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ABSTRACT
With a single Bloom filter, one can approximately answer set mem-
bership queries within a space budget. Practical systems often
use collections of Bloom filters to facilitate applications such as
data skipping, sideways information passing, and network filtering.
While the optimal space-to-accuracy allocation is well-understood
for a single filter, jointly optimizing how space is used across a
collection of filters is yet to be studied. We pose this problem in the
following way: (1) let’s assume that each Bloom filter has some like-
lihood of being queried, and (2) given knowledge of this likelihood,
how do we allocate space to minimize the expected false positive
rate? In other words, “hot” filters are allocated more space, and
“cold” filters are allocated less space. In this paper, we show how to
solve this optimization problem. We first develop the concept of a
“truncated” Bloom filter and theoretically analyze its false positive
rate. We then formulate an optimization problem for a collection
of truncated Bloom filters that minimizes the false positive rate
across a utility distribution while meeting a strict space budget.
Next, we show that the problem is convex and find a fast relaxation.
Lastly, we apply our method to data skipping and full-text search,
demonstrating its effectiveness across the range of possible space
budgets when compared to the state of the art.
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1 INTRODUCTION
A Bloom filter is a sketch that can approximately answer set mem-
bership queries within a space budget. Bloom filters have a crucial
property that does not yield false negative results, which makes
them highly valuable in database systems. The applications of
Bloom filters span key-value stores [19, 44], data skipping [17, 18],
query optimization [26, 60], and search engines [27]. Filters are
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often employed in these applications to reduce storage reads by
serving as an intermediary index structure that can short-circuit
data loading.

Let’s consider a typical use case for a Bloom filter. A data volume
might be partitioned across several different files. A user who is
interested in identifying a particular record that matches an equality
condition (e.g., an employee identified by a social security number)
wants to query this data. On one hand, we can simply scan the entire
data volume each time we want to answer this query. This approach
requires no indexing but is slow. Another approach is to build an
index over the search keys, which can require substantial additional
space and may be hard to operationalize in some environments
(e.g., a write-heavy database or a distributed system). A Bloom filter
allows one to span these two extremes by annotating each partition
with a space-limited filter that determines if it needs to be processed
or not – the larger the filter, the more precise the skipping will be.
This filter is straightforward to maintain under insertions.

While the design space of a single Bloom filter is well-understood
[34], use cases like the one above show that we often consider
collections of such filters (i.e., filters on each partition). The standard
approach is to uniformly size each filter in a filter collection, which
has a few key drawbacks. First, while a single Bloom filter has a
fixed size regardless of the number of insertions, the total size of a
collection of filters will grow as more filters are utilized (e.g., over
new partitions of data). If we wish to cache the filter collection
in memory, the constant growth can be problematic. Next, not
all partitions are equally likely to be queried, and uniform sizing
allocates the same precision to frequently queried partitions as
to rare ones. This paper studies the following problem: given an
anticipated query distribution and an overall space budget, can we
optimally size each filter to maximize the expected precision?

Let’s contextualize this problem statement in the example above,
and make it much more concrete. Consider a telemetry system,
such as AWS CloudWatch, which can generate a vast amount of
unstructured log data. In systems like CloudWatch, log data is
broken up into temporal partitions of roughly the same size. Over
this log data, users can run keyword search queries. Bloom filters
constructed on each partition can help skip partitions that could not
possibly contain the desired keyword. While in general, one needs
to process all partitions, we know that more recent data is more
likely to be relevant to a user (the anticipated query distribution).
Often, users set a time interval restricting how far back the search
should go. The solution to the optimization problem above can
construct an in-memory filter collectionwith a fixed size that should
automatically reduce the precision of filters for the older partitions.

3551

https://doi.org/10.14778/3681954.3682020
https://github.com/gmersy/truncated-bloom-filter
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682020
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Going beyond this example, there is a broader data retrieval
architecture that this algorithmic problem enables. Data are stored
in partitions on some form of slow storage, e.g., disk or a blob
storage system. We wish to answer set membership queries over
this data, e.g., keyword search. These partitions are indexed in
memory on a query processing node with a guaranteed max size
for the entire collection of Bloom filters. Since the total size of
all Bloom filters is fixed via optimization, they can be predictably
stored in memory. As more data are added, we show how this in-
memory index can be re-optimized to maintain a fixed size (albeit
with an increased error rate for some queries). The result is a fixed-
size index over growing data. While this implies that overall filtering
accuracy goes down over time, if there is a sufficient, known skew
in the query distribution (e.g., a bias towards querying more recent
filters), then perhaps the query-weighted accuracy does not degrade
as much.

We contribute the algorithms to make this architecture a reality.
Assuming a query distribution as a proxy for utility is not a new
idea. For example, caching heavily leverages this principle, as it
persists certain data items that are accessed more frequently than
others [5]. In particular, we will show how to find an optimal index
structure of Bloom filters that minimizes the false positive rate
over a utility distribution, while adhering to a strict space budget.
This can be thought of as a form of “partial” caching, where rather
than evicting a low-utility filter completely from the cache, we
simply reduce its precision. Interestingly enough, this is actually
the optimal thing to do in the case of a Bloom filter.

The contributions of this paper are as follows.
• We propose the truncated Bloom filter as a simple extension

in which the filter is shortened after construction, enabling
the trade-off between space and false positive rate to be
traversed in a fine-grained fashion (§3).

• We formulate a constrained optimization problem for a
collection of truncated Bloom filters that assigns higher
false positive rates to lower-utility filters by modulating
filter lengths, subject to a strict bit-level space budget (§4).

• We prove, at odds with intuition, that the resulting opti-
mization problem is convex. We further derive a relaxation
of the original problem that is also provably convex and
features an objective function that runs in linear time (§4).

• We demonstrate the effectiveness of our method when com-
pared to the state of the art on two representative Bloom
filter applications (§5).

2 BACKGROUND AND PROBLEM STATEMENT
We begin by covering some background and the problem statement.

2.1 Bloom Filters
A Bloom filter [6, 34, 35] is a probabilistic data structure for repre-
senting a set that can answer approximate membership queries. For
convenience, we write B when we refer to a Bloom filter through-
out the paper. An 𝑚-bit Bloom filter B contains 𝑛 elements and
is associated with 𝑘 independent hash functions ℎ1, ℎ2, . . . , ℎ𝑘 . We
denote these parameters as the 3-tuple (𝑚,𝑘, 𝑛). We will use the
notation | · | to denote the size of a sketch. For a Bloom filter, this
is initially given by the parameter𝑚.

The filter is initially an array of all zeros. When adding an ele-
ment 𝑏 to B a total of 𝑘 hashed positions in the filter B[ℎ1 (𝑏)],
B[ℎ2 (𝑏)], . . . ,B[ℎ𝑘 (𝑏)] are set to 1. For a query key 𝑞 each of the
𝑘 hashed positions in the filter is probed. If a position is not set
to 1, then a negative (−) result is returned. If all of the positions
are set to 1, then a positive (+) result is returned. If the key is in
the filter, then it returns the correct answer. If the key is not in the
filter then it returns the correct answer with probability 1 − 𝜀 for a
small parameter 𝜀 ∈ (0, 1). In other words, with probability 𝜀 the
filter returns a positive result for a key that is not in the filter (i.e.,
a false positive).

Denote 𝑞+ as a positive key that is in the filter and 𝑞− as a
negative key that is not in the filter. A Bloom filter by design has
a false positive rate of P(+ | 𝑞−) = 𝜀 and a zero false negative rate
P(− | 𝑞+) = 0. The false positive rate 𝜀 is given as 𝜀 ≈

(︁
1 −

(︁
1 −

1
𝑚

)︁𝑘𝑛 )︁𝑘 . It has been shown that this characterization is a very
close approximation but is not quite correct due to a flawed bit
independence assumption [7]. Since the alternative is an impractical
combinatorial function, we exclusively make use of the closed-form
approximation, as is standard [19].
Filter Collections. A filter collection is a set of 𝑁 Bloom filters
{B1,B2, . . . ,B𝑁 } where each filter B𝑖 represents a data object D𝑖 .
We further assume that there is a utility function𝑢 : D → R≥0 that
maps each data object to a non-negative real number. Throughout
the paper, we write 𝑢 to refer to a utility value that has already
been pre-computed by the function in question. A utility function
is simply a proxy for query frequency. In many environments, ex-
act frequency statistics can be maintained by observing the access
distribution of queries during a historical time window. In environ-
ments where the overhead of these exact statistics is undesirable,
such as main-memory OLTP databases, access frequencies can be
efficiently estimated using a combination of log sampling and ex-
ponential smoothing algorithms [31].
Utility-Weighted False Positive Rate. In the same way that we
can calculate the false positive rate 𝜀 for a single Bloom filter, we
can calculate the expected false positive rate for a filter collection
using the individual false positive rates 𝜀1, ..., 𝜀𝑁 and utility values
𝑢1, 𝑢2, . . . , 𝑢𝑁 . We arrive at a final figure of merit which is the
utility-weighted false positive rate:

E =

𝑁∑︂
𝑖=1

𝑢𝑖 · 𝜀𝑖 (1)

If one interprets the utility values as probabilities, this function
measures the overall precision of the filter collection, e.g., how
accurately the collection skips data given known partition query
probabilities.

2.2 Problem Statement
We would like to produce a final index structure that allocates
space to Bloom filters within a space budget 𝐵 by minimizing the
utility-weighted false positive rate E.

Definition 2.1 (Problem Statement). We are given a space budget
𝐵, data objects D1,D2, . . .D𝑁 and corresponding utility values
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𝑢1, 𝑢2, . . . , 𝑢𝑁 . The goal is to produce a filter collection such that:

𝑁∑︂
𝑖=1
|B𝑖 | ≤ 𝐵

by minimizing

min
𝑁∑︂
𝑖=1

𝑢𝑖 · 𝜀𝑖

where 𝑢𝑖 = 𝑢 (D𝑖 ) and 𝜀𝑖 = 𝜙 (B𝑖 ) with 𝜙 denoting the Bloom filter
false positive rate formula.

This problem statement is very similar to a caching problem
statement at first glance; namely, identify the data items with the
highest utility. The key difference when compared to standard
caching techniques is that items are not simply evicted or cached
according to a space budget. We now have the additional option
of degrading the accuracy of an item. It may very well be that the
optimal solution in some cases is to allocate 0 bits to an item, but
that should only be a consequence of the optimization algorithm.

This formulation is further an instance of a broader problem that
we call a utility-compressed sketch. In the general case, the space for
a particular data object’s sketch |X𝑖 | is allocated by minimizing a
weighted sum across error functions of the form 𝜙 ( |X𝑖 |) subject to a
budget constraint

∑︁𝑁
𝑖=1 |X𝑖 | ≤ 𝐵. In typical sketches, the error func-

tion 𝜙 is monotonic in space. We can think of a utility-compressed
sketch as an optimization over lossy data structures that represent
data items at several different “resolutions”, which is related to
similar problems in data compression [3]. There are many possible
definitions of 𝜙 ( |X𝑖 |). In the case of a Bloom filter, 𝜙 ( |X𝑖 |) is the
false positive rate as a function of its size – we could apply the same
reasoning to other sketches such as the count-min sketch [16].

3 TRUNCATED BLOOM FILTERS
To solve this problem, we will introduce a new sketch called a trun-
cated Bloom filter. It is based on the simple idea that previously-
allocated space in a Bloom filter can later on be revoked. This con-
cept is useful for a few key reasons. First, it allows us to formulate
the optimization problem as a revocation of previously-allocated
space; that is, we can start with a uniform allocation of space and
remove bits based on the optimization objective. Second, it allows
us to operate in an online setting where new data are added but we
wish to keep a fixed storage size. Finally, it allows for consistent
querying across the entire filter collection with a fixed set of hash
functions.

The standard Bloom filter is inflexible when there are changing
requirements for false positive rates. Both the target false positive
rate and the expected number of elements in the filter are often
specified prior to construction, which means that the Bloom filter
usually must be reconstructed from scratch if less space is desired
in the future. While there has been work on resizing fingerprint
filters (i.e., expansion or contraction) as the number of elements in
the filter changes [20], we study the problem of reducing the space
occupied by a Bloom filter, since the standard Bloom filter does not
support fine-grained space reduction operations.

3.1 Key Differences
We begin by highlighting the key differences between a truncated
Bloom filter and a standard Bloom filter.

Definition 3.1 (Truncated Bloom Filter). Let B be a Bloom fil-
ter with𝑚 bits, 𝑘 hash functions, and 𝑛 added elements. A trun-
cated Bloom filter is a new Bloom filter B′ formed by removing
the rightmost𝑚 −𝑚′ bits from B. The truncated filter B′ satisfies
B′ [1, 2, . . . ,𝑚′] = B[1, 2, . . . ,𝑚′].

The only notational difference is that a new parameter 𝑚′ is
introduced to specify the truncated filter length. To operationalize
this definition, we show that simply considering the subset of hash
functions that fall before𝑚′ is sufficient to query the filter.

Definition 3.2 (Valid Hash Function). We say that a hash function
ℎ𝑠 : U → [𝑚] taking an arbitrary object 𝑜 ∈ U from universe
U as input is a valid hash function if ℎ𝑠 (𝑜) ≤ 𝑚′. We say that a
hash function is an invalid hash function if ℎ𝑠 (𝑜) > 𝑚′, i.e., a hash
function is valid if it maps to the remaining region and is invalid if
it maps to the truncated region.

These concepts are also highlighted visually in Figure 1. As we
move to the right in the figure, the filters exhibit increasing levels of
truncation (i.e., smaller values of𝑚′). Given a negative query key𝑞−
the number of valid hash functions (solid arrows) decreases, while
the number of invalid hash functions (dotted arrows) increases.

Membership queries are issued to a truncated filter using the
procedure described in Algorithm 1. The key algorithmic differ-
ence in querying a truncated Bloom filter is that there is an extra
condition to check whether each hash function is valid or not.

Input: Query 𝑞, truncated Bloom filter B′ with𝑚′ ≤ 𝑚 bits,
𝑘 hash functions ℎ1, ℎ2, . . . , ℎ𝑘 where ℎ𝑠 : U→ [𝑚]

for 𝑠 ∈ [𝑘] do
if ℎ𝑠 (𝑞) ≤ 𝑚′ ∧ B′ [ℎ𝑠 (𝑞)] = 0 then

return −
end

end
return +

Algorithm 1: Querying a truncated Bloom filter.

There are also a few degenerate cases that are worth noting. First,
if𝑚′ = 0 then the query always returns a positive result and has a
100% false positive rate. Second, if there are no valid hash functions,
then the query always returns a positive result and also has a 100%
false positive rate. Third, if𝑚′ = 𝑚 then the false positive rate is
unchanged and is thus identical to the original filter.

3.2 False Positive Rate Analysis
Aside from the degenerate cases, the false positive rate of a trun-
cated Bloom filter strictly falls between 100% and the original false
positive rate. To build intuition concerning the false positive rate
of a truncated Bloom filter, consider the first filter in Figure 1. Only
3 out of the 4 hash functions are valid, and the false positive rate
in this example is (1 − (1 − 1

𝑚1
)4𝑛1 )3 which is strictly higher than

the false positive rate (1 − (1 − 1
𝑚1
)4𝑛1 )4 of the original filter. In

fact, the false positive rate is governed by the number of valid hash
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Figure 1: An overview of our method.

functions. Before a particular query, we do not know precisely how
many hash functions will be valid. Instead, we define a random func-
tion (called the false positive function) 𝜙 (·), that returns a random
variable for the false positive rate, as shown in Proposition 3.4.

Definition 3.3 (False Positive Function). The false positive function
𝜙 (𝑉 ) of a truncated Bloom filter is:

𝜙 (𝑉 ) =
(︂
1 −

(︂
1 − 1

𝑚

)︂𝑘𝑛)︂𝑉
(2)

where𝑉 is a random variable for the number of valid hash functions
with range 𝑅𝑉 = {0} ∪ [𝑘].

Proposition 3.4 (False Positive Rate). Given a collection of 𝑘
independent and uniform hash functions ℎ1, . . . , ℎ𝑘 and the fraction
of remaining bits 𝑝 = 𝑚′

𝑚 after truncation, the false positive rate 𝜀 of
a truncated Bloom filter assuming bit independence is:

𝜀 = E[𝜙 (𝑉 )] =
𝑘∑︂
𝑣=0

(︂
1 −

(︂
1 − 1

𝑚

)︂𝑘𝑛)︂𝑣
·
(︃
𝑘

𝑣

)︃
· 𝑝𝑣 (1 − 𝑝)𝑘−𝑣 (3)

with 𝑉 ∼ Bin(𝑘, 𝑝) represented as a binomial random variable.

Proof. Let B[1, 2, . . . ,𝑚] be a Bloom filter and let B′ =
B[1, 2, . . . ,𝑚′] be its truncated filter. Let 𝐻 = {ℎ1, . . . , ℎ𝑘 } be the
set of 𝑘 hash functions used in filter B. Let B′ (𝑞) ∈ {−, +} be
the result of Algorithm 1. The false positive rate is defined as 𝜀 =
Pr[B′ (𝑞) = + | 𝑞 ∉ B], where 𝑞 is a key that is not stored in Bloom
filter B. From the query algorithm we have that B′ (𝑞−) = + if for
every ℎ ∈ 𝐻 with ℎ(𝑞) ≤ 𝑚′ it holds that B′ [ℎ(𝑞)] = B[ℎ(𝑞)] = 1.
Let I ⊆ 𝐻 be a subset of the hash functions and let 𝑞 ∉ B be a key
that is not stored in the filter. We define the random variables:

• 𝐴I : Given that 𝑞 ∉ B, if ⋀︁ℎ∈I B[ℎ(𝑞) = 1] then 𝐴I = 1,
otherwise 𝐴I = 0.

• 𝐶I : if ℎ(𝑞) ≤ 𝑚′ for every ℎ ∈ I and ℎ(𝑞) > 𝑚′ for every
ℎ ∈ 𝐻 \ I then 𝐶I = 1, otherwise 𝐶I = 0.

We have,

𝜀 = Pr[B′ (𝑞) = + | 𝑞 ∉ B] = Pr
[︄ ⋁︂
I⊆𝐻

(︂
𝐴I

⋀︂
𝐶I )

)︂]︄
=

∑︂
I⊆𝐻

Pr
[︂
𝐴I

⋀︂
𝐶I

]︂
=

𝑘∑︂
𝑣=0

∑︂
I⊆𝐻, | I |=𝑣

Pr
[︂
𝐴I

⋀︂
𝐶I

]︂

=

𝑘∑︂
𝑣=0

∑︂
I⊆𝐻, | I |=𝑣

Pr[𝐶I ] · Pr[𝐴I | 𝐶I ]

=

𝑘∑︂
𝑣=0

∑︂
I⊆𝐻, | I |=𝑣

𝑝𝑣 (1 − 𝑝)𝑘−𝑣 · Pr
[︄ ⋀︂
ℎ∈I
B[ℎ(𝑞) = 1] | 𝑞 ∉ B

]︄

=

𝑘∑︂
𝑣=0

∑︂
I⊆𝐻, | I |=𝑣

𝑝𝑣 (1 − 𝑝)𝑘−𝑣 ·
∏︂
ℎ∈I

Pr [B[ℎ(𝑞) = 1] | 𝑞 ∉ B]

=

𝑘∑︂
𝑣=0

∑︂
I⊆𝐻, | I |=𝑣

𝑝𝑣 (1 − 𝑝)𝑘−𝑣
(︄
1 −

(︃
1 − 1

𝑚

)︃𝑘𝑛)︄𝑣
=

𝑘∑︂
𝑣=0

(︃
𝑘

𝑣

)︃
𝑝𝑣 (1 − 𝑝)𝑘−𝑣

(︄
1 −

(︃
1 − 1

𝑚

)︃𝑘𝑛)︄𝑣
= E[𝜙 (𝑉 )]

□

4 OPTIMIZING FILTER COLLECTIONS
In this section, we formalize a constrained optimization problem
that produces a utility-compressed sketch of truncated Bloom filters.
We first prove that the optimization problem is convex and can thus
be solved using a standard algorithm for convex optimization. We
then derive a relaxation that is also shown to be convex. Crucially,
the relaxation can be solved faster than the original problem both
in theory and in practice.

4.1 An Exact Optimization Problem
We are given a space budget 𝐵, utility values 𝑢1, 𝑢2, . . . , 𝑢𝑁 and
Bloom filters B1,B2, . . . ,B𝑁 constructed with parameter tuples of
the form (𝑚𝑖 , 𝑘𝑖 , 𝑛𝑖 ).
Formulation. We begin with a simple description of the opti-
mization problem. The basic intuition is that a higher false positive
rate is assigned to a filter that has a lower utility value, and a
lower false positive rate is assigned to a filter with a higher util-
ity value. To achieve this desired property, we write 𝑢 · E[𝜙 (𝑉 )].
The false positive rate of a truncated Bloom filter is modulated by
setting the number of remaining bits 𝑚′ prior to the truncation
operation. Therefore, our variables are simply the truncated filter
lengths𝑚′1,𝑚

′
2, . . . ,𝑚

′
𝑁
across our collection of Bloom filters. Re-

ferring back to Figure 1, we can see how the utility values affect
the truncated filter lengths in our optimization routine.
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Following this intuition, the objective is to minimize the dot
product between the utility values and the false positive rate terms
by finding an optimal assignment of truncated filter lengths, subject
to a few constraints. First, the sum of the𝑚′

𝑖
must not exceed the

budget 𝐵. Second, each 𝑚′
𝑖
must fall between 0 and the original

filter length𝑚𝑖 . Using the false positive rate from Equation (3), we
define our constrained optimization problem as follows:

min
𝑚′1,...,𝑚

′
𝑁

𝑁∑︂
𝑖=1

𝑢𝑖 · E[𝜙 (𝑉𝑖 )]

s.t.
𝑁∑︂
𝑖=1

𝑚′𝑖 ≤ 𝐵

0 ≤ 𝑚′𝑖 ≤ 𝑚𝑖 , ∀𝑖 ∈ [𝑁 ]

where 𝐵 is the target budget, and each variable𝑚′
𝑖
corresponds to a

truncated length. Note that each truncated filter length𝑚′
𝑖
∈ R≥0 is

currently treated as a continuous optimization variable. Of course,
a fractional truncated filter length is not possible, so we simply
take the optimal solution and for each 𝑖 ∈ [𝑁 ] round down to the
nearest integer;𝑚′

𝑖
← ⌊𝑚′

𝑖
⌋. This ensures that the budget constraint

is still satisfied. We can also substitute a budget equality constraint∑︁𝑁
𝑖=1𝑚

′
𝑖
= 𝐵 for the budget inequality constraint

∑︁𝑁
𝑖=1𝑚

′
𝑖
≤ 𝐵.

Convexity. In order to establish convexity, we need to verify that
the objective and constraint functions are all convex [8]. By inspec-
tion, the constraint functions in the above formulation are linear
and therefore convex. Hence, it suffices to establish the convexity
of the objective function. In Lemma 4.1, we show that the false
positive function 𝜙 (·) as written in Equation (2) is convex on R≥0.

Lemma 4.1 (Convexity of 𝜙). 𝜙 (𝑥) =
(︁
1−

(︁
1− 1

𝑚

)︁𝑘𝑛 )︁𝑥 is convex
on 𝑥 ≥ 0 for𝑚,𝑘, 𝑛 > 0.

Proof. By the definition of convexity, we want to show that the
second derivative 𝑑2𝜙 (𝑥 )

𝑑𝑥2 is non-negative. Let 𝑥 ≥ 0 and𝑚,𝑘, 𝑛 > 0.
Define 𝑤 = 1 −

(︁
1 − 1

𝑚

)︁𝑘𝑛 which is a strictly positive value by
construction. We differentiate twice to obtain:

𝑑2𝜙 (𝑥)
𝑑𝑥2

= 𝑤𝑥 log2 (𝑤) ≥ 0.

□

It has now been shown that the truncated Bloom filter false
positive function is convex under mild conditions. We now prove a
more surprising result concerning the convexity of the objective
function. Intuition derived from a plot of the binomial probability
mass function may suggest that the objective function is unlikely
to be convex in the optimization variable. On the contrary, we find
that the function is indeed convex, as presented in Proposition 4.2.
The structure of the proof relies the observation that the binomial
distribution is an exponential family, which allows us to employ
properties of such families to infer that our objective function is
convex.

Proposition 4.2 (Objective Convexity). The objective function
𝑓 (m′) = ∑︁𝑁

𝑖=1 𝑢𝑖 · E[𝜙 (𝑉𝑖 )] is convex in m′ on the hyper-rectangle
[0,𝑚1] × . . . × [0,𝑚𝑁 ].

Proof. Recall thatm′ = [𝑚′1, . . . ,𝑚
′
𝑁
]. We first note the symme-

try of the objective function. The core idea is to show that the base
function E[𝜙 (𝑉𝑖 )] is convex in a single variable𝑚′

𝑖
and then deduce

that the objective function is composed of a convexity-preserving
operation on multiple instances of the base function with distinct
variables.

We borrow from the statistics literature the known fact that the
binomial distribution is an exponential family for a fixed number of
trials (the number of hash functions in our case). In particular, this
means that the binomial probability mass function can be rewrit-
ten in a canonical form. Let 𝑋 be an exponential family random
variable with probability mass function P𝑋 (𝑥 ;𝜃 ) that depends on
the parameter 𝜃 . Assuming that 𝜙 (·) is convex on the (real interval)
range of 𝑋 and the expectation E[𝑋 ] is linear in the parameter 𝜃 ,
then it is known that E[𝜙 (𝑋 )] is convex in the parameter 𝜃 [47, 49].

Let𝑚𝑖 , 𝑘𝑖 , 𝑛𝑖 > 0 and 0 ≤ 𝑚′
𝑖
≤ 𝑚𝑖 for all 𝑖 ∈ [𝑁 ]. Each 𝑉𝑖 is a

binomial random variable from an exponential family with mass
P𝑉𝑖 (𝑣𝑖 ;𝑝𝑖 ) where 𝑝𝑖 =

𝑚′𝑖
𝑚𝑖

. The range of a binomial random variable
is non-negative. By Lemma 4.1, it then follows that the function
𝜙 (·) is convex on the range of 𝑉𝑖 . The expectation E[𝑉𝑖 ] = 𝑘𝑖𝑝𝑖 is
linear in the parameter 𝑝𝑖 [10]. Therefore, we have that the function
E[𝜙 (𝑉𝑖 )] is convex in the success probability parameter 𝑝𝑖 . This
implies that the second derivative with respect to 𝑝𝑖 is non-negative
𝑑2E[𝜙 (𝑉𝑖 ) ]

𝑑𝑝2
𝑖

≥ 0 on [0, 1]. We differentiate Equation (3) twice with
respect to the success probability 𝑝𝑖 and obtain:

𝑑2E[𝜙 (𝑉𝑖 )]
𝑑𝑝2

𝑖

=

𝑘𝑖∑︂
𝑣𝑖=0

𝜙 (𝑣𝑖 ) ·
(︃
𝑘𝑖

𝑣𝑖

)︃
·
[︂
𝑣𝑖 (𝑣𝑖 − 1)𝑝𝑖 𝑣𝑖−2 (1 − 𝑝𝑖 )𝑘𝑖−𝑣𝑖

−2𝑣𝑖 (𝑘𝑖 − 𝑣𝑖 )𝑝𝑖 𝑣𝑖−1 (1 − 𝑝𝑖 )𝑘𝑖−𝑣𝑖−1

+(𝑘𝑖 − 𝑣𝑖 ) (𝑘𝑖 − 𝑣𝑖 − 1)𝑝𝑖 𝑣𝑖 (1 − 𝑝𝑖 )𝑘𝑖−𝑣𝑖−2
]︂

It remains to show that E[𝜙 (𝑉𝑖 )] is also convex in the truncated
filter length variable 𝑚′

𝑖
. Notice that 𝑑𝑝𝑖

𝑑𝑚′
𝑖

= 1
𝑚𝑖

> 0. We now
differentiate E[𝜙 (𝑉𝑖 )] twice with respect to𝑚′

𝑖
and find that the

following holds on [0,𝑚𝑖 ]:

𝑑2E[𝜙 (𝑉𝑖 )]
𝑑𝑚′

𝑖
2 =

1
𝑚𝑖

2 ·
𝑑2E[𝜙 (𝑉𝑖 )]

𝑑𝑝2
𝑖

≥ 0

Specifically, the second derivative with respect to our desired vari-
able𝑚′

𝑖
can be rewritten as a positive constant multiplied by the

second derivative with respect to 𝑝𝑖 evaluated at 𝑚′
𝑖
/𝑚𝑖 . Hence,

E[𝜙 (𝑉𝑖 )] is convex in the variable𝑚′𝑖 since
𝑑2E[𝜙 (𝑉𝑖 ) ]

𝑑𝑚′
𝑖
2 ≥ 0. Lastly, a

weighted sum of 𝑁 convex functions with non-negative coefficients
𝑢𝑖 ≥ 0 is known to preserve convexity, so the objective function 𝑓

is convex in m′ on the hyper-rectangle [0,𝑚1] × . . . × [0,𝑚𝑁 ]. □

Complexity Analysis. The time complexity of computing the
objective is O(𝑁 max𝑖∈[𝑁 ] 𝑘𝑖 ). When objective functions are com-
putationally expensive, the evaluation of gradient vectors and Hes-
sian matrices at high-dimensional points in space can become a
critical bottleneck for many convex optimization solvers.

In our case, linearity of differentiation suggests that the run
time of the underlying solver will be highly dependent on the time
complexity of the objective function. For example, each entry of
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the gradient would contain a summation that mirrors the inner
summation over 𝑘𝑖 in the objective function. While this running
time is likely acceptable for many applications, in the next section
we explore how to find a close approximation of the optimal solution
with an objective function that can be computed in only linear time
O(𝑁 ). In doing so, we remove the dependency on the number of
hash functions and eliminate the O(𝑘𝑖 ) factor.

4.2 A Faster Relaxation
In this section, we describe a relaxation of the optimization problem
that features an approximate objective function. In particular, the
objective function is a lower bound of the original objective function
from the previous section. When minimizing a lower bound, we are
able to simplify and speed up the optimization problem by paying
the price of an exact optimal solution. Such lower bound methods
are often applied when the original problem is intractable. We find
that, while our original problem is certainly tractable, minimizing
a lower bound is a solution that benefits both theory and practice.
The Lower Bound. We now derive a lower bound for the objec-
tive function. Since Lemma 4.1 states that 𝜙 is a convex function,
we invoke Jensen’s inequality E[𝜙 (𝑉 )] ≥ 𝜙

(︁
E[𝑉 ]

)︁
and write the

following lower bound for the false positive rate term using the
fact that E[𝑉 ] = 𝑘𝑝 .

𝜙
(︁
E[𝑉 ]

)︁
=

(︂
1 −

(︂
1 − 1

𝑚

)︂𝑘𝑛)︂𝑘𝑝
(4)

Hence, we can reformulate the objective function to yield a re-
laxation by substituting the lower bound in Equation (4) for the
original false positive rate term from Equation (3). We can verify
that the new problem is a relaxation of original problem, since∑︁𝑁
𝑖=1 𝑢𝑖 · 𝜙

(︁
E[𝑉𝑖 ]

)︁
≤ ∑︁𝑁

𝑖=1 𝑢𝑖 · E[𝜙 (𝑉𝑖 )] and the feasible region
remains the same.
Convexity. In a similar fashion to the previous section, we now
confirm that the approximate objective function is convex in our
optimization variable. This brings us to Proposition 4.3.

Proposition 4.3 (Relaxation Convexity). The objective func-
tion𝑔(m′) = ∑︁𝑁

𝑖=1 𝑢𝑖 ·𝜙
(︁
E[𝑉𝑖 ]

)︁
is convex inm′ on the hyper-rectangle

[0,𝑚1] × . . . × [0,𝑚𝑁 ].

Proof. We show that the desired function can be constructed
from a base function𝜙 (·) that is known to be convex and a convexity-
preserving operation. Let𝑚𝑖 , 𝑘𝑖 , 𝑛𝑖 > 0 and 0 ≤ 𝑚′

𝑖
≤ 𝑚𝑖 for all

𝑖 ∈ [𝑁 ]. Define 𝑥𝑖 = 𝑘𝑖𝑝𝑖 and compute 𝑑𝑥𝑖
𝑑𝑚′

𝑖

=
𝑘𝑖
𝑚𝑖

> 0. By Lemma
4.1, the base function 𝜙 (𝑥𝑖 ) is convex in 𝑥𝑖 since 𝑥𝑖 ≥ 0. This means
that its second derivative is non-negative. Then, we have:

𝑑2𝜙 (𝑥𝑖 )
𝑑𝑚′

𝑖
2 =

𝑘2
𝑖

𝑚2
𝑖

· 𝑑
2𝜙 (𝑥𝑖 )
𝑑𝑥2

𝑖

≥ 0

Therefore, the function 𝜙 (𝑥𝑖 ) is convex in𝑚′𝑖 on [0,𝑚𝑖 ] since the
second derivative with respect to𝑚′

𝑖
is non-negative. Finally, the

weighted sum of the base functions with non-negative coefficients
𝑢𝑖 ≥ 0 preserves convexity, so we conclude that 𝑔 is convex in m′

on the hyper-rectangle [0,𝑚1] × . . . × [0,𝑚𝑁 ]. □

Complexity Analysis. The key difference in complexity when
comparing the lower bound to the original objective function is

that the O(𝑘𝑖 ) factor in the running time is replaced with O(1) time
to compute the binomial expected value E[𝑉𝑖 ] = 𝑘𝑖𝑝𝑖 . The overall
time complexity for computing the objective function is reduced
to linear O(𝑁 ) with respect to the number of Bloom filters. The
run time of many solvers would also be reduced, as was discussed
previously.
Further Relaxations. We can further simplify the lower bound in

Equation (4) observing that 1−
(︂
1 − 1

𝑚

)︂𝑘𝑛
≈ 1− 𝑒−𝑘𝑛/𝑚 and using

the optimal value of 𝑘 in the Bloom filter, 𝑘 = 𝑚
𝑛 ln 2. The objec-

tive function becomes minm′
∑︁𝑁
𝑖=1 𝑢𝑖 · 0.618

𝑚′𝑖/𝑛𝑖 , which is also a
convex function. We can further simplify the function observing
that usually𝑚′

𝑖
≤ 4𝑛𝑖 , so the function 0.618𝑚′𝑖/𝑛𝑖 can be approxi-

mated with the line −0.213𝑚
′
𝑖

𝑛𝑖
+ 1. Hence, the objective function

becomes minm′
∑︁𝑁
𝑖=1 −0.213 ·

𝑢𝑖
𝑛𝑖
𝑚′
𝑖
. Equivalently, the objective can

be written as maxm′
∑︁𝑁
𝑖=1

𝑢𝑖
𝑛𝑖
𝑚′
𝑖
. Notice that it is trivial to optimize

this function while satisfying the size constraints of the truncated
filters. We sort and traverse all Bloom filters in descending order
of 𝑢𝑖

𝑛𝑖
. For each Bloom filter B𝑖 , we assign the maximum value of

𝑚′
𝑖
≤ 𝑚𝑖 that does not violate the total size constraint. When the

total size becomes 𝐵, then for all the remaining filters we set𝑚′
𝑖
= 0.

The overall running time of the algorithm is O(𝑁 log𝑁 ).

5 EVALUATION
In this section, we evaluate our method on two applications and
several microbenchmarks. When there is some skew in the utility
distributions, the results show that we outperform the state of the
art on key metrics across the range of possible memory budgets. Ad-
ditionally, we find that our method displays minimal performance
degradation under very tight budgets.

5.1 Implementation Details
We first give some details about the hardware and software char-
acteristics that form the basis of the evaluation. Experiments were
run on a single machine that has an 8 core Apple M3 processor, 8
GB of RAM, and a 512 GB SSD.

The research prototype for our method was written in Python
3.10. The truncated Bloom filters were built using the bitarray
package [46]. Filters were constructed with the standard procedure
that is commonly used in practice. Specifically, the construction
algorithm takes in a target false positive rate 0 < 𝜀 < 1 (in our case
𝜀 = 1𝑒 − 4) and the number of elements 𝑛 > 0 that will be added to
the filter. It then calculates an estimate for the optimal filter length
𝑚 and number of hash functions 𝑘 given these parameters. We
employed the efficient murmurhash3 hash function family [1].

The optimization code was implemented in CVXPY [23], and the
optimal solutionwas found by an embedded conic solver (ECOS) [24].
ECOS is an interior-point method for second-order cone programs.
The relaxation formulation was implemented, since the original
objective function contains the non-convex binomial probability
mass function, which violates disciplined convex programming
(DCP). The implementation additionally featured a budget equality
constraint, as well as floor function rounding to map the optimal
solution onto the natural numbers.
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5.2 Data Skipping
The first application that we evaluate our method on is data skip-
ping [28, 52, 53, 56]. Data skipping is a technique employed by
several query engines [2, 13, 17, 18, 42] to reduce read operations,
often when tables are stored in a horizontally-partitioned columnar
file format [51] such as Apache Parquet. In the conventional case, a
partition (i.e., row group) is associated with attribute metadata that
enables a query to skip certain partitions when the metadata index
reveals that there are no matching tuples. By filtering out irrele-
vant data with a lightweight index, data skipping can significantly
accelerate queries that have highly-selective predicates [54].

A Bloom filter is often the core data structure underlying point
queries over categorical attributes. This is because we can make a
determinationwhether at least one tuple that satisfies the predicates
is either certainly not in the partition or is likely in the partition
with a small probability of being wrong (i.e., false positive). In our
evaluation, we associate a Bloom filter with each of the 𝑝 categorical
attributes in a row group. This yields a total of 𝑁 · 𝑝 Bloom filters
in the full index. Each attribute filter collection is given a space
budget that is a fraction of the original collection size (e.g., 20% of
the original). The filters are then truncated according to the mean
utility of the tuples contained in a row group.

The metric of success for in-memory data skipping with Bloom
filters is minimizing the time that is wasted due to false positives.
Therefore, the goal in this setting is to produce a truncated Bloom
filter index that has only a negligible impact onwasted time and falls
within a space budget. The setup for the data skipping experiments
is now described in detail.
Datasets. We evaluate our approach on 3 datasets. First, Connecti-
cut real estate sales (RE) contains 997,162 tuples and 2 categorical
attributes [14]. Each tuple corresponds to a real estate sale in the
State of Connecticut over a 20-year period. Second, Washington
electric vehicle registrations (EV) contains 162,637 tuples and 6
categorical attributes [57]. Each tuple is a current electric vehicle
registration. Third, NASA HTTP web server logs (NASA) contains
3,452,337 tuples and 1 categorical attribute [30]. Tuples consist
of log entries from a web server that hosted the NASA website.
Row group size is systematically determined according to the total
number of tuples in a table.
Query Model. Every query on a table T is associated with a set of
𝑝 equality predicates formed over categorical attributes 𝐴1, . . . 𝐴𝑝

that have the structure 𝐴𝑖 = 𝑎𝑖 . We further restrict our evaluation
to the class of conjunctive queries that limit their result set to the
cardinality 𝑘 . The form of the queries is as follows:

SELECT ∗ FROM T
WHERE 𝐴1 = 𝑎1 AND . . . AND 𝐴𝑝 = 𝑎𝑝

LIMIT 𝑘 ;

We assume that during the execution of a query, we visit partitions
in decreasing order of utility until 𝑘 tuples have been added to the
result set, or we reach the lowest utility partition.
Query Generation. We produce a workload of 2,500 queries for
each dataset that conforms to the structure given above by choosing
the most common predicate combinations. For a given limit value
of 𝑘 , we use the workload to compute the utility value of each tuple
as its access frequency after a full table scan is run for each query.

5.2.1 Metrics. Three key evaluation metrics are defined.

• Skip rate: The ratio # skipped
# visited between the number of parti-

tions that are skipped by the indexes and the total number
of partitions that are visited by a query.

• Wasted time: The total amount of time that is wasted due
to index false positives. Wasted time captures when the
index returns a positive result for a partition, and the query
result set is then found to be empty. This metric is a proxy
for false positive rate but is also correlated with predicate
selectivity.

• Query latency: The execution time of a query. Query la-
tency includes the time from reading the indexes from disk
(if applicable), checking the query against the indexes, read-
ing partitions from disk, and running queries on partitions.

5.2.2 Baselines. Each baseline as defined below is implemented or
reimplemented in Python to promote a fair comparison.

• Alphabetical Range (R): In each partition, the values
for an attribute are first sorted in lexicographical order
𝑦1 ≤ 𝑦2 ≤ . . . ≤ 𝑦𝑙 . The query attribute value𝑦𝑞 is tested in
the predicate𝑦1 ≤ 𝑦𝑞 ≤ 𝑦𝑙 . If the predicate evaluates to true,
the partition is read from disk and is skipped otherwise.

• On-disk Filters (D): Each filter is stored at full resolution
(i.e., no truncation) on disk [18]. When a partition is visited,
the filter is read intomainmemory, and the query is checked
against the index.

• Proportional Truncation (PT): Each filter is truncated
according to the policy 𝑚′

𝑖
= ⌊𝐵/𝐹 · 𝑚𝑖 ⌋ where 𝐹 is the

full-resolution (original) size of the index. This approach
is an analog of a modular Bloom filter [36], since we are
sizing the first module in proportion to the memory budget.

• Top Utility (TU):A policy is applied that closely resembles
those commonly used for cache eviction (e.g., least recently
used or least frequently used) [12]. Full-resolution filters are
incrementally added to the cache 𝐶 in decreasing order of
utility until the budget is reached, and then the remaining
filters are allocated 0 bits. Formally, this greedy algorithm
finds the subset of filters𝐶 ⊆ {B1, . . . ,B𝑁 } that maximizes∑︁
𝑐∈𝐶 𝑢𝑐 subject to

∑︁
𝑐∈𝐶𝑚𝑐 ≤ 𝐵.

• Elastic Bloom Filter (EBF): 7 caches are created. Each
cache𝐶 𝑗 for 0 ≤ 𝑗 ≤ 6 contains filters that model a different
number of filter units via the truncation policy𝑚′

𝑖 𝑗
= ⌊ 𝑗/6 ·

𝑚𝑖 𝑗 ⌋ [32]. To ensure that the budget 𝐵 is fully utilized at
its larger values, only the ℎ = ⌈(1 − 𝐵/𝐹 ) · 6⌉ highest-level
caches are enabled. Each cache is allocated an equal fraction
of the budget 𝐵′ = ⌊𝐵/ℎ⌋. Filters are added from high-level
to low-level caches in decreasing order of utility until each
cache budget is reached, and the remaining filters are placed
in 𝐶0.

5.2.3 Results. Wemeasure the performance of each method across
the three metrics. For each dataset, we evaluate several budgets
that fall in regular increments between 10% and 90% of the original
index size. The baselines that guarantee the desired budgets are
plotted as curves, while the baselines that have a fixed size are
represented as points. We report the median metric for each budget
across 10 independent trials.
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Figure 2: Average skip rate on RE, EV, and NASA at different
size budgets (higher is better).We outperform the in-memory
methods and are similar to the on-disk filter.

Proportional Truncation, Top Utility, and Elastic Bloom Filter
have distinct drawbacks. First, Proportional Truncation is utility-
oblivious in that it has a similar increase in false positive rate across
all of the filters in the index. Second, Top Utility is utility-aware but
struggles in the setting of long-tailed queries, since it exclusively
produces false positives (i.e., cache misses) past a certain point.
Third, Elastic Bloom Filter has access to more false positive rate
options (i.e., filter lengths) and is utility-aware, but it lacks an
optimization algorithm. The goal of our method is to mitigate these
drawbacks and thereby maintain satisfactory performance across
the range of possible budgets.
Skip Rate. In Figure 2, we see that our method achieves a similar
skip rate to the full-resolution filters stored on disk, while improving
upon the in-memory baselines. Alphabetical range has a near-zero
skip rate, which shows that such a strategy is a poor choice for
point queries. For this reason, we will omit further discussion about
alphabetical range. Notably, the skip rates of Proportional Trunca-
tion and Top Utility fall sharply at budgets of less than 30%, while
our method maintains only a modest reduction in skip rate. Elastic
Bloom Filter usually has a higher skip rate than Top Utility and Pro-
portional Truncation but is still lower than our method, although
the difference is small on the NASA dataset.
Wasted Time. Most importantly, we find in Figure 3 that our
methodwastes less time on false positives than the other in-memory
baselines. In particular, Proportional Truncation and Top Utility
both have significant wasted time in scenarios with tight budgets.
Elastic Bloom Filter wastes less time than Proportional Trunca-
tion and Top Utility on two of the datasets, as it benefits from
finer-grained filter lengths. Consider the NASA dataset as a repre-
sentative example. It is observed that at a 10% budget, our method
wastes less time than both Proportional Truncation and Top Utility
by a factor of ≈ 2 to 2.5, as well as Elastic Bloom Filter by a factor of
≈ 1.6. The performance advantage holds until Elastic Bloom Filter
and Proportional Truncation catch up to our method at a budget of
80% of the original index size. Top Utility also eventually catches
up at a budget of 90%.

Furthermore, our method performs better than the alternatives
under varying attribute counts and predicate selectivity. Indeed,
low predicate selectivity can lead to increased wasted time, a con-
clusion that can be reached by examining the adversarial EV dataset
(middle). The reason for the increased wasted time is because there
are many partitions that contain all of the attribute values, even
though few tuples jointly satisfy the predicates.

Figure 3: Average wasted time on RE, EV, and NASA at differ-
ent index size budgets 𝐵 (lower is better). We outperform the
in-memory methods.

Figure 4: Average query latency on RE, EV, and NASA at dif-
ferent index size budgets 𝐵 (lower is better). We are generally
the lowest latency choice across all methods and budgets.

Query Latency. We show in Figure 4 that our method is generally
the fastest overall when compared to each of the baselines. The
reason for this is two-fold. First, by minimizing the false positive
rate in an optimal fashion, we reduce the impact that the failure
modes of the in-memory methods have on wasted time, as afore-
mentioned. Second, our index sits in memory, which accelerates
our queries in most instances when compared to disk.
Sensitivity Analysis. In Figure 5, we measure the skip rate of
our method as we vary the limit value and predicates for the first
100 queries on the RE dataset. Compression ratio (CR) is the space
budget as a percentage of the original attribute filter collection size.
On the left, we see that as we increase the limit value, the skip
rate decreases for smaller budgets. This is due to the reduction in
skewness as the utility distribution over the partitions becomes
increasingly uniform. At larger budgets, the reduction in skip rate
is negligible. On the right, we see that predicates can have different
selectivities. As predicates are combined, the probability of a parti-
tion jointly satisfying the predicates decreases, leading to a higher
skip rate.
Hybrid Memory & Disk Methods. Our method was designed to
optimize an in-memory Bloom filter collection (which is usually
the case in other systems [4, 19, 31]). However, we can evaluate a
hybrid version of ourmethod that has both an optimized in-memory
index and access to filters on disk. In this instance, we store the
bit positions from the invalid hash functions. Given a positive in-
memory result, the truncated region of the filter is read from disk to
probe those positions and reduce the false positive rate. In Figure 6,
we compare the query latency across RE and NASA for our hybrid
version (HBB) and a hybrid version of Top Utility (HTU) that stores
the remaining filters on disk.
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Figure 5: A sensitivity analysis for data skipping.

Figure 6: Hybrid memory & disk methods on RE (left) and
NASA (right) at different index size budgets.

On the NASA dataset, the large fraction of negative queries (i.e,
high predicate selectivity) enables our hybrid version to resolve
most of the queries in memory with the optimized index while
correcting the false positives in only a few additional filter reads.
This leads HBB to outperform HTU at smaller space budgets. For
the roughly equal fraction of positive and negative queries in RE,
HBB does worse than HTU across the space budgets. On the one
hand, as the percentage of negative queries grows, the performance
of HBB improves. On the other hand, HTU is consistent across
varying fractions of negative queries, since the number of filter
reads is only dependent on the space budget. With knowledge of
the fraction of negative keys for a particular filter, the problem of
optimizing our method for disk accesses is left as future work.

5.3 Full-Text Search
Full-text search is a fundamental problem in information retrieval.
In the context of search engines, the task is to find the documents
that match the search terms (i.e., tokens), and then rank the match-
ing documents according to some notion of relevance. If we repre-
sent each document as a set of tokens, we find that the matching
problem is no different than issuing membership queries to the doc-
ument. Following this intuition, a document can be represented as
a Bloom filter (i.e., a signature file). Provided that the Bloom filters
are constructed with the same hash functions and filter lengths,
we can compute the set intersection between a query filter and a
document filter in O(𝑚) time by simply applying a bit-wise AND.

The state-of-the-art approach for full-text search is the inverted
index. In its most basic form, an inverted index maps a search
term to a list of documents that contain the term. Since documents
are represented as fixed-length integer identifiers, the total size

of an inverted index grows quickly, even with documents that are
rarely returned in a search result. The prevailing space-reduction
techniques for inverted indexes are lossless compression [39] and
caching [58].

If instead each document is represented as a Bloom filter, we
can derive a lossy variable-length signature for each document
by directly applying our method. Taking inspiration from BitFun-
nel [27], a commercial search engine that employs a Bloom filter
index in place of an inverted index, we will demonstrate how our
method can be used to effectively optimize a collection of Bloom
filter signatures according to utility. Our setup for full-text search
is different from data skipping, so we will again walk through each
of the points individually.
Datasets. We use Amazon review datasets that are from two prod-
uct categories [37, 38]. The first category is industrial and scien-
tific (I&S) with 49,595 cleaned documents, and the second product
category is musical instruments (MI) with 160,523 cleaned docu-
ments. We remove punctuation and stopwords before tokenizing
the documents. We remove the minority of documents that do not
contain between 5 and 100 tokens to produce a realistic document
shard [27].
Query Model. For our experiments, document utility values are
sampled from a right-skewed mixture of normal distributions. In
this setting, we adopt a top-𝑘 query model. In particular, the prob-
ability that a given document appears in the top-𝑘 query results
is proportional to its utility. The underlying skewness assumption
is that only a small number of documents from the corpus end up
appearing in the top-𝑘 search results. Similar to data skipping, our
method enumerates documents in descending order of utility.
Query Generation. We consider the case of 𝑘 = 1 and generate
2,500 queries for each dataset using the following procedure. Given
the utility values 𝑢1, . . . , 𝑢𝑁 we first normalize to a probability
distribution like so: P𝑖 = 𝑢𝑖/

∑︁
𝑗∈[𝑁 ] 𝑢 𝑗 . To generate a query, we

sample a document from the probability distribution and choose 𝑛
terms from the selected document. The specific terms are chosen so
that they are only jointly present in a few documents on average.

5.3.1 Metrics. We begin the discussion of metrics with some nota-
tion. Let𝐷 be the document corpus. T𝑞 is defined as the set of tokens
in query 𝑞 and T𝑑 is the set of tokens in document 𝑑 . The set 𝑅
contains the documents retrieved by a particular query. The match
set of a query𝑀 = {𝑑 : T𝑑 ∩ T𝑞 = T𝑞} captures the documents that
contain every token in the query [27]. Following this definition, the
set 𝐺 ⊆ 𝑀 represents the ground truth top-𝑘 matching documents
in terms of utility.

• Precision@𝑘: |𝑅∩𝐺 |
𝑘

. For a Bloom filter index, precision
is a salient metric for false positives. For other indexes,
precision is higher when there are fewer false negatives.

• Query latency: The execution time of a query.

5.3.2 Baselines. The baselines are defined below.

• Inverted Index (II): The standard approach [9] where the
index maps from a term 𝑡 to the documents that contain
the term such that 𝑡 → [𝑑1, 𝑑2, . . . , 𝑑𝑟 ]. Documents are rep-
resented as integer identifiers. The size of each document 𝑑
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Figure 7: I&S (left) and MI (right). We have higher precision
than the best-performing baseline (TMII) at larger budgets
and rival its performance at smaller budgets.

is O(|T𝑑 |). The size of the index grows quickly, even with
low utility documents.

• Top-𝑀 Inverted Index (TMII): Documents are added to
the inverted index until the budget is reached using the
same general approach as Top Utility. The greedy algo-
rithm finds the highest-utility subset of documents with
cardinality 𝑀 . Note that a document either exists in the
index with all of its terms, or does not exist at all.

• Top-𝑘 Inverted Index (TKII): The value 𝑘 is first specified.
A full inverted index is constructed using the procedure
described above. Each term’s document identifier list 𝑙 is
sorted in descending order of utility and then truncated
to contain only the top-𝑘 highest-utility documents. The
key difference from the Top-𝑀 Inverted Index is that token
false negatives are possible, since only a (potentially empty)
subset of the terms for each document is now stored.

• Top-𝑀 Document Set (TMDS): A forward index is main-
tained over the 𝑀 highest-utility documents, where every
document is stored as the set of terms T𝑑 . A query enumer-
ates the documents from high to low utility and directly
checks if T𝑞 ∩ T𝑑 = T𝑞 .

• Scan (S): Each document is stored in a forward index on disk
and is sequentially read at query time. Upon completion of
the scan, the matching documents are sorted by utility, and
then the top-𝑘 are returned.

5.3.3 Results. We select a range of space budgets by first calcu-
lating the smallest index size between the inverted index, forward
index, and Bloom filter index. The budget is then varied from 10%
to 90% of the smallest index size in regular increments, just like
in the previous application. We find that the smallest index size is
either the inverted index or the Bloom filter index. We evaluate the
approaches on in-memory performance (solid lines), but we also
include a version of our method that checks an on-disk forward
index when the filter returns a positive result (dotted line). We
also add a basic Bloom filter index (BsB) that is not truncated as
an additional point of comparison. The results for precision and
latency across the two datasets are highlighted in Figures 7 and 8
respectively.

In Figure 7, we observe that our method has higher precision
than the other in-memory baselines at larger budgets and rivals the
Top-𝑀 Inverted Index at smaller budgets. It is clear that the Top-𝑀

Figure 8: I&S (left) and MI (right). We are slower than the
baselines besides scan but are impeded by implementation.

Document Set (forward) index is highly space-inefficient, which
results in reduced performance.When comparing the inverted index
approaches, it is evident that the Top-𝑀 Inverted Index is strictly
better than the naive strategy undertaken by the Top-𝑘 Inverted
Index where the document identifier lists are truncated. At the lone
space budget of the Top-𝑘 Inverted Index, the Top-𝑀 variant is up
to 60% higher in terms of precision.

Next, in Figure 8 our method is found to be slower than the other
approaches, besides the full scan. The reason for this result is two-
fold. First, inverted indexes are able to reduce the search space rather
significantly, which avoids the need for sequential iteration through
the document corpus. This is not so much a surprising result, but
it is worth noting that a combination of algorithmic optimizations
and careful implementation can be undertaken to make Bloom
signatures faster than conventional inverted indexes [27]. Second,
the implementation style that we ultimately chose likely had a
sizable impact on latency.

5.4 Microbenchmarks
Lastly, we evaluate the main characteristics of our method. In partic-
ular, we highlight the truncated Bloom filter and our optimization
routine.

5.4.1 Truncated Bloom Filters. As a reminder, the parameter 𝑝 =
𝑚′
𝑚 is the ratio between the number of bits that are kept after
truncation (𝑚′) and original filter size (𝑚). In Figure 9, we show the
effect of truncation on both the false positive rate and filter query
latency. We generate an equal number of positive 𝑞+ and negative
𝑞− keys (1 million each). The keys are generated in such a way that
the intersection between the positive and negative sets is empty.

After adding the positive keys, we query the filter with the
negative keys at each truncation ratio, and the false positive rate
is measured empirically. We compare the empirical false positive
rate to the expected false positive rate from Equation (3) and the
lower bound from Equation (4). We observe that given a sufficiently
large number of negative queries, the empirical false positive rate
(blue) is practically identical to the expected false positive rate (red),
which is consistent with the law of large numbers. It is also evident
that the gap between the expected false positive rate (red) and the
lower bound (green) as given by the function E[𝜙 (𝑉 )] − 𝜙

(︁
E[𝑉 ]

)︁
converges to 0 as 𝑝 → 1. This indicates that the lower bound
approximation is better when fewer bits are truncated. Equivalently,
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Figure 9: FPR (left) and query latency (right) as a function
of the truncation ratio 𝑝. Latency is given as 95% confidence
intervals, + and − are positive and negative keys respectively.

the optimality gap between the relaxation and original formulation
would generally be smaller under larger budgets.

Next, the truncated filter is queried with both negative and pos-
itive keys to measure query latency. The result is compared to
a standard filter. We see that there are two sources of overhead.
First, the extra condition in Algorithm 1 that checks for valid hash
functions introduces a small amount of latency overhead when com-
pared to the standard filter, which is seen in the vertical distance
between the rightmost truncated measurements and each standard
measurement. Second, as the filter is increasingly truncated, the
probability 𝑝 of observing a valid hash function decreases, leading
to additional latency overhead in the negative case only. We also
see that the latency for the positive case decreases slightly, since
fewer filter positions are probed in total.

These results suggest that our proposed data structure is particu-
larly suitable in the high truncation regime𝑚′ ≪𝑚 for applications
where downstream costs far exceed the cost of querying the filter.
For example, in one of the applications that we presented, the cost
of checking a partition is often several orders of magnitude higher
than querying the filter. However, given a collection of truncated
Bloom filters with varying utility values, we would expect that
the latency overhead is minimal in expectation. This is because a
truncated filter that operates in the low truncation regime𝑚′ ≈𝑚
exhibits only a slight increase in latency on negative queries when
compared to the standard filter.

We can also confirm the latency result with a theoretical argu-
ment. Let𝑋 ∼ 𝐺 (𝑝) be a geometric random variable for the number
of hash functions that are checked to observe a valid hash function
with mean E[𝑋 ] = 1

𝑝 . We find that, in expectation, the number
of required probes increases for negatives and stays the same for
positives, since only Ω(1) hash functions are required for a negative
while Θ(𝑘) hash functions are required for a positive.

However, if we treat a truncated Bloom filter as a set signature
like in full-text search, then the intersection and union operations
are computed in reduced time, provided that the filters were con-
structed with shared hash functions. For example, given two sets 𝑆1
and 𝑆2 represented as truncated Bloom filters, an approximation of
𝑆1∩𝑆2 can be found in O(min(𝑚′1,𝑚

′
2)) time via bitwise operations.

Table 1: Solving the relaxation scales to large inputs.

N (thousands) 101 301 501 701 901
Optimization latency (s) 2.01 6.72 12.03 19.30 30.65

5.4.2 Optimization Latency. We now evaluate our lower bound
optimization approach by measuring the solver latency at a specific
budget of 50% and different quantities of Bloom filters. We generate
𝑁 synthetic parameter tuples of the form (𝑚𝑖 , 𝑘𝑖 , 𝑛𝑖 ) by sampling
from a multivariate probability distribution. We then measure the
solver latency as the number of Bloom filters 𝑁 is varied. We report
the solver latency as the median across 10 runs with the same input
parameters.

As seen in Table 1, the optimization problem can be solved
quickly even on a resource-constrained machine. For example, an
(approximate) optimal solution can be found for a collection of half
a million Bloom filters in around 12 seconds.

We reach the conclusion that the optimization overhead of our
method is small, and we can quickly adapt the collection under
changing utility values, or as new filters are added. In other words,
this is a desirable property in the online case. Crucially, if we store
a copy of the original filters on disk, we can re-optimize without
having to reconstruct the Bloom filters from scratch.

6 RELATEDWORK
Bloom filters in Key-value Stores. The most similar body of
work to our method is the application of Bloom filters in key-value
stores. Key-value stores are represented as log-structured merge
(LSM) trees, where each level of the LSM tree in secondary storage
is often associated with in-memory filters. Previous work such as
Monkey [19] and ElasticBF [32] has shown that it is suboptimal to
uniformly assign Bloom filter false positive rates.

Monkey [19] solves a different optimization problem that is
exclusively restricted to LSM trees. For a given target lookup cost
(sum of the filter false positive rates), Monkey minimizes the size
of the filter collection. In our framework, we instead minimize
the utility-weighted false positive rate for a target filter collection
size. Our method can model this problem setting by swapping the
objective and budget functions, where each utility value is set to
1. Additionally, the analytic expression for the optimal solution in
Monkey requires the size ratio between adjacent LSM tree levels as
an input parameter, which limits its generality to LSM trees.

Elastic Bloom filter (ElasticBF) [32] extends Monkey by dividing
each larger filter into smaller separable filter units (i.e., a filter
group) so that more units can be loaded for frequently-accessed
filter groups. ElasticBF maintains multiple in-memory LRU queues
(a multi-queue [59]) where each queue corresponds to a particular
number of filter units. An adjustment scheme is then employed
with the goal of decreasing the number of expected false positives
by moving filter groups between queues as their access frequencies
change. Unlike ourmethod, ElasticBF does not solve an optimization
problem.
Modular Bloom Filters. The closest data structure to the trun-
cated Bloom filter is the modular Bloom filter [36] which in turn is
similar to the blocked Bloom filter [43] and a filter group [32]. Like
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a modular Bloom filter, we employ a smaller in-memory filter at
the expense of a higher false positive rate and do not require re-
indexing. Unlike a modular Bloom filter, we are able to navigate the
space versus accuracy trade-off in a fine-grained fashion, since trun-
cation removes one bit at a time. A modular Bloom filter is limited
to the product of false positive rates across several coarse-grained
modules that are each associated with a hash function subset. In a
sense, our method constructs a two module filter by optimally siz-
ing the first module. However, the optimal first module introduces
additional query latency overhead for the truncated variant when
compared to the modular variant, since a hash function subset is
not mapped to each module.
Fingerprint Filters. In a general fingerprint filter, each element is
stored as a bit string in a hash table. Hence, elements can be deleted,
in contrast to a Bloom filter where only insertions are allowed. A
truncation operation can also be extended to a fingerprint filter.

For example, a cuckoo filter [25] uses a modified version of
cuckoo hashing to store the fingerprint of each element. For a given
number of elements 𝑛, fingerprint size 𝑠 , and bucket size 𝑏, the false
positive rate is bounded from above by 1 −

(︁
1 − 1

2𝑠
)︁2𝑏 [25]. The

truncation operation can be extended to a cuckoo filter by removing
the 𝑠−𝑠′ >0 most significant bits for each fingerprint in the filter,
where 𝑠′ is the number of bits we store.

Next, a quotient filter [4, 40, 41] partitions a 𝑝-bit fingerprint for
an element into its quotient (𝑞 most significant bits) and remainder
(𝑟 least significant bits) i.e., 𝑝 = 𝑞 + 𝑟 . The quotient is a bucket in
the hash table, and the remainder is stored in a bucket alongside
metadata bits to resolve soft collisions from identical quotients. The
false positive rate is 1−

(︁
1− 1

2𝑝
)︁𝑛

= 1−
(︁
1− 1

2𝑞+𝑟
)︁𝑛 [4]. To truncate

a quotient filter, the 𝑟 −𝑟 ′ most significant bits of the remainder can
be removed, where 𝑟 ′ is the number of bits we should store. Note
that for a quotient filter, truncation is different than contraction.
Prior work such as InfiniFilter [20] has shown how quotient filters
can be resized. For example, the number of hash table buckets can
be halved by moving a bit from the quotient to the remainder and
copying over the remainders into a newly-allocated hash table.
Truncation instead removes a bit from the remainder to shorten
the bit string stored in a bucket.

For a fixed 𝑛, we claim that a higher fingerprint filter false pos-
itive rate can only be produced with O(𝑛) truncation operations.
To truncate a fingerprint filter, we visit each of the 𝑛 fingerprints
stored in the hash table and remove the desired number of bits. In a
Bloom filter, we only need O(1) truncation operations to produce
a higher false positive rate. Hence, truncation for a Bloom filter is
a more efficient operation.
Key-value Filters. Certain types of filters support approximate
set membership queries that return values when queried for a key.
An early example is the Bloomier filter [11]. Fingerprint key-value
filters such as multi-level cuckoo filters [45], Chucky [21], and
quotient maplets [15] typically store values in each hash bucket
with the fingerprint. While a collection of 𝑁 filters can be replaced
by a single key-value filter that stores the locations that may contain
the key, such an approach is not suitable when optimizing for a
query distribution across the locations. For example, suppose that a
key is encoded as a fingerprint in a quotient filter, and a value is an
array of log(𝑁 )-bit integer codes that represents multiple locations

where the key may exist. To reduce the space occupied by a rarely-
queried location, an integer code would have to be removed from a
value array, which may introduce a false negative.
Learned Filters. There are several filter variants that incorporate
information from a query distribution to achieve a better trade-off
between space and false positive rate than a standard filter. One
variant constructs a stacked filter representation to encode both
positive and frequent negative keys in alternating filter layers [22].
Another variant models a filter as a binary classification task that
returns a positive result if the model output probability is above a
certain threshold, which means that predictable positive elements
are “stored” in the model [29]. If the output probability is below the
threshold, a standard filter containing the less predictable elements
is queried to prevent false negatives. Learned filters have been ex-
tended to unbounded data streams, where a non-zero false negative
rate must be tolerated in order to enforce a false positive rate guar-
antee [33]. Learned filters optimize the trade-off between space and
false positive rate for a single filter by using a query distribution
over the keys. Our method instead optimizes this trade-off for a
collection of multiple filters by using a query distribution over the
collection.
Other Bloom Filter Applications. There are many applications
of Bloom filters besides those that we presented in this paper. As
one example, Bloom filters are often used to optimize joins [26, 48,
55, 60]. As another example, Bloom filters are a vital data structure
for in-memory data stores such as Redis [44]. In computational
biology, binary trees with compressed Bloom filter nodes are used
to efficiently search for sets that contain certain subsequences [50].
This approach turns each Bloom filter into a succinct data structure,
whereas we truncate the filter to reduce space.

7 CONCLUSION
We presented an approach that optimizes a collection of Bloom
filters across a utility distribution to satisfy a space budget. It was
shown that truncating a Bloom filter after construction can lead
to a subtly different trade-off between accuracy and space that
benefits optimization. Fittingly, we developed a convex optimization
problem that admits a fast relaxation to navigate this trade-off.
Moving from theory to practice, we demonstrated on two separate
applications that our method effectively mitigates the limitations of
existing approaches. A possible direction of future work is to extend
our optimization problem to different types of filter and sketch
collections. It may also hold promise to simultaneously optimize
for query distributions present in a single such data structure.
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