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ABSTRACT

Anomaly detection in multivariate time series data is of paramount
importance for large-scale systems. However, accurately detect-
ing anomalies in such data poses significant challenges due to the
need for precise data modeling capability. Existing forecasting and
reconstruction-based methods struggle to address these challenges
effectively. To overcome these limitations, we propose a novel anom-
aly detection framework named ImDiffusion, which combines time
series imputation and diffusion models to achieve accurate and ro-
bust anomaly detection. The imputation-based approach employed
by ImDiffusion leverages the information from neighboring values
in the time series, enabling precise modeling of temporal and inter-
correlated dependencies, reducing uncertainty in the data, thereby
enhancing the robustness of the anomaly detection process. ImDif-
fusion further leverages diffusion models as time series imputers
to accurately capture complex dependencies. We leverage the step-
by-step denoised outputs generated during the inference process
to serve as valuable signals for anomaly prediction, resulting in
improved accuracy and robustness of the detection process.

We evaluate the performance of ImDiffusion via extensive ex-
periments on benchmark datasets. The results demonstrate that
our proposed framework significantly outperforms state-of-the-art
approaches in terms of detection accuracy and timeliness. ImD-
iffusion is further integrated into the real production system in
Microsoft and observes a remarkable 11.4% increase in detection F1
score compared to the legacy approach. To the best of our knowl-
edge, ImDiffusion represents a pioneering approach that combines
imputation-based techniques with time series anomaly detection,
while introducing the novel use of diffusion models to the field.

PVLDB Reference Format:

Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding,
Bowen Li, Shilin He, Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang.
ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection. PVLDB, 17(3): 359 - 372, 2023.
doi:10.14778/3632093.3632101

∗This work was completed during their internship at Microsoft Research Asia.
†Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/17000cyh/IMDiffusion.git.

1 INTRODUCTION

The efficient operation of large-scale systems or entities heav-
ily relies on the generation and analysis of extensive and high-
dimensional time series data. These data serve as a vital source
of information for continuous monitoring and ensuring the opti-
mal functioning of these systems. However, within these systems,
various abnormal events may occur, resulting in deviations from
the expected downstream performance of numerous applications
[4, 31, 60]. These anomalous events can encompass a broad spec-
trum of issues, including production faults [12, 44], delivery bottle-
necks [28], system defects [74, 76], or irregular heart rhythms [37].
When different time series dimensions are combined, they form a
multivariate time series (MTS). The detection of anomalies in MTS
data has emerged as a critical task across diverse domains. Indus-
tries spanning manufacturing, finance, and healthcare monitoring,
have recognized the importance of anomaly detection in main-
taining operational efficiency and minimizing disruptions [29, 60],
and the field of MTS anomaly detection has garnered significant
attention from both academia and industry [2, 5, 7, 9, 43].

However, achieving accurate anomaly detection on MTS data is
not straightforward, as it necessitates precise modeling of time se-
ries data [4, 47, 78]. The complexity of modern large-scale systems
introduces additional challenges, as their performance is monitored
by multiple sensors, generating heterogeneous time series data that
encompasses multidimensional, intricate, and interrelated tempo-
ral information [38, 46]. Modeling complex correlations like these
requires a high level of capability from the model. Furthermore,
time series data often displays significant variability [45], leading
to increased levels of uncertainty. This variability can sometimes re-
sult in erroneous identification of anomalies. This adds complexity
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Figure 1: Examples of reconstruction, forecasting and impu-

tation modeling of time series for anomaly detection.

to the anomaly detection process, as the detector must effectively
differentiate between stochastic anomalies and other variations to
achieve robust detection performance [66, 87].

The aforementioned challenges have spurred the emergence of
numerous self-supervised learning solutions aimed at automating
anomaly detection. Recent methods can be classified into various
categories [60], where forecasting [51, 88] and reconstruction-based
[46, 70, 85] approaches have been most widely employed. The for-
mer leverages past information to predict future values in the time
series and utilizes the prediction error as an indicator for anomaly
detection. However, future time series values can exhibit high levels
of uncertainty and variability, making them inherently challeng-
ing to accurately predict in complex real-world systems. Relying
solely on forecasting-based methods may have a detrimental im-
pact on anomaly detection performance [38, 48]. On the other hand,
reconstruction-based methods encode entire time sequences into
an embedding space. Anomaly labels are then inferred based on
the reconstruction error. Since these approaches operate and need
to reconstruct the entire time series, their performance heavily
relies on the capabilities of the reconstruction model [46]. In cases
where the original data exhibit heterogeneity, complexity, and inter-
dependencies, reconstruction-based methods may encounter chal-
lenges in achieving low overall reconstruction error and variance
[3, 36]. As a result, the anomaly detection performance of such ap-
proaches may be sub-optimal. Given these considerations, there is
a clear need to rethink and enhance forecasting and reconstruction
approaches to achieve accurate and robust anomaly detection.

To address these challenges and overcome the limitations of
existing approaches, we propose a novel anomaly detector named
ImDiffusion. This detector combines the use of time series imputa-
tion [18] and diffusion models [24] to achieve accurate and robust
anomaly detection. ImDiffusion employs dedicated grating data
masking into the time series data, creating unobserved data points.
It then utilizes diffusion models to accurately model the MTS and
impute the missing values caused by the data masking. The impu-
tation error is subsequently used as an indicator to determine the
anomalies. The imputation-based approach employed by ImDiffu-
sion offers distinct advantages over forecasting and reconstruction
methods. Firstly, it leverages neighboring values in the time series as
additional conditional information, enabling a more accurate mod-
eling of the temporal and inter-correlated dependencies present in

MTS. Secondly, the reference information from neighboring values
helps to reduce uncertainty in predictions, and thereby enhancing
the robustness of the detection process. Fig. 1 presents an example
in which forecasting, reconstruction, and imputation methods are
employed to predict a time series using diffusion models. The fore-
casting method employs a 50-step MTS for observation and predicts
the subsequent 50-step MTS. The reconstruction method recovers
the entire 100-step MTS. Meanwhile, the imputation method is
carried out using the grating data masking. Observe that while
all approaches yield comparable errors during the outlier period,
the imputation approach achieves a lower error within the normal
range due to its superior MTS modeling ability. This attribute en-
ables it to establish a more distinct decision boundary for anomaly
identification. As a result, only the imputation method successfully
identifies the period of anomaly. We therefore employ time series
imputation for accurate self-supervised modeling of time series,
which forms the foundation of our proposed ImDiffusion.

To enhance the performance of anomaly detection, ImDiffu-
sion leverages the exceptional unsupervised modeling capability
of diffusion models [24] for imputation. Diffusion models have
demonstrated superior performance in unsupervised image gen-
eration, surpassing traditional generative models such as GANs
[21] and VAEs [33]. They have also been successfully applied to
model complex temporal and inter-metric dependencies in MTS,
showcasing remarkable abilities in forecasting [58] and imputation
[68]. We employ a dedicated diffusion model as the time series
imputer, replacing traditional forecasting and reconstruction mod-
els. This brings several advantages to anomaly detection, namely
(i) it enables better modeling of complex correlations within MTS
data; (ii) it allows for stochastic modeling of time series through
the noise/denoising processes involved in the imputation; (iii) the
step-by-step outputs generated during the imputation inference
serve as additional signals for determining the anomaly labels in
an ensemble manner. These unique advantages of diffusion models
enable precise capturing of the complex dependencies and inherent
stochasticity present in time series data, and further enhance the
robustness of anomaly detection through ensembling techniques.

By integrating imputation and diffusion models, our proposed
ImDiffusion achieves exceptional accuracy and timeliness in anom-
aly detection for both offline and online evaluation in real produc-
tion. Overall, this paper presents the following contributions:

• We introduce ImDiffusion, a novel framework based on the
imputed diffusion model, which accurately captures the inherent
dependency and stochasticity of MTS data, leading to precise
and robust anomaly detection.

• We develop a grating masking strategy to create missing values
in the data for imputation. This strategy enhances the decision
boundary between normal and abnormal data, resulting in im-
proved anomaly detection performance.

• ImDiffusion leverages the step-by-step denoised outputs of the
diffusion model’s unique inference process as additional signals
for anomaly prediction in an ensemble voting manner. This ap-
proach further enhances inference accuracy and robustness.

• We conduct extensive experiments comparing ImDiffusionwith
10 state-of-the-art anomaly detection baselines on 6 datasets.
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Results show that ImDiffusion significantly outperforms other
approaches in terms of both detection accuracy and timeliness.

• We integrate ImDiffusion in the real production of the Microsoft
email delivery microservice system. The framework exhibits an
11.4% higher detection accuracy compared to the legacy online
approach, which significantly improves the system’s reliability.

To the best of our knowledge, ImDiffusion is the pioneering ap-
proach that combines imputation-based techniqueswithMTS anom-
aly detection, and it pushes the methodology boundaries by first
applying diffusion models to this field.

2 RELATEDWORK

2.1 Time Series Anomaly Detection

Time series anomaly detection is an important problem that has re-
ceived significant attention [8, 52, 53, 60, 67, 69, 74, 84]. Approaches
for this area can be categorized into five main classes based on the
underlying detection method [60]. These categories include: (i)
forecasting methods (e.g., [51, 88]), which predict future values to
identify anomalies; (ii) reconstruction methods (e.g., [11, 70, 85]),
which reconstruct the time series and identify anomalies based on
the reconstruction error; (iii) encoding methods (e.g., [6]), which
encode the time series into a different representation and detect
anomalies using this encoding; (iv) distance methods (e.g., [9, 10]),
which measure the dissimilarity between time series and identify
anomalies based on the distance; (v) distribution methods (e.g.,
[20, 25]), which model the distribution of the time series data and
detect anomalies based on deviations from the expected distribution;
and (vi) isolation tree methods (e.g., [13, 41]), which use tree-based
structures to isolate anomalies.

Among the various approaches explored in the literature, fore-
casting and reconstruction methods have gained significant pop-
ularity due to their reported effectiveness. For instance, Omni-
anomaly [66] employs a combination of GRU and VAE to learn
robust representations of time series. It also utilizes the Peaks-
Over-Threshold (POT) method to dynamically select appropriate
thresholds for anomaly detection. MTAD-GAT [88] incorporates
a graph-attention network to capture both feature and temporal
correlations within time series data. By combining forecasting and
reconstruction models, it achieves improved anomaly detection per-
formance. MAD-GAN [36] takes advantage of the discriminator’s
loss in a GAN as an additional indicator for detecting anomalies.
More recently, TranAD [70] introduces attention mechanisms in
transformer models and incorporates adversarial training to jointly
enhance the accuracy of anomaly detection.

2.2 Diffusion Model

Recently, diffusion models [40, 77] have garnered increasing at-
tention in the field of AI generated content [57, 59]. While their
potential in the domain of time series modeling and anomaly de-
tection is relatively new, researchers have begun to explore their
application in these areas. For instance, CSDI [68] utilizes a proba-
bilistic diffusion model for time series imputation, outperforming
deterministic baselines. TimeGrad [58] applies diffusion models in
an autoregressive manner to generate future time sequences for
forecasting. This approach achieves good performance in extrapo-
lating into the future while maintaining computational tractability.

Additionally, diffusion models have been employed in time series
generation. In [39], diffusion models are used as score-based gener-
ative models to synthesize time-series data, resulting in superior
generation quality and diversity compared to baseline approaches.

Diffusion models have also been explored for image anomaly
detection. In [75], denoising diffusion implicit models [65] are com-
bined with classifier guidance to identify anomalous regions in
medical images. This produces highly detailed anomaly maps with-
out the need for a complex training procedure. Similarly, in [56],
diffusion models are used to eliminate bias and mitigate accumu-
lated prediction errors, thereby enhancing anomaly segmentation
in CT data. The DiffusionAD [86] formulates anomaly detection as
a “noise-to-norm” paradigm, requiring only one diffusion reverse
process step to achieve satisfactory performance in image anomaly
detection. This significantly improves the inference efficiency.

3 PRELIMINARY

3.1 Multivariate Time Series Anomaly Detection

We consider a collection of MTS denoted as X, which encompasses
measurements recorded from timestamp 1 to 𝐿. Specifically:

X = {x1, x2, · · · x𝐿}, (1)

where x𝑙 ∈ R𝐾 represents an 𝐾-dimensional vector at time 𝑙 , i.e.,
x𝑙 = {𝑥1

𝑙
, 𝑥2
𝑙
, · · · 𝑥𝐾

𝑙
}. The objective of MTS anomaly detection is

to determine whether an observation x𝑙 is anomalous or not. By
employing 𝑦𝑙 ∈ {0, 1} to indicate the presence of an anomaly (with
0 denoting no anomaly and 1 denoting an anomaly), the goal trans-
forms into predicting a sequence of anomaly labels for each times-
tamp, namely 𝑌 = {𝑦1, 𝑦2, · · · , 𝑦𝐿}.

3.2 Time Series Imputation

ImDiffusion leverages the prediction error resulting from the
imputation [68] of intentionally masked values within a time se-
ries to infer the anomaly labels. The mask is denoted as M =

{𝑚𝑙∈1:𝐿,𝑘∈1:𝐾 } ∈ {0, 1}, where𝑚 = 1 indicates that 𝑥𝑘
𝑙
is observed,

while 0 signifies that it is missing. The maskM possesses the same
dimensionality as the time series X, i.e., M ∈ R𝑇×𝐾 . The appli-
cation of the mask M to the original time series X yields a new
partially observed time series XM , which can be expressed as:

XM = X ⊙ M . (2)

Here, the symbol ⊙ represents the Hadamard product. Let XM0

represent the masked value where𝑚𝑙,𝑘 = 0, and XM1 represent
the observed values where𝑚𝑙,𝑘 = 1, the objective of the imputation
process is to estimate the missing values in XM , i.e., 𝑝 (XM0 |
XM1 ). Interpolation [30, 35, 62] and forecasting [79, 80, 90], can be
considered as instances of time series imputation.

3.3 Denoising Diffusion Model

Our ImDiffusion is based on the diffusion models [64], a well-
known generativemodel that draws inspiration fromnon-equilibrium
thermodynamics. Diffusion models follow a two-step process for
data generation. Firstly, it introduces noise to the input incremen-
tally, akin to a forward process. Secondly, it learns to generate new
samples by progressively removing the noise from a sample noise
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vector, thereby resembling a reverse process. During the forward
process, Gaussian noise is incrementally added to the initial input
sample X0 over 𝑇 steps. Mathematically, this can be represented as
𝑞(X1:𝑇 | X0) :=

∏𝑇
𝑡=1 𝑞(X𝑡 | X𝑡−1), where

𝑞(X𝑡 | X𝑡−1) := N(X𝑡 ;
√︁
1 − 𝛽𝑡X𝑡−1, 𝛽𝑡 I). (3)

Here, 𝛽 is a positive noise level constant that can either be learned
or predefined. The forward process is parameterized as a Markov
chain, as the values ofX𝑡 solely depend onX𝑡−1. The final step,X𝑇 ,
is fully corrupted and becomes random noise. Its distribution can be
expressed in closed form as 𝑞(X𝑇 | X0) = N(X𝑇 ;

√
𝛼𝑡X0, (1−𝛼𝑡 )I),

where 𝛼𝑡 := 1 − 𝛽𝑡 and 𝛼𝑡 :=
∏𝑡
𝑖=1 𝛼𝑖 . Next, X𝑇 can be represented

as X𝑇 =
√
𝛼𝑇X0 + (1 − 𝛼𝑇 )𝜖 , where 𝜖 ∼ N(0, I).

Conversely, we employ a machine learning model with learnable
parameters Θ to denoise X𝑇 and reconstruct X0. This is accom-
plished by iteratively computing the following Gaussian transitions:

𝑝Θ (X𝑡−1 | X𝑡 ) := N(X𝑡−1; 𝜇Θ (X𝑡 , 𝑡),ΣΘ (X𝑡 , 𝑡)I) . (4)

As a result, the joint distribution can be expressed as 𝑝Θ (X0:𝑇 ) =
𝑝 (X𝑇 )

∏𝑇
𝑡=1 𝑝Θ (X𝑡−1 | X𝑡 ).

The Denoising Diffusion Probabilistic Model (DDPM) [24] sim-
plifies the reverse process by adopting a fixed variance, result in:

𝜇Θ (X𝑡 , 𝑡) :=
1
𝛼𝑡

(
X𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖Θ (X𝑡 , 𝑡)
)
, ΣΘ (X𝑡 , 𝑡) =

√︃
𝛽𝑡 . (5)

Here 𝛽𝑡 =
{ 1−𝛼𝑡−1

1−𝛼𝑡 𝛽𝑡 , 𝑡 > 1
𝛽1, 𝑡 = 1

, and 𝜖Θ represents a trainable denois-

ing function. By employing Jensen’s inequality and the speeding-up
parameterization from DDPM, the reverse process can be solved
by training a model to optimize the following objective function:

min
Θ

L(Θ) := min
Θ

EX0∼𝑞 (X0 ),𝜖∼N(0,I),𝑡 | | 𝜖 − 𝜖Θ (X𝑡 , 𝑡) | |2, (6)

where X𝑡 =
√
𝛼𝑡X0 + (1−𝛼𝑡 )𝜖 , X0 is the complete data sample that

is unaffected by diffusion process noise, and 𝑞(X0) is its distribution
[24]. The denoising function 𝜖Θ is responsible for estimating the
noise added to the corrupted input X𝑡 . Once trained, given an arbi-
trary noise vector, we can generate a new sample by progressively
denoising using X𝑡 and obtain a final complete sample.

4 THE DESIGN OF IMDIFFUSION

ImDiffusion relies on time series imputation and utilizes the im-
puted error as a signal for anomaly detection. The imputation pro-
cess is carried out in a self-supervised learning manner, where we
intentionally introduce masks to the MTS, creating missing values
that need to be imputed. We then train a diffusion model using Im-
Transformer designed specifically for imputation and subsequent
anomaly detection tasks. During the inference phase, we leverage
the intermediate output of the ImTransformer at different denois-
ing steps 𝑡 as additional information to collectively determine the
anomaly label. This ensemble approach enhances the accuracy and
robustness of ImDiffusion, further improving its performance.

4.1 Imputed Diffusion Models

Time series anomaly detection often relies on the construction
of prediction models that accurately capture the distribution of

normal data. These models are expected to exhibit higher predic-
tion errors when anomalies occur, thereby serving as indicators
and providing a decision boundary for detecting anomalies. Two
commonly used types of prediction models for anomaly detection
are (i) reconstruction models, which encode the entire time series
into a representation that can be reconstructed using a decoder;
(ii) forecasting models, which aim to predict future values of the
time series based on historical observations [27]. However, both
types of prediction models have their limitations in terms of their
capacity for time series modeling. When applying the diffusion
model, the reconstruction method involves corrupting the entire
MTS into a complete noise vector for reconstruction. However, this
introduces a significant level of uncertainty, particularly when there
is a lack of conditional information. Similarly, forecasting models
face challenges in accurately predicting future values, especially in
the presence of anomalies, further contributing to the uncertainty.

To overcome the limitations of traditional reconstruction [48,
66, 85] and forecasting models [32, 51, 88], we propose the use
of time series imputation as the underlying prediction model for
anomaly detection in ImDiffusion. We further enhance the im-
putation capacity of the model by incorporating state-of-the-art
diffusion models. This approach offers several advantages. Firstly,
it enables enhanced estimation of the data distribution by lever-
aging the availability of unmasked data values. This leads to im-
proved understanding of the underlying data distribution. Secondly,
the imputation-based prediction process stabilizes the inference
of the diffusion model, resulting in reduced variance in its predic-
tions. This increased stability enhances the reliability of the model’s
predictions. Lastly, incorporating imputation-based prediction im-
proves the overall accuracy and robustness of subsequent anomaly
detection. By combining diffusion models for time series imputa-
tion, ImDiffusion achieves accurate modeling of time series data,
resulting in superior performance in anomaly detection tasks.

We begin by introducing the use of score-based diffusion models
for MTS data imputation [68]. There are two main categories of
diffusionmodels employed for time series imputation, distinguished
by the type of input information they utilized as follows:
• Conditioned Diffusion Models: These models estimate the

masked values conditioned on the observed data, specifically
𝑝 (XM0 | XM1 ). In this case, the observed values XM1 are not
corrupted by noise and are directly provided as input in the
reverse process.

• Unconditional Diffusion Models: For the unconditional ver-
sion [68], both masked and unmasked values are corrupted by
noise in the forward process. Instead of directly providing the
observed data, it retains the ground-truth noise added to the un-
masked values as reference inputs. This leads to the estimation
of 𝑝 (XM0 | 𝜖M1

1:𝑇 ), where 𝜖M1
1:𝑇 represents the noise sequence

added to the unmasked values XM1 during the forward process.
Conditional diffusion models generally outperform uncondi-

tional diffusion models in the task of imputation, resulting in lower
overall prediction errors [68]. This is because conditional models
benefit from the direct inclusion of ground-truth unmasked data as
input, which serves as reliable references for neighboring values.
However, it is important to recognize the distinction between the
objectives of imputation and anomaly detection. While imputation
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Figure 2: Example cases of conditional/unconditional diffu-

sion models for time series anomaly detection.

aims to minimize the error between predictions and ground truth
for all data points, anomaly detection requires a clear boundary
between normal and abnormal points, achieved by minimizing im-
putation errors only for normal data and maximizing errors for
anomaly points. During the inference phase, when anomaly points
happen to be unmasked and used as inputs for the prediction model,
the prediction error for neighboring anomaly points is also reduced.
Consequently, the prediction error becomes indistinguishable be-
tween normal and abnormal points, compromising the effective-
ness of subsequent anomaly detection. The existence of unmasked
anomaly points during inference blurs the clear boundary in the
prediction error that is vital for accurate anomaly detection.

To address this issue, we employ unconditional imputed diffu-
sion models, which utilize the forward noise 𝜖M1

1:𝑇 as a reference for
unmasked data input, rather than directly feeding the data values.
By using the forward noise, we avoid explicitly revealing the exact
values, even when anomaly points are unmasked. However, the for-
ward noise still provides indirect information about the unmasked
data, serving as a weak hint for the model. The unmasked data can
be perfectly recovered in the reverse process by subtracting the
noise from the observed values step-by-step. The lower subplot in
Fig. 2 demonstrates the application of an unconditional diffusion
model. A notable distinction from the conditional model (upper
subplot) is the substantial difference in imputed error between nor-
mal and abnormal data points. This significant gap in imputed error
values provides a distinct boundary for the thresholding approach,
which improves the anomaly detection performance.

We denote the noise added to the unmasked input from step
𝑡 − 1 to 𝑡 as 𝜖M1

𝑡 . Note that 𝜖M1
𝑡 is drawn from the same Gaussian

distribution in Eq. (3), and serves as the reference for unmasked
data in the reverse inference process. Similar to Eq. (4), the uncon-
ditional imputed diffusion models estimate the masked values in a
reverse denoising fashion but condition on the 𝜖M1

𝑡 as additional
input. Traditional diffusion models lack the capability to incorpo-
rate conditional information 𝜖M1

𝑡 during the denoising process.
Consequently, an enhancement is required in order to extend the
estimation in Eq. (5) to accommodate conditional information. This
can be achieved by modifying the estimation as follows:

𝜇Θ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡

)
= 𝜇

(
XM0
𝑡 , 𝑡, 𝜖Θ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡

))
, (7)

ΣΘ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡

)
= Σ

(
XM0
𝑡 , 𝑡

)
. (8)

By utilizing the denoising function 𝜖Θ and the forward noise for
unmasked value 𝜖M1

𝑡 , we can leverage the reverse denoising process
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Figure 3: An illustration of the the grating masking and the

imputation process under this strategy.

of imputed diffusion models to infer the masked values XM0 . This
is accomplished by sampling from the distribution of XM0

𝑡 . In
contrast to anomaly detection methods based on reconstruction and
forecasting, the integration of additional information offers valuable
signals that assist the diffusion model in generating more reliable
predictions. This leads to a reduction in output randomness and
variance, while maintaining the confidentiality of abnormal data
values. Consequently, it enhances the performance and robustness
of subsequent anomaly detection.

4.2 Design of Data Masking

The ImDiffusion approach leverages deliberate masking, using a
maskM applied to the time series data, to create unobserved points
that require imputation. The choice of the masking strategy plays a
crucial role in determining the performance of anomaly detection.
In this paper, we compare two masking strategies:

• Random strategy: This strategy randomly masks data values
in the raw time series with a 50% probability [68]. It provides a
straightforward and simple masking technique.

• Grating strategy: The grating strategy masks the data at equal
intervals along the time dimension, as illustrated in Fig. 3. The
raw time series is divided into several windows, with masked
and unmasked windows appearing in a staggered manner.

For the grating strategy depicted in Fig. 3, two different mask poli-
cies indexed by 𝑝 ∈ {0, 1} are applied to the same time series,
resulting in two imputation instances. These two masks are mutu-
ally complementary, ensuring that the masked values in mask 𝑝 = 0
are unmasked in mask 𝑝 = 1, and vice versa. This guarantees that
all data points are imputed by the ImDiffusion approach, enabling
the generation of prediction error signals for anomaly detection.
After performing imputation on each masked series individually,
the imputation results are merged through simple concatenation.
During training and inference, the masking index 𝑝 is provided to
the model, indicating the masking policy applied to reduce ambigu-
ity. This leads to an additional conditional term 𝑝 on Eq. (4) and (7),
while the estimation of ΣΘ in Eq. (8) remains unchanged, i.e.,

𝑝Θ

(
XM0
𝑡−1 | XM0

𝑡 , 𝜖
M1
𝑡

)
:= N

(
XM0
𝑡−1 ; 𝜇Θ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡 , 𝑝

)
,

ΣΘ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡 , 𝑝

)
I
)
, (9)
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𝜇Θ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡

)
= 𝜇

(
XM0
𝑡 , 𝑡, 𝜖Θ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡 , 𝑝

))
. (10)

The grating strategy introduces a unique characteristic to the
imputation, as it can be considered a “partially” reconstruction
task. This approach offers several advantages: Firstly, it provides
additional information that aids in modeling the time series more
effectively. By incorporating the partially reconstructed data, the
model gains a better understanding of the underlying patterns and
correlations. Secondly, the utilization of the grating strategy allows
for a partial glimpse into the future values of the time series within
the masked window, akin to forecasting techniques. This enables to
improve timeliness in detecting anomalies, as it provides insights
into the potential future trajectory of the time series data.

4.3 Training Process of ImDiffusion

The training process of ImDiffusion is illustrated in Fig. 4. Start-
ing with a given data sample time series X, we generate two
masked samples XM using the grating masking strategy discussed
in Sec. 4.2. These masked samples are gradually corrupted by in-
troducing Gaussian noise 𝜖𝑡 , resulting in XM

𝑡 . Our objective is to
train a model 𝜇Θ that can effectively denoise XM

𝑡 and impute the
masked values in a step-by-step manner. Given that ImDiffusion
employs an unconditional diffusion model, the input series X𝑖𝑛𝑡 is
divided into two halves, i.e., X𝑖𝑛 = {XM0

𝑡 , 𝜖
M1
𝑡 }. One half contains

the corrupted data within the masked regions, denoted as XM0
𝑡 ,

while the other half represents the ground truth forward noise
applied to the unmasked regions, denoted as 𝜖M1

𝑡 , serving as a ref-
erence. These two data sources are concatenated to form the input
X𝑖𝑛𝑡 , which is then fed into the dedicated transformer-based model
ImTransformer for denoising inference, i.e., 𝜖Θ

(
XM0
𝑡 , 𝑡 | 𝜖M1

𝑡 , 𝑝

)
.

The unconditional imputed diffusion models utilize the same
parameterization as Eq. (5), with the only difference lying in the
form of 𝜇Θ, which takes additional inputs of unmasked forward
noise 𝜖M1

𝑡 and mask index 𝑝 . We follow the standard training pro-
cess of DDPM, beginning with sampling Gaussian noise as masked

data at step 𝑇 , i.e., X𝑇 =
√
𝛼𝑇X0 + (1 − 𝛼𝑇 )𝜖 , and optimizing 𝜖Θ by

minimizing the following loss function:

min
Θ

L(Θ) := min
Θ

EX0∼𝑞 (X0 ),𝜖∼N(0,I),𝑡 | |𝜖 − 𝜖Θ (XM0
𝑡 , 𝑡 | 𝜖M1

𝑡 , 𝑝) | |2 .
(11)

Once trained, we can utilize the diffusion model to infer the masked
values given a random Gaussian noise XM0

𝑇
, as well as the forward

noise sequence added to the unmasked data 𝜖M1
1:𝑇 .

4.4 Imputation with ImTransformer

Drawing inspiration from the studies conducted in [22, 34, 68],
which employ hierarchical structures of transformers [71] to cap-
ture temporal correlations and interactions among variables, we
introduce ImTransformer, a specialized architecture designed for
MTS imputation, as illustrated in Fig. 5. It comprises a series of
stacked residual blocks, with each containing dedicated compo-
nents that process the feature and temporal dimensions separately.

The ImTransformer model incorporates four distinct groups of
input data: (i) the input time series X𝑖𝑛𝑡 , (ii) diffusion embedding
that encodes information related to the current diffusion step 𝑡 ,
(iii) masking embedding that encodes the masking group 𝑝 of the
current data, and (iv) complementary information that embeds the
dimensional information of time 𝑙 and feature 𝑘 . Each of these
groups of data is individually processed by convolutional and/or
multilayer perceptron layers to ensure a consistent dimensionality.
The embeddings of the inputs are then combined into a single tensor
and further processed by a temporal and a spatial transformer layer.

The temporal transformer plays a crucial role in capturing the
temporal dependencies within the time series [90]. It enables the
dynamic weighting of feature values at different time steps and
takes into account the masked status of features. The attention
mechanism employed in the temporal transformer provides the
necessary flexibility for this purpose. Additionally, a 1-layer spatial
transformer is employed to capture the interdependencies between
different variables at each time step. This spatial transformer allows
for adaptive weighting and facilitates interaction between variables.
The output of the spatial transformer is combined with the comple-
mentary information, creating a residual head for skip connection,
as illustrated in Fig. 5. Both the spatial and temporal transformers
play crucial roles in the imputation and anomaly detection tasks, as
the feature and temporal dimensions may contribute differently to
the predictions [70], which can be learned by the attention mech-
anism [71]. The incorporation of a residual structure [23] further
enhances the model capacity by facilitating gradient propagation.

4.5 Ensemble Anomaly Inference

Traditional anomaly detection models typically rely on a single
signal, i.e., the prediction error, to determine the anomaly label
for testing data. However, relying solely on one signal can lead to
unrobust predictions, as the prediction error can be subjective to
stochasticity and affected by various random factors. The presence
of anomalous data within the training set further raises concerns
about the robustness requirement. To address this limitation, we
leverage the unique advantage of diffusion models. Unlike tradi-
tional models that provide a single-shot prediction, imputed diffu-
sion models progressively denoise the masked data over 𝑇 steps.
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Algorithm 1 The ensemble inference process of ImDiffusion.
1: Inputs:

Masked data input series X𝑖𝑛𝑡 , masking tensors
M, a trained denoising model 𝜖Θ, the forward
ground truth noise on unmasked region 𝜖M1

1:𝑇 ,
total denosing step 𝑇 .

2: Initialise:
Initial noise vector X𝑇 .

3: for 𝑡 = 𝑇 to 1 do
4: Construct two input series X𝑖𝑛𝑡 = {XM0

𝑡 , 𝜖
M1
𝑡 } with

maskingM.
5: Predicting 𝜇Θ, ΣΘ using the denosing model 𝜖Θ.
6: Sampling using equation (9) and obtain predicted X𝑡−1.
7: Compute prediction error 𝐸𝑡 = | |X − X𝑡−1 | |2.
8: end for

9: for 𝑡 = 𝑇 to 1 do
10: Computing the anomaly prediction label 𝑌𝑡 using Eq. (12).
11: end for

12: Aggregating the voted anomaly predictionV𝑙 =
∑𝑇
𝑡=1 𝑦𝑡,𝑙 .

13: Computing the final anomaly prediction 𝑦𝑙 = 1(V𝑙 > 𝜉).

This results in at least𝑇 intermediate outputs, each having the same
dimension as the original time series, which is not available in tra-
ditional models. Although these intermediate outputs are not fully
denoised, they converge towards the same imputation objective
and offer different perspectives on the time series modeling. By ap-
propriately utilizing these outputs, we can uncover the step-by-step
reasoning of ImDiffusion and utilize them as additional signals to
enhance the robustness and accuracy of anomaly detection.

ImDiffusion utilizes the prediction error at each denoising step
𝑡 , denoted as E = {𝐸1, 𝐸2, · · · , 𝐸𝑇 }, as input and ensembles them
using a function 𝑓 (E) to determine the final anomaly labels. 𝐸𝑡
denotes the prediction error tensor for the imputed output at de-
noising step 𝑡 , and it has the same dimension as the original time
series X. The ensemble anomaly inference algorithm is presented
in Algorithm 1, and Fig. 6 provides an illustration of the process.
At each denoising step, ImDiffusion generates a prediction using
the denoising model 𝜖Θ and computes the prediction error 𝐸𝑡 with
respect to the ground truth time series X. The set E collects the
prediction errors at each denoising step, and an ensemble function
𝑓 (E) is employed to leverage the all-step errors to obtain the final
voting signal V for determining the anomaly label, i.e., V = 𝑓 (E).
The design of the ensemble function. ImDiffusion utilizes a
voting ensemble mechanism [16] to strengthen the overall anomaly
detection process by aggregating anomaly predictions from each
denoising step. At each denoising step 𝑡 , the anomaly prediction
label 𝑌𝑡 is determined using the following equation:

𝑌𝑡 = 1(𝐸𝑡 ≥ 𝜏𝑡 ), where 𝜏𝑡 =
∑
𝐸𝑇∑
𝐸𝑡

· 𝜏𝑇 . (12)

Here, 𝜏𝑇 represents the upper percentile of imputed errors at the
final denoising step 𝑇 . The rationale behind this design is to utilize
the imputed error at the last step as a baseline and use it as an
indicator of imputation quality. The rescaling ratio

∑
𝐸𝑇∑
𝐸𝑡

measures
the imputation quality at each step 𝑡 . If the ratio is small, it indi-
cates poor imputation quality, and therefore the upper percentile
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Figure 6: The ensemble anomaly inference of ImDiffusion.

of imputed errors for determining the anomaly label is reduced. In
this case, only the label for the timestamp with the highest imputed
error and high confidence is retained. Conversely, if the ratio is
small, it suggests good imputation quality, and the error threshold
for anomaly detection is relaxed. This dynamic adjustment of the
threshold allows for adaptability based on the quality of imputation.

Using Eq. (12), we derive the step-wise anomaly predictions
𝑌𝑡 = {𝑦𝑡,1, · · · , 𝑦𝑡,𝐿}, where 𝑦𝑡,𝑙 = 1 indicates that the data at time
step 𝑙 is predicted as an anomaly using the imputation at diffusion
step 𝑡 , and 𝑦𝑡,𝑙 = 0 otherwise. To determine the final anomaly pre-
diction at each time step 𝑙 , we employ a voting mechanism. The
voting signal V𝑙 represents the total number of anomaly votes re-
ceived at time step 𝑙 , given byV𝑙 =

∑𝑇
𝑡=1 𝑦𝑡,𝑙 . If a time step receives

more than 𝜉 votes as an anomaly across all denoising steps, it is
marked as a final anomaly, denoted as 𝑦𝑙 = 1(V𝑙 > 𝜉). To optimize
inference efficiency and ensure correctness, we sample every 3
steps from the last 30 denoising steps for the voting process. This
voting mechanism strengthens the ImDiffusion framework by uti-
lizing the intermediate imputed outputs as additional signals. This is
unique to diffusion models, as they generate predictions progressively.

5 OFFLINE EVALUATION

We conducted a comprehensive offline evaluation of the ImDiffu-
sion for MTS anomaly detection. The evaluation aimed to address
the following research questions (RQs):
• RQ1: How does ImDiffusion perform compare to state-of-the-

art methods in MTS anomaly detection?
• RQ2: How effective are each specific design in ImDiffusion?
• RQ3: What insights can be gained from each mechanism em-

ployed in ImDiffusion?
Implementation. The ImDiffusion framework is implemented
using the PyTorch framework [55] and trained on a GPU cluster
comprising multiple NVIDIA RTX 1080ti, 2080ti, and 3090 acceler-
ators. The detection thresholds 𝜏 for the MSL dataset vary across
different subsets, while a fixed value of 0.02 is employed for the
other datasets. The voting threshold 𝜉 is dataset-dependent and
is specified in the provided code link. As for the baseline models,
their hyperparameters and detection thresholds are set based on the
information provided in their respective original papers. In cases
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where these details were not explicitly mentioned, a grid search
was conducted to determine the optimal values.

5.1 Datasets, Baselines & Evaluation Metrics

We test the performance of ImDiffusion using 6 publicly available
MTS anomaly detection datasets, namely SMD [66], PSM [1], MSL
[27], SMAP [27], SWaT [50] and GCP [46]. In order to ensure the
completeness of the experiment, we trained and evaluated the ImD-
iffusion on all subsets of the aforementioned dataset, rather than
selectively choosing non-trivial sequences as done in [70]. This
may lead to differences in the evaluation metrics compared to the
results reported in the original paper.

We evaluate the performance of ImDiffusion by comparing it
with 10 state-of-the-art MTS anomaly detection models: (i) Isola-
tion forest (IForest) [42] separates the anomaly data point with
others for detection. (ii) BeatGAN [89] utilizes generative adversar-
ial networks (GANs) [21, 82] to reconstruct time series and detect
anomalies. (iii) LSTM-AD [49] employs LSTM [26, 79] to forecast
future values and uses the prediction error as an indicator of anom-
alies. (iv) InterFusion [38] captures the interaction between tem-
poral information and features to effectively identify inter-metric
anomalies. (v) OmniAnomaly [66] combines GRU [14] and VAE
[54] to learn robust representations of time series and utilizes the
Peaks-Over-Threshold (POT) [63] method for threshold selection.
(vi) GDN [15] introduces graph neural networks into anomaly de-
tection and leverages meta-learning methods to combine old and
new knowledge for anomaly identification. (vii) MAD-GAN [36]
employs GANs [21, 82] to recognize anomalies by reconstruct-
ing testing samples from the latent space. (viii) MTAD-GAT [88]
utilizes Graph Attention Network (GAT) [72] to model MTS and
incorporates forecasting-based and reconstruction-based models to
improve representation learning [81]. (ix) MSCRED [85] uses Con-
vLSTM networks [61, 80, 83] to capture correlations among MTS
and operates as an anomaly detector. (x) TranAD [70] leverages
transformer models to perform anomaly inference by considering
the broader temporal trends in the data. We compare ImDiffusion
with these models for evaluation.

In line with previous studies [38, 70, 88], we evaluate the anomaly
detection accuracy of both the baseline models and our proposed
ImDiffusion using precision, recall, and F1 score. Note that we
conducted 6 independent runs for each baseline model and ImD-
iffusion, and report the average performance. Additionally, we
provide the standard deviation of the F1 score (F1-std) in the 6
runs to assess the stability and robustness of all methods examined
in this investigation. We also utilize the R-AUC-ROC evaluation
metric introduced in [52] to provide a threshold-independent ac-
curacy assessment tailored to range-based anomalies. This metric
mitigates the bias introduced by threshold selections and offers
a different perspective on the performance of anomaly detection
methods by using continuous buffer regions. Further, we utilize the
Average Sequence Detection Delay (ADD) metric proposed in [17]
to evaluate the speed and timeliness of anomaly detection provided
by each approach. The ADD metric is defined as follows:

ADD =
1
𝑆

𝑆∑︁
𝑖=1

(T𝑖 − 𝜚𝑖 ), (13)

where 𝜚𝑖 represents the start time of anomalous event 𝑖 , T𝑖 ≥ 𝜚𝑖
denotes the corresponding detection delay time by the anomaly
detector, and 𝑆 indicates the total number of anomalous events. A
smaller value of ADD indicates a more timely detection of anom-
alies, which is crucial in real-world detection scenarios.

5.2 Anomaly Detection Performance (RQ1)

5.2.1 Accuracy Performance. We first present the precision, recall,
F1 and R-AUC-PR performance of ImDiffusion and the baseline
methods in Table 1 for each of the six datasets considered in this
study. Please note that all the results presented in the table are the
average values obtained from 6 individual runs, which allows us
to assess the robustness of each detector. Additionally, the F1-std.
(standard deviation) provides an indication of the variability of the
F1 scores across these runs. represents the standard deviation across
the 6 runs. Additionally, Table 2 displays the average performance
across all six datasets. Notably, ImDiffusion overall demonstrates
exceptional performance in terms of all evaluation metrics, namely
precision (92.98%), recall (93.01%), and F1 score (92.84%) and R-
AUC-PR (29.86%). It achieves the highest average scores across six
datasets, surpassing the performance of the other baseline meth-
ods. In particular, ImDiffusion exhibits at least a 2.4% increase in
precision, a 4.67% increase in recall, a 3.97% increase in F1 score
and a 4.85% increase in and R-AUC-PR compared to the other base-
lines. These results demonstrate the effectiveness of the imputation
approach and diffusion models employed in ImDiffusion.

Furthermore, despite that diffusion models require sampling at
every denoising step, introducing randomness, the F1-std (0.0083)
calculated from 6 independent runs remains relatively small com-
pared to other baselines, ranking second lowest among all ap-
proaches. This indicates the remarkable robustness of ImDiffusion.
It can be attributed to two key design elements in ImDiffusion:
(i) the imputation methods leverage neighboring information for
self-supervised modeling, reducing prediction uncertainty, and (ii)

the dedicated ensemble mechanism aggregates votes for step-wise
anomaly inference, further reducing prediction variance. We pro-
vide a more detailed ablation study in Sec. 5.3.1 and 5.3.2.

Upon closer examination of the dataset-specific performance
in Table 1, we observe that ImDiffusion achieves the highest F1
score in 5 out of the 6 datasets. The exception is the MSL dataset,
where TranAD outperforms ImDiffusion. This can be attributed
to the fact that it is specifically designed to capture the internal
correlations across different dimensions, which are the prominent
characteristics of the MSL dataset. A plausible solution to reinforce
ImDiffusion is to explicitly model these dependencies through hi-
erarchical inter-metric embedding, as employed in InterFusion [38].
However, ImDiffusion also takes a different approach by lever-
aging the exceptional self-supervised learning ability of diffusion
models and the spatial transformer in ImTransformer to capture
correlations and provide a more general solution across various
datasets. This enables ImDiffusion to achieve competitive perfor-
mance in most datasets and surpass other baselines. Furthermore,
we observe that ImDiffusion also achieves the highest R-AUC-PR
in 4 out of the 6 datasets. This highlights the robustness of ImDif-
fusion to threshold selection and its consistent ability to deliver
accurate predictions in detecting range anomalies.
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Table 1: The Precision (P), Recall (R), F1 and R-AUC-ROC of all anomaly detectors on benchmark datasets. The average values

of P, R, F1 and R-AUC-ROC were calculated from 6 individual runs, while F1-std. is the standard deviation across the 6 runs.

Method SMD PSM SWaT
P R F1 F1-std. R-AUC-PR P R F1 F1-std. R-AUC-PR P R F1 F1-std. R-AUC-PR

IForest 0.2030 0.2130 0.1799 0.0138 0.0257 0.6630 0.4919 0.5641 0.0070 0.2058 0.9764 0.6650 0.7907 0.0020 0.0685
BeatGAN 0.9013 0.8894 0.8797 0.0058 0.3200 0.9204 0.8767 0.8975 0.0178 0.3453 0.9606 0.7020 0.8107 0.0022 0.3215
LSTM-AD 0.3361 0.3229 0.2639 0.0123 0.0399 0.9050 0.7707 0.8313 0.0036 0.2561 0.9925 0.6737 0.8026 0.0013 0.3118
InterFusion 0.8815 0.9071 0.8772 0.0226 0.3012 0.9533 0.9128 0.9326 0.0036 0.1896 0.8683 0.8530 0.8600 0.0309 0.1477
OmniAnomaly 0.8751 0.9052 0.8775 0.0083 0.2525 0.9551 0.8859 0.9191 0.0060 0.3718 0.9749 0.7500 0.8470 0.0271 0.3722

GDN 0.8460 0.7862 0.7865 0.0109 0.1637 0.8750 0.8385 0.8564 0.0000 0.3230 0.1311 0.0585 0.0808 0.0009 0.1318
MAD-GAN 0.8851 0.9045 0.8803 0.0384 0.2295 0.8596 0.8838 0.8698 0.0339 0.4416 0.7918 0.5423 0.6385 0.3048 0.2633
MTAD-GAT 0.8836 0.8330 0.8463 0.0316 0.3006 0.8763 0.8725 0.8744 0.0000 0.4116 0.8468 0.8224 0.8344 0.0067 0.3196
MSCRED 0.8567 0.9038 0.8426 0.0002 0.2601 0.9555 0.6857 0.7965 0.0102 0.3846 0.4823 0.4065 0.4407 0.3408 0.1668
TranAD 0.8906 0.8982 0.8785 0.0023 0.2941 0.9506 0.8951 0.9220 0.0045 0.3994 0.7025 0.7266 0.6886 0.1089 0.1670
ImDiffusion 0.9520 0.9509 0.9488 0.0039 0.3821 0.9811 0.9753 0.9781 0.0072 0.4711 0.8988 0.8465 0.8709 0.0124 0.1939

Method SMAP MSL GCP
P R F1 F1-std. R-AUC-PR P R F1 F1-std. R-AUC-PR P R F1 F1-std. R-AUC-PR

IForest 0.2886 0.7671 0.4163 0.0026 0.1096 0.6059 0.5328 0.5334 0.0309 0.0942 0.8055 0.7385 0.7370 0.0120 0.1558
BeatGAN 0.8915 0.6781 0.7663 0.0162 0.1303 0.7782 0.8512 0.8102 0.0342 0.1421 0.9865 0.9630 0.9717 0.0074 0.2414
LSTM-AD 0.7841 0.5630 0.6533 0.0382 0.1099 0.7330 0.5745 0.6378 0.1473 0.1066 0.9591 0.9575 0.9553 0.0013 0.2610
InterFusion 0.8788 0.7704 0.8204 0.0077 0.1457 0.7688 0.9464 0.8442 0.0330 0.1083 0.9361 0.9720 0.9092 0.0005 0.2846
OmniAnomaly 0.8407 0.9674 0.8995 0.0078 0.0978 0.8321 0.8125 0.8221 0.0121 0.1290 0.9572 0.9796 0.9668 0.0027 0.2029
GDN 0.9689 0.5401 0.6936 0.0037 0.0961 0.8668 0.8072 0.8360 0.0004 0.1295 0.9648 0.9628 0.9589 0.0011 0.2096
MAD-GAN 0.9547 0.5474 0.6952 0.0013 0.0990 0.7047 0.7841 0.7423 0.0000 0.1301 0.9766 0.9558 0.9605 0.0055 0.1867
MTAD-GAT 0.9718 0.5259 0.6824 0.0012 0.1083 0.7321 0.7616 0.7432 0.0200 0.1278 0.9490 0.9523 0.9461 0.0047 0.2210
MSCRED 0.4107 0.8604 0.2712 0.0625 0.1042 0.5008 0.6088 0.4899 0.0788 0.1090 0.9754 0.9735 0.9712 0.0006 0.2068
TranAD 0.8224 0.8502 0.8360 0.0090 0.1077 0.8951 0.9297 0.9115 0.0051 0.1057 0.9472 0.9812 0.9631 0.0030 0.2026
ImDiffusion 0.8771 0.9618 0.9175 0.0095 0.1105 0.8930 0.8638 0.8779 0.0152 0.2381 0.9771 0.9825 0.9774 0.0014 0.3957

Table 2: P, R, F1, F1-std and R-AUC-ROC performance of all

anomaly detectors averaged over six benchmark datasets.

Method P R F1 F1-std. R-AUC-PR
IForest 0.5904 0.5680 0.5369 0.0114 0.1099
BeatGAN 0.9064 0.8267 0.8560 0.0139 0.2501
LSTM-AD 0.7850 0.6437 0.6907 0.0340 0.1809
InterFusion 0.8811 0.8936 0.8739 0.0164 0.1962
OmniAnomaly 0.9058 0.8834 0.8887 0.0107 0.2377
GDN 0.7754 0.6656 0.7020 0.0028 0.1756
MAD-GAN 0.8621 0.7697 0.7978 0.0640 0.2250
MTAD-GAT 0.8766 0.7946 0.8211 0.0107 0.2481
MSCRED 0.6969 0.7398 0.6353 0.0822 0.2053
TranAD 0.8681 0.8802 0.8666 0.0221 0.2128
ImDiffusion 0.9298 0.9301 0.9284 0.0083 0.2986

However, in the SWaT and SMAP datasets, we observe a no-
table reduction in precision for ImDiffusion compared to several
baselines. This can be attributed to a slight overfitting exhibited by
ImDiffusion on these specific datasets, which leads to increased
errors in normal data. Consequently, applying a fixed error thresh-
old results in the identification of more false anomalies, thereby
compromising precision. A potential solution could involve the im-
plementation of dynamic thresholding approaches [27] to achieve
a better balance between precision and recall. Moreover, mitigating
overfitting can be achieved by reducing the complexity of the Im-
Transformer. These considerations are reserved for future work.

Notably, the performance improvements achieved by ImDiffu-
sion are particularly remarkable in the SMD and PSM datasets,
where it outperforms other baselines by at least 6.8% and 5.9%

Table 3: The ADD (mean±std.) performance comparison for

all approaches. Results are averaged on 6 runs.

Method SMD PSM SMAP MSL SWaT GCP Average
IsolationForest 90 ± 1 191 ± 17 394 ± 93 123 ± 28 539 ± 20 203 ± 3 257 ± 27
BeatGAN 38 ± 2 166 ± 11 345 ± 23 68 ± 24 607 ± 6 130 ± 13 226 ± 13
LSTM-AD 87 ± 1 224 ± 54 541 ± 51 115 ± 29 627 ± 4 107 ± 1 284 ± 23
InterFusion 22 ± 2 40 ± 10 423 ± 4 32 ± 15 454 ± 141 141 ± 1 185 ± 29
OmniAnomaly 26 ± 1 121 ± 11 116 ± 38 93 ± 2 550 ± 48 131 ± 6 173 ± 18
GDN 38 ± 1 148 ± 0 402 ± 4 106 ± 2 1478 ± 0 125 ± 0 383 ± 1
MAD-GAN 59 ± 57 122 ± 2 404 ± 20 88 ± 0 926 ± 337 157 ± 0 293 ± 69
MTAD-GAT 90 ± 100 182 ± 0 542 ± 2 96 ± 17 482 ± 80 145 ± 0 256 ± 33
MSCRED 32 ± 0 218 ± 35 622 ± 48 109 ± 30 1065 ± 339 145 ± 3 365 ± 76
TranAD 25 ± 0 127 ± 4 291 ± 2 56 ± 12 657 ± 246 104 ± 11 210 ± 46
ImDiffusion 24 ± 1 28 ± 1 98 ± 31 46 ± 4 350 ± 43 75 ± 1 104 ± 14

in terms of F1 score and 6.21% and 2.19% in terms of R-AUC-PR,
respectively. These two datasets exhibit small distribution devia-
tions between anomalous and normal data [70], and ImDiffusion’s
unconditional imputation design effectively amplifies the gap in im-
puted error between normal and abnormal data, contributing to its
superior performance. Furthermore, ImDiffusion consistently out-
performs other baselines with low F1-std. in the SWaT, SMAP, and
GCP datasets, which demonstrates its remarkable robustness. Inter-
estingly, we observe that all approaches demonstrate comparatively
lower performance in the SwaT dataset. This can be attributed to
the intricate and diverse MTS patterns present in the SWaT dataset,
underscored by the dataset’s expansive training set size and high
dimensionality (51). This leads to challenges in accurate modeling,
consequently resulting in inferior anomaly detection performance.

5.2.2 Timeliness Performance. In Table 3, we present the ADD
(mean±std.) performance comparison on all datasets over 6 runs,
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Figure 7: Predicted error of imputation, forecasting and re-

construction approaches on all datasets.

along with their average values. Observe that ImDiffusion demon-
strates remarkable performance in this aspect as well. Overall, ImD-
iffusion achieves the lowest average ADD values (104) with low
variance, surpassing other baselines by at least 39.9%. Upon closer
examination of dataset-specific performance, it is observed that
ImDiffusion consistently outperforms other baselines in 4 out of
6 datasets. This indicates that ImDiffusion is highly sensitive to
abnormal points and can capture them at the earliest detection
timing. This superior performance can be attributed to the grating
masking design employed by ImDiffusion, which enables to par-
tially envision the future values of the time series in the masked
regions. A more detailed ablation analysis on the masking strategy
is presented in Sec. 5.3.4. The ADD metric holds significant impor-
tance in industrial practice, as early detection of anomalies allows
for prompt mitigation of failures [19], potentially preventing more
severe consequences. The advantage of ImDiffusion in achieving
faster anomaly detection makes it a suitable choice for real-world
deployment in systems with high reliability requirements.

5.3 Ablation Analysis (RQ2, RQ3)

Next, we conduct a comprehensive ablation analysis to evaluate
the effectiveness of each design choice in ImDiffusion, shedding
light on how these design choices contribute to enhancing the
anomaly detection performance. The aggregated results specific to
each dataset are presented in Table 4, while Table 5 showcases the
average results across all datasets. The reported results are the av-
erage of 6 independent runs. Note that in the tables, “ImDiffusion”
represents the combination of the following designs: Imputation, En-

sembling, Unconditional, Grating Masking and full ImTransformer.

5.3.1 Imputation vs. Forecasting vs. Reconstruction. First, we com-
pare the anomaly detection performance of different MTS modeling
approaches, namely imputation, forecasting, and reconstruction.
In the case of forecasting and reconstruction, we adopt the same
configuration as ImDiffusion, with the only distinction being the
forecasting method that predicts future values given historical ob-
servations, while the reconstruction method corrupts all values
with noise vectors and reconstructs them. Overall, the ImDiffu-
sion framework, which utilizes the imputation method, achieves
the highest performance in terms of accuracy and timeliness on
average, outperforming other MTS modeling methods by at least
3.18% on F1 score, 1.78% on R-AUC-PR and 26.2% ADD. In addition,
we observe that forecasting outperforms reconstruction, indicating
that incorporating historical information leads to improved perfor-
mance of the self-supervised model. Moreover, as shown in Table 4,
ImDiffusion achieves the highest F1 score and ADD in 5 out of 6
datasets, and the highest R-AUC-PR on 4 out of 6 datasets, high-
lighting the accuracy and robustness of the imputation approach.

The performance improvement can be attributed to the superior
self-supervised modeling quality achieved through the imputation
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Figure 8: An example of the ensemble inference, showcasing

the step-wise prediction and the final voting mechanism.

approach. Fig. 7 illustrates the predicted error of each modeling
approach, along with their average values. A lower prediction error
signifies a more accurate modeling of MTS, which in turn enhances
the performance of anomaly detection. Notably, the imputation
approach consistently exhibits the lowest predicted error across
all datasets, significantly outperforming the forecasting and re-
construction approaches. These results indicate the imputation
approach’s superior self-supervised modeling capability. They fur-
ther validate that enhancing the self-supervised modeling ability
contributes to the anomaly detection performance for MTS data.

5.3.2 Ensembling vs. Non-ensembling. Next, we investigate the im-
pact of the ensembling voting mechanism on the anomaly detection
performance. The non-ensembling approach solely relies on the
final denoised results and applies thresholding on the imputed error
for anomaly detection. In comparison, ImDiffusion on average
achieves a 0.73% higher F1 score, 6.06% higher R-AUC-PR and a
lower 35.8% ADD compared to the non-ensembling approaches.
This suggests that the utilization of the ensembling approach en-
hances both the accuracy and timeliness performance of anomaly
detection, particularly for ranged anomalies. Furthermore, ImDif-
fusion consistently outperforms its counterpart across all datasets.
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Table 4: Performance comparison on 6 benchmark datasets for all ablation analysis considered in this paper.

Method SMD PSM SWaT
P R F1 R-AUC-PR ADD P R F1 R-AUC-PR ADD P R F1 R-AUC-PR ADD

ImDiffusion 0.952 0.951 0.949 0.382 23.7 0.981 0.975 0.978 0.471 28.4 0.899 0.846 0.871 0.194 350.4
Forecasting 0.892 0.918 0.896 0.268 22.6 0.974 0.868 0.914 0.411 96.2 0.895 0.792 0.839 0.290 451.7
Reconstruction 0.641 0.796 0.682 0.106 14.1 0.891 0.898 0.894 0.291 58.3 1.000 0.657 0.793 0.564 663.1
Non-ensemble 0.934 0.953 0.941 0.230 24.5 0.975 0.974 0.974 0.390 30.6 0.898 0.831 0.861 0.248 430.5
Conditional 0.955 0.951 0.951 0.395 22.9 0.977 0.962 0.969 0.425 38.4 0.932 0.849 0.888 0.217 307.0
Random Mask 0.953 0.946 0.946 0.106 23.1 0.976 0.977 0.977 0.291 23.7 0.906 0.872 0.889 0.113 295.2
w/o spatial transformer 0.951 0.947 0.946 0.337 22.2 0.980 0.963 0.971 0.467 31.2 0.940 0.895 0.867 0.353 405.0
w/o temporal transformer 0.899 0.892 0.884 0.281 28.6 0.964 0.973 0.969 0.391 25.8 0.951 0.787 0.861 0.396 375.5

Method SMAP MSL GCP
P R F1 R-AUC-PR ADD P R F1 R-AUC-PR ADD P R F1 R-AUC-PR ADD

ImDiffusion 0.877 0.962 0.917 0.110 98.4 0.89 0.864 0.878 0.238 46.3 0.977 0.983 0.977 0.396 75.9
Forecasting 0.872 0.946 0.907 0.113 130.6 0.873 0.818 0.843 0.222 64.3 0.979 0.984 0.980 0.381 78.1
Reconstruction 0.879 0.978 0.926 0.120 72.6 0.783 0.662 0.707 0.168 105.3 0.942 0.968 0.952 0.281 59.9
Non-ensemble 0.871 0.963 0.915 0.127 99.0 0.879 0.862 0.870 0.187 57.8 0.956 0.981 0.966 0.246 86.3
Conditional 0.851 0.740 0.787 0.106 287.4 0.872 0.865 0.868 0.271 52.4 0.979 0.978 0.976 0.402 81.7
Random Mask 0.920 0.908 0.913 0.180 293.5 0.888 0.896 0.892 0.168 49.1 0.975 0.980 0.975 0.406 78.8
w/o spatial transformer 0.816 0.579 0.677 0.107 360.0 0.865 0.889 0.876 0.243 48.3 0.981 0.925 0.938 0.462 99.8
w/o temporal transformer 0.873 0.964 0.916 0.110 108.1 0.873 0.863 0.867 0.168 43.3 0.976 0.998 0.986 0.398 67.4

Table 5: Average results over all datasets of ablation analysis.

Method P R F1 R-AUC-PR ADD
ImDiffusion 0.9298 0.9301 0.9284 0.2986 104
Forecasting 0.9139 0.8876 0.8966 0.2808 141
Reconstruction 0.8559 0.8266 0.8256 0.2550 162
Non-ensemble 0.9187 0.9273 0.9211 0.2380 121
Conditional 0.9278 0.8910 0.9066 0.3026 132
Random Mask 0.9363 0.9298 0.9318 0.2107 127
w/o spatial transformer 0.9224 0.8514 0.8794 0.3280 161
w/o temporal transformer 0.9229 0.9131 0.9139 0.2910 108

Upon closer examination of Table 5, we observe that ImDiffusion
exhibits a greater advantage in terms of precision over recall. This
indicates that the anomalies detected through ensembling are more
likely to be true anomalies, thereby reducing the false positive rate.

Fig. 8 illustrates an example on the SMD dataset, demonstrating
how the ensembling mechanism improves the anomaly detection
performance. The first 10 subplots depict the time series, imputation
prediction, predicted error, and anomaly prediction for each of
the 10 denoising steps used in the ensembling voting. The final
subplot showcases the aggregated voting results for anomalies.
Several key insights can be derived from the figure. Firstly, the
imputation results progressively improve with each denoising step,
aligning with our expectations as diffusion models perform step-
by-step imputation. Secondly, relying solely on the final step can
lead to false positive predictions (blue shaded area). However, the
ensembling voting mechanism plays a crucial role in correcting
these false positives. From step 23 to 32, the false positive data
receives fewer votes compared to the true positive region (red
shaded area), causing them to fall below the final voting threshold
(8 votes) and be eliminated from the ensemble’s predicted anomalies.
This case study provides a clear illustration of how ensembling can
enhance accuracy and robustness.

5.3.3 Unconditional vs. Conditional DiffusionModels. We now shift
our focus to evaluating the effectiveness of the design of uncondi-
tional diffusion models described in Sec. 4.1. In Table 5, we observe
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Figure 9: Predicted error of normal/abnormal data compari-

son on conditional/unconditional diffusion models.

that ImDiffusion, which utilizes unconditional diffusion models,
achieves superior accuracy and timeliness performance compared
to its conditional counterpart, with a 2.1% higher F1 score and a
21.1% lower ADD. This gain is particularly pronounced in the SMAP
dataset, which comprises shorter time sequences. The R-AUC-PR
values obtained from both approaches are comparable, with the
conditional method exhibiting a slight advantage.

The improvement can be attributed to the unconditional ap-
proach, which expands the predicted error between normal and
abnormal data. Fig. 9 showcases the overall predicted error, error
on normal data, error on abnormal data, and the difference (ab-
normal data - normal data) averaged for all datasets. Note that
larger difference in predicted error between abnormal and normal
data generally indicates a more distinct classification boundary
for thresholding approaches. Notably, the unconditional approach
generally yields higher overall predicted error. This aligns with our
expectations, as the conditional approach makes predictions based
on the ground truth time series values, providing more direct and
focused guidance compared to the unconditional approach, which
predicts solely based on the forward noise in the unmasked regions.
However, the error difference between abnormal and normal data
is amplified by the unconditional method, as illustrated in the fig-
ure. This further confirms the effectiveness of the unconditional
approach, as it establishes a clearer error decision boundary for
thresholding, enabling better discrimination of anomalies.

5.3.4 Grating Masking vs. Random Masking. We compare the per-
formance of the grating masking and random masking designs as
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introduced in Sec. 4.2. Interestingly, on average, the two approaches
achieve comparable F1 scores, with random masking slightly out-
performing grating masking by 0.4%. The accuracy performance of
the two masking designs is also quite similar across datasets. How-
ever, it is worth noting that the grating masking design consistently
outperforms the random masking design in terms of R-AUC-PR.
On average, the grating masking design achieves an 8.79% higher
score compared to the random masking design, outperforming its
counterpart on 4 out of 6 datasets. This result suggests that ImD-
iffusion exhibits higher accuracy in detecting ranged anomalies.
This is particularly relevant in real-world scenarios where such
ranged anomalies occur frequently. In addition, we observe that
grating masking exhibits a significant advantage in terms of ADD,
with a gain of 18.4%. This can be attributed to the value envisioning
property in the windowed masked regions of the grating design,
which is absent in random masking. Therefore, grating masking is
more suitable for industrial applications where timely detection of
anomalies is crucial to ensure system reliability.

5.3.5 Components of ImTransformer. Finally, we conduct an ab-
lation analysis to evaluate the impact of removing individual com-
ponents of ImTransformer, specifically the spatial and temporal
transformers, on anomaly detection performance. As summarized
in Table 5, the removal of either the spatial or temporal transformer
results in a decrease in F1 and ADD performance compared to
the complete ImDiffusion model, albeit to varying degrees. No-
tably, ImDiffusion without the spatial transformer exhibits poorer
performance than when removing the temporal transformer, em-
phasizing the importance of capturing inter-metric correlations in
MTS anomaly detection. This is particularly evident in the SMAP
dataset, which also exhibits strong interrelations between metrics,
as shown in Table 4. Employing the spatial transformer significantly
improve the anomaly detection performance on it.

Conversely, the removal of the temporal transformer also leads
to a decline in performance across all metrics. As shown in Table 4,
the most substantial impact is observed in the SMD dataset, with a
significant performance drop compared to other datasets. This em-
phasizes the importance of accurately modeling and weighting the
time dimension in the SMD dataset, where temporal correlations
play a crucial role. Consequently, both the spatial and temporal
transformers play pivotal roles in enhancing ImDiffusion’s anom-
aly detection performance.

6 PRODUCTION IMPACT AND EFFICIENCY

The proposed ImDiffusion has been integrated as a critical com-
ponent within a large-scale email delivery microservice system at
Microsoft. This system consists of more than 600 microservices
distributed across 100 datacenters worldwide, generating billions of
trace data points on a daily basis [73]. ImDiffusion serves as a la-
tency monitor for email delivery, for detecting any delay regression
in each microservice, which may indicate the occurrence of an inci-
dent. The online latency data for each microservice are sampled at
a frequency of every 30 seconds. In order to assess the performance
of ImDiffusion, we deployed it online and operated over a period
of 4 months. We compared the results obtained by ImDiffusion
with a legacy deep learning-based MTS anomaly detector, which
has been in operation for years.

Table 6: Online performance of ImDiffusion in production

compared to the legacy detector.

Improvement Inference efficiency
[points/second]P R F1 R-AUC-PR ADD

9.0% 12.7% 11.4% 14.4% 30.2% 5.8

Table 6 presents the online improvements achieved by ImDiffu-
sion compared to the legacy detector over a period of 4 months1.
The evaluation of efficiency was conducted on containers equipped
with Intel(R) Xeon(R) CPU E5-2640 v4 processors featuring 10 cores.
Observe that the replacement of the legacy detector with ImDiffu-
sion has resulted in significant enhancements in anomaly detection
accuracy and timeliness, as evidenced by the substantial improve-
ments across all evaluation metrics. Specifically, compared to the
previous online solution, ImDiffusion exhibits a performance im-
provement of 11.4% in terms of F1 score, 14.4% improvement in
terms of R-AUC-PR, and 30.2% reduction on ADD. Despite the re-
quirement of multiple inferences to obtain the final results, the
online efficiency of ImDiffusion remains well within an accept-
able range. Considering that the latency data are sampled every
30 seconds, performing inference at a rate of 5.8 data points per
second is more than sufficient to meet the online requirements.

The reliability assessment of a cloud system encompasses two
aspects: (i) detection accuracy and (ii) detection timeliness of anom-
alies or incidents [19]. The notable performance improvements
achieved by ImDiffusion have made a significant impact on the
Microsoft email delivery system from the above perspectives, as
they have led to considerable time savings in incident detection
(TTD), reduced the number of false alarms triggered by the legacy
approach, and ultimately enhanced the system’s reliability.

7 CONCLUSION

This paper presents ImDiffusion, a novel framework that combines
time series imputation and diffusion models to achieve accurate
and robust anomaly detection in MTS data. By integrating the im-
putation method with a grating masking strategy, the proposed
approach facilitates more precise self-supervised modeling of the
intricate temporal and interweaving correlations that are charac-
teristic of MTS data, which in turn enhances the performance of
anomaly detection. Moreover, ImDiffusion employs dedicated dif-
fusion models for imputation, effectively capturing the stochastic
nature of time series data. The framework also leverages multi-
step denoising outputs unique to diffusion models to construct an
ensemble voting mechanism, further enhancing the accuracy and
robustness of anomaly detection. Notably, ImDiffusion is the first
to employ time series imputation for anomaly detection and to
utilize diffusion models in this context. Extensive experiments on
public datasets demonstrate that ImDiffusion outperforms state-of-
the-art baselines in terms of accuracy and timeliness. Importantly,
ImDiffusion has been deployed in real production environments
within Microsoft’s email delivery system, serving as a core latency
anomaly detector and significantly improving system reliability.

1To comply with confidentiality requirements, the actual numbers for all metrics are
omitted, and only the relative improvements are reported.
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