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ABSTRACT
Dynamic Graph Neural Networks (DGNNs) have demonstrated
exceptional performance at dynamic-graph analysis tasks. However,
the costs exceed those incurred by other learning tasks, to the
point where deployment on large-scale dynamic graphs is infeasible.
Existing distributed frameworks that facilitate DGNN training are in
their early stages and experience challenges such as communication
bottlenecks, imbalanced workloads, and GPU memory overflow.

We introduce DynaHB, a distributed framework for DGNN train-
ing using so-called Hybrid Batches. DynaHB reduces communication
by means of vertex caching, and it ensures even data and workload
distribution by means of load-aware vertex partitioning. DyanHB
also features a novel hybrid-batch training mode that combines
vertex-batch and snapshot-batch techniques, thereby reducing train-
ing time and GPU memory usage. Next, to further enhance the
hybrid batch based approach, DynaHB integrates a reinforcement
learning-based batch adjuster and a pipelined batch generator with
a batch reservoir to reduce the cost of generating hybrid batches.
Extensive experiments show that DynaHB is capable of up to a 93×
and an average of 8.06× speedups over the state-of-the-art training
framework.
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1 INTRODUCTION
Graph Neural Networks (GNNs) that operate on static graphs have
achieved remarkable success, and system aspects of enabling effi-
cient training have been studied comprehensively. However, GNNs
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are constrained in their ability to capture the temporal dynamics
of evolving graphs [1, 10, 17–19, 22, 55, 56]. Thus, a new category
of methods known as Dynamic Graph Neural Networks (DGNNs)
has emerged that targets the analysis of dynamic graphs.

Because they manage temporal information, the computational
complexity of DGNNs significantly exceeds that of GNNs: (i) DGNNs
need to process multiple snapshot graphs, whereas GNNs only pro-
cess a single snapshot, leading to higher time and space complexity;
(ii) DGNNs typically involve communication between different
snapshots through Recurrent Neural Networks (RNNs) in addition
to the traditional GNN vertex-to-vertex communication along the
graph structure, resulting in increased communication; (iii) DGNNs
not only require synchronization of vertex embeddings at each
layer but also necessitate synchronization between RNNs across
snapshots, introducing additional intricacies when enabling parallel
processing. Hence, prevailing distributed GNN training frameworks
fall short at accommodating large-scale DGNN training.

Currently, several single-machine frameworks exist that are de-
veloped specifically for the training of DGNNs, including PyGT [33],
CacheG [14], and PiPAD [43]. These frameworks focus primar-
ily on optimizing aspects such as intermediate result caching and
reuse, pipeline parallelism, etc. However, as these frameworks are
constrained by the limited resources of a single machine, they
fall short at supporting large-scale DGNN training. Recently, dis-
tributed DGNN training frameworks, including ESDG [3], DGC [5],
BLAD [7], and DynaGraph [9], have emerged, but they are still in
their early stages of development and face three major challenges.
Challenge I: High Communication Overhead. In addition to
requiring vertex communication for graph convolution, DGNNs
also require vertex communication between different snapshots
for RNNs, leading to significant communication overhead. In a dy-
namic graph with𝑇 snapshots and 𝑁 vertices, each DGNN training
iteration incurs 𝑇 times the vertex communication of traditional
GNN training for graph convolution. Furthermore, an additional
O(𝑁𝑇 ) overhead is incurred for RNN communication. Existing
techniques [3, 5, 7, 9] aim to reduce communication through parti-
tioning strategies, but the impact is limited by snapshot constraints,
resulting in communication bottlenecks.
Challenge II: Inefficiency at Large-Scale DGNN Training.Many
existing frameworks [3, 5, 14, 35] train DGNNs in full batch mode,
reducing efficiency and increasing GPU costs. Snapshot-batch (i.e.,
sliding-window) training [9, 33], which uses a set of consecutive
snapshots, faces reduced computational efficiency and increased
GPU memory usage as the number of vertices increases. On the
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other hand, vertex-batch (i.e., mini-batch) training [57, 60] where a
subset of vertices across all snapshots is processed, faces challenges
with large snapshot volumes and high batch generation costs due
to edge re-encoding.
Challenge III: Skewed Workload and Data Distribution. Real-
world graphs often exhibit skewed degree distributions. For ex-
ample, power-law graphs include small numbers of vertices with
high degrees. As a result, techniques that partition vertices uni-
formly may cause uneven computational loads to be assigned to
different machines. Unbalanced workload causes increased synchro-
nization overhead, as well as uneven distribution of training data,
especially for distributed DGNN training. The prevailing DGNN
frameworks (e.g., [3, 7, 9]) predominantly employ snapshot par-
titioning, a coarse-grained partitioning technique that results in
limited load balancing control.

To address the above challenges, we propose an asynchronous
distributed training framework for Dynamic Graph Neural Net-
work using Hybrid Batches, called DynaHB. To address Challenge
I , we implement a vertex partitioning strategy that minimizes com-
munication through caching. We employ asynchronous local model
updates alongside periodic synchronization of the global model to
reduce the otherwise high synchronization costs. To address Chal-
lenge II , we introduce a novel GPU-friendly hybrid-batch structure,
which strikes a purposeful balance between efficiency and conver-
gence. To dynamically determine a carefully selected hybrid batch
size during training, we introduce a reinforcement learning-based
batch adjuster. Further, to decrease the cost of generating hybrid
batches, we introduce a Pipeline-based Hybrid Batch Generator
that utilizes the batch-reservoir technique. To address Challenge
III , we enable balanced workloads and data distributions by pro-
viding means of load-aware vertex partitioning coupled with a
load-balancing training strategy. Finally, we provide a convergence
proof for DynaHB training.

Our contributions are summarized as follows.

• We propose an asynchronous framework for distributed DGNN
training that alleviates communication and synchronization over-
heads. We tailor a load-aware vertex partition strategy coupled
with a load-balanced training strategy.

• We propose a flexible, GPU-friendly Hybrid-Batch training mode.
Moreover, we design a reinforcement learning based batch ad-
juster, aiming to minimize the overall convergence time by se-
lecting carefully a batch size during DGNN training.

• We propose a Pipeline-based Hybrid Batch Generator aimed
at overlapping training time with batch generation time. The
generator incorporates a batch-reservoir technique to preserve
generated hybrid batches, thereby enabling their reuse and ef-
fectively reducing batch generation costs.

• Extensive experiments conducted with three common DGNN
models on eight public datasets offer insight into the performance
of DynaHB. DynaHB achieves up to a 93× and an average of 8.06×
speedups over snapshot batch techniques, the state-of-the-art
DGNN training mode.

The paper is structured as follows. Section 2 reviews related work
of DGNN models, optimizations, and systems. Section 3 provides
preliminaries on dynamic graphs and DGNN training. Section 4
elaborates an overview of DynaHB and load-aware partitioning and

training, while Section 5 details the reinforcement learning-based
hybrid batch adjustment and optimizations. Experimental results
are presented in Section 6, and the paper concludes with a summary
in Section 7.

2 RELATEDWORK

2.1 DGNN Models
Existing DGNN models are based on either snapshot graph process-
ing or event stream processing.
Snapshot graph processing. These methods focus on analyzing
discrete graph snapshots over time. DCRNN [22] captures spa-
tial information through bidirectional random walks and uses an
encoder-decoder framework for temporal learning. To fully capture
the changes in dynamic graphs, SEIGN [30] proposes a dual evolu-
tion technique for graph model parameters and the representation
of each snapshot graph. ROLAND [52] treats node embeddings at
different GNN layers as hierarchical node states and proposes a
scalable dynamic graph learning framework, which can help re-
searchers apply static GNNs to dynamic graphs. DGNNs [1, 6, 16, 22,
26, 30, 34, 37, 52, 56] typically exhibit variations in their temporal
and spatial encoding methodologies, while the foundational com-
munication patterns, encompassing GCN and RNN communication
topologies, remain invariant.
Event stream processing. These methods aim to handle con-
tinuous flows of graph events. JODIE [13] uses recursive neural
networks to understand user-item interactions, predicting future
activities. Zebra [21] simplifies recursive temporal message passing
by connecting it with time-random-walk processes, selecting key
temporal neighbors to compute node representations. However,
these models [13, 46, 47, 50] cannot handle scenarios where data
arrives in batches or data is collected at regular intervals. Thus,
they fall outside the scope of this paper.

2.2 Performance Optimizations for DGNNs
Efforts to speed up DGNN training involve optimizations for single
servers and distributed servers.
Single-server optimizations. PyGT [33] introduces a program-
ming library for DGNN training. CacheG [14] reduces redundant
computations by caching and reusing hidden layer embeddings. Pi-
PAD [43] uses a pipelined parallel DGNN training architecture with
overlap-aware data organization. TGOpt [48] adopts a redundancy-
aware training strategy for temporal graph attention networks.
These systems face challenges in supporting large-scale DGNN
training due to single machine resource constraints.
Distributed-servers optimizations. ESDG [3] avoids GNN com-
munication with snapshot-based partitioning, but RNN computa-
tions still require communication. DynaGraph [9] employs sliding-
window (SW) based snapshot partitioning, eliminating communica-
tion during training but requiring communication for data exchange.
DGC [5] combines snapshot and vertex partitioning to reduce com-
munication costs. ADGNN-T extends a GNN framework [35] with
vertex-partition-based distributed training. These architectures still
face communication bottlenecks.

Next, we compare DynaHB with the state-of-the-art proposals in
terms of partitioning framework and batch modes.
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Figure 1: Partition frameworks. Here, G𝑖 represents the 𝑖𝑡ℎ snapshot, with each snapshot depicted in a different color; G𝑖, 𝑗
represents the part of the 𝑖𝑡ℎ snapshot allocated to the 𝑗𝑡ℎ worker; 𝑠𝑤𝑖 represents the 𝑖𝑡ℎ sliding window.

(i) Partition frameworks. The snapshot partitioning in Fig-
ure 1a stores four snapshots per worker. Thus, each worker can
independently perform GNN convolutions, while vertex exchange
is needed for RNN computation. Vertex partitioning in Figure 1b
stores half of the vertices per worker. Convolution of each snap-
shot needs remote embeddings, while RNN can execute locally.
The hybrid partitioning in Figure 1c requires communication to
compute RNN and GNN, while minimizing communication. The
SW-based snapshot partitioning in Figure 1d does not require com-
munication during training; however, communication is needed
when exchanging snapshots to achieve random data distribution.

In contrast to the above, DynaHB employs cache-based vertex
partitioning for five key reasons: (a) it resolves the communica-
tion bottleneck; (b) DGNNs are relatively shallow, distributed CPU
memory is often sufficient to accommodate the caching of vertices;
(c) synchronization overhead is nearly eliminated, achieving close
to linear scalability; and (d) vertex partitioning enables distributed
processing of a single snapshot graph, making it scale better to
large data sizes. Figure 1 shows the above five partitioning strate-
gies for distributed DGNN training. Overall, cache-based vertex
partitioning is the most suitable for distributed DGNN training.

(ii) Batch modes. ESDG [3], DGC [5], and ADGNN-T [35] pri-
marily use full-batch training, which can be challenging due to GPU
memory limitations. Two common mini-batch modes are snapshot-
batch and vertex-batch. DynaGraph [9] supports a snapshot batch
mode (sliding windows), grouping consecutive snapshots to reduce
computational complexity. However, fitting large snapshot graphs
into GPU memory remains difficult. Vertex-batch mode [57, 60]
is used in GNN training to reduce computational load. However,
small snapshot loads may not fully utilize GPU performance, and
sampling vertices introduces additional encoding costs.

In contrast, DynaHB employs a hybrid batch training mode, com-
bining vertex batches and snapshot batches. First, the mode en-
hances GPU training by improving memory efficiency and adapt-
ability. Second, the hybrid batch training mode allows flexible con-
trol over data size, balancing efficient training with high accuracy.

Example 1. Figure 2 illustrates two consecutive rounds of DGNN
training, showcasing three different training modes. In each training
round, the vertex batch includes 2 vertices from all 4 snapshots, result-
ing in a computational and storage cost of 16 target vertices. Similarly,
the snapshot batch includes 3 snapshots for all 4 vertices, totaling 24
target vertices. In contrast, the hybrid batch requires computation and
storage for only 7 target vertices.

vertex-batch

1 1 2 2 3 3 4 4

1 1 2 32 3 4 4

hybrid-batch

1 2 3

3 3 4 4

1 2 2 3 3

2

2 2

3

3 3

4

4 4

2 3 4

1

1 1 2 2 3 3

1 2 32 3

snapshot-batch

vertex batch size

snapshot batch size

convergence

efficiency

 

 

Advantages

less computation

less GPU memory 

occupation

flexible batch size to adapt 

to convergence

Figure 2: Batch type comparison. Colors and numbers indi-
cate snapshots, while shapes represent vertices.

2.3 Techniques for Other Graph Learning Tasks
Training optimizations for static GNNs. Various optimizations
have been proposed for static GNN training, including techniques
such as caching [23, 60], message compression [36], disk opti-
mization [28], pipeline parallelism [38, 41, 42], training frame-
works [29, 44, 45], and sampling [35, 51, 54]. While effective in
static environments, these optimizations encounter challenges in
distributed DGNN training.
Training optimizations for event stream based DGNNs. Event-
based DGNNs [13, 31, 39, 46, 47, 50] handle event streams by up-
dating node representations when relevant events occur. Orca [20]
improves training efficiency by caching and reusing intermediate
embeddings. EARLY [15] addresses quality-deficit and neighbor-
redundancy issues by identifying influential nodes and proposing
a diversity-aware sampling technique. These systems [4, 15, 20,
49, 53, 58, 59] target event-based DGNN models in event stream
processing. The difference in design goals distinguishes DynaHB’s
system training architecture from the requirements of event-stream
based DGNN training, which is beyond the scope of our study.
Partitioning for static GNN training. BNS-GCN [40] ensures
balance by evenly distributing vertices but lacks load considera-
tion. 𝑃3 [8] splits features, but struggles with low dimensions and
communication caching. Graph Ladling [11] divides vertices into
partitions but ignores inter-cluster edges. CoFree-GNN [2] cuts ver-
tices for load balance but unsuitable for DGNN training as it cannot
control the placement of vertices. Moreover, these techniques are
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not tailored to the computational load of DGNNs, while DynaHB
simulates the cost of DGNN training and balances training loads.

3 PRELIMINARIES
We follow existing studies [5, 43] to define dynamic graphs.

Definition 1. Dynamic Graph. A dynamic graph is an ordered
set of snapshot graphs G = {G1,G2, . . . ,G𝑇 }. G𝑡 = (V𝑡 , E𝑡 ) (1 ≤
𝑡 ≤ 𝑇 ) is the snapshot at timestamp 𝑡 with vertex setV𝑡 and edge set
E𝑡 . Each vertex 𝑣𝑖,𝑡 ∈ V𝑡 is associated with a feature vector x𝑖,𝑡 ∈ X𝑡
and a label 𝑦𝑖,𝑡 ∈ Y𝑡 , where X𝑡 and Y𝑡 are the sets of feature vectors
and labels for all vertices at timestamp 𝑡 . Each edge 𝑒 (𝑖, 𝑗 ),𝑡 , connecting
𝑣𝑖,𝑡 and 𝑣 𝑗,𝑡 , is associated with an edge weight𝑤𝑒 (𝑖,𝑗 ),𝑡 ∈ WE𝑡

, where
WE𝑡

is the set of weights for all edges at timestamp 𝑡 .

Each DGNN layer includes structural and temporal encoding
modules. Structural encoding uses GNNs to aggregate neighboring
information. We simplify notation by representing vertex embed-
dings of snapshot 𝑡 at layer ℓ as 𝒉ℓv,t.

GNN(𝒉ℓ𝑣,𝑡 ) = UpdGNN(Agg(𝒉ℓ−1
𝑢,𝑡 |𝑢 ∈ N (𝑣𝑡 )),𝒉ℓ−1

𝑣,𝑡 ), (1)

where N(𝑣𝑡 ) denotes the neighbors of vertex 𝑣𝑡 and 𝒉ℓ−1
u,t denotes

the embedding representation of neighbor 𝑢 of 𝑣 at layer ℓ − 1
at timestamp 𝑡 . For the snapshot G𝑡 , Agg(·) aggregates neighbor-
ing vertex features on vertex 𝑣 at layer ℓ . UpdGNN(·) combines
neighbor embeddings and self-embedding, followed by updating
the self-embedding using the parameters of the GNN.

After structural encoding, each target vertex obtains its embed-
ding representation. Next, the embeddings of identical vertices
across different snapshots are amalgamated using Recurrent Neural
Networks (RNNs) for temporal encoding.

RNN(𝒉ℓv,t) = UpdRNN(𝒉ℓv,t, hiddenℓv,t-1), (2)

where hiddenℓ𝑣,𝑡−1 denotes the hidden state of vertex 𝑣 from G𝑡−1,
and UpdRNN(·) gets a new embedding 𝒉ℓv,t for 𝑣𝑡 and passes the
hidden state hiddenℓv,t to snapshot G𝑡+1. Finally, each vertex attains
an embedding that encapsulates both spatial and temporal infor-
mation. The stacking of DGNN layers facilitates the realization of
the multiple layers of a DGNN.

4 SYSTEM OVERVIEW AND LOAD-AWARE
OPTIMIZATION TECHNIQUES

4.1 System Overview
We present an overview of DynaHB in Figure 3. DynaHB functions
through four modules. Dynamic Graph Partitioner obtaines a logical
vertex partition for a given dynamic graph. Hybrid-batch Genera-
tor generates hybrid batches and feeds them into DGNN training.
DGNN Trainer trains the provided hybrid batch, executing both
forward and backward propagations to obtain the gradients and
updating local models. Asynchronous Model Controller coordinates
model averaging across all workers through a global timer.

We elucidate the specific functions of each module according to
the execution order in Figure 3. Given a dynamic graph G, the Load-
computation Unit calculates the workload of each vertex during
DGNN training (Step 1○). Second, the load information is conveyed
to the Load-aware Partitioner (Step 2○). This procedure gets a bal-
anced logical partition 𝑃 = {𝑃1, 𝑃2, . . . , 𝑃𝑀 }, where 𝑀 denotes the

number of workers. Next, the L-layer Cache Constructor retrieves it-
eratively remote vertices from the 𝐿-hop neighbors of local vertices
for the 𝑖𝑡ℎ (1 ≤ 𝑖 ≤ 𝑀) worker, i.e., 𝐶𝑖 = {𝑢 |𝑢 ∈ ⋃𝐿

𝑙=1 N
𝑙 (𝑣) ∧ 𝑢 ∉

𝑃𝑖 }, where N𝑙 (𝑣) represents the 𝑙𝑡ℎ-hop neighbors of 𝑣 (Step 3○).
The training of DGNNs, similar to GNN training, features 𝐿-hop
neighbor isolation. This means that the information within 𝐿 hops
of the target vertex contains all the necessary data for its DGNN
training. Consequently, we achieve communication avoidance by
caching neighbors within this 𝐿-hop range. Finally, the Data Assign-
ment Module allocates data to the designated workers according
to the partition results and 𝐿-hop remote vertices, e.g., worker 1
receives 𝑃1 and 𝐶1 (Step 4○).

During training, DynaHB generates hybrid batches. The RL-based
Hybrid Batch Size Adjuster determines the optimal size, combining
snapshot and vertex counts (Step 5○). Next, the Vertex Sampler se-
lects target vertices (Step 6○), which, along with the size parameters,
are input into the Hybrid Batch Generator to form a new hybrid
batch (Step 7○). This batch is then sent for GPU training (Step 9○).
Hybrid batches are saved in the Hybrid Batch Reservoir, allowing
us to choose between reusing an existing batch or generating a new
one for subsequent training (Step 8○).

DynaHB effectively resolves communication and GPU memory
bottlenecks. In scenarios with ample network bandwidth and GPU
memory, DynaHB also offers benefits: a) the asynchronous mode
avoids synchronous waiting costs, even in resource-rich environ-
ments; and b) its hybrid batch training allows for flexible adjustment
of vertex and snapshot batch sizes, reducing computational costs
on each worker.

4.2 Load-aware Optimization Strategies
Each target vertex has its own workload during DGNN training.
During DGNN training, the workload of a vertex mainly includes
operations related to GNNs and RNNs. The computation of GNNs
is related to the number of 𝐿 layers of neighbors for a vertex. Below,
we will provide the relevant definitions for workload. We disregard
the RNN computation cost when calculating the workload since
each vertex has the same computation cost.

Definition 2. The vertex workload L𝑡
𝑖
of a vertex 𝑣𝑖,𝑡 ∈ V𝑡

is the recursive sum of degrees from layer 1 to layer 𝐿, i.e., L𝑡
𝑖
=∑𝐿

𝑙=1 (
∑𝑙
𝑙 ′=1 |N

𝑙 ′ (𝑣𝑖,𝑡 ) |), where N𝑙 ′ (𝑣𝑖,𝑡 ) denotes the set of 𝑙 ′-hop
neighbors of 𝑣𝑖,𝑡 in G𝑡 .

We provide an example of calculating the workload for vertex
𝑣2 in a 2-layer DGNN model in Figure 4.

Example 2. We obtain the neighbors within 2-hops for vertex 𝑣2 in
snapshotsG1 andG2, as shown in Figure 4. InG1,N1 (𝑣2,1) = {𝑣1, 𝑣3},
and N2 (𝑣2,1) = {𝑣3}, where we omit the snapshot index for clarity.
Thus L1

2 is calculated as |N1 (𝑣2,1) | + (|N1 (𝑣2,1) | + |N2 (𝑣2,1) |) =

|{𝑣1, 𝑣3}| + (|{𝑣1, 𝑣3}| + |{𝑣3}|) = 5, where | · | denotes the size of
the set. Similarly, L2

2 = 5. Consequently, the total workload for 𝑣2
in DGNN training is 10. The table in the top right corner of Figure 4
shows the workload for each vertex.

We calculate vertex workloads using label aggregation. Initially,
each vertex is assigned a label of 1 to indicate a workload contri-
bution of 1 unit as a neighboring vertex. We use label propagation
along edges to update vertex labels and perform aggregation at
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Figure 4: An example of workload calculation

target vertices using addition. For an 𝐿-layer DGNN, we repeat this
process 𝐿 times to determine the final workload for each vertex.
The resulting vertex workloads are sorted in descending order and
used to allocate vertices, ensuring balanced local workloads.

Algorithm 1 summarizes the proposed Load-aware Partition
strategy. First, we initialize vertex_load to store the final vertex
load (lines 1-2), which is the sum of the load of each vertex across
all layers in all snapshots. Then, we start computing the load for
each layer of vertices (lines 3-7). We initialize the load of each edge
to 1, representing the initial aggregation load of an edge in the
initial layer, and store it in edge_loads[0]. We obtain the edge load
edge_load and the destination vertex dst for each edge. Based on
this information, we aggregate the edge values according to the
destination vertex (line 6). We accumulate the vertex load across
all layers in all snapshots into vertex_load_raw (line 7). Next, we
compute the sum of the load of each vertex across all layers in all
snapshots (line 10). We sort the loads and partition them using the
round-robin method (line 11), simultaneously dividing the vertices
into group_size load-balanced groups. Example 3 demonstrates the
efficiency of our Load-aware Partition.

Example 3. Continuing Example 2, we provide the workload for
each worker of the Hash, Metis [12], and our Load-aware Partition
strategy. Hash uses a round-robin partitioning. As shown in the par-
tition load table (the bottom of Figure 4), 𝑣1 and 𝑣3 are assigned to
worker 1, and 𝑣2 and 𝑣4 are assigned to worker 2. Thus, in this scheme,
the workload for worker 1 is 4, and the workload for worker 2 is 20,
which is highly unbalanced. Metis [12] is a partition approach aimed
at minimizing the edge cut, thus 𝑣1, 𝑣2, and 𝑣3 are assigned to worker
1, and vertex 4 is assigned to worker 2. The workloads for each worker
are 14 and 10, respectively, also unbalanced. In contrast, our technique
results in a workload of 12 for both workers, which is balanced.

After getting the optimal hybrid batch size through reinforce-
ment learning, which will be detailed in Section 5, it is necessary to

(i) select snapshots based on the snapshot batch size and (ii) select
target vertices based on the vertex batch size. For (i), an initial snap-
shot ID is selected from the range [0,𝑇 −𝑁S−1], where𝑁S denotes
the snapshot batch size. Following this, the next 𝑁S snapshots are
sampled sequentially. However, for (ii), random sampling can lead
to imbalanced workloads due to differences in computational loads
for each vertex. This can result in an overall decrease in training ef-
ficiency and convergence issues caused by imbalanced distributions.
During training, coordinating the selection of a balanced hybrid
batch for each worker is an important challenge.

Algorithm 1: Load-aware partition
Input: Vertex Number node_num, Layer Number layer_num,

Dynamic Graph graph
Output: Partition results partition

1 vertex_load=zeros(node_num)
2 vertex_load_raw=zeros((layer_num,node_num))
// calculate vertex loads for each layer

3 for 𝑙 from 1 to layer_num+1 do
4 for 𝑡 from 0 to graph.snap_num do
5 edge_load, dst=edge_loads[𝑙-1][𝑡], graph.edges[𝑡][1]
6 edge_loads[𝑙][𝑡] = scatter(edge_load, dst, dim=0,

dim_size=node_num, reduce="sum")
7 vertex_load_raw[𝑙] += edge_loads[𝑙][𝑡]

// calculate total vertex loads

8 for 𝑖 from 0 to layer_num do
9 for 𝑗 from 0 to 𝑖 do
10 vertex_load += vertex_load_raw[𝑗]

// get partition and balanced groups

11 partition=div_array_by_round_robin(vertex_load)
12 balanced_groups=split_into_n_parts(partition[worker_id],group_size)
13 return partition

We design a target vertex sampler based on balanced groups,
which selects the same number of target vertices within each group
of vertices with different computational loads to achieve balanced
training. First, during dynamic graph partitioning, we calculate
the workload for each vertex and allocate target vertices to each
worker. Within each worker, we can obtain the local vertex load
through the vertex workload table and arrange them in descending
order. Next, we divide the vertices, sorted by load, into 𝑁𝑏𝑔 groups
on average, ensuring balance in the workload for the majority of
vertices within each group.
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During the training process, we divide the vertex batch size
𝑁V into 𝑁𝑏𝑔 parts. Hence, we sample 𝑁V/𝑁𝑏𝑔 target vertices for
each balanced group and concatenate them to form a complete
set of sampled target vertices for training. This not only ensures
balanced workloads and shortens training time but also allows for
uniform sampling from vertices with different loads in each training
iteration, simulating the overall distribution effectively.

5 JOINT OPTIMIZATIONS FOR HYBRID
BATCH GENERATION

5.1 Reinformance Learning Based Strategy
We provide the formal definition of a hybrid batch below.

Definition 3. In a dynamic graph comprising 𝑇 snapshots, the
size of a snapshot batch, denoted as 𝑁S , and the size of a vertex
batch, denoted as 𝑁V , are defined. A target vertex set VH of a
hybrid batch 𝐻𝑏 is given by {𝑣𝑖,𝑡 |𝑖 ∈ 𝐵V , 𝑡 ∈ 𝐵S}. Here, 𝐵S =

{I𝑡S,I
𝑡+1
S , . . . ,I𝑡+𝑁S

S } and 𝐵V = {I𝑖1V ,I
𝑖2
V , . . . ,I

𝑖𝑁V
V }, where IS =

{𝑠 |1 ≤ 𝑠 ≤ 𝑇 } and IV = {𝑣 |1 ≤ 𝑣 ≤ 𝑁 } are index sets of snapshots
and vertices, respectively. A hybrid batch 𝐻𝑏 represents a trainable
subgraph constructed based onVH .

During training, the size of a hybrid batch 𝑁H affects the vari-
ance of stochastic gradients and training efficiency. Our goal is to
reduce the variance and increase training efficiency. However, dif-
ferent dynamic graphs exhibit varying sensitivities to the snapshot
batch size 𝑁S and vertex batch size 𝑁V . Simultaneously, various
factors such as different iteration stages, DGNN models, layer num-
bers, dynamic graph distributions, etc., may all impact the conver-
gence. This motivates us to develop a reinforcement learning based
strategy to adaptively adjust the size.

Reinforcement Learning (RL) is an online learning method de-
signed to efficiently determine the optimal execution strategy for
policy-based tasks. We propose a reinforcement learning model
tailored to dynamically adjust the hybrid batch size. DQN [25] is
effective for discrete action spaces and continuous state spaces,
aligning with batch sizes and convergence states. The quick conver-
gence of experience replay is vital as we need rapid policy selection.
To achieve optimal performance, it is essential to define the appro-
priate state space, action space, and reward metric. We propose to
simplify the state and action spaces to make DQN converge in the
early iterations by the following design principles.
State space. The state space should capture the core factors in-
fluencing action selection. A factor is considered unreasonable if
two distinct states result in the same action. This is because the
introduction of redundant state factors increases the complexity of
DQN, leading to slower convergence. We formulate the designed
redundancy-free state space in Definition 4.

Definition 4. A redundancy-free state space 𝑆 is designed as
loss reduction, i.e., S = Δloss, which is a single-factor state space.

Action space. The design of the action space should adhere to
two principles: a small number of actions and a large distinction
between actions. Two strategies are typically employed to define
numerical action space: (i) action combination (ii) change trend. In
our scenario, the former leads to enormous potential combinations,
whereas the latter triggers more frequent changes to the hybrid

batch, thereby impeding convergence. As a result, we propose a
streamlined and clear-cut action space design in Definition 5.

Definition 5. An action space A is formed by pairing down
the number of snapshots and vertices to a set of common empirical
sizes, i.e., A = SS × VS, where SS and VS represent the sets of the
sizes of snapshots and vertices.

By condensing the snapshot and vertex batch sizes to widely
recognized empirical values and using these as our action space,
we achieve a more manageable set of actions. On the one hand,
a smaller action space is easier to converge; on the other hand,
it addresses the challenges of making precise adjustments to the
hybrid batch size and alleviates the problem of slow responsiveness.
Reward.Reward setting is a critical step in RL. Our goal in adjusting
the batch is to minimize the overall convergence time. However,
without prior knowledge of whether an action leads to the shortest
convergence time among all possible choices, creating an effective
reward system is complex. To address the problem, we define the
reward as follows.

Definition 6. The reward is defined as the sum of the time
reward Rtime and the loss reward Rloss.

R = R𝑡𝑖𝑚𝑒 + R𝑙𝑜𝑠𝑠 =
𝑡𝑙 − 𝑡𝑐
𝑡𝑙

+ Δloss𝑐 − Δloss𝑙
Δloss𝑐

, (3)

where 𝑡𝑙 and 𝑡𝑐 represent the training time of the last and current
iterations, respectively, while Δ𝑙𝑜𝑠𝑠𝑐 and Δ𝑙𝑜𝑠𝑠𝑙 represent the loss
reduction of the current and last iterations, respectively. Clearly,R𝑡𝑖𝑚𝑒
is the percentage improvement in speed compared to the previous
solution, while Rloss is the percentage decrease in Δloss.

Reinforcement learning model parameters.We use a consis-
tent set across all datasets: 𝛾 = 0.99, 𝜖 = 1, 𝜖𝑑𝑒𝑐𝑎𝑦 = 0.95, 𝜖𝑚𝑖𝑛 = 0.1,
𝑙𝑟 = 0.005. Here’s a brief explanation of each parameter: 𝛾 balances
immediate and future rewards; 𝜖 , 𝜖𝑑𝑒𝑐𝑎𝑦 , 𝜖𝑚𝑖𝑛 control the probabil-
ity of random selection, its decay rate, and minimum value. These
parameters ensure that strategy selection avoids local optima by
promoting early exploration and gradually reducing it as training
stabilizes. A learning rate of 0.005 is chosen for faster convergence.

5.2 Pipeline Based Hybrid Batch Generator
In distributed DGNN training, the process of generating a hy-
brid batch involves multiple operations such as iteratively gen-
erating target vertices for each layer, vertex encoding, and mapping
edges to new encodings. This process, conducted on CPUs, is time-
consuming. To alleviate this, we employ a reservoir.
Hybrid Batch Reservoir is employed to store the generated hy-
brid batches. Since we adopt an adaptive schema for dynamically
adjusting the hybrid batch size, the reservoir needs to establish
storage areas for different sizes of hybrid batches. When a new
hybrid batch is generated, it is added to the designated storage area.
Hybrid Batch Selector determines whether to create a new hybrid
batch or retrieve one from the reservoir during training, guided by
a probability function.

𝑝 =
𝑁𝑟𝑠𝑣

𝑁 ·𝑇 /(𝑁S · 𝑁V )/𝑁A
, (4)

where 𝑁A is the number of batch size combinations, 𝑁𝑟𝑠𝑣 is the
size of hybrid batches in the reservoir, 𝑁S is the snapshot batch
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Figure 5: Pipelined Hybrid Batch Generator

size, 𝑁V is the vertex batch size, and 𝑁 and 𝑇 represent the total
number of vertices and snapshots, respectively. The intuition be-
hind Equation 4 is straightforward: (i) the probability of using the
reservoir decreases with smaller batch sizes but increases as the
reservoir’s batch size grows; and (ii) the more hybrid batches of a
given size 𝑁𝑟𝑠𝑣 there are in the reservoir, the higher the chance of
selecting a batch from the reservoir.

The reservoir reduces the time needed to generate hybrid batches,
but initially contains a limited number of batches. Consequently,
the selector tends to generate more new batches, leading to a bottle-
neck as it waits for their creation, significantly impeding efficiency.
To mitigate the blocking issue, we suggest decoupling the training
process and the hybrid batch generator. Both processes run concur-
rently, with separate threads for each size of the generator. This
allows them to independently generate batches. Since generating
batches primarily involves reading from the original graph, parallel
execution is feasible without conflicts. Locking is only required
during the writing process to the reservoir, which involves a simple
pointer assignment, resulting in minimal lock overhead.

Algorithm 2: Training process of DynaHB
Input: Dynamic Graph G, Model Update Time𝑇𝑚𝑢

Output: Trained Model model

1 for 𝑖 from 0 to action_size in parallel do
2 thread.start(generate_batch, args=[hb_size[i][0], hb_size[i][1]])

3 adap_rl = DQN()
4 start_time=time.time()
5 for 𝑒 from 0 to epoch do
6 hybrid_batch = get_batch(graph, hybrid_batch_size)
7 for time, snapshot in enumerate(hybrid_batch) do
8 y_hat, hidden_state = model(snapshot, hidden_state)
9 loss += mean((y_hat - snapshot.y)**2)

10 loss = loss / (time + 1)
11 excuting backward, parameter update, clear gradients
12 hybrid_batch_size = adapt_rl.train(e, loss, train_time)
13 adap_rl.distributed_strategy_update(hybrid_batch_size)
14 if time.time() - start_time >=𝑇𝑚𝑢 then
15 model.average()

We refine the selector to shorten the impact of hybrid batch
generation on training time. When a batch is selected from the
reservoir during training, it indicates that enough randomly gener-
ated batches are available, ensuring an efficient choice with minimal
impact on convergence. However, if a reservoir batch isn’t selected,
we adopt a different approach. Generating new hybrid batches can
be time-consuming and may cause trainer wait time, potentially

Algorithm 3: Batch reservoir approach get_batch()
Input: Vertex Batch Size 𝑁V , Snapshot Batch Size 𝑁S , Action

Space Size 𝑁A , Vertex Set Size 𝑁 , Snapshot Set Size𝑇
Output: Hybrid Batch 𝐻𝑏

1 action_id= get_action_id (𝑁V ,𝑁S )
2 max_batch_num =int(𝑁 · 𝑇 / (𝑁S · 𝑁V ) / 𝑁A )
3 𝑁𝑟𝑠𝑣 = len(batch_reservoir[action_id])
4 𝑝 = 𝑁𝑟𝑠𝑣 / max_batch_num
5 if random.rand() < 𝑝 then
6 index=random.randint(0, 𝑁𝑟𝑠𝑣 )
7 return batch_reservoir[action_id][index]

8 else
9 snap_id=random.randint(0, T - 𝑁S + 1)

10 return graph[snap_id : snap_id + snap_size]

exceeding the duration of full-batch training and leading to ineffi-
ciency. Therefore, depending on GPU memory availability, if the
GPU can accommodate a snapshot batch of the corresponding win-
dow size, we generate a new snapshot batch to reduce vertex batch
reconstruction costs. Otherwise, we generate a new hybrid batch.
Example 4 demonstrates the pipeline-based hybrid batch generator.

Example 4. As shown in Figure 5, threads use a hybrid batch
generator that takes the hybrid batch size for the subset it’s responsible
for, to generate trainable hybrid batches on the dynamic graph. For
example, Thread 1 (red) manages to generate hybrid batches of𝑁S = 3
and 𝑁V = 𝑁 /3, and Thread 2 (blue) is responsible for generating
hybrid batches of 𝑁S = 3 and 𝑁V = 𝑁 . As a result, Thread 1
generates𝐻𝑏1 and𝐻𝑏5, Thread 2 generates𝐻𝑏2 and𝐻𝑏6, and Thread
3 generates𝐻𝑏3,𝐻𝑏4,𝐻𝑏𝑛 , each storing them in their respective batch
reservoirs. During training, the trainer calls the selector to choose from
three options: extract a hybrid batch from the batch reservoir, generate
a snapshot batch, or generate a new hybrid batch.

Algorithm 2 describes the training process of DynaHB. Firstly, the
batch generator generates each type of hybrid batch (lines 1-2). Be-
fore training, hybrid batches are obtained (line 6). Then, processing
begins for each snapshot within the hybrid batch, sequentially pass-
ing the hidden states to the next snapshot and accumulating the loss
function (lines 6-10). After the forward propagation computation is
completed, backward propagation, parameter updates, and gradient
clearing are executed (line 11). We utilize the current execution time
of the hybrid batch, along with the loss reduction, to feed into the
reinforcement learning model for training. DQN reward calculation
module, which calculates a reward based on the loss and updates
the DQNmodel. After updating its model, the DQN action selection
module chooses a new batch size (line 12). Then, all workers update
the current strategy followed by obtaining a strategy for the new
hybrid batch size (line 13). The Asynchronous Model Controller
utilizes a global timer and a model update interval 𝑇𝑚𝑢 . After each
iteration, workers check whether the update time has been reached.
(line 14). Once all workers have reached the update interval, their
models are averaged and updated (line 15).

Algorithm 3 outlines the specific process of obtaining batches
using the batch reservoir. Firstly, based on the size of the hybrid
batch, we retrieve the corresponding action ID (line 1). Then, we
define a probability threshold 𝑝 , where the batch selector chooses
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to use the hybrid batch with this probability (lines 5-7); otherwise,
it selects the snapshot batch training mode (lines 8-10). This proba-
bility is defined as the number of hybrid batches of that size already
generated in the batch reservoir divided by the total number of
hybrid batches in the training dataset (line 4).
Comparison to potential adaptive strategies. (i) The cost-based
adaptive strategy offers a solution to the trade-off problem posed
by batch size selection. However, it cannot capture the benefits in
different states. (ii) The other RL-based adaptive strategy involves
setting the action space as increase, decrease, or remain unchanged.
However, It can only continuously increase or decrease the hybrid
batch size at predefined intervals.
Generalizability of DynaHB. It efficiently manages snapshots of
varying sizes and various tasks. Its communication-free design
resolves synchronization bottlenecks. The load-aware partition-
ing balances training loads, and the hybrid batch adjustment suits
different graph scales and training convergence rates.

5.3 Theoretical Analysis
Complexity analysis.We present the time complexity of the train-
ing modes, focusing on two key aspects: batch generation cost and
computation cost. Sampling target vertices involves re-encoding
the edge list, which is time-intensive. BoV (Batch of Vertex) and HB
(Hybrid Batch) modes require vertex encoding, with complexities
of O(𝑁V𝑇𝑑𝐿) and O(𝑁V𝑁S𝑑

𝐿), respectively. Here, 𝑁V and 𝑁S
are vertex batch and snapshot batch sizes, 𝑇 is the number of snap-
shots, and𝑑 is the average vertex degree. Note that batch generation
complexity exponentially increases with the number of layers. Con-
versely, BoS batch generation only extracts 𝑁S snapshots. PipeHB,
our optimized technique, has a constant cost if drawing from the
batch reservoir by a probability 𝑝 ; otherwise, it incurs 𝑁S cost with
a probability 1-𝑝 , resulting in O((1 − 𝑝)𝑁S) complexity. Also, we
present the theoretical complexity of preparing the hybrid batch
reservoir in Equation 5, where 𝑁 𝑖V and 𝑁 𝑖S respectively represent
the size of the vertex and snapshot batch for the 𝑖𝑡ℎ action.

O𝑟𝑠𝑣 = O(
∑︁
𝑖∈A

(𝑇 · 𝑁 )
(𝑁 𝑖V · 𝑁 𝑖S) · |A|

𝑁 𝑖V ·𝑁 𝑖S ·𝑑𝐿) = O(𝑇 ·𝑁 ·𝑑𝐿) (5)

The computational framework of DGNNs involves GNNs and
RNNs. The GNN complexity is attributed to convolution compu-
tation and neural network transformations. Each DGNN iteration
requires 𝑘𝑔 GNN computations, involving 𝐿-layer calculations for
𝑇 snapshots. For each snapshot, GNN complexity includes con-
volution computation 𝑁𝑑𝑓 and neural network transformation
𝑁 𝑓 2. Thus, the GNN computational complexity in Full Batch mode
is O(𝑘𝑔𝑇𝐿(𝑁𝑑𝑓 + 𝑁 𝑓 2)). The main RNN cost lies in neural net-
work transformations, accounting for 𝑘𝑟𝑇𝐿(𝑁 𝑓 2). Given 𝑘𝑔 and
𝑘𝑟 are usually comparable, we unify them as 𝑘 . Hence, the sim-
plified DGNN computational complexity in Full Batch mode is
O(𝑘𝑇𝐿𝑁 (𝑑 𝑓 + 𝑓 2)).

BoV utilizes vertex batches, reducing 𝑁 to 𝑁V ; BoS uses snap-
shot batches, reducing 𝑇 to 𝑁S ; HB employs a hybrid batch, re-
ducing both vertex and snapshot sizes to 𝑁V and 𝑁S respectively.
PipeHB, with a probability 1-𝑝 of choosing BoS and 𝑝 of choosing
HB, incurs a cost of O((1-𝑝)C𝐵𝑜𝑆 +𝑝C𝐻𝐵), where C𝐵𝑜𝑆 is the GNN
cost for BoS, and C𝐻𝐵 is the cost for the hybrid batch.

The main cost components are the storage of features and edge
lists. The host and GPU memory costs of communication-based
frameworks are 𝑂 (𝑇𝑁 𝑓 +𝑇𝑒), where 𝑒 is the average number of
edges per snapshot. Frameworks caching 𝐿-hop neighbors cost
O(𝑇𝑁𝑑𝐿 𝑓 ) on CPU and O(𝑇B𝑁B𝑑𝐿 𝑓 ) on GPU. BoS: 𝑇B = 𝑁S ,
𝑁B = 𝑁 ; BoV: 𝑇B = 𝑇 , 𝑁B = 𝑁V ; DynaHB: 𝑇B = 𝑁S , 𝑁B = 𝑁V .

Additionally, we encapsulate the system optimizations and de-
fault parameters, eliminating the need for additional costs associ-
ated with implementation or parameter tuning.
Convergence analysis. We provide some definitions and symbols
to aid in the analysis of convergence.

Definition 7. The gradients of hybrid batch training are denote
as ∇𝑔(𝒙) = ∇𝑓 (𝒙) − 𝝃 , where ∇𝑓 (𝒙) is the gradient under snapshot
batch mode, and 𝝃 is the error. The expected value E[𝜉] = 0 and
variance E| |∇𝑓 (𝑥) − ∇𝑔(𝑥) | |2 = E| |𝜉 | |2

In order to demonstrate the convergence of our update scheme,
we make the following assumptions:
• Lipschitzian gradient: 𝑓 (𝒙) is 𝐿-Lipschitz smooth, i.e., | |∇𝑓 (𝒙) −

∇𝑓 (𝒚) | | ≤ 𝐿 | |𝒙 −𝒚 | |, ∀𝒙,𝒚 ∈ R𝑑 .
• Bounded variance: the variance of the stochastic gradient, de-

noted by 𝝃 , is bounded such that E[∥𝝃 ∥2] ≤ 𝜎2.

Definition 8. The gradients of adaptive hybrid batch updating
scheme are given by: ∇𝑔(𝒙) = 𝑝 · ∇𝑔ℎ𝑏 (𝒙) + (1 − 𝑝)∇𝑓 (𝒙), i.e.,
∇𝑔(𝒙) = 𝑝 · (∇𝑓 (𝒙) − 𝝃 ) + (1 − 𝑝)∇𝑓 (𝒙) = ∇𝑓 (𝒙) − 𝑝 · 𝝃 . The
parameter update equation at the 𝑡𝑡ℎ iteration can be represented as
𝒙𝒕+1 = 𝒙𝒕 − 𝛾∇𝑔(𝒙𝒕 ).

Lemma 1. Under the aforementioned assumptions, we can deduce
the convergence rate 1

𝑇

∑𝑇−1
𝑡=0 E| |∇𝑓 (𝒙𝑡 ) | |2 ≤ 2(E𝑓 (𝒙0) − E𝑓 (𝒙𝑡 ))/

(𝑇 (2𝛾 − 𝐿𝛾2)) + 𝐿𝛾2𝑝2𝜎2/(2𝛾 − 𝐿𝛾2).

Lemma 2. With the asynchronous model controller, when we set
𝛾 =

√︁
(𝑓 (𝑥1) − 𝑓 ∗)𝑀/(𝐾2𝐿(𝜃 + 𝑝2𝜎2))/

√
𝑇 , the convergence for-

mula of our update scheme is as follows, and it can achieve the con-
vergence of O(1/

√
𝑇 ), where 𝑝 represents the maximum probability.

1
𝑇
E

𝑇∑︁
𝑗=1

| |∇𝑓 (𝑥̃ 𝑗 ) | |22 ≤
√︂

(𝑓 (𝑥̃1 ) − 𝑓 ∗ )𝐿 (𝜃 + 𝑝2𝜎2 )
𝑀

∗ 4𝐾
(𝐾 − 1 + 𝛿 )

√
𝑇

(6)

In fact, a higher convergence rate does not guarantee the mini-
mum overall convergence time. In practice, to balance the execution
time of individual batches and the convergence rate, we adopt the
probability formula given in Equation 4. The detailed proof of Lem-
mas 1 and 2 is available online1.

6 EXPERIMENTS
6.1 Experimental Setup
DGNN models. We use three popular models: Temporal Graph
Convolutional Network (T-GCN [55]), Diffusion Convolutional Re-
current Neural Network (DCRNN [22]), and Evolve Graph Convo-
lutional Network (EvolveGCN [27]). T-GCN is designed for traffic
prediction, combining GCN for spatial information convolution and
GRU for temporal information learning. DCRNN utilizes bidirec-
tional random walks on the graph to capture spatial dependencies

1https://github.com/songzhen-neu/DynaHB/Proof.pdf
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Figure 6: Convergence comparison

Table 1: Datasets (M=million and B=billion)

Attributes |S| |V | |E| |TV | |EL| |F | Task

Cora-T 50 0.05M 0.27M 2.71M 1.30M 1433 CL
Pubmed-T 50 0.39M 1.77M 19.72M 8.86M 500 CL
Slashdot 80 0.05M 0.14M 4.088M 3.69M 2 RG
Stackexch 170 0.55M 1.30M 92.68M 33.6M 2 RG
Ratings 70 2.15M 5.84M 150.2M 125M 2 RG
Flickr 70 2.30M 33.1M 161.2M 263M 2 RG
Youtube 80 3.22M 12.2M 257.9M 332M 2 RG
Bitcoin 90 24.6M 122M 2.211B 1.05B 2 RG

and an encoder-decoder architecture to capture temporal depen-
dencies. EvolveGCN (E-GCN) uses GCN for spatial information
convolution and an RNN to evolve GCN parameters.
Datasets.We use eight public datasets. The first two are for node
classification (CL) tasks, extended from static graphs using tech-
niques [9]; the remaining six [32] are for regression (RL) tasks,
representing dynamic graphs and available on the website2. The
statistics of the datasets are summarized in Table 1, where |𝑆 |,
|𝑉 |, |𝐸 |, |𝐹 |, and |𝑇𝑉 | represent the number of snapshots, vertices,
edges, feature dimension and total vertices, respectively. We employ
a graph smoothing technique named edge-life [3, 27, 43], which
can densify the dynamic graph and ensure snapshot continuity.
Following the common practice [3, 5, 24], we treat in-degrees and
out-degrees as features of each vertex for the latter six datasets.
Baselines.We compare DynaHBwith five state-of-the-art distributed
DGNN systems with different training modes.
• PyGT-Dist (PyD) [33] is a distributed implementation of PyGT

based on the cache-based vertex partitioning architecture, utiliz-
ing full-batch mode for training.

• Dist-Batch-of-Vertex (DBoV) [57] is a distributed architecture
that trains using complete snapshots andmini-batches of vertices,
which is extended from GNN training.

2https://networkrepository.com/dynamic.php

• Dist-Batch-of-Snapshot (DBoS) [3] is a distributed architec-
ture that trains using full vertices and a sliding window, which
is the state-of-the-art DGNN training mode.

• DBoV-Reservoir (BVR) employs reservoir technology with a
pipeline based batch generator, based on the vertex batch mode.

• ADGNN-Temporal (ADT) [35] is a distributed architecture
based on vertex partitioning, involving communication during
training but avoiding redundant computations.

Hybrid partition (DGC [5]), snapshot-partition (ESDG) [3], and
sliding-window-based snapshot-partition (DynaGraph) [9] are not
open-source systems with architectures distinct from ours. Al-
though designed to reduce communication, they still rely on syn-
chronous operations, which can be less efficient than DynaHB. In
particular, the size of the sliding window–bound by the local snap-
shot count–is restricted, and as the number of workers increases,
the restrictions become tighter, resulting in poor scalability.
Environments and parameter settings.We conduct experiments
on two environments: E1: a cluster consisting of five machines
employing 10Gbps Ethernet connections, each equipped with 250
GB DRAM, an Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz with
32 cores, and an NVIDIA RTX 2080Ti with 11GB memory; E2:
equipped with 2 Intel(R) Xeon(R) Gold 6326 CPUs @ 2.90GHz with
755GB DRAM, and configured with 8 NVIDIA RTX A6000 GPUs,
each with 48GB of GPU memory. For all tests, excluding ablation
study, we process the data in batches—5% of vertices and 20% of
snapshots per batch. We vary hybrid batch sizes between 1%, 5%,
10%, and 20% to evaluate performance in ablation study. The model
is considered to have converged if its loss does not decrease for ten
consecutive epochs. The train/test set ratio is set to 0.4/0.6.

6.2 Convergence and Speedup Comparison
We perform the convergence comparison results as shown in Fig-
ure 6 with the Mean Squared Error (MSE) loss over time.

Clearly, DynaHB achieves the fastest convergence and the lowest
final loss values. For example in Figure 6c, DynaHB converges to a
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Table 2: Test loss and convergence time (sec) comparison

System Model Slashdot Stackexch Ratings Flickr Youtube Bitcoin

ST #CN TT TL ST #CN TT TL ST #CN TT TL ST #CN TT TL ST #CN TT TL ST #CN TT TL

PyD

T-
G
CN

0.174 90 15.7 0.436 0.426 80 48.1 0.191 0.699 120 59.9 1.278 1.487 170 252 0.655 2.212 200 442 0.228 OOM*
ADT 0.725 90 72.5 0.436 7.304 80 584 0.191 8.037 120 964 1.278 9.926 170 1687 0.655 11.67 200 2335 0.228 OOM*
DBoV 0.244 90 21.9 0.436 0.804 80 64.3 0.192 0.986 110 108 1.288 2.784 170 473 0.655 1.450 190 275 0.228 6.028 100 602 0.235
DBoS 0.062 110 6.87 0.427 0.101 80 8.04 0.191 0.150 150 22.5 1.254 0.320 300 96.1 0.657 0.416 150 62.4 0.228 3.381 100 338 0.235
BVR 0.207 100 20.6 0.446 0.546 80 43.6 0.191 0.344 120 41.3 1.289 0.743 160 118 0.655 0.538 20 10.7 0.228 1.049 100 104 0.235

DynaHB 0.019 97 1.84 0.427 0.036 90 3.21 0.188 0.016 201 3.22 1.190 0.016 252 4.06 0.650 0.034 140 4.76 0.229 0.027 133 3.61 0.235
PyD

D
CR

N
N

0.123 1800 220 0.019 0.491 500 246 0.013 OOM* 0.321 500 161 0.187 OOM* OOM*
ADT 0.603 1800 1084 0.019 6.97 500 3483 0.013 9.04 990 8947 0.100 8.933 500 4466 0.187 10.83 460 4981 0.049 OOM*
DBoV 0.187 1530 286 0.021 0.720 520 374 0.013 0.954 990 945 0.100 2.723 510 1388 0.187 1.398 460 643 0.049 5.775 701 4210 0.118
DBoS 0.042 1580 65.8 0.019 0.164 500 81.9 0.013 0.178 1070 190 0.100 0.158 580 91.6 0.186 0.192 490 93.8 0.050 0.142 921 135 0.118
BVR 0.108 2140 232 0.019 0.353 520 183 0.013 0.219 1000 218 0.100 0.343 520 178 0.186 0.286 480 137 0.049 0.591 700 413 0.118

DynaHB 0.011 2993 32.7 0.019 0.026 675 17.3 0.013 0.010 1429 13.8 0.100 0.010 823 7.97 0.186 0.014 659 9.08 0.049 0.015 1348 20.0 0.118
PyD

E-
G
CN

0.077 40 3.06 0.472 0.166 200 33.2 0.161 0.121 980 118 1.319 0.330 240 79.2 0.578 0.454 1080 491 0.294 OOM*
ADT 0.575 40 22.2 0.472 5.154 200 1028 0.161 7.125 980 6983 1.319 7.254 240 1741 0.578 8.051 1080 8694 0.294 OOM*
DBoV 0.145 110 16.0 0.496 0.664 200 133 0.161 0.723 640 462 1.318 2.029 300 608 0.579 1.380 970 1339 0.270 3.452 300 1036 8.462
DBoS 0.034 60 2.05 0.480 0.050 210 10.5 0.161 0.040 890 35.2 1.319 0.043 460 19.9 0.580 0.084 580 48.8 0.294 0.076 60 4.54 9.492
BVR 0.109 160 17.46 0.499 0.232 220 51.2 0.164 0.161 441 72.7 1.319 0.342 220 75.2 0.580 0.268 620 166 0.458 0.501 320 160 24.71

DynaHB 0.012 124 1.48 0.479 0.022 351 7.60 0.162 0.008 943 7.10 1.319 0.008 817 6.22 0.579 0.010 1516 15.8 0.293 0.015 208 3.04 7.559

loss of 1.190 at 3.22s with T-GCN on Ratings, demonstrating the
fastest convergence, while DBoS, the state-of-the-art training mode,
converges to a loss of 1.254 at 22.5s. The superiority of DynaHB stems
from the following reasons. First, DynaHB leverages hybrid batches,
which overcomes the limitation of a single snapshot size, resulting
in smaller loads. Second, the asynchronous mode, along with other
optimizations, further enhances efficiency.
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Next, in higher-load DGNN model training, such as T-GCN and
DCRNN, DynaHB exhibits greater performance improvement com-
pared to DBoS in terms of acceleration. This is primarily due to
the more complex computation processes of DGNNs, leading to a
significantly increased load on individual vertices. In this case, the
use of vertex batches effectively reduces the overall training time.

Table 2 shows iteration time (ST), convergence rounds (#CN),
total convergence time (TT), and test loss (TL) for all systems using
three models on six datasets. "OOM*" indicates memory overflows,
while bold and underlined values indicate the best and second-best
convergence efficiency, respectively. DynaHB stands out for its rapid
convergence on all datasets and achieves comparable loss to full-
batch methods. For example, with T-GCN on Flickr, DynaHB’s loss
of 0.650 is the lowest, outperforming all baselines and even full-
batch methods like PyD and ADT. DynaHB introduces variability in
the number of snapshots, which can help the model escape local
optima, in turn mitigating overfitting.

In most cases, DynaHB requires more convergence rounds com-
pared to baselines. For instance, when running T-GCN on Flickr,
DynaHB converges in 252 rounds, while PyD and ADT only require
170 rounds. This is due to the increased randomness in gradients
introduced by the hybrid batch mode. Similarly, the vertex batch
system DBoV, BVR, and the snapshot batch system DBoS generally
have more convergence rounds compared to the full-batch PyD and
ADT. However, DynaHB’s quick iterations (small ST) ensure it still
outperforms baselines in total convergence time.

Finally, under our settings (with snapshot batches set at 20% and
vertex batches at 5%), the batch distribution remains relatively sta-
ble, which minimizes the effects of random fluctuations in gradients.
Consequently, almost all baselines ultimately converge to values
close to or identical with each other. As shown in Table 2, across all
models and datasets, the MSE loss for all batch techniques relative
to the full-batch mode does not exceed 5.085% (e.g., on Slashdot,
DBoV has a loss of 0.496, while the full-batch loss is 0.472 for E-
GCN). In most cases, DynaHB is superior or equal to the full-batch
mode in terms of loss convergence.

Due to space limitation, we use T-GCN to illustrate the speedups
of all baselines in Figure 7 against ADT, with similar trends observed
in other models: DCRNN and E-GCN. As observed, PyD achieves a
speedup of 4.62-16.09×, DBoV achieves 1.78-8.93×, BVR achieves
3.52-218.2×, DBoS achieves 9.09-42.84×, and DynaHB significantly
leads with 26.08-490.55×. Moreover, for Bitcoin, where ADT and
PyD face GPU memory issues, we base speedup calculations on
DBoV’s performance. DBoS and BVR achieves 1.78× and 5.78×
speedups on the Bitcoin dataset compared to DBoV, while DynaHB
achieves a 166.76× speedup. In summary, DynaHB outperforms the
state-of-the-art system, DBoS, by 2.47-93.63× in speedup.

6.3 Breakdown and Memory Use
We provide a breakdown of convergence time for T-GCN on Flickr
in Table 3. This breakdown includes constructing reservoir time
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Table 3: Breakdowns of total convergence time (sec)

System rsv gen_bat to_gpu comp comm upda rl

PyD N/A N/A 0.115 243.3 N/A 0.542 N/A
ADT N/A N/A 0.303 53.33 1517 0.522 N/A
DBoV N/A 443.1 3.445 25.29 N/A 0.489 N/A
DBoS N/A 0.003 0.060 14.63 N/A 0.803 N/A
BVR 5.271 0.000 1.233 40.27 N/A 0.321 N/A

DynaHB 8.158 0.000 0.115 3.352 N/A 0.554 0.522

(rsv), batch generation time (gen_bat), data transfer to GPU time
(to_gpu), computation time (comp), communication time (comm),
parameter aggregation and update time (upda), and reinforcement
learning time (rl). N/A indicates that the comparison system does
not require that step. Meanwhile, 0.000 denotes that the time is less
than one-thousandth of a second and is thus negligible.

As shown in Table 3, the primary time consumption of PyD lies
in computation since, under its architecture, data does not require
communication. Conversely, the ADT system faces a significant
bottleneck in communication, reaching up to 30 times the com-
putation time. This is primarily due to (i) the significantly higher
GPU computational performance compared to network transfer
performance, (ii) the existence of multiple snapshots in DGNNs,
where each snapshot involves communication and synchronization,
incurring high costs, and (iii) in addition to the actual communi-
cation data, some communication preparation processes such as
data serialization, deserialization, and message construction are
also costly. ADT is more suitable for scenarios with a small number
of snapshots and a high load per individual snapshot graph. Addi-
tionally, we observe that the computation time for ADT is lower
than PyD, primarily due to PyD’s adoption of a caching mechanism
involving redundant calculations.

The primary bottleneck for the DBoV system lies in the genera-
tion of vertex batches. Each vertex batch necessitates resampling of
target vertices, which entails re-encoding and updating vertex map-
pings in the edge list. This process is time-intensive and can surpass
computation time. BVR addresses the bottleneck by incorporating
our pipeline reservoir technique. Conversely, DBoS operates at the
snapshot graph level, where each snapshot graph retains its initial
mapping, eliminating the need for vertex re-encoding and mapping
updates. During batch generation, DBoS merely requires specify-
ing the initial snapshot ID and retrieving the necessary number of
snapshots for the snapshot batch, incurring low time cost.

DynaHB mitigates bottlenecks by eliminating the need for com-
munication, and minimizes computation time through its hybrid
batch techniques. The reservoir stops when training ends, thus
completely covered by online time. Also, it can overlap with test-
ing intervals during training. With no communication overhead,
minimal computational load, and negligible batch generation time,
DynaHB achieves optimal performance.

Table 7 reports the average host memory and GPU memory use
of DynaHB and baselines. In terms of host memory, ADT requires
the least memory since it does not involve caching. The host mem-
ory use of other frameworks is similar. However, in our cluster,
each machine has 250GB of host memory, which is far above the
upper limit of required host memory. In terms of GPU memory use,
DynaHB has the smallest memory footprint among all systems.
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Figure 9: Partition time and scalability

6.4 Evaluation of Scalability
We evaluate the scalability, considering layer-wise, machine-wise,
graph-type-wise, and device-wise expansion. Initially, we validate
the sustained optimal performance of our system, ensuring it main-
tains speedups similar to those observed in single-layer approxima-
tions, even with multi-layer DGNNs. In Table 4, DynaHB remains
the top-performing system across 2-layer and 3-layer DGNN config-
urations, showing negligible declines in speedups with increasing
layer count. For example, on Bitcoin, DynaHB achieves speedups
over DBoS of 2.77×, 3.71×, and 3.38× for the first layer, two layers,
and three layers of the T-GCN model, respectively.

In addition, we assess the scalability of our system concerning
the number of workers. We present the experimental results of
DynaHB utilizing one to five machines across six datasets in Fig-
ure 9b. Furthermore, we include a reference line for linear speedup.
Notably, DynaHB achieves nearly linear speedups across all datasets.
This is primarily attributed to the independence of hybrid batches
within the asynchronous architecture, effectively eliminating com-
munication overhead.
Scalability of other graphs and devices. As shown in Table 5,
DynaHB achieves similar accuracies to the PyD and ADT under the
full-batch mode, with losses of 0.11% and 0.05%, respectively, but
achieves acceleration ratios of 2.56× and 3.26×. Compared to the
fastest DBoS in the baselines, we achieve acceleration ratios of
1.56× and 2.24×. Therefore, DynaHB remains effective at node classi-
fication tasks on high-dimensional attribute datasets. Additionally,
we conduct further scalability experiments on a new device in Ta-
ble 6. In the environment with 8 A6000 GPUs, DynaHB still achieves
the best training efficiency, with acceleration ratios of 1.74-3.81×
compared to the DBoS mode.

We conduct new experiments to test the speedup of DynaHB
compared to other systems on different graph sizes. Using the
Stackexch as an example, we set the training dataset to 20%, 40%,
60%, 80%, and 100% of the full dataset size. As shown in Table 9,
DynaHB achieves the fastest convergence time across all dataset
proportions. Compared to DBoS, DynaHB achieves speedup ratios of
2.22×, 2.24×, 3.25×, 3.23×, and 2.50×, respectively, for the different
dataset sizes. Furthermore, although smaller datasets can reduce
the convergence time per iteration, due to changes in convergence
characteristics, smaller datasets do not necessarily lead to faster
overall convergence.

6.5 Ablation Study
In Figure 8, we present the findings from ablation experiments
conducted using T-GCN. The term "Base" denotes the baseline
performance obtained without any optimizations, employing a
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Table 4: Layer scalability test (sec)

System Slashdot Stackexch Ratings Flickr Youtube Bitcoin
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

PyD 0.11 0.19 0.28 0.24 0.45 0.71 0.18 0.50 0.82 0.13 0.46 0.85 0.19 0.40 0.81 0.45 0.93 OOM*
ADT 0.27 3.32 6.28 3.24 16.4 29.2 2.83 12.0 20.7 2.59 10.2 17.6 3.82 17.8 31.4 3.04 70.8 139
DBoV 0.16 0.30 0.51 0.47 1.05 2.69 0.54 2.15 3.50 1.71 8.89 23.42 0.80 3.77 8.67 2.06 3.65 5.45
DBoS 0.04 0.05 0.07 0.06 0.10 0.15 0.04 0.10 0.17 0.03 0.12 0.20 0.03 0.09 0.15 0.10 0.37 0.55
BVR 0.14 0.21 0.31 0.34 0.55 0.88 0.14 0.42 0.64 0.41 1.32 2.64 0.37 2.18 5.40 0.36 0.48 0.67
Ours 0.02 0.03 0.04 0.03 0.04 0.05 0.01 0.02 0.03 0.02 0.06 0.13 0.02 0.04 0.09 0.04 0.10 0.16

Table 5: Test on classification tasks

System Cora-T Pubmed-T
Acc Time Acc Time

PyD 74.14% 46.6 70.81% 140
ADT 74.14% 914 70.81% 1548
DBoV 74.14% 169 70.82% 768
DBoS 73.55% 28.3 69.23% 96.0
BVR 72.19% 33.7 70.62% 264
Ours 74.03% 18.2 70.76% 42.8

Table 6: Convergence time (sec) on 8 A6000 GPUs

Dataset PyD ADT DBoV DBoS BVR Ours
Slashdot 11.11 24.40 14.04 3.84 12.85 2.16
Stackexch 18.84 262.22 37.71 4.89 26.85 2.82
Ratings 21.78 342.86 65.32 4.28 16.63 1.62
Flickr 13.08 442.93 171.13 6.72 41.34 1.76
Youtube 11.15 769.38 47.99 5.46 22.21 1.67
Bitcoin 35.80 246.27 165.10 8.32 29.17 3.34

Table 7: Average
memory use (GB)

System Host GPU
PyD 40.88 9.95
ADT 18.58 5.45
DBoV 40.63 0.97
DBoS 40.04 3.05
BVR 40.34 1.71

DynaHB 40.25 0.47

Table 8: Convergence time (sec)
with different fanouts

Dataset 1% 5% 10% 20% Ours
Slashdot 2.47 2.49 2.51 2.72 1.84
Stackexch 3.62 5.13 10.1 25.1 3.21
Ratings 13.7 22.0 40.4 82.5 3.22
Flickr 43.5 94.6 197 424 4.06
Youtube 13.7 28.9 50.9 135 4.76
Bitcoin 13.5 33.6 88.9 309 3.61

Table 9: Scalability w.r.t different graph sizes (sec)

Size PyD ADT DBoV DBoS BVR Ours

20% 10.45 145.95 23.83 5.72 17.04 2.58
40% 42.10 361.80 51.90 6.19 54.83 2.76
60% 63.35 544.91 131.17 11.69 77.17 3.60
80% 102.42 574.27 143.61 12.58 109.61 3.90
100% 48.10 584.00 64.30 8.04 43.60 3.21

full-batch execution mode. "+Lap" signifies the incorporation of a
partitioning methodology based on hybrid-batch load balancing
atop the base configuration. Analogously, "+Asyn" denotes the
adoption of an asynchronous strategy, while "+RL" involves the
utilization of reinforcement learning to dynamically adjust the size
of the hybrid batch. Lastly, "+Rsv" integrates a reservoir technique
centered on pipeline batch generation. In Figure 8, each column
signifies the inclusion of the specified technique along with all the
techniques mentioned in the preceding columns.

Using YouTube as a case study, we observe that the Lap, Asyn,
and RL methods yield individual speedups of 2.82×, 1.33×, and
1.70×, respectively, illustrating the efficacy of each technique. Fur-
thermore, the combination of these three techniques results in a
speedup of 6.39×. However, with the enhancement of the system’s
training performance, the overhead associated with hybrid-batch
generation emerges as a bottleneck. Consequently, with the in-
troduction of the reservoir technique grounded in pipeline batch
generation, DynaHB achieves a further speedup of 10.18×.

Table 10: Hyperparameter test for DQN models

Strategy #1 #2 #3 #4 #5 #6 Ours Random
𝜖𝑑𝑒𝑐𝑎𝑦 0.999 0.75 0.95 0.95 0.95 0.95 0.95 N/A
𝜖𝑚𝑖𝑛 0.1 0.1 0 0.5 0.1 0.1 0.1 N/A
𝑙𝑟 0.005 0.005 0.005 0.005 0.1 0.001 0.005 N/A

Time (s) 4.57 4.52 4.99 4.46 4.49 4.18 3.21 5.82

We provide experimental results for the overall convergence
time with different sizes of hybrid batches, i.e., 1%, 5%, 10%, and
20%. In this configuration, hybrid batches ultimately converge to
MSE loss close to those of the full batch. As seen in Table 8, bold
values represent the best performance. DynaHB achieves better effi-
ciency across all sizes of hybrid batches. For instance, on Ratings,
DynaHB achieves speedups of 4.25×, 6.83×, 12.55×, and 25.62× for
hybrid batch sizes of 1%, 5%, 10%, and 20%, respectively. The average
speedup ratios for hybrid batch sizes of 1%, 5%, 10%, and 20% are
4.01, 8.08, 16.82, and 42.22, respectively.
Hyperparameter sensitivity test for DQN. We evaluate the
hyperparameter sensitivity of the DQN model, as shown in Ta-
ble 10, using six different settings and a random action selection
strategy for comparison. The DQN model accelerates convergence
compared to random selection. However, setting parameters exces-
sively high or low results in inferior performance compared to our
default values. With our default parameters, we achieve significant
acceleration effects, eliminating the need for manual tuning.

7 CONCLUSION
Wepresent a cache-based architecture tailored for distributedDGNN
training, aiming to fully exploit CPU memory while eliminating
communication overhead. To further enhance the efficiency of the
cache-based architecture and mitigate GPU memory constraints,
we introduce a novel hybrid batch training mode. We propose a
suite of optimizations for this hybrid batch mode, encompassing RL-
based batch size adjustment, a load-aware balanced hybrid-batch
partition strategy and training modes, and a reservoir technique
founded on pipeline-generated hybrid batches. Our extensive ex-
periments demonstrate that DynaHB achieves a remarkable speedup
of up to 93× and an average of 8.06× speedups compared to the
state-of-the-art training mode.
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