 6.54 15.92 2.1 16.26 38.14 17.26 27.53

Clust. coe. 0.01 <0.01 0.63 0.12 0.11 0.17 0.24 0.21 0.63 0.4 0.19 0.08 0.11 0.26 0.27 0.05 - 0.17 0.28 0.16

Triang. (%) <0.01 <0.01 10.7 <0.01 <0.01 3.98 0.8 <0.01 12.83 7.92 0.29 0.21 1.61 0.18 0.17 0.11 - 1.41 4.56 0.59

Diameter 13 20 14 13 14 16 14 8 21 44 9 20 11 25 9 9 - 9 17 32

Eff. diameter 7.0 10.0 6.5 5.0 5.7 6.0 5.7 3.4 8.0 15.0 3.7 6.5 5.2 6.0 3.8 4.0 - 4.8 6.5 5.8

Isolated (%) <0.01 <0.01 <0.01 36.84 38.8 <0.01 <0.01 24.31 40.36 20.58 <0.01 66.98 12.26 43.01 0.0 93.84 26.69 11.36 41.84 <0.01

VCI (%) 21.23 5.25 1.21 2.59 0.43 1.95 7.49 1.09 0.1 0.05 0.28 2.52 0.54 2.09 0.22 4.18 1.25 1.07 0.37 0.01

Sum10 (%) 48.75 25.23 8.04 19.25 3.27 13.43 25.84 6.77 0.74 0.43 2.24 8.79 2.84 18.15 1.59 11.5 9.28 8.48 1.79 0.07

Category Tweets Tweets Colla-
boration Social Social Social Social Tweets Colla-

boration
Ecom-
merce Tweets Social Social Trace-

routes
Hyper-
links

Commun
ication Q&A Social Social Social

In rigorous database research, it is common to amortize pre-

processing time into the computation time of subsequent queries.

While one could argue that not counting the training time is justi-

fiable if the training dataset size is fixed and independent of sub-

sequent MCP or IM queries, it’s important to recognize that, the-

oretically, such pre-processing/training step takes constant time.

Despite this constant pre-processing time, the trained model is

expected to provide performance enhancements across various

queries. However, it’s worth noting that, theoretically, such Deep-

RL-based methods may face challenges overcoming the 1 − 1/𝑒
approximation barrier. The rationale lies in the fact that constant

preprocessing time, when added to polynomial query time, still

results in polynomial time. According to complexity theory, no

polynomial time algorithm can achieve an approximation ratio

better than 1− 1/𝑒 unless P = NP [9]. This insight raises considera-

tions about the inherent limitations of these methods in surpassing

certain approximation thresholds.

One may argue that the approximation ratio is w.r.t. the worst-

case performance on all possible query graphs, while a trained

Deep-RL model should be used to answer MCP or IM queries with
input graphs following the same distribution as the training graphs.
However, what does “same distribution” mean for graphs as input

for MCP or IM? Can we use some easy-to-compute statistics of

graphs to decide whether a testing graph is suitable for the trained

Deep-RL model before running the model?

Another issue of the training of these Deep-RL methods is that

the size of training data is independent to the future MCP or IM

queries. Even though magically we can guarantee that the training

graphs and testing graphs follow the “same distribution”, according

to basic statistical learning theory [45], the size of the training set

has a crucial impact on the generalizability of the trained model.

Therefore, a better way is to vary the size of the training data based

on the MCP/IM queries we want to answer in the future.

Motivated by our above concerns, we conduct a thorough bench-

mark study to comprehensively examine the effectiveness and effi-

ciency of the recent Deep-RL methods for MCP and IM [21–24, 27].

3.5 Concerns on Lacking Strong Baselines
Lazy Greedy, an enhanced version of the conventional greedy algo-

rithm, stands out for its remarkable efficiency and efficacy in MCP.

However, this straightforward algorithm was neglected in studies

of Deep-RL methods for MCP [21, 27].

4 BENCHMARKING
All the experiments were run on a server with 16 Intel i7-11700KF

3.60GHz cores, 64G RAM, and 1 NVIDIA GeForce RTX 3090 24G

GPU. Our source code and datasets can be found at [33].

Datasets.We selected datasets featuring diverse interaction and so-

cial structures essential for evaluating MCP and IM algorithms. This

choice ensures a comprehensive analysis across varied network

complexities. We utilized a set of 20 well-established real-world

benchmark datasets [24, 46], which are commonly employed in

existing studies, and their topology statistics are comprehensively

outlined in Tab. 1. The considered statistics encompass (1) the num-

ber of nodes |𝑉 |, (2) the number of edges |𝐸 |, (3) the graph density,

(4) the average clustering coefficient [47], (5) the fraction of closed

triangles [48], (6) the 90-percentile effective diameter [49], (7) the

proportion of isolated nodes (those without neighbors), (8) the

vertex centralization index, denoting the ratio of the maximum

degree to the number of nodes, and (9) the Sum10, representing

the total degree of the top-10 nodes in the graph. We examine the

strength and direction of association between these statistics and

the performances of DeepRL methods in § 5.1.

Our evaluations for MCP were conducted on 17 of these datasets.

For the IM experiments, we conducted extensive evaluations across

10 datasets, employing edge weight models such as TV, CONST,

and WC. In the case of the LND model, influence probabilities were

generated using the credit distribution model [36] on Flixster and

Twitter datasets. Additionally, the Stack dataset, sourced from [24],

was included in our experiments. To address scalability and per-

formance challenges, RL4IM was tested on small synthetic graphs

using the power-law model [50]. Furthermore, Geometric-QN un-

derwent evaluation on the small datasets mentioned in [23].

Implementation andhyperparameters setting.We implemented

the Degree Discount heuristic [44] and the Lazy Greedy algorithm

[14]. For other methods, we utilized the code provided by the re-

spective authors. All parameters were set consistently with the

recommendations in prior studies [19, 21–24, 27]. Specifically, we

set 𝜖 to 0.5 for IMM and 0.1 for OPIM2
, respectively.

We adhered to the methodologies outlined in [21–24, 27] to

conduct the training of Deep-RL models for both MCP and IM. In

2
In GCOMB [24], 𝜖 was set to 0.05 for OPIM. However, setting 𝜖 = 0.1 still can

guarantee a meaningful approximation ratio and we will show that OPIM can still

return high-quality solutions in such a case.
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Figure 4: MCP: Coverage and Runtime curve

Table 2: Training time of eachmethod and number of queries
answered by traditional methods (Lazy Greedy for MCP and
IMM for IM) on four datasets in the same training time.

Method Training #Queries answered within training time

Time (mins.) Pokec Wiki Talk Live Journal Orkut

S2V-DQN 432.4 29522 16111 12506 5750

GCOMB-MCP 22.3 1523 831 645 297

LeNSE-MCP 105.5 7203 3931 3051 1403

GCOMB-IM 312.8 9669 44056 58467 53167

LeNSE-IM
3

96.6 2986 13606 18056 16419

RL4IM 76.3 2359 10746 14262 12969

Geometric-QN 17.8 550 2507 3327 3025

the case ofMCP, S2V-DQN,GCOMB, and LeNSEwere trained using
the BrightKite dataset and subsequently tested on other datasets.

For IM, GCOMB and LeNSE were trained on a subgraph randomly

sampled from Youtube, with 15% of edges selected at random. The

model was then tested on various datasets under all edge weight

models, excluding LND due to the absence of action logs. Beyond

training models on real datasets, we extended our approach by

training RL4IM on synthetic graphs due to its scalability issue,

inspired by Chen et al. [22]. The best result obtained from different

training settings was considered for evaluation.

4.1 Training Time for Deep-RL Methods
For fairness, we imposed a 24-hour training cap, selecting the opti-

mal checkpoint based on the validation dataset. The training time

required to reach this checkpoint (utilizing the WC model for IM)

and the number of queries (𝑘=200) executable by traditional SOTA

methods within this timeframe across four datasets are detailed

in Tab. 2. The results highlight that, while Deep-RL methods un-

dergo extended training periods, traditional SOTA methods can

execute queries numbering in the tens of thousands during the

same interval, even on graphs exceeding 100 million nodes.

4.2 Performance on MCP
In this section, we conduct a benchmark of Normal Greedy, Lazy
Greedy, S2V-DQN, GCOMB, and LeNSE for MCP. The selective

results are depicted in Fig. 4. Additional results for the remaining

12 datasets can be found in Appendix of our extended version [33].

3
The results for LeNSE are reported after efficiency optimization (Please refer to

Appendix in our full paper).

Table 3: Memory usage (Gbyte). The upper part of the table
records the peakmemory usage of the algorithms in theMCP
experiment, whereas the lower part records the usage in the
IM experiment for the datasets BrightKite (BK), Youtube (YT),
and Pokec (PK) under the WC, TV, and CONST (CO) models

Gowalla Youtube Higgs Pokec Wiki Talk

S2V-DQN 0.58 2.12 6.47 11.96 3.69

GCOMB 0.91 3.38 9.61 17.95 6.05

LeNSE 0.78 3.00 8.53 15.1 5.45

Lazy Greedy 0.18 0.71 1.61 3.23 1.28

Normal Greedy 0.01 0.03 0.01 0.04 0.06

BK-WC BK-TV YT-CO PK-WC PK-CO

IMM 0.02 0.38 0.41 0.84 27.18

OPIM 0.02 0.23 0.18 0.43 19.00

DDiscount 0.01 0.02 0.14 0.64 0.64

LeNSE 0.34 0.34 3.30 20.3 19.99

GCOMB 2.15 1.43 3.80 13.77 13.47

RL4IM 0.05 0.05 0.69 3.93 3.89

Geometric-QN 0.28 0.3559 / / /

Effectiveness. Both Normal Greedy and Lazy Greedy yeild an

(1− 1

𝑒 )-approximation solution. As evidenced by the results in Fig. 4.

The performance of these two methods is comparable. GCOMB
outperforms S2V-DQN, sometimes approaching or reaching the

level of the greedy algorithms, consistent with the findings in [24].

However, other Deep-RL methods exhibit significantly poorer per-

formance compared to Greedy. While GCOMB generally performs

closely to Lazy Greedy, there are instances (e.g., on Digg, Skit-

ter, and Higgs) where Lazy Greedy still considerably outshines

GCOMB. However, we do not observe any marked distinction in

the graph characteristics among these datasets [46], referring to

the discussion about the “same graph distribution” claim (§ 5.1).

Efficiency. Fig. 4 illustrates the efficiency of GCOMB, which is 1 to

2 orders of magnitude faster than S2V-DQN and over 2 orders faster

than LeNSE in most scenarios. Particularly with a small budget, it

surpasses the runtime of Normal Greedy by up to two orders, con-

sistent with the findings in [24]. The runtime of GCOMB exhibits

fluctuations rather than a steady increase, primarily attributed to

the varying number of good nodes predicted by its node pruner
4
.

In contrast, LeNSE takes over 10× longer than Normal Greedy.

4
For a more comprehensive experimental analysis, refer to the detailed results in the

Appendix of our full paper
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Figure 5: IM: influence curve under different weight models

Lazy Greedy runs more than one order of magnitude faster than

GCOMBwhen the budget is small, and this gap widens to up to two

orders of magnitude as the budget increases. Additionally, we con-

ducted tests on a billion-sized graph, Friendster. Lazy Greedy suc-

cessfully solves the problem within minutes. In contrast, GCOMB
crashes in our experimental environment, so we compare it with

the result reported in [24], which is two orders of magnitude slower

than Lazy Greedy. Note that the runtime of Deep-RL methods
only counts inference time, excluding the extra time of the pre-

processing and training phases. Despite this, even when Deep-RL

methods are given some unfair advantages in the comparison, Lazy
Greedy consistently outperforms all Deep-RL methods.

Memory Usage. Tab. 3 provides insights into the memory con-

sumption of each method across representative datasets. In the

inference phase, Deep-RL methods exhibit a memory footprint

at least 3× larger than Lazy Greedy and 78× larger than Normal
Greedy. Importantly, Deep-RL algorithms typically impose even

higher memory demands during the training phase.

Summary. Combining all the above results, we find that in our

experiments for MCP, Lazy Greedy dominates all Deep-RL methods

on effectiveness, efficiency, and memory usage.

4.3 Performance on IM
In this section, we assess the performance of Deep-RL methods,

namely GCOMB, RL4IM, and Geometric-QN, while also bench-

marking traditional algorithms like IMM, OPIM, Degree Discount,
and Single Discount in our IM experiments. All algorithms under-

went testing across four edge weight models: CONST, TV, WC, and

LND. It is noteworthy that none of the Deep-RL studies [21–24, 27]

have explored their methods under the WC model. This model,

arguably the most prevalent in the IC model for IM literature, is

included in our evaluation for comprehensive insights.

Effectiveness. As shown in Fig. 5, in line with the findings pre-

sented in [24], GCOMB performs comparably to IMM on Youtube

under TV and on Stack under LND. However, it slightly lags behind

IMM on Youtube under CONST. RL4IM exhibits greater stability

than GCOMB and delivers a more effective solution, particularly

under the CONST model. Despite being the most effective among

the learning methods in various cases, LeNSE still falls short when

compared to classical algorithms. Notably, these learning methods

display limited effectiveness across different datasets, suggesting poor
generalizability. It is worth highlighting that instances where

Deep-RL methods match the effectiveness of IMM are character-

ized by situations where the influence spread does not increase with
an expanding budget. In such atypical cases, the influence spread
is primarily governed by a few nodes, making marginal increments

subtle and challenging to observe. In such instances, IMM may

exhibit inefficiency due to the subtle differences in the marginal

gain of nodes, necessitating the generation of numerous RR sets to

distinguish potential candidate nodes. Furthermore, under the WC

or LND model, Deep-RL methods consistently underperform IMM.

We observe that IMM remains the most effective algorithm, with

OPIM exhibiting similar effectiveness. Especially under WC model

and LND model, the performance gap between theoretically sound

algorithms (IMM and OPIM) and Deep-RL methods is especially

prominent. Surprisingly, even discount algorithms, despite being

heuristics, outperform Deep-RL methods across most cases. These
results cast doubt on the effectiveness of Deep-RL methods compared
to traditional IM algorithms.
Additional Evaluation over Synthetic Datasets. Given the ob-

served poor performance of RL4IM and Geometric-QN on large-

scale real-world datasets, coupled with the failure ofGeometric-QN
on nearly all such datasets due to its intensive memory require-

ments, we conducted additional experiments to evaluate their effec-

tiveness on smaller datasets as suggested in the respective papers.

RL4IM was trained following the instructions in [22], and all meth-

ods repeated the query over ten times, calculating the average

result. In line with the findings in [22], Fig. 7 illustrates that RL4IM
outperforms CHANGE on synthetic graphs with 200 nodes and a

small budget. However, extending the experiment to larger graphs
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Figure 6: IM: runtime curves under different weight models.

(a) RL4IM (b) Geometric-QN

Figure 7: (a) Comparison between RL4IM, CHANGE, and IMM
over synthetic graphs. The coverage is averaged of over 10
repeated experiments. (b) Comparison between Geometric-
QN(G-QN) and IMM over small-scale datasets. The coverage
is an average of the results of 20 repeated experiments.

with 2000 and 20,000 nodes under CONST and WC models, RL4IM
consistently surpasses CHANGE but falls short of IMM. This in-

dicates that while RL4IM performs well in small synthetic graphs,
it remains inferior to IMM in this context. Regarding Geometric-
QN, [23] reported that it obtains 37.8% and 61.1% of the influence

scores of the greedy algorithm for the datasets Israel and Damascus,

respectively. As IMM provides the same approximation ratio as

the greedy algorithm, we directly compared Geometric-QN with

IMM in our experiments. Due to the high variance of Geometric-
QN, we repeated the query over 20 times and then calculated the

average as the final result. Our experiment showed that Geometric-
QN achieves 27.5% and 66.1% of the coverage of IMM in Israel

and Damascus, respectively. Though unlike what [23] reported,

Geometric-QN unmistakably lags behind IMM.

Efficiency. It is important to note that we provide unfair advantages

to Deep-RL methods by excluding their pre-processing or training

time. Despite this, as shown in Fig. 6, traditional IM algorithms are

still 10× to 10,000× faster than Deep-RL methods in most cases.

However, in scenarios where the influence spread hardly increases

with the budget, such as in Pokec, Wiki Talk, and Wiki Topcats

under the CONST model, there are numerous solution sets with

very similar influence spread, i.e., the atypical cases discussed in the

effectiveness assessments. Distinguishing these highly similar solu-

tion sets requires generating many RR sets, making theoretically

sound algorithms like IMM and OPIM slow in such situations.

With the help of node pruning techniques, GCOMB can some-

times achieve speeds that are orders of magnitude faster than IMM.

However, the runtime of GCOMB is often non-monotonic concern-

ing the budget, indicating that the node pruner cannot guarantee a

smaller search space for a small budget compared to a large bud-

get (e.g., TV-BrightKite, CONST-Higgs, CONST-Live Journal). The

instability of the node pruner leads to GCOMB being orders of

magnitude slower than IMM in certain cases.(eg. WC-Youtube, TV-

Live-Journal, and more cases displayed in our full version).

In contrast to GCOMB, which uses a simple linear interpola-

tion method to estimate pruning thresholds, LeNSE iteratively con-

structs subgraphs in a Markov decision process manner to achieve

pruning effects. This makes LeNSE significantly slower than other

methods and incapable of finding solutions for large datasets like

Orkut and Stack within a limited time. Geometric-QN employs

a computationally expensive real-time graph exploration policy

during the inference process, rendering it even non-scalable to

moderate-size Higgs dataset.

Memory Usage. The lower section of Tab. 3 presents the peak

memory usage of algorithms in the IM experiments. Memory con-

sumption by Deep-RL methods varies significantly. Geometric-QN
is memory-efficient, but it takes considerably more time to find a

solution, leading to poor scalability. As discussed in the efficiency

analysis, IMM and OPIM need to generate a large number of RR

sets in atypical scenarios, resulting in substantial memory usage.

Conversely, in other situations, IMM and OPIM tend to consume

less memory than Deep-RL methods.

Summary. Based on the above evaluations, we find that except

for the weird cases when the influence spread is insensitive to the

increasing budget, traditional IM algorithms outperform Deep-RL
methods in effectiveness, efficiency, and memory usage.
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Table 4: Correlation of Graph Metrics with Coverage Gap using Spearman’s Coefficient: Highlighting Values ≥0.8. The upper
section represents unweighted topological metrics, the middle section denotes weighted metrics, and the lower section outlines
the complex metrics.

MCP CONST TV WC

LeNSE GCOMB S2V-DQN LeNSE GCOMB RL4IM LeNSE GCOMB RL4IM LeNSE GCOMB RL4IM

|𝑉 | -0.286 0.943 0.771 -0.710 0.143 0.257 0.721 0.714 0.371 0.7 -0.143 0.486

|𝐸 | -0.238 0.543 0.314 -0.912 0.371 0.543 0.901 0.6 0.657 0.870 -0.429 0.257

Density 0.024 -0.6 -0.6 0.321 0.6 0.771 0.323 0.143 0.429 0.3 0.029 -0.2

Clust. coe. 0.5 -0.6 -0.6 -0.728 -0.486 -0.429 -0.712 -0.829 -0.543 -0.712 -0.314 -0.6

Triang. (%) 0.381 -0.714 -0.657 -0.772 -0.543 -0.543 -0.689 -0.886 -0.657 -0.692 -0.086 -0.543

Diameter 0.122 -0.174 -0.174 -0.872 -0.841 -0.696 -0.872 -0.638 -0.986 -0.873 0.203 -0.232

Eff. diameter 0.072 -0.086 -0.086 -0.921 -0.886 -0.771 -0.901 -0.6 -1.0 -0.901 0.257 -0.143

Isolated (%) -0.18 0.783 0.522 -0.112 -0.464 -0.261 -0.120 0.464 -0.145 -0.1 0.319 0.754

VCI (%) -0.524 0.486 0.371 0.652 0.429 0.486 0.6 0.886 0.6 0.6 0.429 0.771

Sum10 (%) -0.476 -0.029 0.029 0.612 0.6 0.486 0.6 0.6 0.6 0.6 0.486 0.486

weighted degree - - - 0.486 0.429 0.371 0.2 -0.371 0.257 0.371 -0.314 -0.6

edge weight - - - 0.371 0.257 0.371 0.143 0.543 0.257 0.486 0.829 0.657

Community Structure - - - 0.942 0.812 0.952 0.912 0.907 1.0 0.643 -0.351 0.398

WL kernel - - - 0.621 0.882 0.636 0.515 0.135 0.321 0.922 0.0 -0.523

PageRank - - - -0.653 -0.716 -0.636 -0.475 0.132 -0.334 -0.653 0.366 0.73

Table 5: Percentage change of the performance

TV WC

GCOMB RL4IM LeNSE GCOMB RL4IM LeNSE

BrightKite 1.29% -0.95% -0.19% 30.18% 26.52% -11.73%

Amazon 21.74% 27.23% -7.69% 7.64% 65.52% 36.45%

DBLP 86.81% 43.58% -18.18% -5.49% 87.61% 43.77%

Wiki Talk 2.46% -2.26% 7.59% 6.39% 83.10% 10.20%

Youtube 59.22% 13.26% 3.18% 0.61% 2.80% 3.33%

5 COMMON ISSUES OF DEEP-RL METHODS
The results presented in § 4 contradict the expectations of all the

Deep-RL methods [21–24, 27], which aim to efficiently learn better

approximations of the coverage function or the influence function,

leading to more effective and efficient solutions for MCP or IM.

Given the notable performance disparity betweenDeep-RLmethods

and Lazy Greedy in MCP, this section shifts its focus to examine the

application of Deep-RL in IM. Additional experiments are conducted

to unveil prevalent issues within the Deep-RL methods [21–24, 27]

that hinder their practical effectiveness.

5.1 Study of Graph Distribution
In § 3.4, we delve into the limitations posed by the worst-case perfor-

mance of Deep-RL methods, highlighting the theoretical boundary
of 1− 1

𝑒 . Moreover, we emphasize that the practical performance of

these methods in scenarios beyond the worst-case is contingent on

their generalizability. Deep-RL studies [21–24, 27] assert that Deep-

RL methods can learn heuristics to solve combinatorial problems on

graphs and generalize effectively to graphs resembling the training

distribution. This assertion prompts an evaluation of the similarity

between the distributions of the training and test graphs. However,

these studies lack a rigorous definition of “graph distribution”. In
practical terms, using trained Deep-RL models for MCP and IM

requires an efficient method to determine whether a new input

graph conforms to the “same distribution” as the training graphs.

We explore the feasibility of leveraging easy-to-compute statistics of
graphs to ascertain if two graphs follow the “same distribution”.

Edge Weights Matter in IM. We begin by highlighting the signif-

icance of edge weights in IM. Our investigation aims to assess the

generalization capability of trained Deep-RL models when applied

Table 6: Ratio of runtime: Advanced graph similarity calcu-
lation approaches to OPIM query resolution with 𝑘 = 200

DBLP Wiki Talk

CONST TV WC CONST TV WC

Community 1625.5 371.7 1730.9 45.4 56.6 1851.5

WL Kernel 258.0 73.3 382.1 4.3 5.5 243.2

PageRank 79.8 22.9 120.8 2.3 2.7 120.5

to the same graph under edge-weight models different from the model
used during training. To illustrate, let𝐺𝑀 be a graph using the edge

weight model𝑀 , and F𝑀 be the Deep-RL method F trained on𝐺𝑀 .

Adhering to the experimental setup from baseline papers, we select

CONST as the training model. Subsequently, we evaluate the per-

formance of F𝐶𝑂 against F𝑀 across five graphs, utilizing the edge

weight model 𝑀 with a budget of 𝑘 = 50. Tab. 5 lists the percent-

age change of the performance 𝑝 , where 𝑝 =
F𝑀 (𝐺𝑀 )−F𝐶𝑂 (𝐺𝑀 )

F𝑀 (𝐺𝑀 ) .

Here, F𝐶𝑂 (𝐺𝑀 ) means F is trained under CONST while tested

on 𝐺𝑀 , with 𝑀 ∈ {𝑊𝐶,𝑇𝑉 }. A larger absolute value indicates

greater sensitivity of the method F to the edge weight model. The

results suggest that these Deep-RL methods struggle to generalize
effectively across different edge-weight models.
Common topology statistics do not help. Next, we investigate
whether commonly adopted topology statistics of graphs can help

discern whether a testing graph follows the “same distribution”

as the training graphs. In this context, we employ the same edge-

weight model for both training and testing data. In addition to

unweighted topological statistics (1)-(9) mentioned in the dataset

introduction, for IM, we also incorporate topological metrics asso-

ciated with edge weights, such as (10) the average weighted degree

and (11) the average edge weight.

We calculate the Spearman correlation coefficient
5
between the

coverage gap 𝛿𝑛×1 and𝑚 topology statistics of graphsX𝑛×𝑚
across

𝑛 datasets. Here, 𝛿𝑖 =
F(·)𝑖−𝑂𝑃𝑇𝑖

𝑂𝑃𝑇𝑖
, where 𝑂𝑃𝑇𝑖 is approximated by

the coverage obtained over dataset 𝑖 by greedy in MCP and IMM in

IM, and F (·) is the coverage or influence obtained by a Deep-RL

5
The Spearman correlation coefficient is a widely-adopted metric to measure the

strength and direction of association between two ranked variables [51].
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Figure 8: Performance Curves of Models with Varying Training Durations under the WC Model. (a-b): Training and validation
datasets are 15% subgraphs from YouTube, with the test dataset from the remaining 70% edges, as in [24]. (c): Training on 200
synthetic graphs (200 nodes each); testing on synthetic graphs of varying number (𝑁 ) of nodes. (d): Following [23], models
are trained on different datasets, including the Copen dataset (1 trainset), both Copen and Occupy datasets (2 trainset), and
synthetic graphs (synthetic)

method F . Tab. 4 shows the results. Unfortunately, strong positive
correlations (≥ 0.8) are relatively rare. What’s worse, even when a

statistic has a strong positive correlation with a particular method,

the strong correlation will no longer exist once we change the

edge-weight model (e.g., the VCI(%) for GCOMB TV and WC).

Derivation of Complex Topological Statistics is Computation-
ally Intensive. In addition to straightforward and easy-to-compute

topological statistics of graphs, we delve into intricate methods like

Weisfeiler-Lehman (WL) Graph Kernel [52], PageRank, and Lou-

vain community detection [53] to ascertain similarity for weighted

graphs in IM. Insights from Tab. 4 illustrate that the WL graph
kernel and PageRank are markedly inefficient in pinpointing graphs
with analogous distributions. On the other hand, analogous com-
munity structures effectively discern similar distributions in the TV
and CONST models. However, mirroring the outcomes observed in

learning approaches, community structures under the WC model

fall short of capturing the similarities between graphs. This indi-

cates the potential significance of community structures as pivotal

indicators while assessing similar distributions prior to inference.
Nevertheless, the precision offered by these advancedmetrics comes

with the trade-off of being impractical for real-time or large-scale

applications due to their substantial computational overhead. Tab. 6
presenting results from both a small and a large dataset, accentuates

that the computation of these metrics far exceeds the time frame

required by the state-of-the-art OPIM to resolve a query when

𝑘 = 200. It’s noteworthy that, in practical scenarios, IM queries do
not necessarily demand high throughput. Identifying seed sets for

campaigns in a social network, for instance, typically involves a

manageable number of candidates rather than thousands or hun-

dreds of thousands.

Summary. These evaluations imply that determining whether a

testing graph aligns with the “same distribution” as the training

graphsmight be challenging in practical applications. Consequently,

assessing the performance of a trained Deep-RL model on a test-

ing graph may require actual execution on the specific graph, as

predicting its effectiveness beforehand could be a non-trivial task.

5.2 Impact of Training Time
Deep-RL methods frequently encounter convergence challenges

in practical scenarios [54]. To investigate the convergence behav-

ior of Deep-RL methods for MCP and IM [21–24, 27], we conduct

experiments by keeping the training data constant while varying

the training time (epochs). It is essential to note that we extend the

training duration significantly beyond that reported in the origi-

nal papers and select the best checkpoint based on the validation

set. Despite these efforts, the Deep-RL methods consistently ex-

hibit inferior performance compared to IMM. GCOMB (Fig. 8a)

initially has an unusual performance: drop but then tends to con-

verge as the number of training epochs increases. LeNSE (Fig. 8b)

demonstrates effective learning initially but encounters intermittent

performance drops. RL4IM (Fig. 8c) exhibits a steady performance

improvement until approximately 3,000 epochs, beyond which no

further enhancement is observed, indicating potential overfitting

and diminished generalizability with prolonged training. Similarly,

Geometric-QN (Fig. 8d) fails to learn efficiently as the training

steps increase. In summary, extending the training time for Deep-

RL methods may not consistently lead to improved performance,

posing challenges in determining an optimal training duration and

making the tuning process intricate in practical applications.

5.3 Impact of Training Dataset Size
In this study, we address the impact of training dataset size on

the performance of Deep RL methods, acknowledging the chal-

lenges associated with acquiring datasets with high-quality labels.

The training approaches for Deep RL methods in our investigation

fall into two categories based on the size of the training datasets.

GCOMB and LeNSE are trained on fractional subsets of a dataset,

while RL4IM and Geometric-QN are trained on multiple datasets.

Consequently, the training dataset size can refer to either the num-

ber of nodes in a graph or the number of graphs (i.e., samples). To

systematically explore the influence of training dataset size, we

adopt distinct strategies for each category. For GCOMB and LeNSE,
we train these models using various subgraphs, each comprising no

more than 30% of the nodes in the Youtube dataset. Subsequently,

we evaluate the models on the same graph, constructed with the

remaining 70% of edges unseen during the training phase. Follow-

ing the methodology outlined in [23], we train Geometric-QN on

different numbers of real datasets or synthetic graphs. In the case of

RL4IM andGeometric-QN trained on synthetic graphs, we not only

vary the number of samples while keeping the number of nodes

fixed but also train the models with a fixed number of samples, each

having different numbers of nodes.
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Figure 9: Performance Curves of Models under the WC Model Based on Training Dataset Size. (a): x-axis represents the
percentage of YouTube edges used for training. (b): x-axis denotes the number of samples (200 nodes each) or nodes (200 samples
total). (c): x-axis indicates the number of synthetic samples, nodes in a synthetic graph, or the number of real datasets.

The experimental results reveal that none of the methods consis-
tently show improved performance with an increased training dataset
size. More specifically, from the effect of the number of nodes in the

training subgraphs on the model’s performance, Fig. 9a shows that

GCOMB and LeNSE achieves their optimal performances when

trained on a subgraph of 15% size, but their performance drastically

drops as the training dataset size increases, indicating instabil-

ity. In contrast, Fig.9b reveals that RL4IM displays more stability,

with a subtle trend suggesting that RL4IM tends to perform bet-

ter as the size of the training subgraphs increases when tested on

graphs of similar size. However, there is no significant correlation

between generalizability and training dataset size, as RL4IM trained

on smaller graphs (n=100) outperforms the model trained on larger

graphs when tested on graphs that are 10 or 100 times the size of the

training graphs. Examining the impact of the number of training

subgraphs, size does not significantly affect RL4IM’s performance

or generalizability. Furthermore, Fig. 9c indicates that increasing

the number of training graphs does not improve the performance of

Geometric-QN either. These results underscore the critical insight

that simply enlarging the training dataset size may have detrimen-
tal effects on the model’s performance. Therefore, determining an
appropriate volume of training data poses a significant challenge.

6 RATING SCALE FOR EACH SOLVER
Fig. 1 in § 1 illustrates the relationship between the average nor-

malized coverage or influence (y-axis) and the average normalized

runtime (x-axis) across 16 datasets in MCP and 8 datasets under

three weight models in IM. A position closer to the top-left corner

indicates a more desired performance – faster and more effective.

Higher robustness is suggested by a lower standard deviation value

in effectiveness, while a higher value indicates the opposite. Among

Deep-RL methods in MCP, GCOMB offers coverage comparable

to greedy algorithms and outpaces the standard greedy approach.

However, it consistently falls short when compared to Lazy Greedy.
In IM, Deep-RL methods even lag behind simple heuristic methods

like SDiscount and DDiscount. It’s noteworthy that the presented

runtimes exclude the preprocessing and training time of these Deep-

RL methods. Despite this, they remain significantly less efficient

than traditional algorithms.

Based on the observed results across a wide range of datasets

and settings, a rating scale is summarized in Tab. 7. Here, the metric

Table 7: Rating scale for each solver: Higher values indicate
better performance. The highest values are underlined.

MCP

Method Quality(%) Memory(%) Efficiency(%) Robustness(%)

Normal Greedy 99.73 100 0.97 98.53

Lazy Greedy (2007) 100 37.78 100 100

S2V-QN (2017) 87.40 18.49 0.86 9.53

GCOMB (2020) 99.11 13.27 7.43 91.58

LeNSE (2022) 71.91 14.70 0.04 2.50

IM

Degree Discount (2009) 89.77 96.32 82.59 8.54

Single Discount (2009) 89.15 96.88 84.09 8.33

IMM (2015) 99.44 60.20 12.86 100

OPIM (2018) 96.36 73.85 35.69 43.54

Geometric-QN (2020)∗ 44.66 33.98 <0.01 5.08

GCOMB (2020) 67.71 15.15 3.06 3.41

RL4IM (2021) 66.12 57.60 0.26 3.64

LeNSE (2022) 78.44 29.90 0.02 5.35

Quality formethod 𝑓 is defined as the average of {𝑐 (𝑓 )
𝑑

/Max(𝑐𝑑 ) |𝑑 ∈
D}, where 𝑐 represents the coverage value, and 𝑑 denotes a selected

dataset within the entire set of datasets 𝐷 . Similarly, the metric

Efficiency is defined as the average of {Max(𝑡𝑑 )
𝑡
(𝑓 )
𝑑

|𝑑 ∈ D}, where 𝑡 sig-

nifies the runtime. Furthermore, we delineate the metric Robustness
for method 𝑓 as the normalized reciprocal standard deviation of

its quality. Please note that the rating for Geometric-QN, due to
its limited scalability, is not derived from a direct comparison with

others across 𝐷 . Instead, it is derived by comparing it specifically

with IMM on the smaller datasets, as detailed in Kamarthi et al. [23].

7 OTHER RELATEDWORK
Maximum Coverage and Influence Maximization Problems.
MCP is a well-known NP-hard problem that has received signif-

icant attention. Various variants of MCP, such as the Budgeted

Maximum Coverage Problem [55–58] and the Multiple Knapsack

Problem [59], have been extensively studied, finding applications

in facilities location [4, 60], maximum coverage in streams [61],

social recommendation [62, 63] and information retrieval [64], etc.

The IM problem [9] has also garnered significant attention. By

focusing on the diffusion of influence, IM addresses the concept

of coverage from a different perspective, making it a natural and
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relevant extension of the MCP framework in the context of social

networks. Kempe et al. [9] proposed a greedy algorithm that pro-

vides a (1− 1

𝑒 −𝜖) approximation under the Independent Cascade (IC)

model. Subsequent studies have focused on improving the efficiency

and scalability of influence maximization algorithms. For instance,

CELF +[14] and its improved version CELF++ [65] significantly

reduced the Monte Carlo evaluation times while maintaining a

(1− 1

𝑒 ) approximation. Other heuristic algorithms [44, 66, 67], offer

more efficient solutions without relying on Monte Carlo simula-

tions, although they may not provide strong theoretical guarantees.

To address the computational challenges of influence maximization,

Borgs et al. [17] introduced the Reverse Influence Sampling (RIS)

technique, which achieves nearly linear time complexity relative to

the graph size while providing a (1 − 1

𝑒 − 𝜖)-approximation under

the IC model. Building upon RIS, Tang et al. proposed TIM/TIM++

[18] and IMM [19], which further improved the empirical efficiency.

Tang et al. also introduced OPIM [20], which focuses on influence

maximization in online settings.

Criticism on Machine Learning-based Heuristics for Com-
binatorial Optimization. The remarkable success of machine

learning (ML) in diverse fields such as computer vision [68], natural

language processing [69], and automatic control [41] has prompted

the belief that ML can excel in other domains as well. However,

recent studies have shed light on the limitations of deep learning

(DL), both from a broad perspective and in specific applications.

[70, 71] have discussed these limitations, providing insights into

the challenges faced by DL. Furthermore, [72] has examined expert

opinions on the potential and limitations of DL, summarizing a

body of work that uncovers the inadequate performance of DL in

various applications. A recent contribution [73] proposes a bench-

mark study that highlights the disparity between DL solvers and

a simple greedy algorithm in solving the maximum independent

set (MIS) problem. Their findings demonstrate that the greedy al-

gorithm not only provides better quality solutions but also exhibits

significantly faster computation, surpassing Deep RL solvers by a

factor of 10
4
. This work emphasizes the need to carefully evaluate

the performance of DL techniques in specific problem domains, as

there may be alternative approaches that outperform DL in terms

of both solution quality and computational efficiency.

These discussions and benchmark studies serve as important

reminders that while DL has achieved remarkable success in nu-

merous areas, it is not a one-size-fits-all solution. Understanding

the limitations and exploring alternative approaches can help re-

searchers and practitioners make informed decisions regarding the

most suitable techniques for solving specific problems.

8 POTENTIAL DIRECTIONS FOR IMPROVING
DEEP-RL METHODS

Deep-RL methods currently demonstrate excellence primarily in

abnormal scenarios with limited practical optimization value, em-

phasizing their current limitations. In this section, we briefly outline

the challenges and limitations of applying Deep-RL to IM.

Identify similar distribution effectively. As discussed in § 3.4,

the upper bound of the worst-case performance for Deep-RL meth-

ods on MCP and IM is constrained, i.e., not exceeding 1 − 1

𝑒 . Fur-

thermore, the effectiveness of these methods in scenarios beyond

this worst-case heavily depends on their generalizability. This ne-

cessitates a thorough assessment of the alignment between the

distributions of the training and test graphs. Evidence from experi-

mental results and analyses detailed in § 5.1 indicates that this issue

remains unresolved. A pivotal challenge is to identify a few easily

computable measures to quantify the learned graph distribution.

Extract high-quality query subspace. The Deep-RL methods

often struggle with inefficiency, primarily due to the vastness of the

search space they need to explore. To mitigate this, certain Deep-

RL approaches aim to enhance efficiency without compromising

solution quality by identifying a subgraph within the entire graph

that contains the high-quality solution, effectively reducing the

search space. However, this strategy necessitates a delicate balance

between the time consumption in identifying the quality of this

subspace and the precision of such identification. Methods like

Geometric-QN and LeNSE tend to spend more time extracting

this subspace compared to the time saved during the querying

process. Conversely, while GCOMB improves query efficiency by

efficiently pruning the search space, it struggles to consistently

maintain solution quality. Overall, a substantial challenge persists

in effectively extracting a high-quality search subspace.

Initialization with prior knowledge. Initializing the state with
prior knowledge, as opposed to random initialization, holds the

potential to enhance performance. Geometric-QN, for instance,
constructs a subgraph based on random initialization, leading to a

high variance in the final performance. Similarly, LeNSE, by initial-

izing a subgraph randomly, incurs a time-consuming process for

subgraph exploration. This suggests that adopting prior knowledge

for initialization could potentially streamline exploration processes

and yield more stable performance.

9 CONCLUSIONS
In this benchmark study, we conducted a comprehensive exami-

nation of the effectiveness and efficiency of five recent Deep-RL

methods for MCP and IM. The experimental results reveal that, for

both MCP and IM, traditional algorithms such as Lazy Greedy and

IMM consistently outperform Deep-RL methods in the majority of

cases, if not all. Additionally, we highlight common issues observed

in Deep-RL methods for MCP and IM, emphasizing the challenge

of predicting the performance of a trained Deep-RL model on a

testing graph before actual execution. Finally, we discuss potential

directions for enhancing Deep-RL methods in the context of MCP

and IM. Our benchmark study sheds light on possible challenges

and limitations in current deep reinforcement learning research

aimed at solving combinatorial optimization problems.
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