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ABSTRACT
As the usage of knowledge graphs (KGs) becomes more pervasive in
practical applications, there is a burgeoning need for high-quality
data. The SHApes Constraint Language (SHACL) allows for express-
ing certain types of quality constraints that define sub-structures
and correct values in KGs modelled with RDF. Nevertheless, per-
forming SHACL validation without entailment often yields one-
sided outcomes, as it falls short of validating crucial implicit data
encoded in the KG ontology. Current solutions that incorporate
entailment into SHACL validation are inefficient, due to the time-
intensive process of applying inference rules to the entire dataset.
Moreover, applying entailment for SHACL validation can gener-
ate large amounts of redundant triples, exacerbating the validation
workload and resulting in erroneous or redundant validation results.
In light of these challenges, we propose Re-SHACL, an approach
that combines targeted reasoning and entity merging techniques to
generate a concise, consolidated RDF graph devoid of redundancy.
Re-SHACL significantly reduces execution time and improves the
accuracy of the validation reports. Our experiments demonstrate
that Re-SHACL can be combined with state-of-the-art validators to
deliver accurate validation reports efficiently.
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1 INTRODUCTION
SHACL (SHApes Constraint Language) [25] is a W3C Recommen-
dation for validating knowledge graphs modelled with the Resource
Description Framework (RDF). As a language for expressing con-
straints on RDF graphs, SHACL allows for defining the structure
of RDF data, such as which properties must be present, which
datatypes are allowed, and for a given property which values are
permitted. SHACL validation provides a mechanism to ensure that
the RDF graph follows a specified pattern, thereby improving data
quality and interoperability [24, 30, 41, 42] and enabling the devel-
opment of advanced automated applications [34].
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Shape Entity w/o Reasoning Reasoning

:s1 dbr:Pierre_Curie ✓ ✗
:s1 dbr:Marie_Curie ✓ ✓
:s1 dbr-de:Marie_Curie ✗ ✓

:s2 dbr:Pierre_Curie ✗ ✓
:s2 dbr:Marie_Curie ✓ ✗
:s2 dbr-de:Marie_Curie ✗ ✗

(c) Validation results. ✓ conformance, ✗ violation. Red denotes undesired result, green
otherwise

Figure 1: Motivating examples

RDF graphs are typically enhanced with semantics, where the
meaning of terms are formally described in an ontology using
RDFS or OWL definitions. Despite this, only a few SHACL engines
take the semantics of ontologies into account [31, 35] by combining
SHACL validation with entailment. The incorporation of entailment
enables SHACL engines to identify implicit relationships between
entities, properties, and classes, thus achieving a thorough and
accurate data validation. Yet, enabling entailment not only increases
the validation runtime but can also introduce undesired behaviors.
This is due to the reflexivity of certain properties in the entailment
regime and the non-Unique Named Assumption (nUNA) followed in
knowledge graphs. Under nUNA, semantically equivalent entities
are represented with different identifiers, yet they are connected
with the owl:sameAs property. To illustrate the effects of SHACL
validation with entailment, consider the following examples.

Motivating Examples. Fig. 1 shows (a) an RDF graph, and (b) the
SHACL constraints to be validated over each entity. Every person
(dbo:Person) should conform to the constrains :s1 and :s2. Shape
:s1 states that every person should have at least a value for the
predicate dbo:name. Shape :s2 states that every person should
have exactly one value for the predicate owl:sameAs. To consider
entailment, an OWL reasoner is executed over the RDF graph to
materialize all implicit triples. The validation results without and
with reasoning are shown in Fig. 1(c). For :s1 without reasoning,
the entity dbr:Pierre_Curie conforms to the shape, as it is not
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a dbo:Person entity. However, this is interpreted as a false pos-
itive, as when considering the domain of dbo:birthPlace, it is
entailed that this entity should be targeted by this shape. There-
fore, with reasoning, dbr:Pierre_Curie violates :s1. This shows
the importance of considering semantics to produce accurate re-
sults. However, some properties’ reflexivity can produce spurious
SHACL validations with reasoning when it is not handled prop-
erly. Without reasoning, the entity dbr:Pierre_Curie does not
conform to :s2. This result is correct. However, with reasoning,
due to the reflexivity of the owl:sameAs property, we entail the
triple (dbr:Pierre_Curie, owl:sameAs, dbr:Pierre_Curie),
for which dbr:Pierre_Curie now conforms to shape :s2. This
result can be considered spurious or incorrect, as the conformance
is due to redundant entailed data and not the actual data graph
structure. Moreover, because of the nUNA, the violations found
for dbr:Marie_Curie are also reported for dbr-de:Marie_Curie,
which quickly inflates the validation reports with duplicate results.

Challenges. Incorporating entailment in the SHACL validation
process imposes several challenges. First, entailment approaches
demand significant computational resources to deduce implicit
triples [20]. Second, when entailment is carried out with reasoners,
these tend to generate redundant data for the validation. In the
context of SHACL, redundant data can be, e.g., triples entailed
from reflexive properties or duplicated triples due to the nUNA
assumption, where the reasoner “copies” the triples from one entity
to another equivalent entity. This redundant data again affects
the validation process’s runtime, as the graph size with inferred
statements may increase drastically. Moreover, redundant data can
also hinder the interpretation of violation reports due to duplicate
violations generated under the nUNA assumption. This leads to
poor scaling and difficulty locating the root cause of violations [31].

Proposed Solution.We present Re-SHACL, an approach that en-
hances the RDF graph (data graph) and constraints (shapes graph)
before validation, considering the ontology in the data graph and
an entailment regime. Instead of computing the closure of the data
graph, Re-SHACL extracts relevant information from the shapes
graph to identify the parts of the data graph to which the entail-
ment is applied. To cope with the nUNA, Re-SHACL implements
a merging mechanism, where semantically equivalent entities are
consolidated into a unified representation. Because of this merging,
Re-SHACL rewrites the shapes graph to replace the identifiers of
the merged entities mentioned in the constraints. The combination
of the targeted reasoning and entity merging allows Re-SHACL to
obtain concise, semantically enhanced data graphs, which can be ef-
ficiently evaluated using any SHACL validator without entailment.

Contributions. Re-SHACL is novel in the following ways:

(1) incorporates the semantics defined in ontologies and en-
tailment regimes into the SHACL validation process,

(2) is robust to duplicate and false violations due to nUNA and
reflexive properties defined in RDFS and OWL,

(3) is efficient as it enhances the data and shapes graph in a
targeted manner to avoid unnecessary operations,

(4) can be used with any state-of-the-art SHACL validator.

We conducted experiments using synthetic and real-world datasets.
Our results show that Re-SHACL is orders of magnitude faster than
existing approaches that support RDFS and OWL entailment.

2 PRELIMINARIES & PROBLEM STATEMENT
Knowledge Graphs and Ontologies. We define a knowledge
graph (KG) following the RDF data model. A KG𝐺 is a set of triples
(𝑠, 𝑝, 𝑜), where 𝑠, 𝑜 are nodes and 𝑝 is a predicate that corresponds
to a labelled, directed edge between 𝑠 and 𝑜 . In a KG, nodes or
entities can be assigned to classes using the predicate rdf:type.
Logical definitions about the entities, predicates, and classes in a
KG can be provided using RDFS and OWL.

The RDF Schema (RDFS) [2] provides definitions for hierarchies
of classes and properties with the predicates rdf:subClassOf and
rdfs:subPropertyOf, respectively. It also supports the definition
of domain (rdfs:domain) and range (rdfs:range) of predicates,
to assert the classes of nodes in the subject and object positions
of a triple, respectively. The RDFS entailment regime include en-
tailment patterns [21] or rules to establish that these predicates
are transitive (rules rdfs5 and rdfs11) and reflexive (rules rdfs6 and
rdfs10). The RDFS entailment regime also allows to entail that enti-
ties connected to specific predicates and classes are also connected
to super-predicates and super-classes (rules rdfs7 and rdfs9).

The Web Ontology Language (OWL) [36] is a more expressive
language than RDFS. OWL supports semantic equivalences be-
tween entities (owl:sameAs) and classes (owl:equivalentClass).
Furthermore, with OWL it is possible to state that properties are
(a)symmetric, (ir)reflexive, (inverse) functional, etc. The current
OWL 2 [23] specification distinguishes between different profiles.
The profile OWL 2 QL is designed to support query answering,
yet, it does not support individual equality assertions (owl:sameAs)
typically found in real-world KGs. The profile OWL 2 RL is tailored
to rule-based reasoning. In comparison to OWL 2 QL, it supports
individual equality assertions and defines the reflexivity, symmetry,
and transitivity of the owl:sameAs predicate (rules eq-ref, eq-sym,
eq-trans, respectively). Despite its higher expressivity (w.r.t. OWL
2 QL), OWL 2 RL still exhibits desirable computational guaran-
tees, as it avoids non-deterministic reasoning (which occurs when
constructs introduce existential variables during reasoning) with
data complexity in PTime-complete [32]. Lastly, Glimm et al. [16]
presents a subset of OWL 2 RL entitled OWL LD, which comprises
OWL definitions that are typically encountered in real-world RDF
KGs. Since OWL LD also supports individual equality assertions, it
provides the same computational guarantees as OWL 2 RL.

SHACL Validation. SHACL validation requires two inputs for-
mally defined as follows [7, 9]: the data graph𝐺 is an RDF KG to be
validated, and the shapes graph S which is a set of shapes defined
as a triple (𝑠, targ𝑠 , 𝜑𝑠 ), where 𝑠 is a shape name, targ𝑠 is a (possibly
empty) monadic query to a shape to retrieve the focus nodes, and
𝜑𝑠 is a constraint. In SHACL, constraints are defined as follows [9]:

𝜑𝑠 ::= ⊤ | 𝑠 | 𝐼 | 𝜑1 ∧ 𝜑2 | ¬𝜑 | ≥𝑛 𝑟 .𝜑 | 𝐸𝑄 (𝑟1, 𝑟2)

where 𝑠 is a shape name, 𝐼 is a condition (e.g., datatype, class, value
comparison, regular expression, etc.), 𝑟, 𝑟1, 𝑟2 are expressions of
predicates (or property paths), 𝑛 ∈ N+, and 𝜑, 𝜑1, 𝜑2 are SHACL
constraints. We say that 𝑥 occurs in 𝜑𝑠 if 𝑥 is any of the elements
defined above in 𝜑𝑠 , e.g., if 𝜑𝑠 is ≥1 𝑟 .𝜑 , then it holds that 𝑟 , 𝜑 ,
as well as 𝑟 .𝜑 occurs in 𝜑𝑠 . In the remainder, we abuse notation
and write 𝑠 ∈ S to denote that (𝑠, targ𝑠 , 𝜑𝑠 ) ∈ S. We also use the
syntantic sugar ≤𝑛 𝑟 .𝜑 for ¬(≥𝑛+1 𝑟 .𝜑) and 𝑟 .𝜑 for ≤0 ¬𝑟 .𝜑 .
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We illustrate this notation using a shape from the example from
Fig. 1. For the shape :s1 ∈ S, targ:s1 = {dbr-de:Marie_Curie,
dbr:Marie_Curie}, and𝜑:s1 corresponds to ≥1 dbo:name.⊤which
states that each person must have at least one name.

We denote the result of validating a shape 𝑠 over a node 𝑣 in 𝐺
as ⟦𝜑𝑠⟧𝑣,𝐺 , where the latter is recursively defined by Corman et
al. [6]. If 𝑣 conforms to the shape 𝑠 , the result of the validation is 1;
otherwise, it is considered a violation. We define the validation of S
over𝐺 , denoted ⟦S⟧𝐺 , as {(𝑣, 𝑠, ⟦𝜑𝑠⟧𝑣,𝐺 ) | 𝑠 ∈ S, 𝑣 ∈ 𝐺, 𝑣 ∈ targ𝑠 }.

SHACL validation with entailment, denoted ⟦S⟧𝐺,E , checks the
conformance of the data graph 𝐺 following an entailment regime
E to a shapes graph S. In this case, the implicit information in 𝐺

entailed by E is considered in the validation process.
Problem Statement. This work focuses on methods to support effi-
cient SHACL validation under entailment, i.e., ⟦S⟧𝐺,E . In practice,
the computation of the validation result is executed by a validation
strategy, which we denote by S and the universe of strategies by
𝔖. To generate a validation result, a strategy S is executed on a
given data graph𝐺 under the entailment regime E against the given
shapes graph S, which we denote by S(S,𝐺, E). Then, we use the
runtime of the strategy 𝑡𝑖𝑚𝑒

(
S(S,𝐺, E)

)
to evaluate its efficiency.

Definition 2.1 (Problem Statement). Given a data graph𝐺 , a shapes
graph S, and an entailment regime E. The efficient SHACL vali-
dation with entailment problem is defined as devising a strategy
S ∈ 𝔖 s.t.

argmin
S∈𝔖

(
𝑡𝑖𝑚𝑒

(
S(S,𝐺, E)

) )
, subject to S(S,𝐺, E) = ⟦S⟧𝐺,E .

3 RELATED WORK
Since entailment regimes incorporate rules, we first analyse rule-
based validation approaches over KGs. Second, we analyse the
state-of-the-art SHACL validators over KGs that do not incorpo-
rate entailment regimes. Lastly, we briefly revisit related work for
relational databases and semi-structured sources.

Rule-based validation over KGs. Several approaches support the
inclusion of rules for SHACL validation. These rules can be defined
in entailment regimes (e.g., RDFS, OWL) or in (domain-specific)
inference rules. These approaches follow mainly two types of vali-
dation strategies, which extend the data graph or the shapes graph
to incorporate the rules. Then, the actual validation process can
be carried out with an off-the-shelf validator using the extended
structures. One of these strategies relies on materializing the clo-
sure 𝐺∗ of the data graph 𝐺 for the set of rules; this strategy can
be applied only in the presence of rules that do no introduce the
existence of nodes that are not explicit in the original graph 𝐺 .
This strategy is implemented by pySHACL [40], which currently
supports the entailment regimes RDFS [22] and OWL 2 RL [33].
The main drawbacks of this strategy are that 𝐺∗ can be expensive
to compute, and it contains a large number of redundant, inferred
triples, exacerbating the validation performance. A second strat-
egy relies on rewriting the shapes graph S into a graph S′, which
extends the shapes to incorporate the information encoded in the
inference rules. The works by Ahmetaj et al. [1] and Savković et
al. [39] provide correct shapes re-writings to incorporate the OWL
2 QL entailment regime into SHACL validation. However, these

works do not handle the semantics of the owl:sameAs predicate,
as more expressive fragments of OWL 2 are required for this. Val-
idatrr [31] also applies shapes rewriting to support certain OWL
features during SHACL validation. Yet, Validatrr does not provide
theoretical guarantees, therefore, some OWL constructs may gener-
ate an exponential number of possible rewritings, as shown for the
analogous problem of ontology-based data access [18]. To mitigate
the issues of the two aforementioned strategies, a hybrid strategy
can be applied. For instance, the solution by Pareti et al. [34, 35] ex-
tends the data graph schema and rewrites the queries used in 𝑡𝑎𝑟𝑔𝑠
and the constraints 𝜑𝑠 (cf. Sect. 2) to incorporate inference rules.
Our approach also follows a hybrid strategy, yet it differs in two
main aspects: (i) it is tailored to entailment regimes and mitigates
the undesired results due to reflexive properties defined in RDFS
and OWL and due to the non-Unique Named Assumption followed
in RDF graphs; and (ii) our shapes graph rewritings correspond to
simple substitutions, which makes our solution very efficient.

Validation without entailment over KGs. Other approaches [6, 14]
focus on the problem of efficient SHACL validation directly over
the data graph, without considering the semantics of ontologies and
entailment regimes. SHACL2SPARQL [6] supports recursive SHACL
constraints [9]; its validation strategy consists in translating the
SHACL shapes into SPARQL queries that can can be executed over
the data graph to detect violations. Trav-SHACL [14] minimizes the
number of operations during validation by implementing traversing
and query rewriting techniques over the shapes graph to efficiently
evaluate a specific type of constraints expressed in SHACL. In
contrast to these approaches, our solution enhances the shapes
and data graph with entailed triples, before the actual validation is
carried out. Therefore, SHACL2SPARQL and Trav-SHACL, or any
other state-of-the-art SHACL validator can be used in combination
with our proposed solution to enable validation with entailment.

Validation over other data models. The problem of constraint
validation has been widely investigated in the context of data qual-
ity [10] over the relational model and XML. The techniques for
relational databases focus on the discovery of different constraints
types, i.e., functional dependencies (FDs), conditional FDs, pattern
FDs, edit rules, denial constraints (e.g. [5, 11, 13, 37, 44]). Most of
these works present techniques to efficiently validate whether rela-
tions conform to the constraints. Other solutions compute repairs
to constraint violations (e.g. [3, 26, 29]). In comparison to these
works, we do not present a validation or repair engine, but a so-
lution to incorporate into the data graph and the constraints the
implicit knowledge generated during reasoning under the RDFS
and OWL entailment regimes. Also, the aspect of reasoning in our
work is not the same as the notion of “reasoning over FDs” [11]
in databases. The latter aims at determining relationships between
FDs to study satisfiability, consistency, and implication problems
of the constraints. Several works have focused on the validation
of semi-structured data models [27] and XML documents [4, 12]
with different constraint types, e.g., keys, foreign keys, integrity
constraints, FDs, and embedded dependencies. Yet, the difference
and novelty of our work is the application of targeted reasoning
to the RDF graph to incorporate the semantics of ontologies using
entailment regimes.
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4 OUR APPROACH: RE-SHACL
We propose Re-SHACL, an approach based on materialization and
shape rewriting that considers the entities, classes, and properties
that occur in the shapes to carry out targeted reasoning andmerging
to perform efficient SHACL validation with entailment.

Fig. 2 shows the process of SHACL validation with entailment
implemented by Re-SHACL. First, our approach extracts from the
shapes graph S the focus nodes and property paths to guide the
(targeted) reasoning and merging engine. This engine performs
entailment on elements in the data graph 𝐺 involved in the shape
targets and executes merging operations solely on nodes that occur
as focus nodes. The output of this engine is an RDF graph 𝐺 ′ en-
hanced with entailed triples, denoted as a merged graph, wherein
focus nodes with the same semantics are merged into a unified
representation. Equivalence relations between merged nodes are
stored in a dictionary to prevent semantics about equivalent entities
from being lost during node merging, facilitating the identification
of violation sources if needed. Moreover, the shapes graph is rewrit-
ten into another graph S′ to align with the merged graph while
merging target nodes. Finally, the validator is executed using 𝐺 ′
andS′ to produce the validation report. The validator in Re-SHACL
is an off-the-shelf component, and can be exchanged by any state-
of-the-art SHACL validator (e.g. [6, 14, 40]).

4.1 Extraction and Resolution of Shapes
The initial step of Re-SHACL is to extract meaningful informa-
tion from the shapes graph S. The SHACL vocabulary [25] dis-
tinguishes between two types of targets in shapes: classes (us-
ing the predicate sh:targetClass), and entities (using the pred-
icate sh:targetNode). Therefore, in adition to targ𝑠 (cf.), we use
targClass𝑠 and targNode𝑠 to incorporate this distinction between
targets. Subsequently, Re-SHACL extracts relevant information
from S and generates four initial structures as follows:

Set of Target Classes 𝐶: All the classes targeted in a shape (ob-
tained with targClass𝑠 ) or mentioned in the shape constraints.

𝐶 :={𝑐 | 𝑠 ∈ S, 𝑐 ∈ targClass𝑠 }∪
{𝑐 | 𝑠 ∈ S, 𝑐 is a class that occurs in 𝜑𝑠 }

Set of Target Nodes 𝑁 : Contains the nodes from the data graph
that are targeted in the shapes obtained using targNode𝑠 .

𝑁 := {𝑥 | 𝑠 ∈ S, 𝑥 ∈ targNode𝑠 }
Set of Target Properties 𝑃 : Contains all predicates specified in a

property path of a shape constraint.

𝑃 := {𝑟 | 𝑠 ∈ S, 𝑟 occurs in 𝜑𝑠 }

dbr:Pierre_Curie

dbr:Marie_Curie

dbr-de:Marie_Curie

dbo:Person dbr:Paris

dbo:birthPlace

a

rdfs:domain

 Legend: 
  a = rdf:type
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Marie Curie
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rdfs:domain

dbo:spouse

owl:SymmetricProperty
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owl:sameAs

a
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sh:targetClass    Legend:

                ≥ 1 spouse

≤ 1 spousedbr-de:Marie_Curie

sh:targetNodesh:node

(b) Shapes graph S

Figure 3: Running example

Set of Focus Nodes 𝐹 : Contains the focus nodes in each shape 𝑠
(obtained with targ𝑠 ), and also the nodes from𝐺 that are objects of
property paths in 𝑠 that are validated using another shape 𝑠′.

𝐹 :={𝑥 | 𝑠 ∈ S, 𝑥 ∈ targ𝑠 }∪
{𝑥 | 𝑠, 𝑠′ ∈ S, (∃𝑟,𝑦) s.t. 𝑟 .𝑠′ occurs in 𝜑𝑠 , (𝑦, 𝑟, 𝑥) ∈ 𝐺}

The output of this component is the shape targets combining
𝐶, 𝑃, 𝐹, 𝑁 , which are used by the reasoning and merging engine.

Example 4.1. For the example shown in Fig. 3, in the initial state,
the set 𝐶 := {dbo:Person} because the node shape :s* has no
target declaration and :ss declares dbo:Person. The set 𝑃 includes
only the dbo:spouse property, as :s3 and :s* identify it as the sin-
gle target property. 𝑁 := {dbr-de:Marie_Curie} since shape :ss
defines this specific target node. Finally, the set 𝐹 comprises entities
dbr-de:Marie_Curie, dbo:Marie_Curie and dbo:Pierre_Curie.
Here, dbo:Marie_Curie stands out as the sole explicitly defined
instance of dbo:Person in𝐺 . Meanwhile, dbo:Pierre_Curie rep-
resents a node identified through a property path 𝑟 := dbo:spouse
within the property shape :s3 in :ss, which passed to the node
shape :s* due to :ss referencing :s*, i.e., 𝑟 .:s* occurs in 𝜑:ss.

4.2 Reasoning and Merging Engine
This component prepares the data and shapes graphs for the valida-
tor. The reasoning engine (§4.2.1) entails triples based on the shape
targets. The merging engine (§4.2.2) computes a unified represen-
tation of focus nodes that contain semantically equivalent entities
(defined via owl:sameAs). Lastly, Re-SHACL rewrites the shapes
graph (§4.2.3) to replace the occurrences of merged focus nodes
with the identifier of the unified representations.

4.2.1 Shape-based reasoning. The Re-SHACL reasoning engine
enhances the data graph 𝐺 with entailed triples relevant for the
validation process. Before the reasoning starts, Re-SHACL builds a
dictionary𝐷 . Each key in𝐷 is an entity that corresponds to a unified
representation of a set of entities connected with owl:sameAs. The
𝐷 keys are initialized with each focus node in 𝐹 with an empty set of
values. For the example in Fig. 3, we have𝐷 := {dbo:Marie_Curie :
∅, dbo:Pierre_Curie : ∅, dbo-de:Marie_Curie : ∅}.
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Algorithm 1: Shape-based Class Reasoning
Data: RDF graph𝐺 , target classes𝐶 , focus nodes 𝐹 , and entity dictionary 𝐷

1 for all c ∈ 𝐶 do
2 NewNodes← ∅

7

/* Highlighted lines only executed during OWL reasoning */

3 𝐸𝐶 ← 𝜙𝐸𝐶 (c) // Set of equivalent classes

4 𝑇 ← 𝜙𝐸𝐶𝑇 (c) // Triples asserting equivalent classes

5 𝐸𝐶 ← 𝐸𝐶 − {c}
6 𝐺 ← (𝐺 − 𝑇 ) ∪ {(c,rdfs:subClassOf,x), (x,rdfs:subClassOf,c) | x ∈ 𝐸𝐶 }

// RULE scm-eqc1

8 𝑆𝐶 ← 𝜙𝑆𝐶 (c) // Set of subclasses

9 𝑆𝐶 ← 𝑆𝐶 − {c}
10 for sc ∈ 𝑆𝐶 do
11 NewNodes← NewNodes ∪ {i | (i, rdf:type, sc) ∈ 𝐺 }
12 for all p such that (p,rdfs:domain,sc) ∈ 𝐺 do // RULE scm-dom1
13 𝐺 ← 𝐺 ∪ {(p,rdfs:domain,c)}
14 for all p’ such that (p’,rdfs:range,sc) ∈ 𝐺 do // scm-rng1
15 𝐺 ← 𝐺 ∪ {(p’,rdfs:range,c)}

16 for p1 ∈ {p | (p,rdfs:domain,c) ∈ 𝐺 } do // RULE scm-dom2
17 for ep ∈ 𝜙𝐸𝑃 (p1) do
18 𝐺 ← 𝐺 ∪ {(ep,rdfs:domain,c)}
19 for sp ∈ 𝜙𝑆𝑃 (p1) do
20 𝐺 ← 𝐺 ∪ {(sp,rdfs:domain,c)}
21 for sp_ep ∈ 𝜙𝐸𝑃 (sp) do
22 𝐺 ← 𝐺 ∪ {(sp_ep,rdfs:domain,c)}

23 for p2 ∈ {p | (p,rdfs:range,c) ∈ 𝐺 } do // RULE scm-rng2
24 for ep ∈ 𝜙𝐸𝑃 (p2) do
25 𝐺 ← 𝐺 ∪ {(ep,rdfs:range,c)}
26 for sp ∈ 𝜙𝑆𝑃 (p2) do
27 𝐺 ← 𝐺 ∪ {(sp,rdfs:range,c)}
28 for sp_ep ∈ 𝜙𝐸𝑃 (sp) do
29 𝐺 ← 𝐺 ∪ {(sp_ep,rdfs:range,c)}

30 NewNodes← NewNodes ∪ {o | {(s,p,o),(p,rdfs:range,c)} ∈ 𝐺 } ∪ {s |
{(s,p,o),(p,rdfs:domain,c)} ∈ 𝐺 }

// RULE prp-dom,prp-rng,rdfs2,rdfs3

31 for x ∈ NewNodes do // RULE rdfs9,cax-sco,cax-eqc1,cax-eqc2
32 if x ∉ 𝐹 then
33 𝐹 ← 𝐹 ∪ {x}
34 𝐷 ← 𝐷 ∪ {x→ ∅}
35 𝐺 ← 𝐺 ∪ {(x,rdf:type,c)}

36 𝐶 ← 𝐶 ∪ 𝐸𝐶 // Only executed during OWL reasoning

𝐶 ← 𝐶 ∪ 𝑆𝐶 – {c}
37 return𝐺,𝐶, 𝐹, 𝐷

Then, the Re-SHACL reasoning process is performed consider-
ing the shape targets in two phases: Phase 1 performs class-related
reasoning on all target classes in set 𝐶 , while Phase 2 performs
property-related inferences for each target property in 𝑃 . Currently,
Re-SHACL supports the RDFS [22] and OWL LD [17] entailment
regimes. OWL LD is chosen, as it shows a good tradeoff between
expressivity and performance, while supporting features that are
frequently present in real-world RDF graphs [17]. Furthermore,
since OWL LD is designed to be compatible with RDFS, i.e., Re-
SHACL can seamlessly support RDFS reasoning. Next, we describe
how the RDFS and OWL LD entailment rules are applied to the
shape targets in each phase to enhance 𝐺 and obtain 𝐺 ′. For sim-
plicity, in the remainder, we refer to 𝐺 ′ as simply 𝐺 .
Phase 1: Class reasoning. This phase is shown in Alg. 1 and
starts by processing the equivalence classes and subclasses of tar-
get classes in the set𝐶 . Let the target class currently being processed
c (line 1). Equivalent classes specified by owl:equivalentClass of
c in the data graph are identified via the function 𝜙𝐸𝐶 (line 3). The
function𝜙𝐸𝐶𝑇 is invoked to retrieve all triples that assert equivalent
class relationships associated with the specified input classes (line

4). Subsequently, the scm-eqc1 rule (i.e., class antisymmetry) infers
that the equivalent classes to c and c are subclasses of each other. Af-
ter this process, these triples are removed from the graph𝐺 to avoid
redundancy during subsequent processing stages (line 6). This elim-
ination does not entail any loss of information, as the representation
of equivalence relations of two classes can be equally expressed
through new information regarding their subclasses. The function
𝜙𝑆𝐶 (line 7) systematically extracts all subclasses associated with
a given class asserted with the rdfs:subClassOf predicate. 𝜙𝑆𝐶
accounts for the transitivity of the subclass relationships.

For the subclasses of c, consideration is also required for reason-
ing based on rules scm-dom1 and scm-rng1 since both of these rules
have the potential to identify other entities that also become focus
nodes for validation. The rules scm-dom1 and scm-rng1 entail that
the domain (lines 11-12) and range (lines 13-14) definitions in sub-
classes also apply to their superclasses. Then, the engine addresses
the rules scm-dom2 and scm-rng2; these rules entail that the domain
(lines 15-21) and range (lines 22-28) definitions in subproperties
also apply to their superproperties. These rules are applied to all
equivalent properties (using 𝜙𝐸𝑃 ) and subproperties (using 𝜙𝑆𝑃 )
of the processed property, accounting for the transitivity of the
owl:equivalentProperty and rdfs:subPropertyOf predicates.
Subsequently, the algorithm extends 𝐺 with all the information
about equivalent properties, subproperties at different hierarchy
levels in the ontology, and including properties whose domain or
range type is also identified as c. Based on these properties, the
NewNodes are extended to incorporate new target entities identified
via reasoning on the ontology predicates in 𝐺 .

Lastly, rules prp-dom and prp-rng (corresponding to rules rdfs2
and rdfs3 in the RDFS entailment regime) allow for inferring ad-
ditional entities for the target class c based on their domain and
range, respectively. These entities are also incorporated into 𝐹 and
recorded in the dictionary 𝐷 as a key with an empty set of values.
The algorithm adds the newly identified types for these entities to
𝐺 , with the application of the rules rdfs9 and cax-sco for the target
class c; these rules are identical and assert that entities of subclasses
also belong to the corresponding superclasses. The algorithm also
applies rules cax-eqc1 and cax-eqc2 (extensionality) to entail that
entities of a class c also belong to the equivalent classes of c.

Example 4.2. Consider the data graph 𝐺 from Fig. 3 and the
class c := dbo:Person. Initially, NewNodes := ∅ (line 2). In 𝐺 ,
there are no equivalent class to c, but there is a subclass of it,
namely dbo:Scientist. Therefore, 𝑆𝐶 := {dbo:Scientist} (lines
7 to 8), which directly triggers the for loop in line 9. For sc :=
dbo:Scientist, the set NewNodes remains empty as there are no
instances of sc in 𝐺 (line 10). As noted in lines 11-12, the triple
(dbo:academicAdvisor,rdfs:domain, dbo:Person) can be in-
ferred from the given triple (dbo:academicAdvisor,rdfs:domain,
dbo:Scientist). Since𝐺 does not match the antecedents for scm-
dom2 and scm-rng2, we come directly to line 29, where, using the
triples (dbo:spouse, rdfs:domain, dbo:Person), (dbo:spouse,
rdfs:range, dbo:Person), and the previously entailed triple,
the entities dbo:Albert_Einstein, dbo:Pierre_Curie as well as
dbo:Marie_Curie are added to the set NewNodes. This set now con-
tains the new focus nodes that are inferred during the reasoning
process. At line 30, the algorithm adds these new focus nodes to 𝐹
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Algorithm 2: Shape-based Property Reasoning
Data: RDF graph𝐺 , target properties 𝑃

1 for all fp ∈ 𝑃 do
2 while exists subproperty of fp in𝐺 do
3 𝑆𝑃 ← 𝜙𝑆𝑃 (fp)
4 for each p’ ∈ 𝑆𝑃 − {fp} do

7

/* Highlighted lines are only executed during OWL */

5 if (fp,rdfs:subPropertyOf,p’) ∈ 𝐺 ′ then // RULE scm-eqp2
6 𝐺 ← 𝐺 ∪ {(fp,owl:equivalentProperty,p’)}

8 else
// RULE rdfs5,scm-spo,scm-dom2,scm-rng2,prp-spo1,rdfs7

9 for all subproperties p” of p’ with p” ≠ fp do
10 𝐺 ← 𝐺 ∪ {(p”,rdfs:subPropertyOf,fp)}
11 for all classes c such that (fp,rdfs:domain,c) ∈ 𝐺 do
12 𝐺 ← 𝐺 ∪ {(p’,rdfs:domain,c)}
13 for all classes c’ such that (fp,rdfs:range,c’) ∈ 𝐺 do
14 𝐺 ← 𝐺 ∪ {(p’,rdfs:range,c)}

// RULE prp-spo1 or rdfs7

15 for all pairs of x, y such that (x,p’,y) ∈ 𝐺 do
16 𝐺 ← 𝐺 ∪ {(x,fp,y)}

17 𝐺 ← 𝐺 − {(p’,rdfs:subPropertyOf,fp)}

41

/* Highlighted lines are only executed during OWL reasoning */

18 while exists equivalent property of fp in𝐺 do
19 𝑇 ′ ← 𝜙𝐸𝑃𝑇 (fp)
20 𝐸𝑃 ← 𝜙𝐸𝑃 (fp)
21 for all sp ∈ 𝐸𝑃 − {fp} do // RULE eq-rep-p, prp-eqp1,prp-eqp2
22 𝐺 ← 𝐺 ∪ {(fp,p,o) | ∀(sp,p,o) ∈ 𝐺 } ∪ {(s,p,fp) | ∀(s,p,sp) ∈

𝐺 } ∪ {(s,fp,o) | ∀(s,sp,o) ∈ 𝐺 }
23 𝐺 ← 𝐺 − 𝑇 ′

24 for each inverse property ip of fp do // RULE prp-inv1,prp-inv2
25 for all (x,fp,y) ∈ 𝐺 do
26 𝐺 ← 𝐺 ∪ {(y,ip,x)}
27 for all (x’,ip,y’) ∈ 𝐺 do
28 𝐺 ← 𝐺 ∪ {(y’,fp,x’)}

29 if (fp,a,owl:SymmetricProperty) ∈ 𝐺 then // RULE prp-symp
30 for all (x,fp,y) ∈ 𝐺 do
31 𝐺 ← 𝐺 ∪ {(y,fp,x)}

32 if (fp,a,owl:TransitiveProperty) ∈ 𝐺 then // RULE prp-trp
33 for all {(x,fp,y),(y,fp,z)} ∈ 𝐺 do
34 𝐺 ← 𝐺 ∪ {(x,fp,z)}

35 if (fp,a,owl:FunctionalProperty) ∈ 𝐺 then // RULE prp-fp
36 for all {(x,fp,y1),(x,fp,y2)} ∈ 𝐺 do
37 𝐺 ← 𝐺 ∪ {(y1,owl:sameAs,y2)}

38 if (fp,a,owl:InverseFunctionalProperty) ∈ 𝐺 then // RULE prp-ifp
39 for all {(x1,fp,y),(x2,fp,y)} ∈ 𝐺 do
40 𝐺 ← 𝐺 ∪ {(x1,owl:sameAs,x2)}

42 return𝐺

and records them in the dictionary 𝐷 . Finally the algorithm updates
𝐺 with the class memberships inferred for the new focus nodes.

Alg. 1 is executed until no new triples are entailed. The entire
class-centric reasoning processing delineated above is confined
to the target classes and significantly aids in identifying implicit
focus nodes within the data graph. In the context of SHACL, the
shape uses the target declaration to select the focus nodes among
all the nodes in the data graph. This ensures that alterations to
classes unrelated to the specified target class do not impact the
target declaration or focus nodes. In other words, irrespective of
whether reasoning is applied to these unrelated classes, the vali-
dation outcome does not change. By pruning non-targeted classes
during reasoning, Re-SHACL aims to achieve high efficiency.

Phase 2: Property reasoning. This phase is shown in Alg. 2
and processes the property paths 𝑃 indicated for validation in the

shapes graph, herein referred to as target paths. Let us consider
tp the target path under processing. The function 𝜙𝑆𝑃 retrieves
the subproperties of tp (line 3). If there exists a mutual subprop-
erty relationship between tp and a subproperty, the equivalence
between these two can be established with the rule scm-eqp2 (lines
5–6). Otherwise, if a property is a proper subproperty of tp (i.e., not
equivalent property), the algorithm proceeds to entail the triples
according to the rules prp-spo1 (or rdfs7 ), that asserts that nodes
connected via subproperties are also connected via the correspond-
ing superproperties. Note that, the algorithm excludes reflexive
rules, i.e, tp being sub-property or equivalent to itself. The omis-
sion of these entailed triples does not affect the SHACL validation
process, as this constitutes redundant information.

This phase then addresses equivalent properties (lines 17–22).
The function 𝜙𝐸𝑃 retrieves the identical (owl:sameAs) and equiv-
alent (owl:equivalentProperty) properties associated with tp
from the data graph 𝐺 , consolidating them within the set denoted
as 𝐸𝑃 . This function handles the transitivity of equivalences to com-
pute the full set of semantically equivalent properties of tp. Next,
for each equivalent property sp to tp, the algorithms substitutes sp
by tp in the triples where sp occurs, following the rules eq-rep-p,
eq-rep-eqp1, and eq-rep-eqp2. The entailed triples are materialized
in 𝐺 . Subsequently, the triples that involve tp with owl:sameAs
and owl:equivalentProperty are removed from the data graph
to avoid redundant operations (line 22).

Then, this phase enhances the input graph with information
concerning the target path and its corresponding inverse property
using the rules prp-inv1 and prp-inv2 (lines 23–27). Lastly, in the
cases where the target path tp is a symmetric, transitive, functional,
or inverse functional property, the algorithm entails new triples
obtained with rules prp-symp, prp-trp, prp-fp, and prp-ifp (lines 31–
39). Including these entailed triples in the graph𝐺 allows Re-SHACL
to identify nodes that should also be targeted during validation.

Example 4.3. Consider the data in Fig. 3 and the structures in
Example 4.1. Let fp := dbo:spouse be the target property we
are working with. Since fp has no sub-properties and no equiv-
alent properties in 𝐺 , and the triple (dbo:spouse, rdf:type,
owl:SymmetricProperty) declares dbo:spouse to be a symmet-
ric property, line 28 in Alg. 2 is triggered. According to the triple
(dbr:Marie_Curie, dbo:spouse, dbr:Pierre_Curie) and the
rule prp-symp, the statement (dbr:Pierre_Curie,dbo:spouse,
dbr:Marie_Curie) can be entailed (lines 20-30). Then, the process-
ing for fp in Alg. 2 is complete. After reasoning, the validation of
the shape :ss is performed over dbr:Pierre_Curie because the
new inferred triple makes it have the target property dbo:spouse.

Alg. 2 is executed until no new triples are entailed. The Re-
SHACL reasoning engine excludes rules that are not pertinent to
the validation process. For example, the rule scm-sco (or rdfs11)
about the transitivity of rdfs:subClassOf does not feature in the
algorithm as it has been already addressed in the construction of
𝐶 in Phase 1. Moreover, reasoning concerning general definitions
such as rdfs:Resource or rdfs:Datatype is not covered in Re-
SHACL, as it is customary in SHACL to explicitly specify datatypes
(e.g., xsd:date and xsd:float) in the shapes graph. Furthermore,
scm-cls (class definition), scp-dp (datatype property definition), and
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Figure 4: Illustration of the Re-SHACL merging technique

scm-op (object property definition) are also omitted, as they do not
entail relevant triples for the validation.

4.2.2 Shape-based node merging. In reasoning, the triples of en-
tities connected via owl:sameAs are copied over each entity. This
generates a large amount of duplicate information in the graph.
To avoid this, Re-SHACL implements a merging approach where
semantically equivalent entities are combined into a single, uni-
fied entity that encompasses all the triples from its corresponding
owl:sameAs entities. Fig. 4 illustrates the merging approach with
the example in Fig. 1. In the RDF graph, dbr:Marie_Curie denotes
an identical entity to dbr-de:Marie_Curie, albeit having different
identifiers. Our method merges these two nodes into a single rep-
resentation denoted by the unique name "dbr:Marie_Curie". In
this case, we say that the node dbr-de:Marie_Curie has been sub-
sumed by dbr:Marie_Curie. Fig. 4(c) shows the resulting merged
graph, which is more concise (with two triples) in comparison to
the graph obtained with reasoning (containing six triples).

To minimize the runtime, Re-SHACL applies this merging strat-
egy only to focus nodes, which are relevant for validation. For each
focus node fn in 𝐹 , Re-SHACL checks whether there exists equiva-
lent nodes sn defined with the triples 𝑡 = (fn, owl:sameAs, sn) or
𝑡 = (sn, owl:sameAs, fn) in the data graph 𝐺 , which has been en-
hanced with implicit statements using targeted reasoning (§ 4.2.1).
Subsequently, all instances of sn in the data graph are substituted
with fn, i.e., sn is subsumed by fn. The triple 𝑡 can safely be ex-
cluded from themerged graph, only when the property owl:sameAs
does not occur in the target path of the focus node. For example,
if a shape for the focus node dbr:Marie_Curie states that the
entity should have at least one owl:sameAs value, the merging
process depicted in Fig. 4 would introduce a spurious violation,
as the owl:sameAs triples are not included in the merged graph.
Re-SHACL takes this into account, thus, only removes the triples 𝑡
from the merged graph when applicable.

Lastly, to ensure the preservation of critical equivalence infor-
mation throughout the merging process, Re-SHACL updates the
dictionary 𝐷 to capture the equivalence relationships between the
merged nodes sn and the designated focus node fn, as follows:

• if sn ∉ 𝐷 , then 𝐷 [fn] ← 𝐷 [fn] ∪ {sn};
• else, then 𝐷 [fn] ← 𝐷 [fn] ∪ 𝐷 [sn] ∪ {sn}.

The merging process adheres to the node equality semantics in
OWL LD and OWL 2 RL, but omits the rule eq-ref (reflexivity) to
avoid redundant information. The reasoning and merging engine
performs multiple iterations of consolidation operations on the
data graph until the subgraphs associated with validation achieve

complete UNA compliance. Finally, the reasoning and merging
engine yields and concise merged graph 𝐺 ′ from the data graph 𝐺 .

4.2.3 Shapes graph re-writing. Re-SHACL rewrites the shapes graph
when a target node is subsumed into other focus nodes. To illustrate
this, consider tn a target node in a shape s, and tn is subsumed
by another focus node during the merging process. In this case,
the merged graph no longer retains the original identifier associ-
ated with tn from the input RDF graph. Consequently, the shape
s is unable to identify the target node tn in the merged graph
𝐺 ′. To avoid such a spurious behavior, a lightweight rewriting of
the shapes graph is performed, that substitutes the occurrences
of tn with the target node’s new identifier in the merged graph
using the dictionary 𝐷 . Specifically, if a target node tn ∈ 𝑁 un-
dergoes a merging operation with a focus node f, it holds that
tn ∈ 𝐷 [f], and Re-SHACL systematically identifies all the shapes 𝑠
in the shapes graph that designate tn as the target node. Then, the
method updates targNode𝑠 = (targNode𝑠 − {tn}) ∪ {f}. In practice,
this is done by replacing the triple t=(s,sh:targetNode,tn) in
the shapes graph with the new triple t’=(s,sh:targetNode,f).

Example 4.4. Based on the example in Fig. 3 and initialization
in Example 4.1, the target node tn := dbr-de:Marie_Curie of the
shape :ss is subsumed into the node f := dbr:Marie_Curie dur-
ing the merging process. Then, Re-SHACL will replace the triple
t:=(:ss,sh:targetNode,dbr-de:Marie_Curie) in S with the
triple t’:=(:ss,sh:targetNode,dbr:Marie_Curie). Such rewrit-
ing will not affect the validation because tn and f are semantically
the same entity. Finally, 𝑁 is updated to 𝑁 := {dbr:Marie_Curie}.

4.3 Re-SHACL Theoretical Results
First, we look into the complexity of our approach. The presented
reasoning and merging techniques rely on the semantics of OWL
LD, which is a subset of the OWL 2 RL fragment. The data com-
plexity of OWL 2 RL is known to be polynomial [32] w.r.t. to the
number of assertions in the input data, in this case, 𝐺 . Further-
more, since the entailment rules used in Re-SHACL to compute the
merged graph𝐺 ′ do not introduce new nodes that are not in𝐺 , the
proposed algorithms are also deterministic. Therefore, from these
results established in the literature, we conclude that Re-SHACL
also provides the same theoretical guarantees.

Lemma 4.5. Re-SHACL is deterministic and runs in polynomial
time w.r.t. |𝐺 |.

Lemma 4.6. |𝐺 ′ | is polynomial w.r.t. |𝐺 |.

Next, we look into the soundness of the lightweight rewriting
techniques of Re-SHACL to obtain S′ from the shapes graph S.

Lemma 4.7. |S′ | is sound.

Proof. Consider a shape s, and a target node entity tn which
has been subsumed by another node f during merging and not
targeted by s. By contradiction, assume the rewriting of s into s’
is incorrect, i.e., f ∉ targNode𝑠′ . If f ∉ targNode𝑠′ , then (i) f ∉ 𝐷 ,
or (ii) tn ∉ 𝐷 [f]. (i) entails that 𝑓 has not subsumed equivalent
target nodes during the merging process. (ii) entails that tn was
not subsumed by f. Both cases contradict our hypothesis. □
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5 EXPERIMENTAL STUDY
In the experiments, we investigate the following questions: (Q1)
What is the impact of Re-SHACL components in isolation? (Q2)
How do the data graph, shapes graph, and entailment affect the
validation performance? (Q3) How many and what type of viola-
tions can be detected with and without entailment? (Q4)What is
the runtime efficiency of state-of-the-art validators combined with
Re-SHACL? Resources to reproduce our study are available online.

5.1 Experimental Setup
Data Graphs and Shapes Graphs. We use nine synthetic datasets
from LUBM [19] and six real-world subsets obtained from DBPe-
dia [28] and Wikidata [43]. For LUBM, we use the graphs generated
by Figuera et al. [15]. For DBpedia and Wikidata, we randomly
created subsets with different numbers of entities per targeted class.
For the shapes graphs, Figuera et al. [15] provided three constraint
datasets for LUBM denoted Schema1, 2, and 3. The DBpedia and
Wikidata shapes graphs were obtained from the constraints mined
by Rabbani et al. [38]; from this graph, we selected shapes without
references to other shapes, as this complicates the analysis of the de-
tected violations. Altogether, we have 33 configurations (27 LUBM,
3 DBpedia, 3 Wikidata) of data-shape graphs in our experiments.
Table 1 summarizes the datasets’ descriptions.
Studied Approaches. We use pySHACL [40], Trav-SHACL [14], and
SHACL2SPARQL [6, 7]. pySHACL is an open-source library that
supports RDFS and OWL RL reasoning during validation. This
enables a comparison with Re-SHACL. SHACL2SPARQL and Trav-
SHACL are also open source and used here as off-the-shelf val-
idators to show how Re-SHACL can enable scalable validators to
incorporate reasoning. We used the best configurations of Trav-
SHACL and SHACL2SPARQL as reported by the authors.
Implementation Details. Re-SHACL, pySHACL, and Trav-SHACL
are implemented in Python3 (3.8). SHACL2SPARQL [8] is imple-
mented in Java (openjdk 11.0.16). For pySHACL, the data and shapes
graph are loaded into main memory, followed by a warm up stage,
and then the execution of the approaches starts. Trav-SHACL and
SHACL2SPARQL run over a Virtuoso SPARQL endpoint (Open
Source v.7.2). All experiments have been conducted on a dual socket
AMD EPYC 7713 server with 128 cores and 1TB of main memory.
Metrics. Each approach is executed three times1 over the 31 configu-
rations of data-shapes graph. We report on: (i) Graph size: Number
of triples in a graph. (ii) Runtime: Elapsed time (in seconds) since
the approach is invoked until it finishes. (iii) Number of Violations:
Overall number of violations detected with the approach.

5.2 Impact of Re-SHACL Components on
Performance: Ablation Study

We conduct an ablation study to determine the effects of the Re-
SHACL techniques in isolation. We measure the effects of these
techniques during graph materialization and validation. A reduc-
tion in runtime in any of these tasks directly improves the overall
performance of the knowledge graph validation pipeline. The stud-
ied Re-SHACL techniques are:

1Some configurations could only be run once due to the long runtimes.

Table 1: Dataset descriptions

Data Graph Triples Subj. Pred. Obj. SameAs

LUBM (SKG) 1,001,716 163,701 18 122,989 0
LUBM (MKG) 4,258,329 693,909 18 516,901 0
LUBM (LKG) 34,106,115 5,549,100 18 4,125,586 0

DBpedia (DB50) 534,696 134,303 2,888 140,855 26,624
DBpedia (DB100) 912,108 208,836 3,463 229,587 47,325
DBpedia (DB1000) 3,382,528 490,612 5,713 767,604 169,937

Wikidata (WDS) 4,974,498 4,159,871 709 288,610 106
Wikidata (WDM) 13,268,141 5,336,919 12,769 2,428,390 7,260
Wikidata (WDL) 29,101,498 7,339,402 20,380 6,508,412 21,601

Shapes Graph Node
Shapes

Property
Shapes

Targeted
Classes

Targeted
Properties

Shape
References

LUBM (Schema1) 3 12 3 10 Yes
LUBM (Schema2) 7 24 7 16 Yes
LUBM (Schema3) 14 79 14 17 Yes
DBpedia (Shape30) 30 611 30 255 No
Wikidata (Shape100) 100 53,087 100 7,719 No

• Merging techniques: +M indicates the merging of same as
nodes (and the resp. rewriting), -M indicates no merging.

• Targeted reasoning: T-E applies reasoning on focus nodes
using the entailment regime E, otherwise it computes the
graph closure under E.

• Entailment regime: RDFS or OWL entailment regime.

The ablation study comprises six configurations. The configura-
tions (-M, RDFS) and (-M, OWL) correspond to baselines, i.e., the
approach computes the (full) closure of the graphs for the given
entailment regime, without merging semantically equivalent nodes.
The remaining four configurations allow for turning on/off the
merging and targeted reasoning techniques of Re-SHACL. For the
validation task, we use PySHACL.

In this study, we selected the three DBpedia datasets (DB50,
DB100, DB1000) and three LUBM graphs (SKG1, MKG1, LKG) to
have real-world and synthetic graphs of varying sizes.

Impact of merging techniques. To study the effect of activating
the Re-SHACL merging techniques, we compare (+M, T-RDFS)with
(-M, T-RDFS), and (+M, T-OWL) with (-M, T-OWL) in Fig. 5. Since
LUBM has no owl:sameAs links, the Re-SHACL merging techniques
with RDFS have no effect. However, during LUBM materialization,
(+M, T-OWL) is, on average, 1.87x faster than (-M, T-OWL), as
the merging techniques cope with the owl:sameAs reflexivity, thus
avoiding the generation of redundant triples. All these observa-
tions apply to the three shapes graphs (Schema-1, 2, 3) in LUBM.
Since DBpedia has owl:sameAs links (cf. Table 1), the activation of
the merging techniques impacts the materialization and validation
runtimes. First, comparing (+M, T-RDFS) with (-M, T-RDFS), we
observe that node merging introduces an overhead, as it requires
consolidating thousands of entities in DBpedia, as shown in Table 2.
Yet, the configurations (+M, T-OWL) and (-M, T-OWL) clearly show
that the merging techniques reduce the materialization and valida-
tion runtimes up to three orders of magnitude when performing
targeted OWL reasoning. These results are supported when exam-
ining the size of the materialized graphs in Table 3. In the extreme
case of DB1000, the merging techniques with targeted reasoning
can reduce the graph size from 116M to 4.12M triples.
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Figure 5: Results for the ablation study. The notation is as follows:+M=merging; -M=no merging; T-=targeted reasoning.

Table 2: Re-SHACLmerged nodes in KGs with same as triples

Dataset DB50 DB100 DB1000

Merged entities 20,426 36,725 129,049

Uniform representations created during merging 1,260 2,307 9,137

Impact of targeted reasoning. Next, we compare the effects of tar-
geted reasoning without the merging techniques. In LUBM, Fig. 5(a)
shows that the materialization time of (-M, T-RDFS) is 10x faster
than (-M, RDFS), and (-M, T-OWL) is up to 100x faster than (-M,
OWL). These results confirm that applying (targeted) reasoning to
the focus nodes and not the entire graph effectively reduces the
materialization time. Still, since the size of the LUBM materialized
graphs (cf. Table 3) with and without targeted reasoning is in the
same order of magnitude, the validation runtimes are almost the
same across all configurations. In DBpedia, the targeted reasoning
greatly reduces the materialization time, as shown in the results
for (-M, T-RDFS) and (-M, RDFS). In the case of OWL, the targeted
reasoning reduces the materialization times by half in DB50 and
DB100, and by a factor of 0.8 in DB1000 (cf. Fig 5(a), in log scale).
The validation runtimes exhibit similar trends, where in compar-
ison to (-M, OWL), (-M, T-OWL) reduces the runtime by factors
of 0.82 (DB50) and 0.85 (DB100), while (-M, OWL) timed out after
14 days. The DBpedia runtimes are consistent with the size of the
materialized graphs (cf. Table 3), i.e., the size of the graphs with
T-OWL is considerably smaller than their OWL counterpart.

Impact of entailment regimes. In this study, OWL reasoning is or-
ders of magnitude more expensive than RDFS. This can be observed
in our results when comparing the configurations (-M, RDFS) and
(-M, OWL). In the case of DBpedia, while the RDFS closure was com-
puted in 20 minutes, the OWL closure took over 268 hours (almost

Table 3: Size of materialized graphs in the ablation study. For
targeted reasoning (T-) over LUBM, we report the average
graph size across all shapes graphs

LUBM DBpedia
SKG1 MKG1 LKG1 DB50 DB100 DB1000

Baseline (-M, RDFS) 1.5M 6.4M 51.0M 1.2M 2.0M 6.6M
(-M, T-RDFS) 1.1M 4.8M 38.6M 0.69M 1.15M 4.15M
(+M, T-RDFS) 1.1M 4.8M 38.6M 0.68M 1.12M 4.07M

Baseline (-M, OWL) 2.2M 9.5M 76.0M 32.0M 57.6M 175M
(-M, T-OWL) 1.3M 5.7M 45.6M 21.0M 38.3M 116M
(+M, T-OWL) 1.3M 5.4M 43.2M 0.69M 1.15M 4.12M

12 days), i.e., OWL reasoning is impractical. Yet, our Re-SHACL
techniques can reduce the OWL reasoning runtime significantly,
making it comparable to the RDFS reasoning runtime. In LUBM,
since the merging techniques have no effects due to the absence
of owl:sameAs links, we observe that the targeted RDFS reasoning
is between 1.7x and 3x faster than targeted OWL reasoning across
all datasets and schemas. Yet, since DBpedia contains owl:sameAs,
the merging techniques take a large portion of the materialization
time, making the performance of the configurations (+M, T-RDFS)
and (+M, T-OWL) nearly identical. Although RDFS does not handle
the semantics of owl:sameAs, activating the merging techniques
allows for consolidating equivalent entities, thus avoiding spurious
validations caused by having partial information attached to only
one of the entity representations. The violations detected with the
different approaches will be discussed in Sect. 5.4.

The ablation study demonstrates that our merging and targeted
reasoning techniques reduce by orders of magnitude the material-
ization runtime compared to standard reasoning (Q1).
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5.3 Validation Pipeline Runtime with and
without Reasoning

For approacheswith entailment, the validation pipeline includes rea-
soning and the actual graph validation time. We report on the pro-
posed Re-SHACL configurations, i.e., (+M, T-RDFS) as Re-SHACL
RDFS and (+M, T-OWL) as Re-SHACL OWL. For validation, Re-
SHACL uses PySHACL. As baseline, we use PySHACL (with no
entailment), and PySHACL-RDFS and PySHACL OWL. Fig. 6 shows
the entire validation process runtime over all datasets.

Impact of the data graph size. In LUBM, the performance of all the
approaches is, on average, slowed down by one order of magnitude
when going from SKGs (1M triples) to MKGs (4.5M triples), and then
to LKGs (34M triples). This effect is observed for all configurations
of Re-SHACL and PySHACL. In the case of DBpedia and Wikidata,
increasing the size of the KGs negatively affects the performance
of PySHACL. This becomes evident when comparing DB50 (0.5M
triples) and DB100 (3.4M triples), where PySHACL-OWL takes 12
days to compute the closure and did not finish the validation before
7 days. In DBpedia and Wikidata, the performance of Re-SHACL
(both RDFS and OWL) is not significantly impacted by the graph
size and remains in the same order of magnitude.

Impact of the data graph expressivity. Interestingly, PySHACL-
OWL in LUBM MKGs (with ∼4M triples) is orders of magnitude
faster than in DBpedia graphs (with ∼0.5 and 1M triples). The dif-
ference in runtime is due to the fact that LUBM does not contain
owl:sameAs triples, unlike DBpedia. Recall that owl:sameAs in-
troduces a large number of irrelevant triples due to its reflexivity,
symmetry, and transitivity. This shows that the performance of
traditional reasoning approaches is not only affected by the graph
size, but the semantics of terms in the data graph and the entailment
regime. In comparison, since Re-SHACL implements merging and
targeted reasoning, the increase in expressivity in the data graph
does not have a significant impact on its performance. Contrary,
the presence of owl:sameAs links is exploited by Re-SHACL, thus
achieving lower runtimes in DBpedia than in LUBM MKG.

Impact of the shapes graph size and structure. Our results show
that the shapes directly impact the approaches’ performance. In
LUBM, the performance of all approaches becomes similar (except
for PySHACL-OWL) for Schema2 and Schema3, as these shapes
graphs have more shapes and targeted classes than Schema1. Also,
in LUBM Schema1, Re-SHACL is faster than for other shapes graphs,
regardless of the size of the data graph. This is because Re-SHACL
takes the shapes graph into account during the targeted reasoning,
and Schema1 has a simpler structure than the other shapes graphs.

When comparing datasets of similar sizes, e.g., LUBMMKGwith DB-
pedia and Wikidata, we observe that the approaches’ performance
differs significantly. The validation of LUBM MKG Schema2 and
Schema3 is around 10x slower than DBpedia (except for PySHACL-
OWL), because these schemas contain shape references. Therefore,
besides the size, the shapes graph structure also affects the runtime.

Entailement vs. no reasoning. Enabling reasoning introduces an
overhead compared to just performing validation on the input data
graph. In graphs where the validation process is simple (e.g., LUBM
Schema1), Re-SHACL outperforms the PySHACL counterparts. In
the other graphs, PySHACL-OWL is always the slowest and even
timed out for DB1000 and Wikidata. In contrast, Re-SHACL can be
executed over all tested datasets in a reasonable amount of time
and is able to scale to large datasets up to 34M triples.

In summary, all the aspects studied in the experiments affect the
validation performance. Yet, in contrast to the baselines, Re-SHACL
can efficiently perform reasoning and cope with the effects of larger
and more expressive graphs (Q2).

5.4 Detected Violations
In this section, first, we discuss the number of violations detected
with the studied approaches (cf. Table 4). Next, we analyze the differ-
ences between the validation reports produced by the approaches
using a selected dataset (cf. Fig 7).

Impact of entailment regimes in the number of violations. Table 4
shows the number of violations detected. In LUBM, the constraints
in Schema1 target nodes that do not contain further ontological
definitions and, in consequence, all the approaches produce the
same number of violations. For Schema2 and Schema3, Re-SHACL
tends to detect more violations than pySHACL (simple) but less
than its counterparts. Also in LUBM, Re-SHACL and pySHACL-
OWL produce the same number of violations, which indicates that
the Re-SHACL targeted reasoning correctly produces all relevant
triples for validation, but in a faster and more compact way. In the
case of DBPedia, we observe that all the approaches report different
numbers of violations. This is because DBpedia contains RDFS and
OWL constructs, thus, detecting difderent violations results when
enabling a specific entailment regime. In DB100, pySHACL-OWL
reports over 1M violations while Re-SHACL only 54K as it avoids
duplicate violations due to its merging techniques.

Erroneous violations filtered with entailment. Fig. 7(a) and (b) show
that PySHACL OWL and Re-SHACL OWL effectively remove 2611
and 148 spurious violations, respectively. Although PySHACL OWL
removes more violations than Re-SHACL, this is not necessarily a
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Table 4: Numbers of reported violations. Using simple valida-
tion (no entailment) as a reference, highlighted cells indicate
differences in the number of violations. The darker the cell,
the higher the difference w.r.t. simple validation

PySHACL PySHACL Re-SHACL PySHACL Re-SHACL
Dataset RDFS RDFS OWL OWL

Sc
he
m
a1

SKG1 2,136 2,136 2,136 2,136 2,136
SKG2 2,938 2,938 2,938 2,938 2,938
SKG3 3,703 3,703 3,703 3,703 3,703
MKG1 5,836 5,836 5,836 5,836 5,836
MKG2 9,190 9,190 9,190 9,190 9,190
MKG3 12,424 12,424 12,424 12,424 12,424
LKG1 40,000 40,000 40,000 40,000 40,000
LKG2 66,173 66,173 66,173 66,173 66,173
LKG3 92,289 92,289 92,289 92,289 92,289

Sc
he
m
a2

SKG1 197,784 197,784 197,784 202,250 202,250
SKG2 198,586 198,586 198,586 203,052 203,052
SKG3 199,351 199,351 199,351 203,817 203,817
MKG1 834,143 834,143 834,143 853,343 853,343
MKG2 837,497 837,497 837,497 856,697 856,697
MKG3 840,731 840,731 840,731 859,931 859,931
LKG1 6,419,120 6,694,924 6,694,924 6,848,446 6,848,446
LKG2 6,445,293 6,721,097 6,721,097 6,874,619 6,874,619
LKG3 6,471,409 6,747,213 6,747,213 6,900,735 6,900,735

Sc
he
m
a3

SKG1 288,610 288,610 288,610 293,076 293,076
SKG2 297,536 297,536 297,536 302,002 302,002
SKG3 306,472 306,472 306,472 310,938 310,938
MKG1 1,224,043 1,224,043 1,224,043 1,243,243 1,243,243
MKG2 1,262,285 1,262,285 1,262,285 1,281,485 1,281,485
MKG3 1,300,837 1,300,837 1,300,837 1,320,037 1,320,037
LKG1 9,534,325 9,810,129 9,810,129 9,963,651 9,963,651
LKG2 9,840,368 10,116,172 10,116,172 10,269,694 10,269,694
LKG3 10,146,652 10,422,456 10,422,456 10,575,978 10,575,978

Sh
ap
e3
0 DB50 27,392 31,421 28,547 871,381 30,019

DB100 49,537 56,861 51,339 1,502,071 54,030
DB1000 200,730 227,303 201,638 – 213,800

Sh
ap
e1
00 WDS 0 0 0 – 0

WDM 0 0 0 – 0
WDL 0 0 0 – 0

pySHACL Re-SHACL
OWL(Ours)

2611 523824781

(a)

pySHACL
pySHACL
OWL

148 84413727244

(b)

Re-SHACL
OWL(Ours) pySHACL

OWL

131 84149329888

(c)

Figure 7: Analysis of violation reports for DB50

desirable behavior. Re-SHACL minimizes the number of detected
violations due to the merging techniques, which avoid reporting
duplicate violations for entities with owl:sameAs.

Novel violations detected with entailment. Fig. 7(a) and (b) show
these cases on the right circles. In comparison to PySHACL (simple),
Re-SHACL OWL produces and PySHACL OWL produce 5, 238 and
844, 137 novel violations. Yet, producing more violations does not
mean better behavior, as some of these violations are duplicates
generated by the nUNA, as discussed below.

Duplicate violations due to non-Unique NamedAssumption (nUNA).
Enabling reasoning can amplify the negative impact of nUNA –
introduced with the usage of owl:sameAs– in SHACL validation.
This can be seen in Fig. 7 (right), where OWL reasoning reports
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Figure 8: SHACL2SPARQL runtime over real-world datasets

841, 493 more violations than Re-SHACL OWL. After inspecting
the validation reports, we confirm that these massive number of vi-
olations are due to semantic duplicates: a violation that occurs in an
entity is reported multiple times, i.e., one for each identifier of the
semantically equivalent terms. In contrast, Re-SHACL reports the
violation once as it supports OWL entailment with entity merging.
Still, with Re-SHACL it is possible to allocate all the semantically
equivalent entities affected by a violation using the dictionary 𝐷 .

Violations involving reflexive properties and cardinality constraints.
During reasoning, reflexive triples (e,owl:sameAs,e) produce spu-
rious validation reports. Such entailed triples can easily conflict with
the sh:minCount and sh:maxCount cardinality constraints. An in-
spection of the validation reports shows that the 131 violations
captured by Re-SHACL OWL but not recognized by pySHACL-
OWL in DB50 (cf. Fig. 7) are due to this issue.

In summary, reasoning allows for detecting novel violations,
while pruning false violations when implicit knowledge is ignored.
Furthermore, the Re-SHACLmerging techniques remove redundant
duplicates from semantic equivalences in the KG, thus producing
fewer violations than the RDFS and OWL counterparts (Q3).

5.5 Runtime of State-of-the-art Validators
We now investigate the performance of SHACL2SPARQL and Trav-
SHACL when using the original data graph (Simple), the graphs
generated with closures, and our Re-SHACL.

In the case of DBpedia, wewere only able to run SHACL2SPARQL
as Trav-SHACL (by design) does not support all types of constraints
in the Shapes30 and Shapes100 graphs. Fig. 8 shows the runtime
for SHACL2SPARQL on DBpedia and Wikidata. In DBpedia, the
behavior of Re-SHACL is very similar to the baselines with no
entailment and RDFS. Yet, in comparison to the OWL closure (-M,
OWL), the runtime over the Re-SHACL graph is significantly faster.
This is due to the size of the resulting graphs after reasoning (cf.
Table 3), where the OWL closure for DB1000 contains 175M triple,
while Re-SHACL OWL produces 4.12M. In this case, the size of the
graphs greatly impact the performance of SHACL2SPARQL. For
Wikidata, SHACL2SPARQL could not execute the baselines due to
timeouts (after 1012 seconds) raised by the endpoint. Yet, all the
configurations of Re-SHACL could be run with SHACL2SPARQL.
Only Re-SHACL OWL is impacted by the size of the graph in WDL.

Next, we look into the performance of the validators for LUBM re-
ported in Fig. 9. For SHACL2SPARQL (cf. Fig. 9(a)), in themajority of
the cases, there are no significant differences in the SHACL2SPARQL
runtime over the different graphs. Lastly, the results for Trav-
SHACL in Fig. 9 show that, on average, the fastest performance is
achieved for the original data graph (Simple). Still, we observe that
in most of the cases, Trav-SHACL is slightly faster (on average)
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(a) SHACL2SPARQL runtime over LUBM
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Figure 9: Validation time of state-of-the-art validators over synthetic datasets

using Re-SHACL than with the RDFS and OWL counterparts, al-
though there are no significant differences. In summary, for LUBM,
the obtained graphs are relatively small (cf. Table 3), and since they
are loaded into a SPARQL endpoint (which implements advanced
querying techniques) and are processed by validators that imple-
ment more sophisticated validation techniques, the effects of the
graph size on performance is minimal. Still, let us keep in mind
that these runtimes do not account for the reasoning time and that
computing the OWL closure takes one or even several orders of
magnitude longer than using Re-SHACL.

From this experiment, we conclude that state-of-the-art valida-
tors can greatly benefit from Re-SHACL to seamlessly support
SHACL validation with entailment efficiently (Q4).

6 DISCUSSION
In this section, we discuss some limitations and open problems of
including entailment regimes in SHACL validation.

Lack of semantics of SHACL validation under entailment regimes
beyond OWL 2 QL. Recent works [1] have proposed a semantics
for SHACL with OWL 2 QL entailment, which does not account
for owl:sameAs or more expressive constructs in OWL 2 RL. Still,
a formal semantics of SHACL validation under entailment that
accounts for the semantics of owl:sameAs is imperative to probe
the theoretical correctness of approaches.

Tradeoff between expressivity and runtime. Our experiments
show that enabling entailment during SHACL validations always
introduces an overhead. However, if the semantics of terms in
the knowledge graph is disregarded, SHACL validation without
entailment may compromise the accuracy of the results. Therefore,
users must carefully weigh the benefits and drawbacks of using
entailment and select the appropriate expressivity that meets the
specific requirements of their applications.

Scalability tomassive graphs. Existing strategies for incorporating
entailment in SHACL validation are prone to generate massive
data graphs or rewritings. This hinders the applicability of these
techniques to datasets with billions of triples. A possible solution

is to partition the graph, yet this may yield incomplete or incorrect
violations. Therefore, techniques that account for a balance between
scalability and correctness must be devised.

7 CONCLUSION AND FUTUREWORK
This work presents Re-SHACL, a solution for efficient SHACL val-
idation with reasoning. Unlike existing approaches, Re-SHACL
leverages a shape-based reasoning and merging approach to sup-
port entailment during SHACL validation efficiently. Specifically,
Re-SHACL first analyzes the shapes graph to obtain relevant in-
formation and then implements reasoning, merging, and rewriting
strategies tominimize unnecessary inferred triples in the data graph.
By doing so, Re-SHACL can significantly reduce the workload in
the inference process and mitigate undesired behaviors during vali-
dation introduced by the entailment regime. As a result, Re-SHACL
enables efficient SHACL validation with entailment, even in state-
of-the-art validators, while providing accurate results.

Application of our contributions to other models. The Re-SHACL
merging techniques can be effectively applied to other models,
particularly in data fusion scenarios where multiple sources do not
adhere to the UNA. Also, our targeted reasoning could be adapted
to other semi-structured models, e.g., XML and JSON-LD, if the
sources include logical definitions, e.g., concept hierarchies.

Future work. Besides the open problems discussed in Sect. 6,
future work also includes extending Re-SHACL to support OWL
2 RL and advanced features of SHACL, enabling more complex
validations. Another line of research is to devise techniques to
perform validations over data graph partitions. This will allow
entailment-based approaches to scale up to very large datasets.
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