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ABSTRACT
Index is an important component in database systems. Learned

indexes have been shown to outperform traditional tree-based index

structures for fixed-sized integer or floating point keys. However,

the application of the learned solution to variable-length string keys

is under-researched. Our experiments show that existing learned

indexes for strings fail to outperform traditional string indexes,

such as HOT and ART. String keys are long and variable sized, and

often contain skewed prefixes, which make the last-mile search

expensive, and adversely impact the capability of learned models

to capture the skewed distribution of string keys.

In this paper, we propose a novel learned index for string keys,

LITS (Learned Index with Hash-enhanced Prefix Table and Sub-

tries). We propose an optimized learned model, combining a global

Hash-enhanced Prefix Table (HPT) and a per-node local linear

model to better distinguish string keys. Moreover, LITS exploits

compact leaf nodes and hybrid structures with a PMSS model for

efficient point and range operations. Our experimental results using

eleven string data sets show that LITS achieves up to 2.43x and

2.27x improvement over HOT and ART for point operations, and

attains comparable scan performance.
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1 INTRODUCTION
Indexes play an essential role in modern database engines to accel-

erate transaction and query processing. Learned indexes have been

shown to outperform traditional tree-based index structures for

fixed-sized integer or floating point keys [13, 15–17, 20, 21, 23, 24,

27, 28]. However, this is hardly the case for variable-length string

keys, which are common in the real world [9, 11].

While learned indexes have been extensively studied for fixed-

sized integer or floating point keys in recent years, the application

of the learned solution to variable-length string keys is under-

researched with only a couple of studies [22, 26]. We experimentally
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compare the existing learned indexes for strings, i.e. SIndex [26]

and RSS [22], with state-of-the-art traditional string indexes, i.e.,

ART [19] and HOT [10]. We find that existing learned indexes fail

to outperform traditional indexes. In fact, traditional string indexes

win by a large margin.

By examining real-world string data sets, we observe two dis-

tinct features of string keys that differ significantly from fixed-sized

integer or floating point keys. First, string keys are often long and
variable sized, making the key access and comparison more expen-

sive. Second, string data sets see skewed prefixes among string keys.

Popular prefixes shared by multiple strings make it difficult for

learned models to distinguish individual string keys.

The two distinct features impact the tree height, the node search,

and the last-mile search in index structures. For example, the last-

mile search often requires expensive key comparisons, and there-

fore should be avoided as much as possible. Recent studies attempt

to adapt CDF models for fixed sized keys (e.g. RMI [17], Radix

Spline [16], and piece-wise linear models) to string data sets. How-

ever, the resulting learned models work poorly for capturing the

skewed distribution of string keys, leading to large tree heights that

degrade index performance.

In this paper, we propose a novel learned index for string keys,

LITS (Learned Index with Hash-enhanced Prefix Table and Sub-

tries). First, LITS employs the collision-driven design of LIPP [28] to

avoid the last-mile search by creating a child node to store the keys

that are mapped to the same slot. Second, we propose an optimized

learned model, combining a global Hash-enhanced Prefix Table

(HPT) and a per-node local linear model. The HPT approximates

the conditional probability of the next character given a prefix in

the string key. Compared with existing learned models, HPT can

better distinguish string keys. Third, the collision-driven design can

result in a large number of small leaf nodes containing two or only

a few keys. Consequently, a scan may have to traverse many small

nodes, incurring expensive cache misses and node jump overhead.

We introduce the compact leaf node, which replaces a group of

small nodes with a single node. Finally, we observe that trie-based

index, such as HOT, is very efficient for highly skewed string data

sets. Therefore, we combine our learned index and HOT using a

performance model (PMSS) to determine whether a subtrie is more

beneficial to be used in the place of a child node.

LITS supports common index operations on string keys, includ-

ing bulkload, search, insert, delete, update, and range scans. It is

specifically optimized for point operations. We conduct extensive

experiments using seven real-world string data sets and four syn-

thetic data sets. Our experimental results show that LITS achieves

up to 2.06x and 2.14x improvement over HOT and ART for point

operations, respectively. For the scan-heavy workload, LITS’s per-

formance is comparable with HOT and better than ART.
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Table 1: String data sets used in this work. (cf. Section 4.1)
Dataset Min Len Max Len Avg Len Number of Keys Total Size

address 4B 133B 24B 34M 802MB

dblp 2B 255B
†

76B 7M 506MB

geoname 2B 152B 13B 7M 106MB

imdb 2B 106B 13B 9M 132MB

reddit 3B 26B 11B 26M 292MB

url 12B 255B
†

64B 63M 4.6GB

wiki 2B 255B
†

15B 43M 870MB

email* 11B 47B 23B 45M 1.1GB

idcard* 18B 18B 18B 63M 1.2GB

phone* 11B 23B 17B 50M 819MB

rands* 2B 61B 32B 50M 1.6GB

†
: The data set is processed to remove strings longer than 255B. The maximum key

length of the unprocessed dblp is up to 1461B.

*: The data set is synthetically generated.
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Figure 1: Prefix skewness of string keys.
Contributions. The contributions of the paper are as follows. First,
we propose a novel HPT-based CDF model that exhibits strong

discriminative power for string keys. Second, we propose LITS, a

novel learned index for strings that exploits the HPT-based model,

compact leaf nodes, and hybrid structures with a PMSS model for

efficient point and range operations. Finally, we perform extensive

experiments to compare our proposed LITS with five state-of-the-

art string indexes using eleven string data sets. Our experiments

show that LITS achieves the overall best performance.

Organization. The rest of the paper is organized as follows. Sec-

tion 2 studies the characteristics of string keys and examine existing

string indexes to motivate our study. Then, Section 3 presents the

LITS design. Section 4 experimentally compares LITS with state-of-

the-art string indexes. Finally, Section 5 concludes the paper.

2 BACKGROUND AND MOTIVATION
Learned indexes have been shown to outperform traditional tree-

based index structures for fixed-sized integer or floating point

keys [13, 15–17, 20, 21, 23, 24, 27, 28]. However, this is hardly the

case for string keys. In the following, we study the characteristics

of string keys in Section 2.1, then examine existing index structures

optimized for strings to motivate our study in Section 2.2.

2.1 Characteristics of String Keys
Table 1 summarizes 7 real-world and 4 synthetic string data sets

used in this work. (Please see detailed description in Section 4.1.)

Focusing on the real-world data sets, we observe two features that

are distinct from fixed-sized integer or floating point keys.

Long and Variable Sized Keys. Integer or floating point keys

are typically of 4B or 8B large. In comparison, the string keys in

the real-world data sets are much more complex. They can vary

from 2B to over 1KB. The average key length of the real-world data

sets is from 11B to 26B, which is much longer than 4B/8B keys.

Consequently, storing entire string keys in index (inner) nodes can

significantly reduce node fanouts, degrading index performance.

On the other hand, storing pointers to string keys in index nodes

causes pointer dereferences, incurring CPU cache misses. Moreover,

the comparison of long keys is also more expensive.

SkewedPrefixes.The prefixes of string keys are often quite skewed.
Figure 1 compares the prefix skewness of the real-world string data

sets and a uniformly generated integer data set. For each prefix

length 𝑘 , we compute the ratio of distinct prefixes of a data set as

the number of distinct k-byte prefixes divided by the total number

of keys in the data set. This ratio is between 0 and 1. If it is closer

to 1, then the data set is more evenly distributed. If it is closer to

0, then a few prefixes are very popular. A large number of keys

share the same prefixes. The data set is more skewed. In Figure 1,

we consider the prefix length when the ratio of a data set is over

0.99. For the integer data set, all keys can be distinguished by four

bytes. In contrast, all real-world string data sets have very low ra-

tios of distinct prefixes at 4B prefixes. For reddit, the ratio reaches
0.99 at 16B prefixes. The ratio of url gets to 0.99 at 154B prefixes.

Consequently, it is necessary to examine a much larger number

of bytes for distinguishing string keys, adversely impacting the

effectiveness of learned models in learned indexes.

2.2 Existing Indexes Optimized for Strings
We focus on ordered indexes for strings in this paper. Figure 8 com-

pares the search performance of five state-of-the-art index struc-

tures optimized for strings, including two trie-based indexes (i.e.,

ART [19] and HOT [10]), and three learned index based structures

(i.e., SIndex [26], RSS [22], SLIPP, which is based on LIPP [28])
1
.

From the figure, it is clear that existing learned indexes work poorly

compared to traditional trie-based indexes. In the following, we

examine the index design choices to understand the pros and cons

of the existing index designs.

Index Performance Factors. Ordered indexes are typically or-

ganized as a tree. All the five state-of-the-art string indexes are

essentially trees consisting of inner nodes and leaf nodes. A search

often starts from the root of a tree, visits several inner nodes at

different tree levels, and finally reaches a leaf node in the tree.

Therefore, the number of tree levels from the root to the leaf and

the search procedures at inner and leaf nodes are main factors

influencing the index search performance:

• Tree height: The (average) tree height indicates the expected

number of nodes accessed by an index search. Each node access

often incurs an expensive CPU cache miss. These cache misses

are dependent on each other since the memory address of the

node at the next level is known only after searching the node

at the previous level. Therefore, the tree height is an important

performance factor. We see four cases for tree heights. First,

the tree height is determined by (the logarithm of) the number

of index entries (e.g., in B+-Trees). Second, the tree height is

1
We do not include B+-Trees in the comparison because previous work has shown that

trie-based indexes significantly outperform B+-Trees for string data sets [10]. Recent

work on Extendible Radix Tree (ERT) enhances trie nodes with extendible hashing [25].

While the idea could potentially support string keys, the original paper and its code

focus only on integer keys. Therefore, we do not consider ERT in this work.
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Figure 2: Comparing index structures optimized for strings.
determined by the length of the index keys (e.g., in ART or

RSS). Third, learned indexes introduce CDF models to predict

the key positions in a node in order to increase node sizes and

reduce the tree height. The tree height is model-based. Finally,
SIndex [26] constructs a two-level tree with a root node and a

number of group nodes.

• Node search: Search in an inner node narrows down the search

scope to a subtree of the node. Search in a leaf node locates the

target index entry. Both often follow similar search procedures.

There are mainly three ways to support node search. First, it

can be based on key comparisons over the full keys or on part

of the keys, e.g., binary search in a sorted B+Tree node. Second,

it can perform an array lookup, e.g., in a common trie node,

such as node256 in ART. Finally, learned indexes often conduct

model-based search, which employs a learned model to predict

the location of the search key in the key array.

• Last-mile search: In learned indexes, model prediction in inner

nodes is often accurate by construction. Index keys are mapped

to subtrees of an inner node using the associated model during

bulkload and write operations. However, the models in leaf

nodes may not predict the correct key positions. Therefore,

learned indexes often have to do extra work, a.k.a. last-mile
search, to locate the key around the predicted position in leaf

nodes. The last-mile search often performs key comparisons

(e.g., with exponential or binary search), and can incur poor

performance for learned indexes with fixed-sized keys [27]. The

situation is even worse for long and variable sized keys because

of pointer dereferences and higher key comparison costs.

Pros and Cons of Existing Indexes.We examine the three per-

formance factors of the five string indexes. Figure 2 compares the

five indexes and our proposed solution.

• ART : Adaptive Radix Tree (ART) [19] is a compressed trie. Each

level of an ART uses a byte in the keys. Therefore, the height

of an ART is determined by the key lengths, which can be

quite large for string data sets. ART compresses the trie node

to four types of nodes (i.e., Node4/16/48/256) to reflect the

effective node fanouts. The node search in Node48 and Node256

performs array lookups, while Node4 and Node16 employ key

comparison based search. Both procedures are fast because ART

searches 1B in every node. There is no last-mile search.

• HOT : Height Optimized Trie (HOT) [10] optimizes ART by re-

ducing the tree height. Each inner node of a HOT is a compound

node that represents a Patricia trie with a fanout of up to 32.

This is achieved by carefully storing only a subset of distinct

key bits (a.k.a. partial keys) in each node. As a result, HOT often

reduces the tree height significantly for long string keys. Its

height can be viewed as roughly determined by the number of

index entries. Moreover, the node search compares partial keys

with efficient SIMD operations. There is no last-mile search.

• SIndex: SIndex [26] is a two-level tree consisting of a root node

and a level of group nodes. The root node employs a piece-

wise linear model (PLM) and divides the key space into key

groups. Then, each group node uses a linear model (LM) to

locate an index entry. Since the model prediction is not fully

accurate, SIndex performs a last-mile search, which is a binary

search within the error bound around the predicted location, in

both the root and the group nodes. The last-mile search incurs

significant performance overhead.

• RSS: Radix String Spline (RSS) [22] is a trie. Each trie node uses 8B
or 16B of the keys, and computes a Radix Spline (RS) model [16]

for them. The RS model is a piece-wise linear model that pro-

vides monotonic CDF prediction with a given error bound. For

keys dissatisfying the error bound (e.g., because of shared pre-

fixes), RSS stores the key in the redirector map and creates a new

child node for the key. RSS compares 8B/16B portions of keys,

which has lower cost than full key comparison. However, the

last-mile search is still very costly. In the search experiments,

RSS spends over 70% of the time in the last-mile search.

• SLIPP. LIPP [28] is an interesting learned index with fixed-sized

keys because it avoids the costly last-mile search. In each inner

node, LIPP trains a linear model. If multiple keys are mapped to

the same entry slot by the linear model, LIPP creates a new child

node for the collision keys. This design is known as the collision-

driven approach. It essentially converts the last-mile search into

a sub-tree search. We implement a variant of LIPP, called SLIPP,
to support string keys. At each node, SLIPP computes a numeric

representation of each string key (after excluding the common

prefix of the keys in the node) using a straight-forward formula:

𝑦 =
𝑠1
256

+· · ·+ 𝑠𝑙𝑒𝑛
256

𝑙𝑒𝑛 , where 𝑠𝑖 is the 𝑖-th byte of the key. Then, it

computes the linear model based on the numeric representation.
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The other design of LIPP is kept unchanged. While SLIPP avoids

the last-mile search, the computed model can hardly distinguish

keys with skewed prefixes, resulting in many collisions and

large tree heights.

Motivation. The above discussion focuses on search, which is rep-

resentative of point operations. The comparison of the five string

index structures motivate us to design an optimized learned in-

dex for strings that avoids the last-mile search and improves the

effectiveness of the learned models for reducing the tree height.

3 LITS
We propose LITS (Learned Index with Hash-enhanced Prefix Table

and Sub-tries) for string keys in this section. Section 3.1 overviews

the structure and operations of LITS. Then, Section 3.2, 3.3, and 3.4

present the three main techniques of LITS, optimizing the learned

model, accelerating scans with compact leaf nodes, and exploit-

ing subtries to further improve performance, respectively. Finally,

Section 3.5 describes the time and space cost of LITS.

3.1 Overview of LITS
Figure 3 depicts the structures in LITS. We describe the distinct

features of LITS (highlighted in the figure) in the following.

• Model-based node: To deal with the problem of the last-mile

search, as discussed in Section 2.2, we employ the collision-

driven design of LIPP to avoid the last-mile search. Specifically,

a model-based node consists of a header and an item array.

The header contains metadata, such as the number of keys,

the key prefix, the size of the item array, and a local linear

model. Each slot in the item array is a 64-bit pointer. We store

additional information in the upper bits of the pointers, which

are otherwise unused in current machines. Keys are mapped to

slots in the array with an optimized learned model (discussed in

more detail below). There are three cases. First, a slot is empty.

Then, it contains a NULL item. Second, only a single key is

mapped to a slot. Then, the slot holds a pointer to the key-value

entry. Third, multiple keys are mapped to the same slot. Then,

LITS creates a child node to store the keys to avoid the last-

mile search. The node type field in the 64-bit item indicates the

different child node types.

• Optimized global HPT and local models: As discussed in Sec-

tion 2.2, due to skewed prefixes and long keys, existing learned

models work poorly for string keys. This results in the large tree

height in SLIPP, lowering index performance. We propose an

optimized learned model, combining a global Hash-enhanced

Prefix Table (HPT) and a per-node local linear model to effec-

tively distinguish string keys. (cf. Section 3.2)

• Compact leaf node: The collision-driven design in model-based

nodes lead to a large number of small leaf nodes that contain

two or only a few kv-pointers. However, a scan has to traverse

many such small leaf nodes, and suffers from expensive cache

misses and node jump overhead. We introduce the compact leaf

node tomake the design scan-friendly. A compact node contains

a header and an array of h-pointers sorted in the key order. An

h-pointer consists of a 16-bit computed hash of the key and a

48-bit pointer to the kv-entry. In this way, we replace a number

of small leaf nodes with a single compact leaf node, thereby

reducing the number of node visits in scans. (cf. Section 3.3)

• Subtrie node and PMSS:We call the resulting indexwith the above

techniques, LIT. Our experiments show that LIT outperforms

all the five existing indexes for most data sets, but it is slightly

slower than the trie-based index (i.e., HOT) for a couple of

data sets. Therefore, we propose to combine LIT and trie-based

indexes.We build a performancemodel (i.e., PMSS) to determine

whether a subtrie is more beneficial to be used in the place of a

child node. The combined structure of LIT with subtries is our

final proposed solution, LITS. (cf. Section 3.4)

After overviewing the structures of LITS, we describe the common

index operations in the following.

Search. A search goes from the root node to a leaf node. Based on

the node type, LITS performs different search procedures.

First, in a model-based node, LITS compares the common prefix

recorded in the node header with the search key. Most commonly,

the prefixes match. Then, LITS skips the prefix and uses the remain-

ing substring of the search key to predict the slot position based on

the global HPT and the local model. The position is between 1 and

𝐼𝑡𝑒𝑚𝐴𝑟𝑟𝑎𝑦𝑆𝑖𝑧𝑒−2. In rare situations, the prefixes do not match. We

preserve the first (the last) item of the item array for the case where

the search key prefix is less (greater) than the recorded prefix. Then,

LITS gets the target item according to the search key. If the item is

NULL, the search key does not exist. Otherwise, LITS dereferences

the pointer to visit the child node / kv-entry.

Second, in a compact leaf node, LITS performs a key comparison

based search. It dereferences an h-pointer only if the hash of the

search key matches the hash in the h-pointer.

Third, if the node is a subtrie node, LITS calls the search proce-

dure of the subtrie (e.g., HOT) to continue the search.

Finally, upon reaching a kv-entry, LITS compares the search key

with the key in the kv-entry. The search succeeds if it is a match.
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Insert/Delete/Update. An insert first performs the search for the

input key. If the search gets to an empty item, LITS simply inserts

the new kv-entry to the empty slot. If the search gets to a single-

entry item (i.e., a pointer to a kv-entry), LITS builds a new compact

leaf node to contain the new key and the existing key. If the search

gets to a compact leaf node, then LITS inserts the key to the compact

leaf node if there are less than 16 entries. When the compact node

already contains 16 entries, LITS performs the PMSS-based decision

and replaces the compact node with either a model-based node or

a subtrie. If the search gets to a subtrie, then LITS calls the insert

procedure of the subtrie to complete the insertion.

The delete or update procedures work similarly. For an update,

LITS searches the key and either modifies the value in the kv-entry

or changes the item or h-pointer to point to a new kv-entry. For a

delete, LITS removes the key if it is found. This clears the single-

entry item, or reduces the number of keys in a compact node. The

situation is a little complicated for subtrie deletion because HOT

does not implement the delete function. We employ a delete list to

hold the deleted keys associated with a subtrie. If the number of

deleted keys is beyond a predefined ratio of the keys in the subtrie,

we reconstruct the subtrie.

When a model-based node contains too many (or too few) keys,

LITS follows a procedure similar to LIPP to perform node resizing

operations. Moreover, when inserting to a compact leaf node with

16 entries, LITS uses the PMSS to determine if a model-based node

or a subtrie should be constructed. (Please see Section 3.4 for all

cases where PMSS-based decision is performed.) Finally, we adapt

the classic method of optimistic locking, which protects each node

with a lock and allows reading a node without locking it, to support

concurrent threads.

Scan. Given a begin key, a scan searches the begin key and con-

structs an iterator. Using the iterator, one can obtain a list of kv-

pointers sorted by the key order by repeatedly calling the iterator’s

next method. Internally, the scan maintains a stack of pointers to

nodes from the root to the current leaf node. Both the items in

model-based nodes and the h-pointers in compact leaf nodes are

sorted in the key order. Therefore, the scan can easily traverse the

nodes in the tree using the stack.

Bulkload. At the beginning, LITS samples a subset of keys and

compute the global HPT model. Then, LITS bulkloads the tree in

a similar fashion as LIPP. There are two main differences. First,

for a sub range of data, LITS chooses which node type to build.

If the number of keys is at most 16, then LITS builds a compact

node. If there are more keys, LITS uses the PMSS to choose between

a model-based node and a subtrie. Second, when constructing a

model-based node, LITS uses the global HPT to compute the local

linear model for the keys in the node.

3.2 Hash-enhanced Prefix Table (HPT)
We would like to design a good learned model to better distinguish

string keys. In the following, we begin by deriving a recursive

formula for CDF computation. Using the formula, we explain why

previous linear models work poorly. Then, we propose our HPT-

based model to better approximate the CDF. Finally, we describe

the training and computation procedure using the HPT.

Recursive Formula for CDF Computation. Given a string data

set and a string 𝑆=𝑠1 ...𝑠𝑛 , we would like to compute 𝑐𝑑 𝑓 (𝑆). For
brevity of presentation, we prepend a special (non-existent) begin-

ning character 𝑠0 to every string. Hence, 𝑆=𝑠0𝑠1 ...𝑠𝑛 . We denote the

𝑘-byte prefix of the string as P𝑘=𝑠0𝑠1 ...𝑠𝑘 . Therefore, 𝑆 ≡ P𝑛 . Then,

we have the following recursive formula:

𝑐𝑑 𝑓 (P0) = 0

𝑐𝑑 𝑓 (P𝑘+1) = 𝑐𝑑 𝑓 (P𝑘 ) + 𝑝𝑟𝑜𝑏 (P𝑘 ) × Σ𝑠𝑘+1−1
𝑐=0

𝑝𝑟𝑜𝑏 (𝑐 |P𝑘 )
(1)

Here, 𝑝𝑟𝑜𝑏 (P𝑘 ) represents the probability of prefix P𝑘 in the string

data set. 𝑝𝑟𝑜𝑏 (𝑐 |P𝑘 ) stands for the conditional probability of the

next character being 𝑐 given the prefix P𝑘 .

We can also derive a recursive formula for 𝑝𝑟𝑜𝑏 (P𝑘 ) as follows:

𝑝𝑟𝑜𝑏 (P0) = 1

𝑝𝑟𝑜𝑏 (P𝑘+1) = 𝑝𝑟𝑜𝑏 (P𝑘 ) × 𝑝𝑟𝑜𝑏 (𝑠𝑘+1 |P𝑘 )
(2)

From Eqn 1 and 2, it is clear that obtaining 𝑝𝑟𝑜𝑏 (𝑐 |P𝑘 ) for any
prefix P𝑘 and any character 𝑐 is crucial for computing 𝑐𝑑 𝑓 (𝑆).
Problem of Existing Linear Models. Existing linear models pre-

dict the position of a string 𝑆=𝑠1 ...𝑠𝑛 as a linear function: 𝑦 (𝑆) =
𝛼 × 𝑥 + 𝛽 , where 𝑥 = Σ𝑚

𝑘=1

𝑠𝑘
256

𝑘 . SLIPP computes 𝑥 based on the full

string, and hence𝑚=𝑛. RSS uses an 8B or 16B portion of the keys

in each node in the model prediction. Therefore,𝑚= 8 or 16 in RSS.

We can rewrite the formula in a recursive fashion as follows:

𝑦 (P𝑘+1) = 𝑦 (P𝑘 ) + 𝛼
256

𝑘 × 𝑠𝑘+1
256

(3)

Since 𝑦 (𝑆) is a scaled version of 𝑐𝑑 𝑓 (𝑆), we can compare Eqn 1

and 3.
𝛼

256
𝑘 corresponds to a scaled version of 𝑝𝑟𝑜𝑏 (P𝑘 ), and 𝑠𝑘+1

256

corresponds to Σ𝑠𝑘+1−1
𝑐=0

𝑝𝑟𝑜𝑏 (𝑐 |P𝑘 ). 𝑠𝑘+1256
implies that any 8-bit char-

acter appears uniformly at random. Therefore, the existing linear

models essentially assume that the distribution of the next char-

acter following any given prefix is uniform. This estimation can

hardly reflect the true distribution in a string data set, which often

contains highly skewed prefixes.

Our Solution: HPT. We would like to better approximate the

conditional probability 𝑝𝑟𝑜𝑏 (𝑐 |P). Existing neural network-based

nonlinear CDF models [8, 14] are more accurate than linear models.

However, these models are complex. The model training and model

prediction are time consuming. It would be an over-kill for our goal

of designing efficient string indexes.

A naïve idea is to record the conditional probabilities for all

possible (prefix, character) pairs in the string data set. However,

such an approach would require prohibitively large space to store

the conditional probabilities.

To reduce the space overhead, we propose the Hash-enhanced

Prefix Table (HPT). As illustrated in Figure 4, the HPT is a ta-

ble (i.e., 2D array). For any prefix, we map the prefix to a row

in the table using a hash function. (We set the hash of the empty

prefix, ℎ𝑎𝑠ℎ(𝑠0)=0.) Then, each column corresponds to a charac-

ter in the character set. We approximate the conditional proba-

bility 𝑝𝑟𝑜𝑏 (𝑐 |P) with table lookups as HPT[ℎ𝑎𝑠ℎ(P)][𝑐 + 1].cdf -

HPT[ℎ𝑎𝑠ℎ(P)][𝑐].cdf. We have stored this value in the model as

HPT[ℎ𝑎𝑠ℎ(P)][𝑐].prob. Note that HPT[ℎ𝑎𝑠ℎ(P)][𝑐].cdf approxi-
mates 𝑐𝑑 𝑓 (𝑐 |P), which is Σ𝑐−1

0
𝑝𝑟𝑜𝑏 (𝑖 |P). This reduces the com-

plexity for the CDF computation.
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cdf prob a b c

0 0.16 0.02 0.18 0.16 0.34 0.66

1 0.05 0.32 0.37 0.55 0.92 0.08

2 0.03 0.31 0.34 0.32 0.66 0.34

3 0.14 0.07 0.21 0.78 0.99 0.01

HPT a b c

0 0.16 0.02 0.18 0.16 0.34 0.66

1 0.05 0.32 0.37 0.55 0.92 0.08

2 0.03 0.31 0.34 0.32 0.66 0.34

3 0.14 0.07 0.21 0.78 0.99 0.01

a b c

0 0.16 0.02 0.18 0.16 0.34 0.66

1 0.05 0.32 0.37 0.55 0.92 0.08

2 0.03 0.31 0.34 0.32 0.66 0.34

3 0.14 0.07 0.21 0.78 0.99 0.01

alphabet

hash 

values

iteration 1:
cdf += prob * 0.18
prob*= 0.16

iteration 2:
cdf += prob * 0.14
prob*= 0.07

iteration 3:
cdf += prob * 0.92
prob*= 0.08

hash(“”)=0

HPT(0, ‘b’) .cdf= 0.18

HPT(0, ‘b’).prob = 0.16

hash(“b”)=3

HPT(3, ‘a’).cdf = 0.14

HPT(3, ‘a’).prob = 0.07

hash(“ba”)=1

HPT(1, ‘c’).cdf = 0.92

HPT(1, ‘c’).prob = 0.08

bac bac bac

iteration 0:
cdf = 0
prob = 1

Figure 4: An illustration of the CDF computation using the HPT for string “bac”. (purple: prefix; red: current character)

Algorithm 1 HPT-based CDF computation.

1: procedure GetCDF(HPT, string S)
2: cdf = 0, prob = 1

3: for 𝑘 = 0 to 𝑙𝑒𝑛(𝑆) − 1 do
4: hashval = (k == 0 ? 0 : hash(S[0:k-1]))

5: c = S[k]

6: cdf += prob * HPT[hashval][c].cdf

7: prob *= HPT[hashval][c].prob

8: return cdf

HPT Construction. The construction of the HPT is simple. We

randomly sample a small fraction (e.g., 1%) of the string data set

during bulkloading, and compute the HPT using the sample. First,

we initialize the HPT table to all 0s. Second, we iterate through

all the string keys in the sample. For each string, we extract all

(prefix P, character 𝑐) pairs, and increment the corresponding cell

HPT[ℎ𝑎𝑠ℎ(P)][𝑐]. After the processing, each cell contains the fre-

quency of (ℎ𝑎𝑠ℎ(P), 𝑐). Finally, we process each row in the HPT.

We compute the accumulate frequencies, and divide them by the

total frequencies in the row to obtain 𝑐𝑑 𝑓 (𝑐 |ℎ𝑎𝑠ℎ(P)). We store

𝑐𝑑 𝑓 (𝑐 |ℎ𝑎𝑠ℎ(P)) in HPT[ℎ𝑎𝑠ℎ(P)][𝑐].cdf and 𝑐𝑑 𝑓 (𝑐 + 1|ℎ𝑎𝑠ℎ(P)) -
𝑐𝑑 𝑓 (𝑐 |ℎ𝑎𝑠ℎ(P)) in HPT[ℎ𝑎𝑠ℎ(P)][𝑐].prob.
Model Prediction. Algorithm 1 shows the computation of 𝑐𝑑 𝑓 (𝑆)
using the HPT. The initialization in Line 2 corresponds to 𝑐𝑑 𝑓 (P0)
and 𝑝𝑟𝑜𝑏 (P0). Then, we use Eqn 1 (Line 6) and Eqn 2 (Line 7) to

iteratively compute the CDF and probability of the current prefix,

respectively. To reduce the cost of the hash computation in Line

4, we keep an internal state and incrementally update the state

with the next character in the string. Then, we can compute the

hash value of the prefix with 𝑂 (1) cost. The loop proceeds until

the CDF of the string S is computed. Figure 4 shows an example

computation of 𝑐𝑑 𝑓 (𝑏𝑎𝑐).
LITS combines the global HPT and the per-node linear model in

model prediction. In a model-based node, the predicted position for

string 𝑆 is computed as 𝑦 (𝑆) = 𝛼 × 𝑥 + 𝛽 , where 𝑥 = 𝐺𝑒𝑡𝐶𝐷𝐹 (HPT,

𝑆). Note that we exclude the common prefix in this computation.

Benefits of theHPT-BasedModel. First, compared to the uniform

assumption in the existing linear models, our HPT-based model

better captures the distribution of the string data set. Therefore, it

can distinguish string keys more effectively. Second, the hashing

design in the HPT reduces the space overhead for recording the

conditional probability distributions. One can adjust the number of

HPT rows to balance the space cost and the estimation quality. The

larger the HPT table, the higher the estimation quality. However, a

very large HPT table not only causes significant space overhead,

but also incurs random memory accesses and CPU cache misses for

HPT lookups. Therefore, we set the HPT table size (e.g., 2MB in our

experiments) to be small enough to fit in the CPU cache. Finally, our

design is computationally efficient. The HPT construction using

a sample of string keys is simple and fast. Storing the conditional

CDFs in the HPT reduces the cost for computing the sum term in

Eqn 1. Hence, model prediction takes 𝑂 (𝑙𝑒𝑛(𝑆)) time.

Analysis of HPT Accuracy.We have the following theorem for

the accuracy of approximating the conditional probability. (Please

refer to the extended version of the paper [29] for the proof.)

Theorem 3.1. If prefix P appears 𝑛P times in the string data set,
and the HPT[ℎ𝑎𝑠ℎ(P)] row sees 𝑑 occurrences of other prefixes, then

|𝐻𝑃𝑇 [ℎ𝑎𝑠ℎ(P)] [𝑐] .𝑝𝑟𝑜𝑏 − 𝑝𝑟𝑜𝑏 (𝑐 |P) | ≤ 1

𝑛P
𝑑

+1
.

For a popular prefix P, we expect 𝑛P ≫ 𝑑 with a reasonable

sized HPT (e.g., 2MB). In such cases, the absolute error of the HPT

approximation is small. Our experiments confirm this result. For

the string data sets in our experiments, the average absolute error

of the conditional probability is 0.0006–0.006 for popular prefixes

that appear at least 10,000 times.

Dealingwith Data Distribution Changes. If the data distribution
changes, HPT may become less accurate, leading to degraded index

performance. To handle data changes, LITS can sample the index

performance (e.g., for 1% of the queries). If it observes that the

index performance falls below a pre-defined water mark (e.g., 50%

of the average performance after bulkloading), LITS can judiciously

retrain the HPT model and rebuild the entire index.

3.3 Compact Leaf Node
The collision-drive design in the model-based nodes avoids the last-

mile search by creating new child nodes. However, we observe that

it can result in small nodes with only two or a few keys, as illustrated

in Figure 5. The figure depicts a subtree with four model-based

nodes, i.e., 𝑁 0–𝑁 3. The four nodes are in three different tree levels,

while the entire subtree rooted at 𝑁 0 contains only five kv-entries.

This subtree structure is sub-optimal for the following reasons. First,

it degrades scan performance. Suppose 𝑘𝑣1–𝑘𝑣5 are retrieved by a

scan operation. Then the scan has to traverse four nodes in three

levels, incurring expensive CPU cache misses and significant book-

keeping overhead for entering nodes and backtracing. Second, the

small nodes tend to increase the tree height, adversely impacting

point operations. As shown in the example, 𝑘𝑣1–𝑘𝑣4 are located
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N0: model-based node 
 head N1 ... kv5 

N1 
 head N2 N3 ... 

N2 
 head kv1 kv2 

C0: compact leaf 
 head kv1 kv2 kv3 kv4 kv5 

16-bit hash 48-bit pointer 

pointer to a model-based node 
pointer to a kv-entry 
an empty item 

h-pointer (hash enhanced pointer) 

h-pointer to a kv-entry 

N3 
 head kv3 kv4 

Figure 5: Replacing multiple nodes with a compact leaf node.

two levels deeper than 𝑘𝑣5. A search for 𝑘𝑣1 is more costly than

𝑘𝑣5. Finally, the small nodes increase the space cost for storing the

per-node headers and the child node pointers.

To address this problem, we replace a number of small nodes

with a single compact leaf node. As illustrated in Figure 5, the four

nodes are replaced with a compact leaf node, holding the five kv-

entries. Each h-pointer stores a 16-bit hash of the key for better

search performance. A search in a compact node sequentially com-

pares the hash of the search key with the hash in every h-pointer.

Only when there is a match does LITS dereference the pointer to

visit the kv-entry. The false positive rate with the 16-bit hash is

0.0015%. Compared to the common binary search, the h-pointer

based search can effectively avoid the high cost of unnecessary

kv-entry dereference and key comparison. Moreover, the h-pointer

array is sorted in the key order so that the scan iterator avoids the

cost of sorting the keys in the compact node.

We discuss two important design choices of the compact node.

• Size threshold𝑤 of compact nodes: A compact node can hold up

to𝑤 keys. If𝑤 is too small, compact nodes may not effectively

reduce the small nodes in the index. On the other hand, if𝑤 is

too large, the search performance suffers because it takes𝑂 (𝑤)
time to sequentially examine the h-pointers. In Section 4, we

study the impact of𝑤 on LITS performance and set𝑤=16 based

on the experiments.

• Method to support inserts: We consider two methods to support

inserts. First, each compact node contains an array of𝑤 slots. If

there are 𝑘 keys, then𝑤 −𝑘 slots are empty. An insert operation

places the new key into the existing array. It moves existing

elements to keep the sort order. Second, an alternative method

is to make the node compact. A compact node with 𝑘 keys is

stored in an array of 𝑘 slots. No space is reserved for empty slots.

Then an insert operation creates a new compact node with one

more slot to hold both the existing keys and the new key. Our

experiments find that the first method sees substantial space

waste because of the reserved empty slots, and both methods

have similar performance. Therefore, we choose the second

method as the default design for the compact node.

3.4 LIT Enhanced with Subtries
We call the learned index using HPT-based models and compact

nodes, LIT (Learned Index with Hash-enhanced Prefix Table). In

the following, we present a hardness metric, GPKL, for string data

sets. We compare LIT and trie-based indexes experimentally, and

combine LIT with HOT using a GPKL-based performance model to

further improve index performance.

Hardness of String Data Sets. Previous study on learned indexes

defined a hardness metric for data sets with integer or floating point

keys [27]. Themetric reflects the difficulty of applying linear models

to approximate the CDF of the data set. However, this metric cannot

be directly applied to string data sets because linear models hardly

capture the properties of string data sets, as shown in Section 3.2. In

this work, we propose a new hardness metric, GPKL (Group Partial

Key Length), for strings.

Definition 3.1 (Common Prefix Length). The common prefix
length of a list L of strings, denoted as 𝑐𝑝𝑙 (L), is the length of the
longest prefix shared by all strings in L.

Definition 3.2 (Partial Key Length). Given a sorted list L
of strings, the partial key of the 𝑖-th string 𝑆𝑖 in L is the shortest
substring of 𝑆𝑖 that distinguishes 𝑆𝑖 from 𝑆𝑖−1 and 𝑆𝑖+1 after removing
the common prefix of L. The partial key length of 𝑆𝑖 , denoted as
𝑝𝑘𝑙 (L, 𝑆𝑖 ), is the length of 𝑆𝑖 ’s partial key.

𝑝𝑘𝑙 (L, 𝑆𝑖 ) can be computed with common prefix lengths as follows:

𝑝𝑘𝑙 (L, 𝑆𝑖 ) =𝑚𝑎𝑥 (𝑐𝑝𝑙 ({𝑆𝑖−1, 𝑆𝑖 }), 𝑐𝑝𝑙 ({𝑆𝑖 , 𝑆𝑖+1}))+1−𝑐𝑝𝑙 (L) (4)

𝑐𝑝𝑙 ({𝑆𝑎, 𝑆𝑏 }) + 1 gives the smallest prefix length to distinguish 𝑆𝑎
and 𝑆𝑏 . Hence, the max term plus 1 shows the length of the shortest

prefix that distinguishes 𝑆𝑖 from 𝑆𝑖−1 and 𝑆𝑖+1. Then, 𝑝𝑘𝑙 (L, 𝑆𝑖 ) is
obtained by subtracting the common prefix length of all strings in

L from this shortest prefix length.

Definition 3.3 (Group Partial Key Length). The group partial
key length (GPKL) of a sorted list L of strings is the average of the
partial key lengths of strings in L: 𝑔𝑝𝑘𝑙 (L) = 1

| L |
∑
𝑆∈L 𝑝𝑘𝑙 (L, 𝑆).

We choose GPKL as the hardness metric for strings for the follow-

ing reasons. First, GPKL measures the difficulty of distinguishing

keys in a string data set. The larger the GPKL, the more key bytes

are necessary to distinguish the strings. Therefore, the metric re-

flects the hardness of modeling the string data set. Second, GPKL

skips the common prefix of strings. This behavior mimics the de-

sign of inner nodes in most string indexes, including HOT, ART,

Sindex, RSS, and LIT. Finally, GPKL can be computed efficiently by

reading the sorted list of strings in one pass. This makes it possible

to compute the GPKL online for structure selection decisions.

We define both a global GPKL and a local GPKL metric. Given a

sorted list of strings, the global GPKL is the GPKL of the entire list.

To compute the local GPKL, we divide the sorted list into disjoint

sublists containing 𝑔 consecutive strings in the list. We obtain the

GPKL for each sublist, then compute the average of the sublist

GPKLs as the local GPKL. We set 𝑔 = 32 in the following.

Impact of Hardness on Index Performance. HOT and ART

significantly outperform existing learned indexes for strings, as

shown in Section 2.2. Hence, we are interested in comparing LIT

with HOT and ART. Table 2 reports the index throughput for both

a read-only workload and a write-only workload. For the read-only

workload, we randomly search 20 million keys after bulkloading an

index with all keys. For the write-only workload, we bulkload an

index with 50% of the keys, and then we measure the throughput

of randomly inserting the rest of the keys into the index.

As shown in Table 2, the data sets are arranged in the order of

increasing global GPKLs. We see that LIT achieves the best read
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Table 2: Impact of hardness on index performance (Mops).
String Global Local Read-Only Write-Only

Dataset GPKL GPKL LIT HOT ART LIT HOT ART

rands* 6.12 2.42 3.37 2.62 3.24 2.41 1.03 1.47

reddit 8.24 3.48 3.01 1.90 2.39 1.74 1.17 1.52

geoname 10.36 4.75 2.88 2.27 2.27 1.62 1.26 1.45

imdb 10.51 3.79 2.63 2.00 1.97 1.88 1.23 1.35

phone* 10.84 4.01 2.92 2.01 2.38 1.53 1.18 1.43

address 12.61 6.55 2.23 2.08 1.83 1.52 0.94 1.19

idcard* 12.89 5.04 3.19 1.92 1.62 2.01 1.03 1.02

wiki 14.32 6.23 1.94 1.68 1.36 1.17 0.98 1.10

email* 15.32 5.86 1.88 1.89 1.11 1.06 0.92 1.00

dblp 20.79 10.19 1.55 1.93 1.30 0.88 0.72 0.83

url 47.61 17.79 0.83 1.27 0.78 0.54 0.68 0.58

note: * indicates that the data set is synthetically generated.

throughput for 8 data sets and the best write throughput for 10

out of the 11 data sets. However, for the datasets with the high-

est hardness values, trie-based indexes have higher performance.

Specifically, HOT has the best read performance for email, dblp,
and url, and the best write performance for url. This finding mo-

tivates us to combine the strengths of LIT and HOT.

Performance Model for Structure Selection (PMSS). To com-

bine LIT and HOT, our basic idea is to make a decision to choose

from either LIT or HOT when creating a node for a subset of string

keys. Obviously, it would be too costly to experimentally compare

the two choices online. Therefore, we develop a performance model

(PMSS) to make quick and accurate online decisions.

The PMSS model works as follows. We choose GPKL and the

number (𝑛) of strings as two important metrics to characterize a

subset of strings. For a given index, the PMSS model provides two

functions, 𝑟𝑒𝑎𝑑𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛) and 𝑤𝑟𝑖𝑡𝑒𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛), which estimate

the index search latency and the index insert latency, respectively.

A target workload is specified as containing 𝑓𝑟 fraction of reads

and 𝑓𝑤 fraction of writes, where 𝑓𝑟 + 𝑓𝑤 = 1. (Operation statistics

can be updated online to estimate the 𝑓𝑟 /𝑓𝑤 parameters.) Then,

we estimate the average latency of index operations in the target

workload as follows:

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑓𝑟 · 𝑟𝑒𝑎𝑑𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙, 𝑛) + 𝑓𝑤 ·𝑤𝑟𝑖𝑡𝑒𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙, 𝑛) (5)

We estimate the latency for each index, and select the design with

the lowest latency for the given subset of strings. Figure 6 illustrates

this decision process using the PMSS.

To obtain 𝑟𝑒𝑎𝑑𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛) and 𝑤𝑟𝑖𝑡𝑒𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛), we perform a

set of offline benchmarking tests using synthetically generated data

for various combinations of 𝑔𝑝𝑘𝑙 and 𝑛, and populate a 𝑟𝑒𝑎𝑑𝑙𝑎𝑡

table and a𝑤𝑟𝑖𝑡𝑒𝑙𝑎𝑡 table for each index (i.e., LIT and HOT). In our

experiments, we populate the tables for 𝑔𝑝𝑘𝑙=3, 5, ..., 21, and 𝑛= 2
4
,

2
5
, ..., 2

25
. The total size of latency tables for LIT and HOT is less

than 10KB. Then, for a specific (𝑔𝑝𝑘𝑙 , 𝑛), we can use the latency

tables to easily compute 𝑟𝑒𝑎𝑑𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛) and𝑤𝑟𝑖𝑡𝑒𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛).

Figure 7 displays the results of offline benchmarking tests for

the read-only workload. Figure 7(a) shows a heat map. We divide

the 𝑟𝑒𝑎𝑑𝑙𝑎𝑡 (𝑔𝑝𝑘𝑙 , 𝑛) of HOT by that of LIT and then use different

colors to represent the speedup. The darker color shows where

HOT wins, while the brighter color shows where LIT wins. We see

that for a fixed 𝑔𝑝𝑘𝑙 , LIT exhibits a leading advantage as the data

size increases. This can be explained by Figure 7(b). As the number

(𝑛) of keys increases, the height of HOT increases significantly,

interact 
interesting 
... ... 
intuition 

PMSS  n=2025 
 gpkl=3.2 
 90% read 
 10% write 

  LITlat=0.9*289+0.1*437=303.8  
  HOTlat=0.9*383+0.1*671=411.8 
           Decision: choose LIT 

1 
string 
keys 

LITreadlat(3.2,2025)=289ns 
LITwritelat(3.2,2025)=437ns 
HOTreadlat(3.2,2025)=383ns 
HOTwritelat(3.2,2025)=671ns 
 

2 3 

4 

Figure 6: The decision process with PMSS.
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Figure 7: Offline benchmark tests for read-only workload.
roughly following log

32
(𝑛), while the height of LIT only changes

slightly. As a result, LIT outperforms HOT.

One interesting detail is how to generate a synthetic string data

set with specific 𝑔𝑝𝑘𝑙=𝑙 and 𝑛. First, we generate a random dictio-

nary to contain 10000 random strings that are 2B–6B long. The

strings are used as prefixes. Second, we generate a set L of 𝑛 ran-

dom strings, sort the strings, and compute the initial 𝑔𝑝𝑘𝑙0 for L,

which is typically small for randomly generated strings. Third, we

increase the 𝑔𝑝𝑘𝑙 of L as follows. We randomly select 𝑘 adjacent

strings 𝑆𝑎1, 𝑆𝑎2, ..., 𝑆𝑎𝑘 in the sorted list, and compute the common

prefix length 𝑐𝑝𝑙 for the 𝑘 strings. Then, we randomly pick a string

𝑆𝑝 from the dictionary, generate a random insert position 𝑗 ∈ [0,

𝑐𝑝𝑙], and insert 𝑆𝑝 into each 𝑆𝑎𝑖 at the 𝑗-th byte. In this way, the

𝑔𝑝𝑘𝑙 of L increases by at most

𝑘 ·𝑙𝑒𝑛 (𝑆𝑝 )
|L | . We adjust the location

of the 𝑘 strings to keep the sort order of L. Finally, we repeat the

third step until the 𝑔𝑝𝑘𝑙 reaches the target 𝑙 .

Structure Selection Scenarios. LITS performs PMSS-based deci-

sions in three main scenarios: 1) Bulkload: if a node corresponds

to over 16 kv-entries, LITS uses PMSS to decide whether to build

a subtrie or a model-based node in the bulkload operation; 2) In-

sert into a full compact node: When an insert sees a full compact

node (with 16 keys), it replaces the compact node with either a

model-based node or a subtrie; 3) Resize a model-based node: Like

LIPP, LITS performs node resizing if there are too many or too few

keys in a model-based node 𝑁𝑟 . The resizing process rebuilds the

subtree rooted at node 𝑁𝑟 , and uses the PMSS to decide whether a

model-based node or a subtrie should be constructed.

Moreover, LITS detects the case where over 50% of the keys are

mapped to an index slot in a model-based node. In such a case, LITS

builds a subtrie for the child node corresponding to the index slot.

This restriction ensures that the non-subtrie part of the tree is at

most 𝑂 (𝑙𝑜𝑔𝑁 ) high. Note that the 50% restriction is actually quite

weak, and it has not been triggered in our experiments.

Implementation Consideration. It should be noted that careful

design is required at the connection point of different structures
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to avoid potentially unnecessary cost. For example, the root node

of HOT contains a single pointer to the actual first level node.

Therefore, when creating a HOT subtrie, we do not simply set the

child pointer in the item to point to the root node of HOT. Instead,

we directly replace that item with the root node of HOT (while also

handling the flag bits of both LIT and HOT correctly). In this way,

we save a pointer dereference for accessing the HOT subtrie.

3.5 Cost Analysis
The time and space cost of tries (e.g., ART [19] and HOT [10])

have been extensively measured and studied. In the following, we

mainly summarize the time and space cost of the non-subtrie part

of LITS. (Please see the full description in the extended version

of the paper [29].) Suppose there are 𝑁 keys in the index. Then,

in the worst case, (1) the height of the non-subtrie part of LITS is

𝑂 (𝑙𝑜𝑔𝑁 ), (2) the search/update cost is 𝑂 (𝑙𝑜𝑔𝑁 ), (3) the amortized

insert/delete cost is𝑂 (𝑙𝑜𝑔2𝑁 ), and (4) the space cost is𝑂 (𝑁𝑙𝑜𝑔𝑁 ).

4 EVALUATION
In this section, we compare the performance of LITS with state-of-

the-art string indexes, and study the performance benefits of our

proposed techniques in LITS.

4.1 Experimental Setup

Machine Configuration. All experiments are conducted on a

machine equipped with two 3.4GHz Intel Xeon Platinum 8380 CPUs

(with 40 cores / 80 threads per CPU and 60MB L3 cache) and 256GB

memory. The machine runs the standard Ubuntu 20.04 Linux. All

programs are compiled with GCC 9.4.0 using the O3 optimization

level. To avoid NUMA effects, we perform the experiments using a

single CPU in the machine.

Solutions to Compare.We compare LITSwith five state-of-the-art

traditional and learned indexes for strings:

• ART (Adaptive Radix Tree) [19]: We find multiple ART imple-

mentations on github, and choose the one with the highest stars

(https://github.com/armon/libart.git). The implementation does

not support scans. Therefore, we add a scan procedure for ART.

• HOT (Height Optimized Trie) [10]: We obtain the code written

by the HOT authors (https://github.com/speedskater/hot.git).

• SIndex [26]: We use the implementation provided by the au-

thors (https://github.com/curtis-sun/TLI.git). SIndex requires

all strings to be padded to a uniform length. Therefore, for

SIndex experiments, we pad the strings in each data set to the

length of the longest string in the data set.

• RSS (Radix String Spline) [22]: For RSS, we cannot find publicly

available code and write our own implementation in C++. We

follow the RSS paper to employ the two-gram compression of

HOPE [30] to encode string keys. This improves RSS’s search

performance. The reported index performance includes both

the encoding of the query key and the actual index operation in

RSS. However, RSS does not support insertions because it stores

sorted key-value data in an array, and uses the array indexes to

indicate the key ranges in tree nodes. As a result, we omit RSS

for all experiments that perform insertions.

• SLIPP : We obtain the LIPP [28] code provided the LIPP authors

(https://github.com/Jiacheng-WU/lipp). Then, we modify LIPP

to support strings as described in Section 2.2. We implement

the bulkload and the search operations. We find that SLIPP has

muchworse search performance thanHOT, ART, and RSS. Since

SLIPP is clearly less competitive, we choose not to implement

the other operations for SLIPP and omit SLIPP for the rest of

the experiments. The implementation is written in C++.

• LITS: We implement LITS in C++. The size of HPT is 2MB (with

1024 rows, 128 columns, and 16B per cell). A compact leaf node

has a maximum capacity of 16 elements. The index used for

constructing a hybrid structure with LIT is HOT, because HOT

demonstrates better overall performance compared to ART.

• Variants of LITS: To understand the benefit of our proposed

techniques, we also implement several variants of LITS. LIT

is the learned index without subtries. Moreover, we change

the learned model in LIT and implement several LIT(model)

variants, as will be described in Section 4.3. Furthermore, we

study the combination of LIT with different trie indexes. LITS-A

is LIT enhanced with ART as the subtrie of choice. (LITS-H is

LIT enhanced with HOT, which is another name for LITS.)

All experiments are conducted using a single thread except for the

scalability experiments in Section 4.2. For the scalability experi-

ments, we compare LITS with the most competitive solution, HOT.

The HOT code supports multiple threads. We implement optimistic

locking for LITS to support concurrent threads.

Datasets.We use seven real-world string data sets in our experi-

ments, as listed in Table 1. (1) address contains 34M addresses in

the form of unit-street-city in the US West [3]. (2) dblp contains

7M paper titles in dblp [4]. (3) geoname contains 7M geographical

names, such as “Pic des Langounelles” [2]. (4) imdb contains 9M

actor names in imdb [5]. (5) reddit contains the user names of 26M

reddit accounts that have commented since Dec 2017 [1]. (6) url
contains 63M urls from the CommonCrawl [6]. An example is “http:

//1000rosanegra.com.ar/index.html”. (7) wiki contains 43M wiki

titles [7]. An example is “1980-81_Mersin_Idmanyurdu_season”.

Moreover, we generate four synthetic data sets. (8) email con-
tains 45M synthetic email addresses generated by the Faker 14.2.1

package using Python 3.6.9. (9) idcard contains 63M synthetic Chi-

nese id-card numbers. A id-card number is a 18-byte string. The

first 6B represents a region, such as a city or a county. The next 8B

is the birthday in the form of “yyyymmdd”. Then the remaining 4B

assigns a unique code to distinguish ids with the same 14B prefix.

(10) phone contains 50M synthesis phone numbers generated by

the Faker package. (11) rands contains 50M randomly generated

strings. The characters are selected uniformly from a to z.
For the experiments, all data sets have been processed to remove

duplicate strings, strings containing non-ASCII characters, and

strings longer than 255 characters. Then, the value for each string

key is a randomly generated 64-bit integer.

Workload. We use six YCSB core workloads: A (50% read, 50%

update), B (95% read, 5% update), C (100% read), D (95% latest-read,

5% insert), E (95% short range scan, 5% insert), and F (50% read,

50% read-modify-write) [12]. For all YCSB workloads except the

read-only workload C, we bulkload the indexes with 80% of the

keys in a data set. For the read-only workload, we bulkload 100%
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Figure 8: Index performance for read-only and insert-only workloads.
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Figure 9: Index performance for YCSB workloads.
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Figure 10: Index performance for read-only (YCSB workload
C) with Zipf distribution.
of the keys. Then, we perform 20M random operations. Search

keys are randomly selected from the bulkload keys. Insert keys are

randomly selected from the 20% keys that are new. Update keys

are randomly selected from the entire data set. For an existing key,

the entry is modified. For a new key, we will perform an insert

operation. Unless otherwise noted, the random keys are chosen

uniformly at random. We also perform a set of experiments where

the chosen keys follow the zipf distribution with zipf factor = 1.

Apart from the YCSB workloads, we test insert-only and delete-

only workloads. For the insert-only workload, we bulkload the

indexes with 50% keys in a data set, then measure the performance

of randomly inserting all the remaining keys. For the delete-only

workload, we bulkload the indexes with 100% keys, then measure

the performance of randomly deleting 50% existing keys.

4.2 Overall Performance
Figure 8 and 9 show the overall index performance. We report

the results of all 11 data sets for the read-only (YCSB workload C)

and insert-only workloads in Figure 8. Due to space limitations,

we report the results of the four largest real-world data sets, i.e.,

address, dblp, url, wiki, for the YCSB workload A, B, D, E, F, and

the delete-only workload in Figure 9. Experiments on the other

data sets show similar trends.

Figure 10 shows the performance of the read-only workload un-

der the zipf distributionwith zipf factor = 1. Due to space limitations,

we report more experimental results under the zipf distribution in

the extended version of the paper [29].

From the figures, we see that LITS achieves the best performance

for most workloads and data sets. (LITS is slightly slower than HOT

for workload E on url). For the read-only workload, LITS achieves

up to 1.93x and 2.23x improvement over HOT and ART, respectively.

Compared to SIndex, LITS demonstrates a performance advantage

of 2.26x-3.91x. LITS also exhibits excellent performance for insert

operations. Compared to HOT, ART, and SIndex, LITS attains up to

2.06x, 2.14x, and 5.31x improvement for the insert-only workload,

respectively. Similarly, LITS achieves up to 2.43x, 2.27x, and 3.99x

improvement over HOT, ART, and SIndex for workload A, B, D, and

F. For the scan-heavyworkload E, LITS’s performance is comparable

with HOT, and better than ART and SIndex. Finally, the zipf results

show similar trends. Interestingly, under the zipf distribution, nodes

that contain popular keys tend to stay in the CPU cache, leading to

higher index performance than that with the uniform distribution.

Index Height. Table 3 compares the height of different indexes

after bulkloading. The height of LITS is composed of two parts:

LITS (base), which is the height of the LIT structure including

model-based nodes and compact leaf nodes, and LITS (hot), which

is the height of the subtries. From Table 3, we see that the height

of LITS is significantly smaller than HOT, ART, and SLIPP. This

partially explains the good performance of LITS. Note that RSS

achieves good tree heights. However, RSS suffers from expensive

local search, and for popular duplicate key prefixes, it has to visit

and compare the string keys.

Bulkload Time. The left figure in Figure 11 compares the bulkload

time of LITS, HOT, and ART. We bulkload all the keys in each data

set. For HOT and ART, we sort the keys, then insert all the strings

into the index in the sorted order. From the figure, we see that the
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Table 3: Comparing the height of index solutions.
data set LITS (base) LITS (hot) HOT ART SIndex RSS SLIPP

addr 2.7 0.2 7.0 10.2 2 2.0 4.9

dblp 2.7 1.7 6.8 14.1 2 2.2 7.3

url 3.0 2.1 7.8 16.1 2 3.7 9.1

wiki 2.9 1.0 7.8 11.6 2 2.1 5.7

addr dblp url wiki
0

10

20

30

bu
lk

 ti
m

e 
(s

ec
on

d)

addr dblp url wiki
0.0

2.5

5.0

7.5

10.0
m

em
or

y 
(G

iB
) > 10GiB

Data HOT ART SIndex RSS LITS

Figure 11: Bulkload time and memory space consumption
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Figure 12: Scalability on the 34M address dataset.
bulkload time of LITS is comparable to that of HOT.

Space Cost. The right figure in Figure 11 compares the space cost

of LITS, HOT, ART, Sindex, and RSS. The figure does not display

the space cost of SLIPP; it exceeds 10GB in all four datasets. The

grey bar shows the raw data size. From the figure, we see that LITS

consumes lower space than ART and SIndex. SIndex consumes

a lot of space for padding all strings to the maximal length in a

data set. Interestingly, the read-only RSS has the lowest space cost,

which is consistent with the RSS paper [22]. (Please see the in-

depth analysis of the space consumption of learned indexes in the

extended version of the paper [29].)

Scalability. We compare LITS and HOT in scalability experiments.

For each data set, we bulkload the indexes with 50% keys in the

data set. Then, the insert-only workload measures the performance

of randomly inserting the remaining 50% keys. After that, the read-

only workload measures the performance of 10M search operations

for keys randomly distributed in the data set.

Figure 12 reports the index throughput for LITS andHOT varying

the number of threads for address data sets. From the figure, we see

that both LITS and HOT achieve nearly linear scalability. Compared

to HOT, LITS achieves 1.19x – 1.31x and 1.52x – 1.64x improvement

for the read-only and insert-only workloads, respectively.

4.3 Benefit of HPT
To understand the benefit of the HPT-based model in LITS, we

compare HPT with existing learned models for strings:

• Simple Model (SM): The simple method to calculate the CDF of a

string is to use the equation 𝑥 =
𝑐1
256

+ ... 𝑐𝑛
256

𝑛 to get a monotonic

value based on the characters in the string. SM is used in SLIPP.
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Figure 13: Unique rate of learned models.

• Radix Spline (RS): RS is the default CDF model used in Radix

String Spline (RSS) [22]. In each inner node of RSS, a 𝐾-byte

substring of the key string is converted into an integer, and

a RS model is used to compute the CDF. We use the same

configuration as the RSS paper [22]. In the experiments, 𝐾 is

set to 8 and the error-bound in Radix Spline is set to 127.

• SRMI : SRMI is a string CDF model mentioned in the learned sort

paper [18]. SRMI first converts a string into a floating point

number using 𝑥 =
𝑐1
256

+ ... + 𝑐𝑛
256

𝑛 , then employs a two-layer

RMI to compute the CDF from the coded floating point 𝑥 .

Effectiveness for Distinguishing Strings.We would like to com-

pare the effectiveness of the learned models for distinguishing

strings in the data sets. For this purpose, we define and measure a

unique rate metric.

We use a learned model to map a set S of unique strings to an

item array of size 𝑆𝐹 · |S|, where 𝑆𝐹 ≥ 1 is the scale factor. In the

ideal situation, a perfect learned model will map every string in S
to a separate location in the array. However, in the common case,

there can be collisions. That is, two or more strings are mapped

to the same item. The total number of occupied item slots after

mapping, denoted as 𝑁𝑢𝑚𝑉𝑎𝑙𝑖𝑑𝑆𝑙𝑜𝑡𝑠 , is always less than or equal

to |S|. We define𝑈𝑅𝑆𝐹 for scale factor 𝑆𝐹 as follows:

𝑈𝑅𝑆𝐹 = 𝑁𝑢𝑚𝑉𝑎𝑙𝑖𝑑𝑆𝑙𝑜𝑡𝑠
|S | (6)

𝑈𝑅𝑆𝐹 is between 0 and 1. The larger the𝑈𝑅𝑆𝐹 , the more effective

that the learned model distinguishes keys in the string data set.

Figure 13 shows the unique rates of the four learned models

varying the scale factor from 1 to 1000 for all the 11 data sets. We

see that HPT achieves the best unique rate for all data sets and

under all the scale factors. Compared to SM, RS, and SRMI, HPT

is more powerful in distinguishing strings. For the three data sets

with the highest GPKL, i.e., email, dblp, and url, all the learned
models work quite poorly. These data sets require larger number

of bytes to discern one string from the adjacent string in the sort

order, making it hard for the learned models to separate the strings.
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Figure 14: Index performance with different learned models.
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Figure 15: Comparing LIT with compact node designs.

Index Performance with Different Learned Models. Figure 14
compares the performance of LIT with different learned models. We

choose to compare LIT instead of LITS because the hybrid structure

of LITS could mask the performance impact of the learned model.

The experiments run the read-only workload (YCSB workload C).

LIT with the HPT model achieves the best index performance. It is

1.14x – 3.65x better than the second best, i.e., LIT(SRMI).

HPT Space and Time Cost. The HPT is lightweight. In our exper-

iments, it takes 2MB, which is orders of magnitude smaller than

the data set. HPT can easily fit into the CPU cache, and the model

prediction using HPT is fast. It takes 20–50ns to compute the HPT-

based model for an 8-byte substring.

4.4 Benefit of Compact Leaf Node
We study the benefit of the compact node in this subsection.

Performance Benefit. For the same reason as in Section 4.3, we

conduct experiments using LIT rather than LITS. We compare LIT

without compact nodes, and LIT with compact nodes whose size

limit is set to 8, 16, and 32. Figure 15 reports the insert-only and

scan-only throughput for the four LIT variants. From the figure,

we see that the introduction of compact leaf nodes not only im-

proves the performance of the scan operations but also enhances

the performance of the insert operations. Scan is improved due to

the fact that compact nodes place kv-pointers contiguously, thereby

reducing cache misses for visiting many small nodes during the

scan process. Insertion is improved because compact nodes tend

to reduce the tree height and avoid extra cache misses caused by

visiting small nodes in deeper levels of the index.

Moreover, we see that the scan throughput increases as the

size limit increases, but becomes relatively flat beyond 16. The

insert throughput may even suffer when the size limit exceeds 16.

Therefore, we set the default size limit of compact nodes to 16 in

all the other experiments.
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Figure 16: Comparing LITS-H, LITS-A, and LIT.

Variants of Compact Node Implementation. We consider two

variants: 1) pre-allocating 16 entries in compact nodes; 2) exploiting

SIMD for cnode search. However, our experimental results show

that preallocation incurs up to 93% extra space overhead without

significant performance benefits. The performance improvement

with SIMD is less significant since cnode search is only a small part

of the search procedure. Please see the extended version of the

paper [29] for more details.

4.5 Benefit of LIT Enhanced with Subtries
The LITS mentioned in the above subsections are all LITS-H (i.e.,

the hybrid structure of LIT and HOT). We prefer this combina-

tion because the performance characteristics of LIT and HOT are

complementary as shown in Figure 7. HOT performs well for data

sets with large GPKLs and relatively small data sizes (e.g. dblp).
In comparison, LIT demonstrates better performance for data sets

with small GPKLs and large data sizes (e.g., reddit).
In this subsection, we consider the alternative design of combin-

ing LIT and ART, i.e., LITS-A, and LIT without subtries. Figure 16

compares the read-only and the insert-only throughput of LITS-H

(i.e., LITS), LITS-A, and LIT. From the figure, we see that LITS-H

achieves better performance than LIT, confirming that the hybrid

structure indeed improves index performance. For data sets with

large GPKLs (e.g., url), LITS-H brings up to 50% improvement for

search performance. Moreover, compared to LITS-A, LITS-H has

higher performance improvement for search. For the insert-only

workload, LITS-A and LITS-H show comparable performance.

GPKL Computation Cost. In the insert-only workload, a single

invocation of the GPKL computation takes 0.8–1.7us. The total

GPKL computation time contributes to 0.5%–1.3% of the total insert

time across all data sets.

5 CONCLUSION
In conclusion, we have presented a novel string index called LITS

(Learned Index with Hash-enhanced Prefix Table and Sub-tries).

Our experimental results show that compared to HOT and ART,

LITS achieves up to 2.43x and 2.27x improvement for point opera-

tions and comparable scan performance.
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