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ABSTRACT

Sensor data streams occur widely in various real-time applications

in the context of the Internet of Things (IoT). However, sensor

data streams feature missing values due to factors such as sensor

failures, communication errors, or depleted batteries. Missing val-

ues can compromise the quality of real-time analytics tasks and

downstream applications. Existing imputation methods either make

strong assumptions about streams or have low efficiency. In this

study, we aim to accurately and efficiently impute missing values

in data streams that satisfy only general characteristics in order

to benefit real-time applications more widely. First, we propose a

message propagation imputation network (MPIN) that is able to

recover the missing values of data instances in a time window. We

give a theoretical analysis of why MPIN is effective. Second, we

present a continuous imputation framework that consists of data

update and model update mechanisms to enable MPIN to perform

continuous imputation both effectively and efficiently. Extensive

experiments on multiple real datasets show that MPIN can out-

perform the existing data imputers by wide margins and that the

continuous imputation framework is efficient and accurate.
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1 INTRODUCTION

With the increasing deployment of the Internet of Things (IoT),

multi-attribute sensor data streams (also known as multi-attribute

time series) are found in numerous application domains such as
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medical services [11, 47], meteorology [13, 39] and transporta-

tion [4, 33]. For example, in a hospital Intensive Care Unit (ICU),

medical professionals may need to continuously monitor patients’

health status through a system that tracks vital signs such as heart

rate, blood pressure, and body temperature. As another example,

it is imperative for an air quality monitoring system to reliably

track metrics like PM2.5 and SO2 at multiple locations in a city.

Such systems produce continuous and unbounded streams of data

instances. Each data instance in turn is characterized by a vector of

attribute values, as illustrated in Figure 1. In the context of the ICU

scenario, a data instance is a vector of health-related values such

as heart rate, blood pressure, and body temperature. These values

typically capture information about the condition of a patient using

multiple sensors at a given point in time.

In real-world systems, however, data streams may contain miss-

ing values in their instances due to factors such as sensor failures,

depleted batteries, and communication errors [5, 36, 46]. All such

factors can result in data instances with missing values (see ob-

served and missing attributes in Figure 1). Despite the fact that a

stream1

stream2

# stream

…

aT (a+2)T(a+1)T
t

…

…
sensor data instance 

missing attribute

observed attribute

a = 0, 1, 2, …

T : length of a time window

Figure 1: Sensor data streams.

system might continue to function with partially observed data,

inaccurate or ill-defined results [8, 9, 36] may be produced. To make

it worse, the sparsity can be quite high. For example, in ICU and

Wi-Fi datasets that we use in this paper, the data sparsity exceeds

80% (see Table 2). The presence of high sparsity in data streams

can cause major issues for online analytical tasks and downstream

applications. In the ICU example, a doctor may make an incor-

rect, life-critical conclusion about the health of a patient based on

monitored vital signs with missing values. In the example of air

quality monitoring, missing values in the data streams may cause

the system to miss the critical conditions of a fire emergency and

consequently fail to give timely alerts. Therefore, it is crucial to

accurately recover missing values in data streams in real time.

However, it is nontrivial to do so given that sensor data streams

may exhibit characteristics as follows. C1 (Aperiodicity): Data
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instances occur at non-fixed intervals. C2 (Concurrency): Concur-

rent streams exist, such as multiple air quality monitoring stations

or simultaneous monitoring of multiple patients in an ICU scenario.

C3 (Heterogeneity): Data instances contain diverse attributes,

such as body temperature and blood pressure in an ICU scenario.

C4 (Sparsity): Streams often exhibit high ratios of missing values.

Existing studies on data stream imputation either have low effi-

ciency [10, 15, 16] or make strong assumptions on the homogeneity

of streams [30, 34, 49]. Such methods generally fall into two cat-

egories. First, neural network-based imputers [10, 15, 16] employ

sequential neural networks, e.g., Recurrent Neural Networks (RNN),

to iteratively fill in missing values within a sequence in a trans-

ductive learning mechanism. Such a sequential structure-based

model often cannot contend with characteristics C1 and C2 — the

aperiodicity of streams can prevent a model from capturing the

temporal dependencies for data imputation, while the concurrency

of streams can render the imputation inefficient as the model needs

to be trained sequentially on all streams.

Second, matrix-based imputers [30, 34, 49] focus solely on homo-

geneous, single-attribute streams and they mostly fail to contend

with characteristics C3 and C4. The heterogeneity of attributes and

high ratios of missing values may render matrix-based imputers

less effective, as values in a matrix may carry different meanings,

and high sparsity in a matrix can compromise matrix completion

operations that attempt to recover missing values.

To address these challenges, we propose a set of techniques to

overcome the problems in a tumbling window. First of all, we con-

struct a similarity graph to link data instances that originate from

different streams or different timestamps within a time window.

We do not assume that a stream is periodic; neither do we need

to know from which stream an instance originates. We primarily

construct a graph based on the similarities of data instances, as we

believe this to be most significant for imputation. Also, compared

to matrix-based imputers [30, 34, 49], operating on a graph can

benefit from positive relational biases [7]. Namely, an instance only

needs to be related to the most similar instances instead of to all

other instances. Such a positive bias has been demonstrated to be

beneficial to missing value imputation [14].

Subsequently, we propose a message propagation process on

the similarity graph and design a Message Propagation Imputation

Network (MPIN) that can exploit the correlations among instances

and attributes to impute missing values accurately. We also provide

a theoretical study for why MPIN is more effective in exploiting

correlations for data imputation than a recently proposed feature

propagation process [37]. Although MPIN conducts imputation in a

transductive learning fashion, as do existing neural network-based

imputers, MPIN is significantly more time-efficient since it is a

graph-based model and can conduct imputation on multiple graph

nodes (i.e., instances) in parallel, thus being able to exploit available

computing resources sufficiently.

Although MPIN is both effective and efficient at imputing miss-

ing values of data instances in a time window, there are other

challenges when MPIN is applied to continuous imputation for data

streams. Essentially, the aperiodicity of data streams causes the

number of data instances to vary from window to window. Conse-

quently, there may not be enough data for training MPIN effectively.

To contend with this, we propose a data update mechanism that

can keep and update the important data instances in the streams

and utilize them to enable more effective continuous imputation.

Furthermore, as MPIN relies on transductive learning, retraining

is needed at every current time window in order to impute newly

arriving data instances. In order to lower the retraining cost, we

propose a model update mechanism that allows to resume training

from the best model state along the timeline so far. This makes

continuous imputation with MPIN more efficient.

In summary, we make the following contributions.

• We construct a similarity graph with data instances in a time

window having data instances as graph nodes. In addition, we

propose a message propagation process on the graph to enable

capturing correlations and exploiting positive relational bias.

• Based on themessage propagation process, we propose amessage

propagation imputation network (MPIN) to exploit correlations

among instances to impute their missing values in a time window.

We also give a theoretical analysis of why MPIN is effective.

• To useMPIN for continuous imputation, we propose a framework

with data update andmodel updatemechanisms that help achieve

both effective and efficient continuous imputation.

• We report on extensive experiments showing that the proposed

MPIN can outperform competitors at data imputation and that

the continuous imputation framework is effective and efficient.

The rest of the paper is organized as follows. Section 2 presents

preliminaries and the research problem. Section 3 details the MPIN

model for snapshot data imputation in a time window. Section 4

presents an MPIN based continuous imputation framework. Sec-

tion 5 reports on extensive experiments. Section 6 reviews related

work. Section 7 concludes and covers future research.

2 PRELIMINARIES AND PROBLEM

Table 1 presents commonly used notation.

Table 1: Notation.

Symbol Description

x sensor data instance

m mask of a sensor data instance

X sensor data streams

M mask of sensor data streams

X𝑎 sensor data chunk of a time window

M𝑎 mask of a sensor data chunk

2.1 Data and Notation

Definition 1 (Sensor Data Instance). A sensor data instance is
represented as a D-dimensional vector x ∈ RD, where each dimension
(i.e., attribute) x[𝑑] (0 ≤ 𝑑 < 𝐷) captures a sensor measurement.

When clear from the context, we use "instance" to refer to a

sensor data instance. An instance may consist of homogeneous or

heterogeneous sensor measurements. In the aforementioned ICU

example, an instance refers to a vector of heterogeneous health-

related measures such as heart rate and blood pressure.

Definition 2 (Sensor Data Streams). A sensor data stream

is an unbounded, time-ordered sequence of sensor data instances. J
concurrent sensor data streams are organized as a tensor X of size
J × N × D such that N → ∞ corresponds to the time dimension. We
use X 𝑗 = X[ 𝑗, :, :] to denote the 𝑗-th (0 ≤ 𝑗 < J) data stream and
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X 𝑗 (𝑛) = X[ 𝑗, 𝑛, :] to denote the 𝑛-th (0 ≤ 𝑛 < N) sensor data instance
of the 𝑗-th data stream.1

The instances in a stream may contain missing values in their

attributes due to factors such as sensor failures, depleted batteries,

communication errors, and unforeseen malfunctions [5, 36, 46]. To

indicate the missing values in sensor data streams, we define the

notion of mask for sensor data streams as follows.

Definition 3 (Mask for Sensor Data Streams). Given the
sensor data streams X, its corresponding maskM is a binary tensor
with the same shape as X:

M[ 𝑗, 𝑛, 𝑑] =
{︄
0, X[ 𝑗, 𝑛, 𝑑] is missing;
1, otherwise.

(1)

Typically, a maskM is sparse with many zeros. The sparsity

characteristic of sensor data streams often renders online analyt-

ical tasks or downstream real-time applications (e.g., air quality

monitoring) inaccurate or even non-functional [8, 9, 36].

2.2 Research Problem Formulation

Data streams are often processed using tumbling window tech-

nique [35, 40]. Specifically, a tumbling window is a fixed-length

time window that moves through a stream at a constant time in-

terval T in a non-overlapping fashion. With such windows, we

discretize the sensor data streamsX into data chunks and represent

each chunk as X𝑎 = X[:, 𝑎T : (𝑎 + 1)T, :], where 𝑎 ∈ Z0+. For ease
of presentation, we assume that each time window contains T time

units and at most T data instances. Formally, X𝑎 ∈ RJ×T×D.
To further facilitate actual processing, we convert a data chunk

X𝑎 into a 2-dimensional matrix X𝑎 ∈ R(J·T)×D by merging streams

(i.e., J) and time (i.e., T). As a result, a data chunk X𝑎 encompasses

at most J·T data instances, to which each of the J streams contribute

at most T instances in a time window. The corresponding mask can

be discretized likewise, resulting in a mask chunkM𝑎 (𝑎 ∈ Z0+)
for the corresponding time window [𝑎T : (𝑎 + 1)T].

We proceed to define the research problem.

Research Problem (Imputation of Sensor Data Streams,

IDS). Given sensor data streams X, online imputation of sensor

data streams continuously takes the current data chunk X𝑎 as input
and returns a complete data chunk Xˆ 𝑎 by replacing each missing
value in X𝑎 with a proper data value. The objective here is to recover
those missing values in X𝑎 accurately and efficiently.

We solve the IDS problem at two different, yet correlated, levels.

First, we focus on snapshot imputation for a single time window,

i.e., imputing missing values of data instances in one data chunk.

In Section 3, we construct a similarity graph to capture the corre-

lations among data instances and propose a Message Propagation

Imputation Network (MPIN) that exploits the graph to impute the

missing values in the current data chunk. Second, we study efficient

and effective imputation for continuous time windows. In Section 4,

we design a framework that uses MPIN as a building block for

continuous imputation for data chunks from consecutive windows.

1
In general, 𝑛 can be a timestamp or an index (sequence number) but it takes only one

form in a given data stream. Meanwhile, a stream is either periodic or aperiodic.

3 SNAPSHOT IMPUTATION FOR AWINDOW

This section focuses on snapshot imputation for a single time win-

dow. The key innovation is the Message Propagation (MsgProp)

Imputation Network (MPIN) that takes a data chunk with missing

values as input and outputs a data chunk without missing values.

MPIN works on a similarity graph that captures the correlations

among data instances in the window. MPIN’s MsgProp compo-

nent extends and generalizes the recent feature propagation [37]

(FeaProp) for graph node feature imputation. Section 3.1 presents

the similarity graph, Section 3.2 compares MsgProp and FeaProp,

and Section 3.3 details MPIN.

3.1 Similarity Graph

Given a data chunk X𝑎 ∈ R(J·T)×D, we construct a similarity graph
𝐺 = (𝑉 , 𝐸) to organize X𝑎 ’s data instances. Figure 2 illustrates sim-

ilarity graphs. Specifically, each data instance x𝑖 (0 ≤ 𝑖 < J · T)

stream1

stream2

# stream

…

aT (a+2)T(a+1)T
t

…

…

sensor data instance 

missing attribute

observed attribute

a = 0, 1, 2, …

T : length of a time window

graph edge

Figure 2: Similarity graphs for different data chunks.

corresponds to a graph node in 𝑉 , where |𝑉 | = J · T. For each
pair of instances x𝑖 and x𝑘 , we determine whether they should

be linked by an edge 𝑒𝑖𝑘 as follows. First, we fill-in each missing

value of each instance using the mean of the observed values in the

same dimension of all other instances in 𝑉 . Second, we compute

the similarity between x𝑖 and x𝑘 and then create an edge between

them only if they are sufficiently similar. The similarity can be

implemented based on Euclidean distance or Cosine distance [44].

For example, we may simply check whether the Euclidean or Co-

sine distance between the vectors of x𝑖 and x𝑘 is below a given

threshold. Alternatively, we may check whether x𝑖 is among x𝑘 ’s 𝐾
nearest neighbors (KNN) in terms of Euclidean or Cosine distance,

or vice versa. As our preliminary experiments in Appendix A.3 in

an extended version [1] show, similarity graphs built using the Eu-

clidean distance-based KNN method achieve the best performance.

Therefore, we adopt this method in the experiments.

The similarity graph correlates data instances from different

timestamps (but within the same time window) or across different

streams. This offers a view of relationships among data instances,

that is broader than if we focus on a single stream only. The graph

also allows us to design a message propagation mechanism to ex-

ploit correlations among nodes (i.e., instances) and impute the

missing attribute values for them.

3.2 FeaProp versus MsgProp

Given the similarity graph 𝐺 (𝑉 , 𝐸), we obtain a |𝑉 | × |𝑉 | adja-
cency matrix A. Formally, A[𝑖, 𝑘] = 1 if graph edge 𝑒𝑖𝑘 exists and

0, otherwise. Subsequently, we compute the diagonal degree ma-

trix D = diag(∑︁𝑖 A[𝑖, 1], . . . ,
∑︁
𝑖 A[𝑖, |𝑉 |]) and the normalized adja-

cency matrix Ã = D−
1

2AD−
1

2 .

Feature Propagation. Given graph𝐺 , the FeaProp process aims to

minimize theDirichlet energy of the graph, i.e., min

∑︁
𝑖𝑘

(︁
Ã[𝑖, 𝑘] (x𝑖−
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x𝑘 )2
)︁
. This is a widely used approach to promote feature homophily

in graphs [37]. Essentially, it aims to make a node’s feature similar

to those of its neighboring nodes. For instance, if Ã[𝑖, 𝑘] = 1, x𝑖
and x𝑘 are adjacent nodes. As a result, 𝑥𝑖 and 𝑥𝑘 should be similar

in order to make (x𝑖 − x𝑘 )2 small, thus minimizing the objective

function. This way, the missing values of x𝑖 can be interpolated

from the corresponding values of x𝑘 or vice versa. As the Dirichlet

energy is convex, an efficient solution is the iterative weighted-sum

of neighbors’ information as follows.

x̃(𝑙+1)
𝑖

=
∑︂

x𝑘 ∈N𝑖

Ã𝑖𝑘x
(𝑙)
𝑘
, (2)

where Ã𝑖𝑘 refers to Ã[𝑖, 𝑘], x̃(𝑙+1)
𝑖

is the imputation result of x𝑖 in
the (𝑙 + 1)-th iteration, and the set N𝑖 contains all nodes that are
adjacent to x𝑖 . Theoretical analyses can be found elsewhere [37].

Originally, x̃(𝑙+1)
𝑖

is directly taken into the right-hand side of Equa-

tion 2 to start the next iteration, but this will modify the observed,

correct values in x𝑖 and cause a degradation in performance.

To solve the potential problem, a bound condition on the re-

constructed features is added, which keeps the values of observed

features equal to their original values during iterations. The bound

condition is computed as follows.

x(𝑙+1)
𝑖

← x(0)
𝑖
⊙ m𝑖 + x̃(𝑙+1)𝑖

⊙ (1 −m𝑖 ), (3)

where m𝑖 is the corresponding part of the mask for x𝑖 and ⊙ is the

element-wise product operator.

After a certain number of iterations according to Equations 2

and 3, we obtain the converged feature x̂𝑖 for each data instance

x𝑖 . In FeaProp, x̂𝑖 is used as the reconstructed version of x𝑖 . The
proof of convergence of FeaProp is available elsewhere [37].

Message Propagation. The FeaProp process utilizes iterative ad-

jacency matrix multiplication with bound conditions to impute

missing values of features of nodes (i.e., instances). However, the

adjacency matrix (i.e., 𝐴̃) treats a node’s neighboring nodes equally,

and this may not be accurate in reality as a node may have different

correlations with different neighboring nodes. Next, the different

attributes of an instance may also be correlated. Thus, we introduce

two factors, namely correlations among instances (i.e., nodes) and

among attributes of a node, to enhance imputation performance.

Specifically, we extend Equation 2 in FeaProp as follows.

x̃(𝑙+1)
𝑖

=
∑︂

x𝑘 ∈N𝑖

𝑐 (x(𝑙)
𝑖
, x(𝑙)

𝑘
)x(𝑙)

𝑘
W. (4)

Equation 4 differs from Equation 2 in a number key points. First,

Equation 4 replaces the constant component of adjacency matrix

Ã𝑖𝑘 by a learnable correlation function 𝑐 (x(𝑙)
𝑖
, x(𝑙)

𝑘
). Second, a fea-

ture transformation matrix W ∈ RD×D is added to Equation 4 in

order to capture correlations among different attributes of x𝑖 .2

Above, the shape of W is restricted to D × D to make the output

dimensions consistent with the input dimensions. To lift the restric-

tion, we factorizeW intoW1 ×W2, whereW1 ∈ RD×F,W2 ∈ RF×D,
and F(> D) is a user-specified hyperparameter. Similarly, the bound

condition in Equation 3 is added during iterations.

As a result, MsgProp possesses the following properties.

Lemma 1. The feature propagation (FeaProp) process is a special
case of the message propagation (MsgProp) process.

2
We omit the bias vector for the sake of brevity.

Proof. FeaProp is a special case of MsgProp in which the

correlation 𝑐 (x(𝑙)
𝑖
, x(𝑙)

𝑘
) equals Ã𝑖𝑘 and W1 and W2 are both set to

identity matrices. □

Lemma 1 indicates that MsgProp has a higher learning capability

than FeaProp.

Lemma 2. The MsgProp process incorporates the classical mes-
sage passing mechanism [7, 18] in graph learning.

Proof. We rewrite Equation 4 as

z(𝑙+1)
𝑖

=
∑︂

x𝑘 ∈N𝑖

𝑐 (x(𝑙)
𝑖
, x(𝑙)

𝑘
)x(𝑙)

𝑘
W1, (5)

x̃(𝑙+1)
𝑖

= z(𝑙+1)
𝑖

W2 . (6)

In particular, computing z(𝑙+1)
𝑖

in Equation 5 is a classical message

passing process in graph learning. More specifically, Equation 5

implements the graph convolution operator [25] if 𝑐 (x(𝑙)
𝑖
, x(𝑙)

𝑘
)

equals Ã𝑖𝑘 and implements the graph attention operator [43] if

𝑐 (x(𝑙)
𝑖
, x(𝑙)

𝑘
) is an attention function. □

Since MsgProp employs message passing, MsgProp is able to

utilize existing message passing modules such as the Graph At-

tention Unit (GAT) [43], the Graph Convolution Unit (GCN) [25],

and GraphSAGE [20], as well as their accompanying optimization

techniques. Next, we propose the MsgProp imputation network

that reconstructs the missing values of the data instances based on

the MsgProp process over the similarity graph.

3.3 MsgProp Imputation Network (MPIN)

Wefirst give the architecture ofMPIN and then show how it imputes

the missing values of data instances of an input data chunk X𝑎 .
Architecture. MPIN is constructed using a stack ofMsgProp layers
(MPL for short), a basic internal unit. Specifically, each MPL(·),
consists of two modules, namely the message passing module and
the reconstruction module, as depicted in Figure 3.

MPL(0)

𝑙𝑜𝑠𝑠(")

reconstructed attributemissing attribute observed attribute

Message Propagation Layer

𝑙𝑜𝑠𝑠($)

𝜒%
(&) 𝜒%

($) 𝜒%
(")

ReconstructMessage 
Passing

MPL(1)

Figure 3: Message propagation imputation network.

The message passing module corresponds to the computational

process presented in Equation 5 (see Lemma 2). The reconstruction

module is the combination of a linear transformation and a bound

condition, corresponding to the processes in Equations 6 and 3,

respectively. An MPL transforms the raw data instance x(0)
𝑖

to x(1)
𝑖

by aggregating the features of its similar nodes in the similarity

graph. This process thus reconstructs the missing values in x(0)
𝑖

by

utilizing correlations among the data instances.

The process is iterated by our MPIN to find the optimal recon-

struction results for the missing values in the data instances. Typi-

cally, we stack two MPLs to build the imputation network MPIN:

X (1)𝑎 = MPL(X (0)𝑎 ), X
(2)
𝑎 = MPL(X (1)𝑎 ), (7)
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whereX (0)𝑎 denotes the raw input data chunk andX (1)𝑎 denotes the

reconstructed data chunk after the first MPL. Next, X (2)𝑎 performs

an enhanced reconstruction based on X (1)𝑎 and is taken as the final

reconstructed result of X𝑎 .
Transductive Learning. Unlike FeaProp that performs matrix

multiplications iteratively until convergence, MPIN adopts a trans-

ductive learning paradigm [42]. Specifically, given an input data

chunk, MPIN imputes the missing values in the input based on

backpropagation of the reconstruction loss corresponding to the

observed values (see Equation 8). In other words, there are no

separate phases of training and inference, and training data (i.e.,

observed values) and testing data (missing values) are all included

in the training process. This paradigm has been proven effective

at imputing missing values effectively [10, 15, 16]. The intuition

is that if the reconstructed results corresponding to the observed

values are close to the observed values themselves, then the recon-

structed results corresponding to the missing values should also

be close to their ground-truth values though these are unknown

in reality. Accordingly, the training loss of MPIN is defined based

on the reconstruction error between the observed values in X𝑎 and

their corresponding values as imputed by MPIN.

Since MPIN generates multiple reconstruction results recursively

(see Equation 7), we inform MPIN about the reconstruction error

of each reconstruction process instead of only at the last one. Thus,

we use a linear combination of the losses computed from each of

the reconstruction results as the overall loss:

L (1) = MSE(X (0)𝑎 ⊙M𝑎, X̃
(1)
𝑎 ⊙M𝑎),

L (2) = MSE(X (0)𝑎 ⊙M𝑎,X˜
(2)
𝑎 ⊙M𝑎),

L = 𝜆1 · L (1) + 𝜆2 · L (2) ,

(8)

where MSE(·, ·) calculates the mean squared error and L (1) and
L (2) refer to the reconstruction loss of the first and second Msg-

Prop layer, respectively. Further, X (0)𝑎 ⊙M𝑎 is a masking process

that picks up only the observed values of the data chunkX (0)𝑎 . Also,

X̃ (1)𝑎 , instead of X (1)𝑎 , is used when computing the loss since the

imputed results of the observed values exist only in X̃ (1)𝑎 (see Equa-

tion 6), which is an imputation result before the bound condition

(i.e., Equation 3) is applied. Finally, 𝜆1 and 𝜆2 are hyperparameters.

Algorithm 1 Training for Imputation (input data chunk X𝑎 ,
training epochs 𝑃 , validation ratio 𝛽 , model state 𝜃 ′)

1: validation dataset Φ𝑎 ← fraction 𝛽 of observed values in X𝑎
2: X′𝑎 ← X𝑎\Φ𝑎

3: initialization: MAE∗ ←∞; X∗𝑎 ← X𝑎 ; 𝜃∗𝑎 ← 𝜃 ′

4: initialize MPIN←MPIN of state 𝜃 ′

5: for p = 1 to P do

6: Xˆ 𝑎, Φ̂𝑎, 𝜃ˆ𝑎 ← one-pass backpropagation with MPIN, X′𝑎
7: MAE←MAE (Φ̂𝑎 , Φ𝑎 ) ⊲ measuring validation error

8: if MAE ≤ MAE∗ then

9: MAE∗ ← MAE; X∗𝑎 ← Xˆ 𝑎 ; 𝜃∗𝑎 ← 𝜃ˆ𝑎 ⊲ update optimal

10: X∗𝑎 ← X∗𝑎 ⊕ Φ𝑎 ⊲ recover manually removed values

11: return X∗𝑎 , 𝜃∗𝑎

Algorithm 1 shows how to impute missing values of X𝑎 by train-

ing MPIN. First, we generate a validation dataset by randomly

removing a fraction (e.g., 5%) of the observed values in X𝑎 and use

the removed values as the ground truth values to validate the im-

putation error in each iteration of training (lines 1–2). Specifically,

we enter the pre-processed data chunk X′𝑎 into MPIN. Through

backpropagation of reconstruction loss (see Equation 8), we obtain

an imputed data chunk X̂𝑎 that contains the imputed results of

the validation part, i.e., Φ̂𝑎 , and a state of the model (i.e., parame-

ters) denoted by 𝜃ˆ𝑎 (line 6). By measuring the mean absolute error

(MAE) on the validation dataset, we can find the optimal results

of imputation and the optimal state of the model during the itera-

tive training (lines 7–9). Finally, we recover the manually removed

original values in X∗𝑎 , and return it as the final reconstructed result

(lines 10-11). The optimal model parameters are returned as well.

Their use will be detailed in Section 4.3.

3.4 Discussion

The MPIN model is inspired by a recent study [37] that uses fea-

ture propagation (FeaProp) to improve the learning effectiveness

on graphs with missing values in the node features. Nevertheless,

MPIN differs from FeaProp in three key aspects. First, our imputa-

tion process is based on the novel MsgProp process that exploits

a correlation function instead of an adjacency matrix to capture

correlations among nodes (i.e., instances). Second, MsgProp uti-

lizes the correlations among the attributes for imputation, whereas

FeaProp does not. As we have shown, FeaProp is a special case

of MsgProp. Third, we reconstruct the missing values in node fea-

tures via transductive learning based on observed values in the

node features. In contrast, FeaProp does not involve learning but

simply imputes missing values in node features based on iterative

adjacency matrix multiplications. The more comprehensive design

makes our approach more effective, as to be shown in Section 5.

We also give an example below to illustrate the difference between

FeaProp and MsgProp at imputation. For simplicity, we only show

one of their iterative processes.

Example 1. Suppose that a data chunk X1in the time window
[T : 2T] contains data instances x2 = [12, 5, 6], x3 = [8, 5, 3], and
x4 = [3, 2, 1]. If we use 𝐾 = 2 to build the similarity graph, both
x3 and x4 are adjacent nodes to x2 in the graph. For some reason
(e.g., a sensor error), x2 misses its first component and becomes x2 =
[𝑛𝑢𝑙𝑙, 5, 6]. In order to impute the𝑛𝑢𝑙𝑙 value in x2, FeaProp multiplies
the normalized adjacency matrix with neighboring instances (see
Equation 2) and obtains an imputed result x̃2 = 0.5 · x3 + 0.5 ·
x4 = [5.5, 3.5, 2]. With the bound condition, x̃2 becomes [5.5, 5, 6].
Thus, the 𝑛𝑢𝑙𝑙 value in x2 is replaced by 5.5. In contrast, instead of
adopting the equal weight (i.e., 0.5) from the normalized adjacency
matrix, MsgProp learns the correlation between x2 and its neighboring
nodes through transductive learning based on the observed values.
For simplicity, the learning process is simulated by our observation
that finds x3 to be much closer to x2 than x4. Hence, we assume the
following correlation values: c(x2, x3) = 0.8 and c(x2, x4) = 0.2.
Applying MsgProp (see Equation 4) 3, we get x̃2 = 0.8 · x3 + 0.2 · x4 =
[7.0, 4.4, 2.6]. Due to the same bound condition, x2 becomes [7.0, 5, 6].
As 7.0 is closer to the ground truth (i.e., 12) than 5.5, MsgProp is more
effective at imputation than FeaProp.

3
For simplicity, we skip the discussion of the correlation among attributes in the

example and assume thatW in Equation 4 is an identity matrix.
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4 CONTINUOUS IMPUTATION

4.1 Motivation and Overview

To enable continuous imputation on unbounded sensor data streams,

a straightforward approach is to apply MPIN to each time window

periodically. This approach is called MPIN-P and is depicted in

Figure 4 (a). However, this approach suffers from two significant

drawbacks. First, from a data perspective, the varying number of

instances in a data chunk may not provide sufficient data for train-

ing MPIN effectively at each time window, leading to potentially

poor imputation results. Further, earlier data instances in the stream

contain valuable information that can improve current and future

imputation outcomes, thus making it unwise to disregard these.

Second, from amodel perspective, since MPIN relies on transduc-

tive learning, the entire imputation process (i.e., Algorithm 1) must

be started from scratch for each window, which is time-consuming,

especially for large-sized data chunks.

To address these drawbacks, we propose an incremental frame-

work for continuously imputing sensor data streams. As shown in

Figure 4 (b), the incremental imputation framework is powered by

the data update andmodel updatemechanisms, corresponding to

the data and model challenges. First, instead of caching all previous

data instances for training the current MPIN, the data update mech-

anism selects and caches the most valuable data instances to enable

a time- and space-efficient transductive learning process during

the continuous imputation. Second, to avoid starting from scratch

at each window, the model update mechanism regards the model

trained at the previous window as a pre-trained model and fine-

tunes it for imputing the current data chunk in a transfer learning

manner. We use MPIN-DM to refer to our incremental framework.

stream1

stream2

# stream

…

aT (a+2)T(a+1)T
t

MPIN

𝜒!

𝜒̂!
MPIN

𝜒!"#

𝜒̂!"#
(a) Periodic Imputation (b) Incremental Imputation

aT (a+2)T(a+1)T
t

MPIN

𝜒!

𝜒̂!
MPIN

𝜒!"#

𝜒̂!"#𝜃!∗

∆𝜒!

sensor data instance missing attribute
observed attributegraph edge

data update
model update

…

…

…

…

Figure 4: Continuous imputation for sensor data streams.

We proceed to elaborate on the two update mechanisms in Sec-

tions 4.2 and 4.3, followed by a complexity analysis of theMPIN-DM

framework in Sections 4.4.

4.2 Data Update Mechanism

Data Instance Importance Scores. The data update mechanism

aims to identify and retain only the most valuable historical data

instances that can help impute the missing values in the current

data chunk. We proceed to formulate criteria for quantifying the

value of a data instance.

Criterion 1 (Higher Observation Ratio). Intuitively, a sensor
data instance with a higher fraction of observed values can contribute
more to the imputation of missing values of other data instances.

In MPIN, the learning is driven by minimizing the difference

between the observed values and their reconstructed counterparts.

In this sense, more observed values can improve the effectiveness

of transductive learning.

Criterion 2 (Lower Observation Overlap Ratio). A sensor
data instance whose observed dimensions overlap less with those of
other instances can contribute more to the imputation of missing
values of other instances.

Generally speaking, the observed values of an instance can pro-

vide information for imputing the missing values of other instances

only if the former are located in different dimensions than the latter.

Referring to the example in Figure 5, suppose that both x2 and x3
are used to help impute missing values in x1. Although x2 has a
higher observation ratio, x3 may be more helpful in imputing x1’s
missing value since all the observed values of x2 concern the same

dimensions as those of x1 and thus provide little information to the

imputation of x1’s missing value.

x! x" x# m! = [1, 1, 1, 0]
m" = [1, 1, 1, 0]
m# = [0, 0, 0, 1] missing attribute

observed attribute

Figure 5: Example of the commonly observed value ratio.

Combining the two criteria, we compute the importance score

of a data instance x𝑖 , denoted as 𝜑 (x𝑖 ), as follows.

𝜑 (x𝑖 ) = OR(x𝑖 ) −
1

|𝑉 | − 1
∑︂

x𝑘 ∈𝑉 \x𝑖
OOR(x𝑖 , x𝑘 ), (9)

OR(x𝑖 ) = | |m𝑖 | |0 = mT
𝑖 m𝑖 , (10)

OOR(x𝑖 , x𝑘 ) = | |m𝑖 ∩m𝑘 | |0 = mT
𝑖 m𝑘 . (11)

In particular, the importance score𝜑 (x𝑖 ) in Equation 9 equals the
observation ratio score OR(x𝑖 ) minus the observation overlap ratio

score OOR(x𝑖 , x𝑘 ) averaged over all other instances. Correspond-

ing to Criterion 1, Equation 10 calculates OR(x𝑖 ) as the number of

non-zero elements (i.e., | | · | |0) in the corresponding mask m𝑖 . Cor-

responding to Criterion 2, Equation 11 calculates OOR(x𝑖 , x𝑘 ) for
two instances as the number of non-zero elements in the element-

wise AND result of their masks m𝑖 and m𝑘 . In both Equations 10

and 11, we use the number of non-zero elements instead of the

ratio, observing that the feature dimension D is constant.

The importance score has the following important property.

Lemma 3. ∀x𝑖 ∈ 𝑉 , we have 0 ≤ 𝜑 (x𝑖 ) ≤ D − 1.
The proof is given in Appendix B.1 in the extended version [1] for

the sake of brevity. Lemma 3 gives the range of the importance score

of any data instance. Based on Lemma 3, we are able to normalize the

importance scores by dividing them by (D − 1) and use a threshold

𝜂 ∈ (0, 1] to drop those data instances whose importance score

does not exceed 𝜂. In practice, 𝜂 is tuned to a proper value based

on preliminary experiments, and a value of around 0.6 has been

demonstrated to be able to obtain satisfactory performance, as

reported in Appendix A.7 in the extended version [1].

EfficientComputing of Importance Scores. It is time-consuming

to compute the importance score per data instance. To accelerate

the computations, we use matrix multiplication to obtain impor-

tance scores of all instances in one pass. Specifically, we introduce

a gram mask matrix as follows. First, recall that the similarity

graph is built based on the input data chunk, i.e., X𝑎 ∈ R |𝑉 |×D, and
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its corresponding mask chunk is denoted asM𝑎 ∈ R |𝑉 |×D. Thus, a
gram mask matrixMGM

is computed asM𝑎MT
𝑎 with size |𝑉 | × |𝑉 |.

Given the grammask matrixMGM
, the importance scores of all data

instances can be computed in one pass via the following lemma.

Lemma 4. Given the corresponding gram mask matrix MGM, the
importance scores of data instances in set 𝑉 can be computed jointly
by

𝝋 =
( |𝑉 | ∗ diag−1 (MGM) −MGM · 1 |𝑉 |×1)

|𝑉 | − 1 , (12)

where 𝝋 ∈ R |𝑉 |×1 and 𝝋 [𝑖] captures the importance score of the 𝑖-th
data instance x𝑖 in data chunk X𝑎 , diag−1 (·) gets the diagonal vector
from the input matrix, and ∗ is the element-wise scalar product. The
proof is in Appendix B.2 in the extended version [1] for brevity.

Algorithm. Using Lemma 4, we can obtain the importance scores of

all instances in parallel with GPU-based matrix multiplication. The

mechanism is formalized in Algorithm 2. First, the cached valuable

data instances so far, i.e., 𝚫X𝑎 , are concatenated with the current

input data chunk to form a new data chunk X′′
𝑎+1 (line 1). The new

data chunk instead of X𝑎+1 is used to train MPIN. Likewise, we

can obtain a new mask chunkM ′′
𝑎+1 (line 1), based on which we

calculate the gram mask matrix and further exploit Lemma 2 to

derive the importance score of each data instance (lines 2–3). Finally,

we keep those with importance scores above the threshold 𝜂 and

regard them as the updated valuable instances so far (lines 4–5).

Algorithm 2 DataUpdate (last valuable instances 𝚫X𝑎 and mask

𝚫M𝑎 , current data chunk X𝑎+1 and maskM𝑎+1, predefined value

threshold 𝜂)

1: X′′
𝑎+1 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝚫X𝑎, X𝑎+1) ;M′′𝑎+1 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝚫M𝑎,M𝑎+1)

2: the gram mask matrix MGM ← M′′
𝑎+1M′′𝑎+1

T

3: compute 𝝋 with MGM
using Equation 12

4: 𝚫X𝑎+1 ← {X′′𝑎+1 [𝑖 ] | 𝝋 [𝑖 ] ≥ 𝜂 }
5: return 𝚫X𝑎+1

To explain the process of data update and its benefits to imputa-

tion, we give an example.

Example 2. To continue Example 1, we assume that another time
window [0 : T] is just before the window [T : 2T]. Suppose that the
data chunk X0 in [0, T] contains 2 data instances x0 = [𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 4]
and x1 = [12, 5, 5]. Hence, their mask vectors are m0 = [0, 0, 1] and
m1 = [1, 1, 1], respectively, and the mask matrix isM0 = [m0,m1].
The data update strategy enables us to pass valuable instances to
the next window. First, we compute the gram mask matrixM𝐺𝑀 =

M0MT
0
= [[1, 1], [1, 3]] and the importance score vector [0, 1] based

on Equation 12. Thus, the importance scores of x0 and x1 are 0 and 1,
meaning that x0 is much less important since it has very few observed
attributes. As a result, x1 is taken to the next window, i.e., [T : 2T].
Next, we show what difference x1 can make to the imputation in
Example 1. In that example, x1 will replace x4 to be the new adjacent
node of x2 in the similarity graph since x1 is closer to x2 than x4.
Accordingly, the correlation values are updated to c(x2, x3) = 0.2 and
c(x2, x1) = 0.8, given that x1 now is closer to x2 than is x3. Following
the MsgProp process in Example 1, the imputation result is [11.2, 5, 6],
i.e., 11.2 is the imputed value for the 𝑛𝑢𝑙𝑙 in x2. This is even closer to
the ground truth than the imputed value of 7.0 in Example 1.

4.3 Model Update Mechanism

To avoid the costly process of training MPIN from scratch for every

time window, we propose a model update mechanism that resumes

training from the best state so far. The mechanism consists of two

components, namely model state selection and model update.
Model State Selection. This component helps choose the best

model state, i.e., the best-trained parameters so far. The best state

is then used as the initial state of MPIN in the next window. To

make the resumed training of MPIN in the next window effective,

we need to ensure a "good" initial state (i.e., parameters) for MPIN

from history. We realize this by Algorithm 3. First, we find the

optimal state of the model within the current time window using

Algorithm 1. This will in turn be conveyed to the next window

as the initial state of MPIN for retraining. As we can see, 𝜃∗
𝑎+1 is

derived from 𝜃∗𝑎 , i.e., the best state so far. This way, we can ensure

that 𝜃∗
𝑎+1 is always the best state of the model seen so far.

Algorithm 3 ModelStateSelection (last best state 𝜃∗𝑎 , current
data chunk X𝑎+1, training epochs P, validation fraction 𝜂)

1: X∗
𝑎+1, 𝜃

∗
𝑎+1 ← call Algorithm 1 (X𝑎+1, P, 𝜖 , 𝜃∗𝑎 ) ⊲ best state

2: return 𝜃∗
𝑎+1

Model Update. After getting the best model state so far, we may

simply use it as the initial state to train the whole MPIN for the

current window, i.e., from the best state instead of from scratch [17]

(see Figure 6 (a)). However, our preliminary experiments show that

this yields poor imputation results, probably due to overfitting.

To achieve better results, we adopt another strategy to make

use of the best state and to initialize the current MPIN. Specifically,

referring to Figure 6 (b), we only utilize the best state parameters

relevant to MPIN’s message passing module. In addition, we always

initialize MPIN’s reconstruction module with random parameter

settings (i.e., 𝜃0). This contributes to preventing overfitting. This

approach is inspired by transfer learning, where the best state of a

model acts as a pre-trained model on a graph (i.e., a data chunk),

and we only need to fine-tune it for another graph corresponding

to the current data chunk. The fine-tuning process in our context

refers to retraining only the reconstruction module from scratch

while reusing the previous parameters of the message-passing mod-

ules. This way, the knowledge learned by MPIN from the previous

window can be transferred to help impute the data chunk in the

current window, while significantly reducing the risk of overfitting.
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Figure 6: All parts update vs. partial update.

4.4 Complexity Analysis

We present the space and time complexity of the proposed MPIN-

DM and the periodic approach, MPIN-P.

Space Complexity. The space cost mainly corresponds to the stor-

age of relevant data in the streams for online imputation, including
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the cached data and the new data in the current window.We assume

that the average size of a data chunk is V, that the maximum cached

data via data update strategy is Vmc
, and that 𝑎 is the index of the

current time window (i.e., the number of time windows that have

passed so far). MPIN-DM takes𝑂 (V+Vmc) space. In contrast, MPIN-

P consumes 𝑂 (V). Furthermore, if an imputation method caches all

historical data for retraining the current MPIN, it consumes𝑂 (𝑎 ·V).
We can regard V and Vmc

as constants and then get:

𝑂 (V + Vmc) ≈ 𝑂 (V) ≈ 𝑂 (1) ≪ 𝑂 (𝑎 · V) ≈ 𝑂 (𝑎) (13)

As we can see, MPIN-DM’s space complexity is at the same level

as that of MPIN-P, but MPIN-DM is much more effective (see Sec-

tion 5.3). Also, the caching-all approach is infeasible as space con-

sumption increases constantly as streams evolve.

Time Complexity. The main time cost is associated with training

MPIN to impute missing values in a data chunk (see Algorithm 1).

While it is hard to perform a detailed time complexity analysis, we

provide some insight into the complexity as follows. For any chunk

X𝑎+1 in the (𝑎 + 1)th time window, if we train MPIN from scratch

until getting the best-imputed results, the time cost is denoted as

T (𝜃∗
𝑎+1). In contrast, utilizing the model update mechanism, the

training resumes from the last best state 𝜃∗𝑎 , resulting in a reduced

time cost of ΔT = T (𝜃∗
𝑎+1) −T (𝜃

∗
𝑎). When the size ofX𝑎+1 is large,

we have ΔT ≪ T (𝜃∗
𝑎+1), as more data typically entail higher time

costs if the current MPIN is trained from scratch.

5 EXPERIMENTAL STUDIES

Section 5.1 covers the overall experimental settings. Subsequently,

Sections 5.2 and 5.3 validate the efficacy of the snapshot imputer

MPIN (see Section 3) and the continuous imputation framework

MPIN-DM (see Section 4), respectively.

5.1 Overall Settings

Datasets. We use three datasets from different scenarios:

• ICU
4
consists of 11,988 48-hour time series that record the health

condition of patients in Intensive Care Units (ICU) during the

initial 48 hours after their admission to ICU. The records are taken

hourly and each one contains 37 variables such as temperature,

heart rate, and blood pressure.

• Airquality
5
contains hourly air quality monitoring data from 12

monitoring sites in Beijing for a continuous period of 48 months

(1,461 days). Each data instance is comprised of 11 variables

such as PM2.5, PM10, and SO2. Since the application focuses on

daily air quality, we aggregate the data from all sites to form

concurrent streams spanning a single day, resulting in a total of

17,532 concurrent streams (#days × #sites).

• Wi-Fi
6
is a sequence of Wi-Fi signal records that span one hour

at a mall. Each instance in the sequence represents a vector of

671 Wi-Fi Received Signal Strength Indicator (RSSI) values, each

from one of 671 Wi-Fi access points. The collected RSSI vectors

can be used for indoor positioning [26].

Table 2 presents the key characteristics of the datasets. Specifi-

cally, ICU and Airquality feature concurrent streams with longer

lengths and heterogeneous attributes in periodic instances, whereas

4
https://physionet.org/challenge/2012/

5
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data

6
https://www.kaggle.com/competitions/indoor-location-navigation/data

Wi-Fi consists of high-dimensional homogeneous aperiodic sensor

data. Additionally, ICU andWi-Fi have originally high data sparsity,

whereas Airquality is less sparse.

Table 2: Key characteristics of the datasets.

Datasets ICU Airquality Wi-Fi

Dimensionality of Data Instances 37 11 671

Time Length of Streams (hours) 48 24 1

Number of Concurrent Streams 11988 17532 1

Regular Sampling Yes Yes No

Heterogeneous Attributes Yes Yes No

Original Data Sparsity 80.0% 1.6% 85.6%

Implementation. The project is primarily in Python 3.8 and tested

on a Linux server with 3.20 GHz Intel Core i9 CPU and NVIDIA

Geforce P8 GPU with 24.5 GB memory. PyTorch 1.8 is used to create

the neural network models. The datasets, code, and configuration

details are accessible online [2]. To construct the similarity graph,

we use Euclidean distance-based 𝐾NN with 𝐾 = 10. For MPIN,

we use two MsgProp layers and apply GraphSAGE [20] unit to

implement the internal message passingmodule
7
. In model training,

we set the learning rate to 0.01, the weight decay rate to 0.1, 𝜆1 and

𝜆2 to 1, the epoch count to 200, and use Adam as the gradient descent

optimizer. The extended version [1] covers additional experiments

on the selection of hyperparameters, such as the similarity function,

the value K of the KNN-based method for building similarity graphs

(see Section 3.1), and the number of MsgProp layers.

Evaluation Metrics. We concern both effectiveness and efficiency.

(1) Effectiveness. As no ground-truth values are available for

truly missing values in the real datasets, following previous stud-

ies [10, 15, 16] on data imputation, we randomly remove a fraction

of the observed attributes in X𝑎 and use the removed values as the

ground truth values to evaluate the imputation error. Specifically,

we employ Mean Absolute Error (MAE) and Mean Relative Error
(MRE) to measure the difference between the imputed results X𝑎ˆ
and the input data chunkX𝑎 with respect to the randomly removed

attribute values that are marked by an indicator matrixM𝑒 . They

are calculated as follows.

𝑀𝐴𝐸 (X𝑎,X𝑎ˆ ,M𝑒 ) =
∑︁J·T
𝑖=1

∑︁D
𝑑=1

(︁
|X𝑎 [𝑖, 𝑑] − X̂𝑎 [𝑖, 𝑑] | · M𝑒 [𝑖, 𝑑]

)︁∑︁J·T
𝑖=1

∑︁D
𝑑=1
M𝑒 [𝑖, 𝑑]

,

𝑀𝑅𝐸 (X𝑎,Xˆ 𝑎,M𝑒 ) =
∑︁J·T
𝑖=1

∑︁D
𝑑=1

(︁
|X𝑎 [𝑖, 𝑑] − X̂𝑎 [𝑖, 𝑑] | · M𝑒 [𝑖, 𝑑]

)︁∑︁J·T
𝑖=1

∑︁D
𝑑=1

(︁
|X𝑎 [𝑖, 𝑑] | · M𝑒 [𝑖, 𝑑]

)︁ .

The lower values of these metrics indicate higher accuracy in im-

puted results. These metrics have been proven effective in assessing

the quality of data imputation [10, 15, 16].

(2) Efficiency. As a crucial factor for online imputation, efficiency

is reflected in two metrics: imputation time cost required to impute

a data chunk, and memory cost required by the model online.

5.2 Evaluation on Snapshot Imputation

In this part, we compare the proposed MPIN approach with alter-

native representative imputers, focusing on data imputation for a

single time window.

Baselines. We compare our MPIN with seven existing data imput-

ers from three categories, as listed in Table 3.

7
Other alternative message passing modules such as GAT [43] and GCN [25] achieve

lower performance and are covered in Appendix A.6 in the extended version [1].
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Table 3: Baseline methods.

Category Method Description

Traditional

MEAN [3] MEAN imputes the missing values in a data chunk using the mean of each corresponding dimension.

KNN [41] KNN imputes the missing values of each instance using the mean of the instance’s k nearest neighbors.

MICE [6] Multiple Imputation by Chained Equation imputes missing values based on interdependent features in a round-robin fashion.

MF [21] Matrix Factorization treats a data chunk as a matrix and employs iterative SVD decomposition to impute missing values.

Time-series

based

BRITS [10] Bi-directional Recurrent Imputation for Time Series data adapts an RNN for iterative imputation.

SAITS [16] Self-Attention-based Imputation for Time Series replaces the RNN with the self-attention to capture dependencies for imputation.

Graph-based FP [37] Feature Propagation captures the correlation of data instances by iterative adjacency matrix multiplications.

Parameter Settings. Our experiments concern three key parame-

ters. First, we vary the parameter ofmissing rate. Similar to previous

work [10, 16], we do not have the ground truth for those truly miss-

ing values. Therefore, we randomly remove a ratio of observed

values from the raw data. The removal ratio is called the missing

rate and the removed values are used as the ground truth of the

missing values thus induced. Second, we vary the parameter of

window length, i.e., changing the length of a time window. A longer

window will involve more data instances of the stream, but the

number of windows will be less due to the fixed stream length.

Third, we vary the parameter of concurrent streams, i.e., the number

of concurrent streams involved in a time window. We achieve this

by varying the ratio of the original number of streams included in

the data for our experiments. In general, the lower the ratio, the

fewer streams are involved and the smaller a data chunk will be.

Table 4 gives the parameters settings with defaults shown in

bold. It is noteworthy that we apply relatively higher missing rates

(up to 80%) to Airquality because this dataset originally is much

less sparse than the other two (see Table 2). Besides, Wi-Fi has only

one single stream and thus there is no variation on the concurrent

streams. The parameter of window length is set properly according

to the total length of the streams. In particular, the length of time

windows for ICU and Airquality are at an hourly level, since the

data instances in the streams are sampled each hour. However,

the actual data amount within a time window is large due to the

existence of concurrent streams. Nevertheless, MPIN’s imputation

needs a few seconds only (see Table 6).

Table 4: Parameter settings (defaults are in bold).

Datasets ICU Airquality Wi-Fi

Missing Rate (%) [10, 30, 50] [40, 60, 80] [10, 30, 50]

Window Length [1,2,3,4,5,6] (h.) [1,2,3,4,5] (h.) [2,4,6,8,10] (min.)

Concurrent Streams (%) [1, 10, 20, . . ., 100] –

5.2.1 Overall Effectiveness Comparison. We vary the missing rate

per dataset to test the robustness of each method under varied data

sparsity. The effectiveness measures are reported in Table 5, where

the best and second-best results per setting are highlighted.

Overall, MPIN always outperforms the competitors with wide

margins in terms of both MAE and MRE in almost all settings. Only

in very few cases, MPIN is the second-best, with performance very

close to the best. Time series models SAITS and BRITS can only

exploit temporal dependencies in a series (i.e., a stream), whereas

MPIN is able to exploit correlations among data instances that may

include those across different streams. Moreover, MPIN operates

on a graph and thus can exploit positive relational inductive biases

from the graph [7] to further promote the effectiveness of imputa-

tion. This also explains why MPIN outperforms those traditional

imputers such as MICE and MF.

In addition, compared to FP, MPIN is much more effective in

most cases. Unlike FeaProp, the MsgProp mechanism can capture

inter-instance and inter-attribute correlations dynamically. Also,

we notice that FP performs relatively better on Wi-Fi than on ICU

and Airquality. This is because Wi-Fi is a homogeneous dataset

where it is easier for the FeaProp in FP to capture correlations.

Moreover, MPIN is much more robust to increasing data sparsity

than the other methods. On the one hand, a similarity graph-based

data structure involves data instances across streams and times-

tamps within a window and thus is more likely to find alternative

neighbors when the original instances become sparse. On the other

hand, MPIN can exploit the correlations in the graph-structured

data sufficiently using MsgProp and transductive learning.

5.2.2 Overall Efficiency Comparison. Table 6 compares the effi-

ciency of all imputation methods in terms of time cost. Since the

time cost remains consistent across varying missing ratios, we

provide a single result for each imputer on the respective dataset.

Notably, methods such as MEAN, FP, and MPIN exhibit consider-

ably lower time costs compared to others. On the other hand, the

time-series models BRITS and SAITS demonstrate the highest time

consumption due to their sequential neural network architecture,

which includes computationally intensive components like recur-

rent units or self-attention units during training. While MPIN is

also a neural network model, it capitalizes on parallel processing

with its MsgProp layer for graph-structured data, enabling efficient

utilization of computational resources andminimizing training time

(i.e., the imputation process).

Table 7 provides a comparison of memory cost among the neural

network models, namely MPIN, BRITS, and SAITS. Non-neural net-

work models are excluded in this analysis as they generally exhibit

lower effectiveness (as shown in Table 5). The results in Table 7

demonstrate that MPIN requires clearly less memory compared to

BRITS and SAITS. This distinction arises from the fact that MPIN’s

MsgProp layer uses a simpler structure than the recurrent unit and

self-attention unit used by the others.

Subsequently, we exclude the inferior traditional imputers and

narrow our focus to comparing MPIN with BRITS, SAITS, and FP

as they exhibit superior effectiveness or efficiency. Furthermore,

as the MAE results demonstrate similar trends to MRE, they are

reported in Appendix A.1 in the extended version [1].

5.2.3 Effect of Time Window Length. We vary the length of time

window to investigate its impact on imputation. We present the
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Table 5: Overall effectiveness comparison (the unit of MRE is %).

Dataset ICU Airquality Wi-Fi

Rate 50% 30% 10% 80% 60% 40% 50% 30% 10%

Metrics MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE

MEAN 0.88 101.7 0.81 94.98 0.73 84.12 0.48 84.17 0.46 79.56 0.40 68.98 2.21 92.06 1.95 81.39 1.52 63.21

KNN 0.74 85.26 0.62 72.76 0.46 53.33 0.48 84.43 0.47 80.22 0.41 70.44 1.84 76.89 1.43 59.51 0.63 26.37

MICE 0.73 84.85 0.61 71.55 0.44 51.07 0.48 83.52 0.45 78.02 0.39 66.74 2.00 83.68 1.65 68.77 0.99 41.25

MF 0.79 91.81 0.71 83.29 0.57 66.37 0.54 91.57 0.51 86.76 0.46 79.58 1.85 77.19 1.50 62.34 0.81 33.66

FP 0.83 96.03 0.78 91.49 0.70 81.35 0.57 99.78 0.57 98.67 0.56 96.36 1.26 52.77 0.55 22.73 0.12 5.17

BRITS 0.57 70.76 0.50 63.04 0.44 55.19 0.49 68.64 0.39 55.57 0.35 49.00 0.37 48.28 0.33 43.24 0.30 39.69

SAITS 0.53 65.89 0.47 58.29 0.41 51.63 0.43 60.65 0.31 43.42 0.23 32.69 0.47 60.92 0.40 52.04 0.41 54.09

MPIN 0.39 44.92 0.38 44.17 0.39 44.54 0.20 35.89 0.21 36.06 0.20 34.82 0.24 10.06 0.20 8.31 0.16 6.67

Table 6: Overall time cost comparison (unit: seconds).

Method MEAN KNN MICE MF FP BRITS SAITS MPIN

ICU 0.05 175.25 84.84 25.28 0.32 2143.61 1985.28 3.19

Airquality 0.01 81.31 0.29 1.33 0.09 1576.1 4201.69 1.28

Wi-Fi 0.05 0.11 42.39 4.21 0.2 7.34 9.46 2.94

Table 7: Memory cost (unit: MB).

Method BRITS SAITS MPIN

ICU 0.374 5.256 0.183

Airquality 0.189 5.091 0.056

Wi-Fi 23.574 12.305 3.246

results for ICU and Airquality. The results for Wi-Fi follow similar

patterns and are shown in Appendix A.2 in the extended version [1].

Referring to Figures 7 (a) and (b), as the time window becomes

longer, the imputation errors of MPIN, SAITS and BRITS decrease.

In particular, both SAITS and BRITS improve more rapidly than

MPIN. As both SAITS and BRITS are time series data imputers,

they can capture deeper time dependencies and benefit more from

longer time series. In contrast, MPIN does not capture temporal

dependencies, and the only benefit to MPIN of a longer time win-

dow is to provide more training data. However, this benefit may

bring about only slight performance gains, as the training data may

already be sufficient. Still, MPIN is the most effective in all cases.
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Figure 7: Effect of window length.

Moreover, referring to Figures 7 (c) and (d), despite fluctuations,

the time costs of SAITS and BRITS increases as the window length

increases. The longer the time window, the longer the time series

that SAITS and BRITS need to processwith their sequential modules.

The fluctuations are due to the random initialization of parameters

at the beginning of the training process.

In contrast, MPIN maintains consistently low and stable time

costs. This is because MPIN does not process data sequentially but

can process graph-structured data in parallel with its MsgProp

layer. This enables efficient utilization of computational resources

and reduces training time. Overall, the time cost of SAITS and

BRITS is by orders of magnitude higher, making them less desirable

for online imputation scenarios. Also, FP exhibits similar efficiency

to MPIN across different window lengths. However, FP lags behind

in terms of effectiveness due to its reliance on the simple matrix

multiplications in FeaProp that struggle to effectively capture cor-

relations in heterogeneous datasets.
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Figure 8: Effect of concurrent streams.

5.2.4 Effect of Number of Concurrent Streams. We vary the ratio

(number) of concurrent streams to study its impact on imputation

quality. Referring to Figures 8 (a) and (b), as the ratio of streams

increases, the MRE of MPIN, BRITS, and SAITS initially decreases

rapidly and then stabilizes. When the ratio of streams is low, the

three neural network models struggle to impute the streams ef-

fectively due to the limited amount of data instances for training

(imputation). When the ratio of the streams is higher, their imputa-

tion performance is improved due to the additional training data.

Furthermore, when the ratio of the streams is excessively high, the

advantages diminish as the current data may already be sufficient

for training. During the whole course, SAITS and BRITS improve

more significantly than MPIN. The former are sequential neural net-

work models, and the higher ratio of the concurrent streams means
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that more sequences can be used by their sequential modules to cap-

ture temporal dependencies. However, MPIN always outperforms

BRITS and SAITS even when the ratio of the streams reaches 100%.

On the other hand, FP shows minimal sensitivity to the ratio of the

streams as it is not a neural network model. However, FP is always

the least effective as it simply relies on adjacency matrix multipli-

cations. These findings indicate that the scarcity of data within a

time window adversely affects the imputation effectiveness.

Regarding time costs, Figures 8 (c) and (d) show that BRITS and

SAITS experience degradation as the ratio of concurrent streams

increases. Conversely, MPIN and FP maintain fast and stable per-

formance. The increase in concurrent streams implies that more

time series need to be processed by the sequential models BRITS

and SAITS, resulting in higher time costs. In contrast, MPIN is

non-sequential and can process graph-structured data in parallel.

In cases where a large data chunk exceeds the available memory,

we can split it into medium-sized data chunks and impute each of

them individually. This way will minimize the effect of large data

chunks and keep the whole process still fast.

5.3 Evaluation on Continuous Imputation

Methods. We assess the integration of MPIN with the techniques

proposed in Section 4 for continuous data stream computation,

involving the following methods:

• MPIN-P periodically calls MPIN to impute the missing values

of a data chunk at each time window.

• MPIN-D equipsMPINwith a data update mechanism to preserve

and update valuable data instances for improved imputation at

the next window.

• MPIN-M equips MPIN with a model update mechanism that

avoids training the model from scratch, and instead resumes

training from the best-ever state.

• MPIN-DM combines both data update and model update mech-

anisms with MPIN.

Parameter Settings. Since the proposed continuous techniques

primarily address concerns related to data quantity, such as data

scarcity within a window, we focus on varying the ratios of con-

current streams to create data chunks of different sizes within the

window. The ratios of streams are adjusted at intervals of one or-

der of magnitude, ranging from 0.1%, 1%, 10%, to 100%. The Wi-Fi

dataset, which consists of a single stream, is excluded from the

variation. Other parameters, such as window length, are kept as

defaults. The reported results are averaged across time windows.

5.3.1 Effect of Number of Concurrent Streams. Referring to Fig-

ures 9 (a) and (b), both MPIN-DM and MPIN-D exhibit lower MRE

values compared to MPIN-M and MPIN-P in most tested cases. This

difference becomes more prominent when the ratio of streams is

small, such as 0.1% or 1%. Both MPIN-DM and MPIN-D incorporate

a data update mechanism, allowing them to utilize valuable past

instances and enhance the effectiveness of subsequent imputations.

When encountering data scarcity within a window, the data up-

date becomes particularly significant as it mitigates the impact of

scarcity by augmenting the available data. Moreover, the inclusion

of model update in MPIN-DM further enhances its effectiveness

compared to MPIN-D, as it enables MPIN to converge to a better

local optimum during training. This also explains why MPIN-M

is more effective than MPIN-P in most cases. However, MPIN-M

may still occasionally be less effective than MPIN-P, e.g., when

ratio=1.0% on ICU. We attribute this to data distribution drift be-

tween windows, which renders the strategy of reusing states from

previous windows less effective. Moreover, we notice that the MRE

of methods does not strictly follow a monotonic trend as the ra-

tio of streams increases or decreases. Nonetheless, in general, the

MRE tends to be higher when data is scarce (e.g., 0.1%) and lower

when data is sufficient (e.g., 100%). Overall, MPIN-DM, MPIN-D,

and MPIN-M outperform MPIN-P, highlighting the effectiveness of

the proposed incremental techniques.

On the other hand, referring to Figures 9 (c) and (d), in most

cases, MPIN-DM is more efficient than MPIN-D, and MPIN-M is

more efficient than MPIN-P. This efficiency advantage arises from

the model update employed in both MPIN-DM and MPIN-M, which

allows them to avoid training from scratch and thus reduce time

costs. However, in a few cases (e.g., ratio=1.0%), the time cost of

MPIN-M exceeds that of MPIN-P. This is likely because the distri-

bution of data between windows may change occasionally, thus

making direct reuse of model states from previous windows less

effective at training with the data in the current window. Conse-

quently, training MPIN-M (also imputing) converges more slowly

than when training from scratch (i.e., MPIN-P). We also notice that

MPIN-DM is more efficient than MPIN-M. The data update strategy,

i.e., reusing some data from previous windows, can alleviate data

distribution drift between windows and can accelerate the model

training based on previous model states. In general, MPIN-D is the

least efficient due to its training from scratch with additional data

(i.e., those valuable data instances). However, when the ratio of

the streams is high (i.e., 100%), the time cost of MPIN-D is reduced

considerably. With large amounts of data, training MPIN may need

fewer iterations to converge to a local optimum, which accelerates

the training. Moreover, the additional valuable data instances may

contribute to this as they provide high-value data instances to speed

up the convergence process.
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Figure 9: Continuous imputation on concurrent streams.

5.3.2 Effect of Irregular Sensor Streams. In previous experiments,

the chosen ratio of concurrent streams remained constant across

all windows, resulting in data chunks of the same size. However,

in reality, streams may appear in an irregular or aperiodic manner,

leading to sequential data chunks of varying sizes. To simulate this

scenario, we introduce variations in the ratio of concurrent streams
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in each time window, including values of 0.1%, 1%, 10%, and 100%.

The imputation results are then averaged across all windows.

The results in Figure 10 reveal that methods incorporating data

update exhibit lower MRE values compared to those without such

a mechanism. Specifically, MPIN-DM outperforms MPIN-M and

MPIN-D surpasses MPIN-P in terms of effectiveness.

Regarding time costs, methods using the model update mecha-

nism are more efficient than those without — MPIN-DM outper-

forms MPIN-D and MPIN-M outperforms MPIN-P. Overall, in the

presence of irregular streams, the proposed incremental techniques

are also helpful. Notably, MPIN equipped with both data update and

model update emerges as the most effective and efficient method.
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Figure 10: Performance on irregular streams.

Due to the space limit, we present additional experimental results

and analyses in the extended version [1].

6 RELATEDWORK

Traditional Imputers for Data Streams. Association rules-based

data imputation methods [19, 22] target wireless sensor networks

only and rely heavily on data characteristics. Next, KNN-based im-

putation uses the K neighbors’ mean to replace themissing values in

the instance [50, 51]. but simple averaging operations are ineffective

on sparse data. Besides, multiple imputations by chained equation

(MICE) [21] exploits chained equations and is more effective but it

cannot handle high data sparsity or high dimensionality.

The top-K case matching [45] finds anchor points that share

similar patterns across streams of time series. A matrix-based im-

puter [23] imputes time series streams by means of an incremental

centroid decomposition of the matrix capturing the data. Unlike our

work, these two studies consider only homogeneous time series and

single-attribute cases. An experimental evaluation [24] compares

matrix factorization-based methods [30, 34, 49] for data imputation.

Unlike the matrix-based methods, our proposals operate on a

similarity graph that not only enables capturing correlation but also

contains a positive relational bias [7, 14]. An instance in a graph only

relates to the most similar neighbors. This positive bias provides

more accurate and relevant information for data imputation.

Neural Network-based Imputers for Data Streams. Che et

al. [11] use an adapted gated-recurrent unit (GRU)withmasking and

time-lag mechanisms to impute the missing values in sequences in

an iterative fashion. Cao et al. [10] propose a classical bi-directional

recurrent neural network for time series data imputation (BRITS).

It adopts a transductive learning style and reconstructs missing

values by reasoning from observed values in the sequences. Studies

also exist that combine this RNN-based design with a generative

adversarial network (GAN) [27–29, 32] to improve effectiveness.

However, this combination may increase the training cost and cause

unstable imputation results as GANs are often hard to train [31].

While Cini et al. [14] first integrate a message-passing unit with an

RNN-based imputer to capture correlations among attributes, they

target only homogeneous data. Recently, Du et al. [16] propose a

self-attention-based imputation model to improve the efficiency of

imputation. However, the full time cost remains high, rendering

the model unsuitable for online imputation.

Overall, the imputation models above suffer from the following

drawbacks. First, they are all based on sequential structures (either

RNN or attention) and usually need much time for training. Second,

they only capture intra-sequence temporal dependencies, but not

inter-sequence dependencies. Third, some of them only work on

periodic time series, while streams in practice are often aperiodic. In

contrast, MPIN operates on a similarity graph and thus can exploit

correlations among instances that may come from different streams

or different times within a time window. Further, MPIN is amenable

to fast training because it enables parallel operations on multiple

nodes, thus exploiting available computing resources sufficiently.

Imputers for Graph-Structured Data. You et al. [48] propose

to represent tabular data as a bipartite graph, where a node repre-

sents an attribute or a label, and then exploit an existing GNN and

known labels to impute missing values of feature attributes. Spinelli

et al. [38] propose an encoder-decoder model to impute missing

values of graph nodes using label loss. Chen et al. [12] propose

an end-to-end imputation process that takes the known labels and

observed feature values into account to impute missing values and

predict remaining unknown labels. All these imputation methods

are designed to exploit (partially) known labels which, however, do

not exist in our problem setting. More importantly, these methods

apply existing GNN models directly, whereas we enable a message

propagation process, with an accompanying theoretical analysis.

Finally, the existing methods target only static datasets (e.g., a table)

and fall short on data streams. The closest study to ours is feature

propagation [37] (discussed in Section 3.4). That study aims to im-

pute missing values of node features in a pre-existing graph that

may lack homophily. In contrast, our approach builds graphs based

on the similarity among data instances (see Section 3.1), and the

resulting graphs certainly contain homophily to be exploited.

7 CONCLUSION

In this work, we have proposed a message propagation imputation

network (MPIN) to accurately and efficiently impute missing values

in the data instances of a timewindow in data streams.Moreover, we

have proposed a continuous imputation framework with data and

model update mechanisms to enable MPIN to support continuous

imputation. Extensive experimental studies have demonstrated that

the proposed data imputer is generally more accurate and more

efficient than competitors and that the continuous framework is

effective at continuous imputation on data streams.

In the future, it is of interest to deploy the proposed techniques

in sensor data streaming systems. Also, it is interesting to explore

data imputation on heterophilic graphs built on dissimilar data.
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