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ABSTRACT
The Shapley value is widely used for data valuation in data mar-

kets. However, explaining the Shapley value of an owner in a data

coalition is an unexplored and challenging task. To tackle this, we

formulate the problem of finding the counterfactual explanation of

Shapley value in data coalitions. Essentially, given two data owners

𝐴 and 𝐵 such that 𝐴 has a higher Shapley value than 𝐵, a counter-

factual explanation is a smallest subset of data entries in 𝐴 such

that transferring the subset from 𝐴 to 𝐵 makes the Shapley value

of 𝐴 less than that of 𝐵. We show that counterfactual explanations

always exist, but finding an exact counterfactual explanation is

NP-hard. Using Monte Carlo estimation to approximate counter-

factual explanations directly according to the definition is still very

costly, since we have to estimate the Shapley values of owners 𝐴

and 𝐵 after each possible subset shift. We develop a series of heuris-

tic techniques to speed up computation by estimating differential

Shapley values, computing the power of singular data entries, and

shifting subsets greedily, culminating in the SV-Exp algorithm. Our

experimental results on real datasets clearly demonstrate the effi-

ciency of our method and the effectiveness of counterfactuals in

interpreting the Shapley value of an owner.
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1 INTRODUCTION
The power of big data largely comes from many secondary uses

of data, such as enabling numerous machine learning and AI

models [24, 29, 35], recommender systems [3, 49], causal in-

ference [26, 45, 46], and data-driven decision-making applica-

tions [48]. However, incentivizing and facilitating data sharing

and collaboration at scale remains a great challenge. Data mar-

kets [11, 17, 31, 44, 51] are emerging as a promising way to enable

and facilitate data sharing among many potential owners and con-

sumers. Essentially, a data market is an online platform where var-

ious parties with demands can acquire datasets or data services; at

the same time, data owners can exchange data and data services for
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revenue or compensations in one way or another. There are already

many active data markets, such as AWS Data Exchange, Windows

Azure Marketplace, Dawex, Datarade, dmi.io, WorldQuant, Xignite,

and BlueTalon [31].

At the core of every data market, there is a data valuation module.

In a data market, a group of data owners collaborate to produce a

target dataset or complete a target task that a buyer would like to

acquire, such as assembling a dataset for data analytics or machine

learning. We call collaboration among data owners a data coali-
tion, where multiple datasets owned by different parties are used

to produce target datasets. In a nutshell, data valuation assigns

a score to a data owner to reflect the data owner’s contribution

towards a task achieved by a data coalition.

Data valuation plays a central role in ensuring fairness, effec-

tiveness, and efficiency of data markets. There are various require-

ments on data valuation in different data markets [47], such as

truthfulness [2], revenue maximization, fairness [2, 52], arbitrage-

freeness [36], privacy-preservation [1, 4, 5, 10, 13, 16, 18, 19, 21, 22,

27, 42, 43, 57, 61, 62], and computational efficiency [2, 9, 23]. The

rich diversity in requirements poses many technical challenges for

data valuation solutions.

The Shapley value [52] is often used as a measure in data valua-

tion [32, 33, 60], which is the expectation of marginal utility gain

that a data owner can bring into coalitions. We will review the

mathematical details in Section 2. The Shapley value is the only

valuation measure that provably satisfies efficiency, symmetry, zero

element, and additivity.

While numerous studies have investigated the fast computa-

tion of Shapley values by either designing cost-saving sampling

strategies [28, 39] or tackling the Shapley computation in specific

settings [15], one important question remains unexplored: how
can one understand and explain the Shapley value of a data
owner in a data coalition?

Let us consider a concrete example. Suppose two data owners,

Alice and Brittany, participate in a data coalition O and obtain their

Shapley values𝜓O (𝐴𝑙𝑖𝑐𝑒) and𝜓O (𝐵𝑟𝑖𝑡𝑡𝑎𝑛𝑦), respectively. Without

loss of generality, let us assume𝜓O (𝐴𝑙𝑖𝑐𝑒) > 𝜓O (𝐵𝑟𝑖𝑡𝑡𝑎𝑛𝑦). Then,
one may ask how we can explain Alice’s advantage over Brittany

according to their Shapley values. To answer this question, one

intuitive approach is to look for a counterfactual explanation, which

is a minimal subset 𝑆 of data owned by Alice such that transferring

𝑆 from Alice to Brittany can flip the direction of the inequality, that

is, making𝜓O (𝐴𝑙𝑖𝑐𝑒) < 𝜓O (𝐵𝑟𝑖𝑡𝑡𝑎𝑛𝑦).
Using counterfactuals as an explanation tactic is a well estab-

lished approach in philosophy and has enjoyed numerous applica-

tions in many domains [54]. A counterfactual explanation 𝑆 pro-

vides some interesting insights. For example, by checking the data

entries in 𝑆 , one may understand which data entries are the most

crucial for Alice’s advantage—what really makes Alice be able to
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contribute more and thus be more valuable than Brittany in the

coalition? The counterfactual explanation allows us to detail the

root of differences in Shapley values between data owners in a way

that the Shapley value itself does not illuminate. For example, if

Alice owns much more data than Alice but the size of the coun-

terfactual explanation is small, it means that Alice’s advantage is

driven by a few powerful rows of data–the elements of the counter-

factual. To use another analogy, using a counterfactual explanation

would allow us to see if, given two sports teams, if the success of

one over the other on average is driven by one star player (a small

counterfactual) or an overall better playing team (a large counter-

factual). In Section 4, we report two interesting case studies. The

first one demonstrates that counterfactual explanations can help

select features from one subset to enhance the features in another

subset. The second case illustrates that counterfactual explanations

can disclose the data distribution differences among different data

owners.

Motivated by this insight, we tackle the problem of finding the

counterfactual explanation for the Shapley value. To the best of

our knowledge, we are the first to model this problem. We show

that the counterfactual explanation always exists, but finding the

counterfactual explanation of the Shapley value is NP-hard.

Even if we use Monte Carlo estimation to approximate counter-

factual explanations according to the definition, the algorithm is

still very costly–we have to estimate the Shapley values of data own-

ers after every change. To address the computational challenges,

we develop a series of heuristic techniques to improve computation.

Firstly, we provide techniques to estimate the differential Shapley

(the difference between the Shapley values of two data owners)

directly. The differential Shapley not only avoids the complication

of estimating the Shapley values of two data owners and then calcu-

lating the difference, but also improves the estimation quality when

using Monte Carlo sampling approaches. Secondly, estimating dif-

ferential Shapley values is still costly when there are many data

entries. For this, we develop an iterative greedy search approach. In

each iteration, we find a data entry such that moving the data entry

from one data owner to the other causes an estimated maximal

change in differential Shapley value, which is measured using the

notion of the power of a data entry. The iteration continues until

an approximation of the counterfactual explanation is obtained.

We also conduct experiments and highlight case studies on real

datasets to examine the efficiency of our method and the effective-

ness of using counterfactuals to explain the Shapley value.

The rest of the paper is organized as follows. We formulate the

problem and present an exact algorithm in Section 2. In Section 3

we develop the heuristic approximation methods. We report the

experimental results in Section 4, discuss related work in Section 5,

and address the limitations and possible extensions of our method

in Section 6. Section 7 concludes the paper.

2 PROBLEM FORMULATION AND AN EXACT
ALGORITHM

Assume a set of data entries D = {𝑥1, . . . , 𝑥𝑚} of interest. Let O be

a set of data owners who achieve a task in a coalition. For each data

owner 𝑂 ∈ O, we overload symbol 𝑂 to also denote the dataset

that 𝑂 owns, that is, 𝑂 ⊆ D is the subset of data entries that 𝑂

owns. A (data) coalition S ⊆ O is a subset of data owners and

their datasets. Correspondingly, the union of datasets owned by a

set of data owners S, that is, ∪𝑂∈S𝑂 ⊆ D, is called a composed
dataset. O itself as a coalition is called the grant coalition.

Given a set of data owners O and a data owner 𝑂 ∈ O, denote
by𝜓O (𝑂) the Shapley value [52] of 𝑂 , that is,

𝜓O (𝑂) =
1

|O|
∑︂

S⊆O\{𝑂 }

𝑈 (S ∪ {𝑂}) −𝑈 (S)(︁ |O |−1
|S |

)︁
=

1

|O|!
∑︂

𝜋∈Π (O)
(𝑈 (𝑃𝜋

𝑂
∪ {𝑂}) −𝑈 (𝑃𝜋

𝑂
))

(1)

where 𝑈 : 2
O → R is a utility function that returns the utility

of a coalition by a set of data owners, R is the set of real numbers,

𝑈 (∅) = 0, Π(O) is the set of all possible permutations of data

owners, and 𝑃𝜋
𝑂
is the set of data owners preceding𝑂 in permutation

𝜋 .

In many applications, the more data, the better the utility. In

other words, a utility function is often monotonic. Even with a non-

monotonic utility function𝑈 (·), since a user often has the incentive

to try every possible way to extract the best value from a set of data,

the attempts lead to a utility function𝑈 ∗ (𝐷) = max𝐷 ′⊆𝐷 {𝑈 (𝐷′)},
which is monotonic. Based on this rationale, we from now on as-

sume that the utility function ismonotonic. That is, for any two

subsets of data entries 𝐷1, 𝐷2 ⊆ D, if 𝐷1 ⊆ 𝐷2, then 𝑈 (𝐷1) ≤
𝑈 (𝐷2).

Consider two data owners 𝐴, 𝐵 ∈ O such that 𝜓O (𝐴) > 𝜓O (𝐵).
We ask the following question: which data entries in 𝐴 can explain
the higher Shapley value of 𝐴 compared to that of 𝐵? Particularly,

we are interested in the counterfactual explanation, that is, a
subset Δ𝐴 ⊆ 𝐴 of the minimum size such that, if Δ𝐴 is transferred

from 𝐴 to 𝐵, the Shapley value of 𝐵 will be larger than that of 𝐴.

Formally, let O[𝐴 Δ𝐴−−−→ 𝐵] = O \ {𝐴, 𝐵} ∪ {𝐴 \ Δ𝐴, 𝐵 ∪ Δ𝐴}. We

want to solve the following counterfactual explanation problem
of the Shapley value as an optimization problem.

min{|Δ𝐴|}
s.t. Δ𝐴 ⊆ 𝐴

𝜓
O[𝐴

Δ𝐴−−−→𝐵 ]
(𝐴 \ Δ𝐴) < 𝜓

O[𝐴
Δ𝐴−−−→𝐵 ]

(𝐵 ∪ Δ𝐴)
(2)

We can show that the problem of counterfactual explanation is

NP-hard.

Theorem 1 (Complexity). The problem of counterfactual expla-
nation is NP-hard.

Proof sketch. We prove by constructing a reduction from

the set cover problem, whose search version is known to be NP-

hard [30]. Given a set of elements D = {𝑥1, . . . , 𝑥𝑛} (called the

universe) and a collection S = {𝑆1, . . . , 𝑆𝑚} of 𝑚 subsets whose

union equals the universe, that is, 𝑆𝑖 ⊆ D and ∪𝑚
𝑖=1

𝑆𝑖 = D, the set
cover problem is to find the smallest sub-collection of S whose
union equals the universe D.

For each sub-collection S = {𝑆𝑖1 , . . . , 𝑆𝑖𝑘 } ⊆ S, we define an

encoding function 𝑓 (S) =
∑︁𝑘

𝑗=1 2
𝑖 𝑗

2
𝑚+1 . Clearly, 0 < 𝑓 (S) < 1 as long

as S ≠ ∅.
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We construct a game as follows. We treat each subset 𝑆𝑖 as a

data entry. There are only two data owners, 𝑂0 = ∅ and 𝑂1 = S,
that is, 𝑂0 does not have any data and 𝑂1 has all the subsets. We

define a utility function 𝑈 : 2
S → [0,𝑚 + 1) such that for each

sub-collection S ⊆ S, 𝑈 (S) = 0 if ∪𝑆𝑖 ∈S𝑆𝑖 ≠ D; and otherwise

𝑈 (S) =𝑚 − |S| + 𝑓 (S).
Clearly, 𝜓 (𝑂1) > 0 and 𝜓 (𝑂0) = 0, and thus 𝜓 (𝑂1) > 𝜓 (𝑂0).

Let Δ𝑂 ⊆ 𝑂1 be a counterfactual explanation of the Shapley value.

Then, one of the following three cases may happen. Firstly, if S
has only one cover S ⊆ S, then Δ𝑂 = S. Secondly, if S has two
or more covers and the minimal cover S satisfies |S| < |S \ S|,
then Δ𝑂 = S (note that if the size of a cover 𝑆 is strictly greater

than |S \ S|, then S cannot be minimal). Otherwise, we have the

third case, where there are two covers and the minimal cover S
satisfies |S| = |S \ S|. Thus, S has two disjoint covers S1 and S2
such that S = S1 ∪ S2 and S1 ∩ S2 = ∅, and then we have that

Δ𝑂 = argmaxS∈{S1,S2 } 𝑈 (S). Therefore, the subsets in Δ𝑂 is a

set cover in D. □

It is important to note the feasibility of this problem.

Proposition 2. The counterfactual explanation problem of Shap-
ley value always has a feasible solution.

Proof sketch. Since 𝜓O (𝐴) > 𝜓O (𝐵) and the utility function

is monotonic, the Shapley value is non-negative, that is,𝜓O (𝐴) > 0.

Therefore, 𝐴 ≠ ∅. Let O′ = O[𝐴 Δ𝐴−−−→ 𝐵]. In the trivial scenario

where Δ𝐴 = 𝐴, due to the monotonicity of the utility function, we

have𝜓O′ (𝐴 \ Δ𝐴) = 𝜓O′ (∅) = 0. Moreover, 𝐵 ∪ Δ𝐴 ⊇ Δ𝐴 = 𝐴 ≠ ∅.
Thus, 𝜓O′ (𝐵 ∪ Δ𝐴) > 0. Then, 𝜓O′ (𝐴 \ Δ𝐴) < 𝜓O′ (𝐵 ∪ Δ𝐴). The
feasibility of the problem follows immediately. □

We now introduce the notion of the differential Shapley value.
For two data owners 𝐴, 𝐵 ∈ O, we define the differential Shapley
value between𝐴 and 𝐵 as ΨO (𝐴, 𝐵) = 𝜓O (𝐴) −𝜓O (𝐵). We have the

following useful result, a variation of Lemma 1 by Jia et al. [28] on

efficient data valuation.

Theorem 3 (Differential Shapley Value). For two data owners
𝐴, 𝐵 ∈ O,

ΨO (𝐴, 𝐵) =
∑︂

S⊆O\{𝐴∪𝐵}

1

( |S| + 1)
(︁ |O |−1
|S |+1

)︁ (𝑈 (S∪{𝐴})−𝑈 (S∪{𝐵}))
Proof. According to the definition of the Shapley value (Equa-

tion 1), we have

𝜓O (𝐴) =
1

|O|
∑︂

S⊆O\{𝐴}

𝑈 (S ∪ {𝐴}) −𝑈 (S)(︁ |O |−1
|S |

)︁
=

1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 (S ∪ {𝐴}) −𝑈 (S)(︁ |O |−1
|S |

)︁
+ 1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 ((S ∪ {𝐵}) ∪ {𝐴}) −𝑈 (S ∪ {𝐵})(︁ |O |−1
|S |+1

)︁

Algorithm 1: The Brute-force Exact Algorithm
Input: A set of data owners O and two data owners

𝐴, 𝐵 ∈ O such that𝜓O (𝐴) > 𝜓O (𝐵)
Output: Solution to Equation 2

for 𝑖 = 1 to |𝐴| − 1 do
for Δ𝐴 ⊂ 𝐴 s.t. |Δ𝐴| = 𝑖 do

Let O′ = O \ {𝐴, 𝐵} ∪ {𝐴 \ Δ𝐴, 𝐵 ∪ Δ𝐴};
if 𝜓O′ (𝐴 \ Δ𝐴) < 𝜓O′ (𝐵 ∪ Δ𝐴) then

return Δ𝐴

Similarly,

𝜓O (𝐵) =
1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 (S ∪ {𝐵}) −𝑈 (S)(︁ |O |−1
|S |

)︁
+ 1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 ((S ∪ {𝐴}) ∪ {𝐵}) −𝑈 (S ∪ {𝐴})(︁ |O |−1
|S |+1

)︁
Thus,

ΨO (𝐴, 𝐵) = 𝜓O (𝐴) −𝜓O (𝐵)

=
1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 (S ∪ {𝐴})(︁ |O |−1
|S |

)︁ − 1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 (S ∪ {𝐵})(︁ |O |−1
|S |+1

)︁
− 1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 (S ∪ {𝐵})(︁ |O |−1
|S |

)︁ + 1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

𝑈 (S ∪ {𝐴})(︁ |O |−1
|S |+1

)︁
=

1

|O|
∑︂

S⊆O\{𝐴∪𝐵}

(︂ (︁ |O |−1
|S |+1

)︁
+
(︁ |O |−1
|S |

)︁ )︂(︁ |O |−1
|S |+1

)︁ (︁ |O |−1
|S |

)︁ (𝑈 (S ∪ {𝐴}) −𝑈 (S ∪ {𝐵}))

=
∑︂

S⊆O\{𝐴∪𝐵}

1

( |S| + 1)
(︁ |O |−1
|S |+1

)︁ (𝑈 (S ∪ {𝐴}) −𝑈 (S ∪ {𝐵})) □
Since computing the exact Shapley value is #P-hard [14], The-

orem 3 allows us to work on the difference between the Shapley

values of two data owners directly without estimating the individual

values.

To obtain the exact counterfactual explanation of Shapley value,

a straightforward approach uses Theorem 3, enumerates all possi-

ble non-empty subsets Δ𝐴 of 𝐴, and checks whether the resulting

datasets satisfy Equation 2. Among all those Δ𝐴 satisfying Equa-

tion 2, we pick the one with the smallest size. Since we are searching

for the smallest subset, we can enumerate the subsets of 𝐴 in the

size-ascending order. The algorithm stops the first time Equation 2 is

satisfied, guaranteeing that Δ𝐴 is minimum in size. The pseudocode

is given in Algorithm 1. Clearly, a straightforward implementation

of Algorithm 1 generates the powerset of 𝐴 in the worst case, and

thus its time complexity is exponential.

3 HEURISTIC APPROXIMATION METHODS
Computing the exact answer to the counterfactual explanation

problem is costly and does not scale up for the scenarios where there

are many data owners. Thus, in this section we explore heuristic

methods in two ways.

Firstly, we approximate the difference between the Shapley val-

ues of two data owners through Monte Carlo sampling. Secondly,

we explore how to estimate Shapley value changes when we move
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some data entries from one data owner to the other and then greed-

ily search for a counterfactual explanation.

3.1 Estimating Differential Shapley Value
A straightforward approach to estimate the difference between the

Shapley values of two data owners is to first estimate the individual

Shapley values and then infer the difference. This approach has two

drawbacks. Firstly, we need to draw samples to estimate the two

individual Shapley values, and each has independent estimation

error. Secondly, the estimation of the difference using the estimated

individual Shapley values introduces a new estimation error. Can

we reduce the estimation error and improve efficiency by estimating

the difference directly?

According to Theorem 3, the differential Shapley value between

two data owners depends only on the difference between the mar-

ginal utility 𝑈 (S ∪ {𝐴}) and 𝑈 (S ∪ {𝐵}) on all coalitions S in

which neither 𝐴 nor 𝐵 participates. This insight can be used in esti-

mating the differential Shapley value directly using Monte Carlo

approximation.

Corollary 1 (Differential Shapley Value by Permutation).

For two data owners 𝐴, 𝐵 ∈ O,

ΨO (𝐴, 𝐵) =
1

2( |O| − 1)!
∑︂

𝜋∈Π (O)

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴})

−𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵}))

where 𝑃𝜋{𝐴,𝐵} is the set of data owners preceding 𝐴 and 𝐵 in permu-
tation 𝜋 .

Proof. For each subset of data owners S ⊆ O \ {𝐴, 𝐵}, there
are |S|! × 2 × (|O \ S| − 1)! = 2|S|!( |O| − |S| − 1)! permutations 𝜋

in Π(O) such that 𝑃𝜋{𝐴,𝐵} = S. Following Theorem 3, we have

ΨO (𝐴, 𝐵) =
∑︂

S⊆O\{𝐴∪𝐵}

1

( |S| + 1)
(︁ |O |−1
|S |+1

)︁ (𝑈 (S ∪ {𝐴}) −𝑈 (S ∪ {𝐵}))
=

∑︂
𝜋∈Π (O)

1

( |𝑃𝜋{𝐴,𝐵} | + 1)
(︁ |O |−1
|𝑃𝜋
{𝐴,𝐵} |+1

)︁
×
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴}) −𝑈 (𝑃

𝜋
{𝐴,𝐵} ∪ {𝐵}))

2|𝑃𝜋{𝐴,𝐵} |!( |O| − |𝑃
𝜋
{𝐴,𝐵} | − 1)!

=
1

2( |O| − 1)!
∑︂

𝜋∈Π (O)

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴})

−𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵})) □

The corollary immediately leads to a Monte Carlo estimator,

which takes a uniform sample of permutations 𝑋 ⊆ Π(O) to es-

timate the differential Shapley value ΨO (𝐴, 𝐵). We can show that

this estimation is unbiased.

Corollary 2 (Unbiased Estimate). For a uniform sample of
permutations 𝑋 ⊆ Π(O),
Δ𝜓𝐴−𝐵
O

=
|O|
2|𝑋 |

∑︂
𝜋∈𝑋

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴}) −𝑈 (𝑃

𝜋
{𝐴,𝐵} ∪ {𝐵}))

is an unbiased estimate of ΨO (𝐴, 𝐵).

Algorithm 2: The Monte Carlo Baseline Algorithm

Input: the same as Algorithm 1

Output: An approximation to solution to Equation 2

for 𝑖 = 1 to |𝐴| − 1 do
for Δ𝐴 ⊂ 𝐴 s.t. |Δ𝐴| = 𝑖 do

Let O′ = O \ {𝐴, 𝐵} ∪ {𝐴 \ Δ𝐴, 𝐵 ∪ Δ𝐴};
Estimate Δ𝜓

𝐴\Δ𝐴−𝐵∪Δ𝐴
O′ as an unbiased estimate of

ΨO′ (𝐴 \ Δ𝐴, 𝐵 ∪ Δ𝐴) using Monte Carlo based on

Corollary 2

if Δ𝜓𝐴\Δ𝐴−𝐵∪Δ𝐴
O′ < 0 then

return Δ𝐴
return A

Proof. By linearity of expectation and uniformity of samples,

E[Δ𝜓𝐴−𝐵
O ]

=E[ |O|
2|𝑋 |

∑︂
𝜋∈𝑋

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴})

−𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵}))]

=
|O|
2|𝑋 | |𝑋 | × E[

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴})

−𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵}))]

=
|O|
2

∑︂
𝜋∈Π (O)

1

|O|! × (
1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴})

−𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵})))

=
1

2( |O| − 1)!
∑︂

𝜋∈Π (O)

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐴})

−𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵}))
=ΨO (𝐴, 𝐵) □

Using Corollary 2 in Algorithm 1, we can obtain a Monte Carlo

baseline algorithm for the counterfactual explanation problem. The

pseudo-code is given in Algorithm 2.

3.2 A Greedy Approach: the Framework
The Monte Carlo baseline algorithm (Algorithm 2) still needs to

search across many subsets of the data sets in ascending order and

thus needs to use Monte Carlo estimation many times.

To tackle the computational cost, we explore a greedy approach.

We iteratively identify the best data entry owned by data owner

𝐴 such that, if moved to 𝐵, reduces the difference of the Shapley

values between 𝐴 and 𝐵 most. As the goal is to bring down the

differential Shapley ΨO (𝐴, 𝐵) from Theorem 3 to a negative value

as quickly as possible, we move these “powerful” data entries one

by one from 𝐴 to 𝐵 until ΨO (𝐴, 𝐵) < 0.

Specifically, for a data entry 𝑥 ∈ 𝐴, the change of the differential
Shapley value caused by moving 𝑥 from 𝐴 to 𝐵 is

Λ𝐴
𝑥−→𝐵

O =ΨO (𝐴, 𝐵) − ΨO′ (𝐴 \ {𝑥}, 𝐵 ∪ {𝑥})
=[𝜓O (𝐴) −𝜓O (𝐵)] − [𝜓O′ (𝐴 \ {𝑥}) −𝜓O′ (𝐵 ∪ {𝑥})],

(3)
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where O′ = O[𝐴
{𝑥 }
−−−→ 𝐵]. The larger the value of Λ𝐴

𝑥−→𝐵
O

, the more

significant the change for counterfactual explanation.

Given data owners𝐴 and 𝐵, ΨO (𝐴, 𝐵) in Equation 3 is a constant.

Thus, we define the power of 𝑥 with respect to 𝐴 and 𝐵, denoted

by 𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥), as the change of the differential Shapley value

when 𝑥 is moved from 𝐴 to 𝐵, that is,

𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥) = 𝜓O′ (𝐵 ∪ {𝑥}) −𝜓O′ (𝐴 \ {𝑥})

Heuristically, the larger the power of a data entry, the more the data

entry contributes to a counterfactual explanation of the Shapley

values.

The framework of our greedy approach works as follows. We

find the data entry 𝑥 that has the largest power and move it from

𝐴 to 𝐵. If the Shapley value of 𝐵 becomes larger than that of 𝐴

after the move, that is, 𝜓O′ (𝐴 \ {𝑥}) < 𝜓O′ (𝐵 ∪ {𝑥}) and thus

𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥) > 0, then 𝑥 is a counterfactual explanation. If not,

then we iteratively find the next entry with the largest power,

append this entry to the set containing the previously computed

best entries, and conduct the move. The iteration continues until the

Shapley value of 𝐵 becomes larger than that of 𝐴 after the moves.

The set of all entries moved form a greedy approximation of the

counterfactual explanation.

3.3 Computing the Power of a Data Entry
In our greedy approach, the key operation that is performed again

and again is computing the power of a data entry. Now, let us

consider how to compute the power of a data entry efficiently.

First of all, if data owner 𝐴 has only one data entry, that is,

𝐴 = {𝑥}, then after moving 𝑥 to 𝐵, 𝐴 becomes empty and thus the

Shapley value is 0. 𝑥 is the trivial counterfactual explanation. Thus,

in the rest of the discussion, we assume |𝐴| > 1.

A data entry 𝑥 ∈ 𝐴 must be in one of the two cases, 𝑥 ∈ 𝐴 ∩ 𝐵
and 𝑥 ∈ 𝐴 \ 𝐵. We consider the two situations one by one.

3.3.1 The power of a Common Data Entry. Suppose 𝑥 ∈ 𝐴∩𝐵, that
is, 𝑥 is a common data entry to 𝐴 and 𝐵. If we move 𝑥 from 𝐴

to 𝐵, what change would happen to the Shapley values of the two

data owners?

Since 𝑥 ∈ 𝐴 ∩ 𝐵 ⊆ 𝐵, 𝐵 ∪ {𝑥} = 𝐵. Thus, using Theorem 3, we

have

𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥) =

∑︂
S⊆O′\{𝐵,𝐴\{𝑥 }}

𝑈 (S ∪ {𝐵}) −𝑈 (S ∪ {𝐴 \ {𝑥}}
(|S| + 1)

(︁ |O′ |−1
|S |+1

)︁
(4)

Since |𝐴| > 1,𝐴\{𝑥} ≠ ∅, moving a data entry 𝑥 from𝐴 to 𝐵 does

not make 𝐴 empty. Thus, the number of non-empty data owners

remains the same after the moving, that is, |O| = |O′ |. Moreover,

for every coalition S ⊆ O \ {𝐴, 𝐵}, there exists a unique coalition
S′ ⊆ O′ \ {𝐴 \ {𝑥}, 𝐵} such that S = S′, and vice versa. Based on

these two observations, Equation 4 can be further rewritten to

𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥)

=
∑︂

S⊆O\{𝐵,𝐴\{𝑥 }}

𝑈 (S ∪ {𝐵})
(|S| + 1)

(︁ |O |−1
|S |+1

)︁ − ∑︂
S⊆O\{𝐵,𝐴\{𝑥 }}

𝑈 (S ∪ {𝐴 \ {𝑥}}
(|S| + 1)

(︁ |O |−1
|S |+1

)︁
(5)

To enable Monte Carlo approximation, using Corollary 1, we

have:

𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥) = 𝜓O′ (𝐵 ∪ {𝑥}) −𝜓O′ (𝐴 \ {𝑥})

=𝜓O′ (𝐵) −𝜓O′ (𝐴 \ {𝑥})

=
1

2( |O′ | − 1)!
∑︂

𝜋∈Π (O′ )

1

|O′ | − |𝑃𝜋{𝐴\{𝑥 },𝐵} | − 1

(︂
𝑈 (𝑃𝜋{𝐴\{𝑥 },𝐵} ∪ {𝐵})

−𝑈 (𝑃𝜋{𝐴\{𝑥 },𝐵} ∪ {𝐴 \ {𝑥}}
)︂

(6)

Notice that, for any permutation 𝜋 ′ ∈ Π(O′), there exists a unique
permutation 𝜋 ∈ Π(O) such that 𝑃𝜋

′

{𝐴\{𝑥 },𝐵} = 𝑃𝜋{𝐴,𝐵} and vice

versa. Thus, Equation 6 can be further rewritten to

𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥)

=
1

2( |O| − 1)!
∑︂

𝜋∈Π (O)

𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵}) −𝑈 (𝑃
𝜋
{𝐴,𝐵} ∪ {𝐴 \ {𝑥}}

|O| − |𝑃𝜋{𝐴,𝐵} | − 1
(7)

Based on Corollary 2 and Equation 7, we have the following

Monte Carlo estimation.

Theorem 4 (MC-Common Entry). For 𝑥 ∈ 𝐴 ∩ 𝐵 and a uniform
sample of permutations 𝑋 ⊆ Π(O),̂︆
𝑝𝑜𝑤𝑒𝑟O

𝐴→𝐵
(𝑥) = |O|

2|𝑋 |
∑︂
𝜋∈𝑋

𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵}) −𝑈 (𝑃
𝜋
{𝐴,𝐵} ∪ {𝐴 \ {𝑥}}

|O| − |𝑃𝜋{𝐴,𝐵} | − 1

is an unbiased estimation of 𝑝𝑜𝑤𝑒𝑟O
𝐴→𝐵
(𝑥). □

3.3.2 The power of a Differential Data Entry. Suppose 𝑥 ∈ 𝐴 \ 𝐵,
that is, 𝑥 is a data entry that 𝐴 has but 𝐵 does not. In such a case,

we call 𝑥 a differential data entry. Moving 𝑥 from 𝐴 to 𝐵 may

not only reduce the contributions from𝐴 to coalitions but may also

improve those from 𝐵. Using the exact same logic and theorems as

above, we get the following Monte Carlo estimation:

Theorem 5 (MC-Differential Item). For 𝑥 ∈ 𝐴 \ 𝐵 and a
uniform sample of permutations 𝑋 ⊆ Π(O),̂︆
𝑝𝑜𝑤𝑒𝑟O

𝐴→𝐵
(𝑥) = |O|

2|𝑋 |
∑︂
𝜋∈𝑋

1

|O| − |𝑃𝜋{𝐴,𝐵} | − 1

·
(︂
𝑈 (𝑃𝜋{𝐴,𝐵} ∪ {𝐵 ∪ {𝑥}}) −𝑈 (𝑃

𝜋
{𝐴,𝐵} ∪ {𝐴 \ {𝑥}})

)︂
is an unbiased estimation of 𝑝𝑜𝑤𝑒𝑟O

𝐴→𝐵
(𝑥). □

3.4 The SV-Exp Algorithm
After carefully assembling all the necessary components, we are

now ready to introduce our greedy algorithm for a counterfactual

Shapley value explanation, SV-Exp.

3.4.1 Framework. SV-Exp works in two phases. In the first phase,

we conduct Monte Carlo estimation to find the top-1 data entry

in 𝐴 that has the largest power. Then, in the second phase, we

move the top-1 data entry from𝐴 to 𝐵. After moving the top-1 data

entry from𝐴 to 𝐵, if𝜓 (𝐴) > 𝜓 (𝐵) still holds, we repeat the process,
that is, finding the next top data entry and moving it from 𝐴 to 𝐵,

until the Shapley value relationship is reversed. The pseudocode is

shown in Algorithm 3.
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Algorithm 3: The SV-Exp Algorithm

Input: the same as Algorithm 1 and, in addition, a

confidence threshold 0 < 𝛿 < 1, and a threshold for

the top-1 data entry’s confidence interval 𝜖

Output: An approximation solution to Equation 2

Counterfactual explanation Δ𝐴← ∅;
stimate 𝑑 = 𝜓O′ (𝐴 \ Δ𝐴) −𝜓O′ (𝐵 ∪ Δ𝐴) using Monte Carlo

based on Corollary 2

while 𝑑 is not converged and 𝑑 > 0 do
// Phase 1: finding the best data entry in 𝐴

for 𝑥 ∈ 𝐴 do
𝑝𝑜𝑤𝑒𝑟𝑥 ← 0 and 𝛿-confidence interval

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑥 ← [0,∞];
while the 𝛿-confidence interval of the top-1 entry in 𝐴
has size larger than 𝜖 do

use Thompson sampling to find the approximate

best data entry 𝑥𝑏𝑒𝑠𝑡 , let 𝑝 be the estimated

probability that 𝑥𝑏𝑒𝑠𝑡 is indeed the best entry

𝑥 ← 𝑥𝑏𝑒𝑠𝑡 with probability 𝑝 and a random data

entry in 𝐴 other than 𝑥𝑏𝑒𝑠𝑡 with probability (1 − 𝑝)
draw a uniform sample of permutations from Π(O);
estimate and update 𝑝𝑜𝑤𝑒𝑟O

𝐴→𝐵
(𝑥) and the

𝛿-confidence interval using Theorems 4 and 5;

𝑥 ← top-1 data entry in A

// Phase 2: producing counterfactual explanation in a

greedy manner

Δ𝐴← Δ𝐴 ∪ {𝑥}
O← (O \ {𝐴, 𝐵}) ∪ {𝐴 \ {𝑥}, 𝐵 ∪ {𝑥}} ;
𝐴← 𝐴 \ {𝑥}, 𝐵 ← 𝐵 ∪ {𝑥}
estimate 𝑑 = 𝜓O′ (𝐴 \ Δ𝐴) −𝜓O′ (𝐵 ∪ Δ𝐴) using Monte

Carlo based on Corollary 2

if 𝑑 converged and 𝑑 < 0 then
return Δ𝐴

3.4.2 Phase 1. In Phase 1, SV-Exp iteratively draws a uniform

sample of permutations and then uses the Monte Carlo approach

to estimate the power value of a selected data entry in𝐴 so that the

𝛿-confidence interval is no more than 𝜖 (e.g., 𝛿 = 95% and 𝜖 = 0.01).

We use Thompson sampling [50, 55, 56] to accommodate the

explore-exploit nature of the problem. The explore part of the prob-

lem arises from the fact that we must sample and estimate the

powers of different data entries to find the “true” best data entry.

The exploit part of the problem arises from our desire to actually

confirm that the data entry currently ranked first is indeed the best,

which we can only find out by continuing to sample for that data

entry and becoming more confident about its power. Thus, there is

a trade-off between sampling heavily for our current-ranked-first

data entry and sampling widely for other data entries in 𝐴’s data in

the case another entry happens to be a better top-1 item. Thomp-

son sampling addresses both these concerns, making it an effective

algorithmic choice for this problem.

Thus, we begin by sampling a small amount of permutations and

estimating the differential Shapley value for each entry to get our

prior. Then, we sort the data entries by power and pick a data entry

for further sampling. We pick this data entry by approximating a

normal distribution over the power of each data entry using the

current means and standard deviations of each draw, drawing one

random power value from each distribution, sorting the randomly

drawn power values (one associated with each data entry 𝑥 ∈ 𝐴),
and selecting the data entry associated with the best power.

For the selected data entry, we draw a uniform batch of samples

of its powers using Theorems 4 and 5, update the differential Shap-

ley value, sort, and check if the power of the first-place data entry

has 𝛿-confidence interval no more than 𝜖 . This Bayesian approach

to ranking the data entries is efficient due to our objective of finding

the top-1 data entry in every round. This means that we are un-

likely to have to fully estimate the power for every single data entry.

This is a huge advantage of Thompson sampling and is extremely

time efficient compared to the frequentist approach, which would

require sampling the powers of every single data entry the same

amount of times until the first-place and second-place data entries

had significantly different powers. With Thompson sampling, we

utilize our posterior beliefs about the best data entry every single

time we sample.

At the end of Phase 1, we have our estimated best data entry to

shift.

3.4.3 Phase 2. In this phase, we move the top-1 data entry from

𝐴 to 𝐵. After the shift, we check whether the Shapley value rela-

tionship is reversed. We use Corollary 2 to check whether with

𝛿-confidence,𝜓 (𝐴′) < 𝜓 (𝐵′) holds. If so, we have successfully ob-

tained a counterfactual explanation, and the algorithm terminates.

Otherwise, we repeat phase 1. We continue this iteration between

Phase 1 and Phase 2 until a valid counterfactual is found.

4 EXPERIMENTS
In this section, we report experimental results on three real datasets

to examine the effectiveness of the counterfactual explanation of

Shapley values and the efficiency of our method.

4.1 Experimental Setup
The experiments were run on the Duke Computing Cluster (DCC)

using Slurm. We used nodes from the 10x TensorEX TS2-673917-

DPN Intel Xeon Gold 6226 Processor, 2.7Ghz (768GB RAM 48 cores).

Each of these machines has 2 Nvidia GeForce 2080 RTX Tis.

We implemented and compare two methods, the Monte Carlo

baseline (Algorithm 2, denoted by MC) and our SV-Exp algorithm

(Algorithm 3). Both were implemented in Python.

We utilized three different datasets. The Breast CancerWisconsin

Dataset from the UCI Machine Learning Repository [63] has 455

records for training and 63 records for testing, both in 32 attributes.

The Boston Housing Prices dataset accessed through Kaggle [25]

has 354 records for training and 152 records for testing, both in 14

attributes. The Hotel Reservations Dataset, also accessed through

Kaggle [7], has 800 records for training and 200 records for testing

in 19 attributes. This 1,000-record dataset was a uniform sample

without replacement of the original 36,275 records, which was then

split using the train-test-split function from Sklearn (https://scikit-

learn.org).

The utility of a set of data entries is as follows: given some task

(kernel density estimation, logistic regression, etc.), we use the set

of data entries as a training set for the specified task. The utility is

exactly the measured performance of the task on the test set. We
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(a) KDE (b) Logistic Regression

Figure 1: Runtime for 𝑛 = 3, 9, 15 data owners for different
utility functions. For each method, trials were sorted in run-
time ascending order.

used four different tasks and the associated utility functions in our

experiments: kernel density estimation (𝜂−sum-of-absolute errors),

logistic regression prediction (𝜂−log loss), random forest regression

(𝜂−MSE), and linear regression (𝜂−MSE), where 𝜂 is a sufficiently

large number so that the utility value is non-negative.

4.2 Efficiency
We test the runtime of the MC and the SV-Exp algorithms using

the Breast Cancer Wisconsin dataset. We set the number 𝑛 of data

owners to 3, 6, 9, 12, and 15, respectively. For each set of parameters

in the Breast Cancer dataset, 50 trials were run. We use KDE and

logistic regression as our two utility functions, as KDE is a very

local function relative to logistic regression. We diversify our utility

functions to show the generalizability of our methods.

Each data owner’s data was drawn uniformly without replace-

ment from the whole training set. The size of each data owner’s

dataset is distributed uniformly over the range [1, 455]. We allow

each run to take up to 7,200 seconds. If a method in a test cannot

finish in 7,200 seconds, then the trail is marked as timeout.

Limited by space, we only show the results of 𝑛 = 3, 9, 15 of KDE

and logistic regression in Figure 1. SV-Exp is much faster than MC

for every set of parameters, as MC times out in many trials.

The general trend is that the runtime increases as the number of

data owners 𝑛 increases. When there are many data owners with

uniformly distributed size and uniformly distributed data entries,

each owner’s marginal contribution lessens as the number of data

owners increases. Thus, we expect counterfactual sizes to be small

in the presence of many data owners. When there are a small

number of data owners, each owner’s marginal contribution is

highly correlated with the size of their dataset, so we expect a large

counterfactual between owners.

Figure 2 shows the average runtime with respect to the number

of data owners in all 5 settings. SV-Exp consistently outperforms

MC in mean runtime. The standard deviations of both methods are

big, as expected, due to the exponential nature of the problem and

the randomness in how data owners 𝐴 and 𝐵 are chosen and the

sampling of data coalitions.

Figure 3 shows the runtime with respect to the size difference

between 𝐴 and 𝐵, and the size of counterfactual. Only the results

of SV-Exp were shown since the majority of MC trials timed out.

(a) KDE (b) Logistic Regression

Figure 2: Runtime statistics, where the Y-axis is in logarith-
mic scale.

(a) Size of |𝐴 | − |𝐵 | (b) Size of counterfactual exp

Figure 3: Runtime with respect to size difference between 𝐴

and 𝐵, and size of counterfactual. Only the results of SV-Exp
were shown since the majority of MC trials timed out.

Figure 3(a) clearly shows that the runtime is roughly positively

correlated to the size difference between 𝐴 and 𝐵. The bigger the

difference, likely the longer the runtime. Note that 𝐵 may have

more data entries than 𝐴 and still may have a lower Shapley value

(negative x-values), but these situations are often flipped very easily

because 𝐴 may own one or two very powerful data entries that

are driving its higher Shapley value. This is a perfect example of

the motivation for finding a counterfactual explanation, which

can help us glean scenarios where there are “star player” data

entries. Figure 3(b) demonstrates the power of the SV-Exp algorithm.

Smaller counterfactuals take shorter runtime. The SV-Exp algorithm

has no problem in handling counterfactuals as large as 90 data

entries within the timeout limit 7,200 seconds, even with a large

number of data owners.

4.3 Effect of Number of Data Owners
How does the size of the counterfactual explanation change as the

number of data owners increases? Since MC times out in many

trials, we only report the results achieved by SV-Exp.

Table 1 shows the average size of the counterfactual explanation

with respect to the number of data owners in uniformly distributed

data. As the number of data owners increases, each owner’s data

most likely becomes less critical, and thus the counterfactual expla-

nation between two data owners will contains less data entries on

average. Because each data owner’s size is uniformly redrawn for

each trial, the standard deviation of the counterfactual explanation

is large especially when 𝑛 is small. Note that the standard deviation
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Table 1: The average size of counterfactual explanations with
respect to number of data owners, when data entries are as-
signed to data owners randomly in uniform distribution. Two
different utility functions KDE and Logistic Regression (LG)
are used. Standard deviations are reported in parentheses.

𝑛 SV-Exp-KDE SV-Exp-LG

3 2.63 (6.31) 7.02 (10.80)

6 2.92 (6.48) 5.40 (8.83)

9 2.37 (4.34) 5.22 (13.31)

12 1.93 (2.09) 3.55 (2.73)

15 1.68 (1.74) 4.06 (4.38)

Figure 4: Size of counterfactual explanations when data en-
tries are assigned to data owners following the Zipfian Dis-
tribution. In each subfigure, the left shows the mean and the
right shows the standard deviations.

also tends to decrease as 𝑛 increases—the more data owners, the

higher the probability that a pair of randomly chosen owners have

similar Shapley values.

4.4 Effect of Allocation Among Data Owners
To examine the effect of various allocations among data owners,

we use the Zipfian distribution, where the size of each data owner’s

dataset is drawn from this distribution. This setting simulates real-

world scenarios where a few large data owners hold most of the

data, while many smaller players have much less.

We report the results on two data owners in experiments, one

with a dataset size 𝑛1 such that 𝑙𝑜𝑔𝑎𝑛1 = 𝑘1 and another with a size

𝑛2 such that log𝑎 𝑛2 = 𝑘2. To match the scale of the Breast Cancer

Wisconsin training dataset, we set 𝑎 = 3 and let 𝑘 ∈ {0, . . . , 4}. We

fix the number of data owners to 9 (the median value from the

uniform distribution experiments) and test the 25 possible pairings

of data owner sizes for all values of 𝑘 over 50 trials. The results are

shown in Figure 4. Note that the left upper triangle of the matrices

have counterfactual explanations of size 0 because 𝐴 and 𝐵 fail to

satisfy the precondition that 𝜓 (𝐴) > 𝜓 (𝐵). The counterfactual

explanations of the largest sizes happen when 𝐴 owns a large

portion of the data and 𝐵 owns a small portion.We see from Figure 4

that in a case where the whole data set has 455 training records and

63 testing records, the counterfactual explanation computed by SV-

Exp between a data owner𝐴who ownsmore than half of the dataset

and a data owner 𝐵 who owns only one entry comes down to almost

16 data entries on average. Those 16 estimated “best” data entries

provide insight on the data records that are contributing most to

the difference in the predictive power of data owner 𝐴 versus data

owner 𝐵. Similarly to the cases in the uniform distribution case,

the standard deviation of the size of counterfactual explanation

increases as the size of the counterfactual explanation increases,

demonstrating the uncertainty in the difference of Shapley values

at high levels of disparity between data owners.

We observe an interesting case where the size of counterfactual

explanation between a data owner 𝐴 having 81 data entries against

another data owner 𝐵 having only one data entry is larger than

that in another case where |𝐴| = 243 and |𝐵 | = 3. This speaks to

some notion of decreasing returns in the Shapley value (3 items has

a lot more power than 1 item, but 243 items does not have much

more power than 81). Please note that the size of counterfactual

explanations is very sensitive to the detailed data assignments.

4.5 Accuracy in Finding Counterfactuals
We use a small random subset of the Breast Cancer dataset to

compare the counterfactuals given by the Brute-Force algorithm

(Algorithm 1) with exact Shapley value computation, which are

indeed the ground truth. We compare with the results from the two

approximation algorithms, MC (Algorithm 2) and SV-Exp (Algo-

rithm 3). To allow the Brute Force algorithm to finish, we extract

a uniform random sample of size 40 as the training data set and

another disjoint uniform random sample of size 10 as the test set.

We run the experiments with 3 data owners. The data owners are

assigned the data from a uniform distribution, two utility functions

(KDE and Logistic Regression) were used, and 50 trials were run

for each utility function. The results are shown in Tables 2 and 3.

As expected, when dataset sizes are tiny, MC approximates both

a similar size and similar data records as the Brute Force algorithm

because it evaluates subsets of data owner A in the same order

as the brute force method (size-ascending). MC even tends to un-

derestimate the size (finishes early) compared to SV-Exp, as there

is some level of error when checking if the differential Shapley is

negative. Due to SV-Exp’s greedy nature, it is also expected that it

will overestimate the sizes of counterfactuals.

The average counterfactual length and Jaccard similarity are not

agnostic to utility. Using Logistic Regression as the utility function

leads to more similarity between the counterfactuals from the two

approximation algorithms compared to the exact algorithm than

using KDE.

The results show that on tiny datasets with a small number of

data owners, MC provides a better approximation of the ground-

truth. However, when the dataset size and the number of data own-

ers increase, MC quickly loses the edge due to its weak scalability.

Moreover, MC tends to underestimate the size of counterfactuals.

In the context of obtaining data in data markets, a slight overes-

timation of the counterfactual size is most likely more beneficial

than an underestimation—-if flipping the Shapley value is the goal,

it is better to err on the side of being sure that the amount of data

bought will successfully flip the Shapley value than to not buy

enough data and still lose to the opposing data owner.
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Table 2: Average counterfactual lengths across the three al-
gorithms: BF (Brute-Force), MC (Monte-Carlo), SV-Exp. Stan-
dard deviations are given in parentheses.

Utility Function BF MC SV-Exp

KDE 2.50 (1.73) 2.14 (1.19) 4.20 (4.68)

Log. Reg. 2.83 (1.62) 2.60 (1.30) 3.36 (2.68)

Table 3: Average Jaccard similarity indices of counterfactuals
between BF (Brute-Force) and MC (Monte-Carlo) as well as
BF and SV-Exp. Standard deviations are given in parentheses.

Utility Function (BF, MC) (BF, SV-Exp)

KDE 0.89 (0.18) 0.32 (0.20)

Log. Reg. 0.92 (0.13) 0.41 (0.18)

Table 4: Success rates of finding counterfactual explanations
under uniformly distributed data owners in KDE and Logis-
tic Regression (LG) tasks. Standard deviations are given in
parentheses.

𝑛 MC-KDE SV-Exp-KDE MC-LG SV-Exp-LG

3 0.95 (0.23) 0.98 (0.14) 0.90 (0.31) 0.88 (0.33)

6 0.98 (0.16) 1.00 (0.00) 0.88 (0.34) 0.98 (0.15)

9 1.00 (0.00) 1.00 (0.00) 0.88 (0.33) 0.92 (0.28)

12 0.94 (0.24) 0.96 (0.21) 0.81 (0.40) 0.86 (0.35)

15 0.93 (0.27) 0.98 (0.15) 0.67 (0.48) 0.92 (0.28)

Let us now compare using datasets whose sizes are not tiny

whether the approximated counterfactuals by MC and SV-Exp ac-

tually reverse the Shapley value relation successfully. Specifically,

after each trial,𝜓 (𝐴 \Δ𝐴) −𝜓 (𝐵 ∪Δ𝐴) was estimated using Monte

Carlo, where Δ𝐴 is the answer generated by MC or SV-Exp. If the

difference was negative, the trial was marked a success and a fail-

ure otherwise. Both MC and SV-Exp were set to time out at 7,200

seconds. Those that timed out were not counted in the comparison:

only successful trials were used in calculating the average success

rate of the methods so as to not doubly penalize MC for timeouts.

Note that our measure for “success” is also an approximation, as we

cannot check the exact Shapley value difference when the datasets

are not tiny. However, checking the approximate differential Shap-

ley value after the approximate Δ𝐴’s are produced still gives a

good sense about whether our resulting counterfactuals reverse

the Shapley value relation, since the Monte Carlo estimation is the

state-of-the-art approach in practice.

Table 4 shows the success rate with respect to the number of

data owners under uniform distribution. For every set of parame-

ters except for 3 owners on the Logistic Regression task, SV-Exp

outperformed MC. SV-Exp achieves not only higher success rates

but also smaller standard deviations. Additionally, it is clear that

when the number of data owners increases, MC becomes less and

less successful (its success rate with 15 data owners on the Logistic

(a) MC Success Rate

(b) SV-Exp Success Rate

Figure 5: Statistics of the success rate under the Zipfian distri-
bution of data owners. In each subfigure, the mean is shown
in the left and the standard deviation is shown in the right.

Regression task is only 67%). The comparison clearly shows the

practical value of SV-Exp.

The difference in performance between the two methods follows

from the fact that SV-Exp approximates the most differential subset
to shift–the returned counterfactual reduces Ψ(𝐴 \ Δ𝐴, 𝐵 ∪ Δ𝐴′)
as much as possible. The high success rates and low standard devi-

ations in Table 4 demonstrate SV-Exp’s efficiency and consistency

in finding a successful counterfactual.

Figure 5 shows the success rate with respect to data allocation

among data owners using the Zipfian distribution. Again, the num-

ber of data owners is set to 9. When the size difference between two

data owners becomes large, the problem becomes challenging for

both methods as the estimation error may accumulate after many

entries are moved to a counterfactual. SV-Exp is still able to achieve

a much higher success rate than MC.

4.6 Case Study 1: Counterfactual Explanations
and Feature Selection on the Boston
Housing Prices Dataset

In this section, we conduct an interesting case study showing coun-

terfactual explanation can be used as feature selection. In this case

study, a dataset is partitioned vertically using the Boston Housing

Prices dataset–different data owners own different subsets of at-

tributes in a data set. We will conduct another case study where a

dataset is partitioned horizontally in Section 4.7.

The features of the Boston Housing Dataset include CRIM (per

capita crime rate by town), ZN (proportion of residential land zoned
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(a) Full feature set (b) Four features

Figure 6: Coefficients of a linear regression on the Boston
Housing Prices Dataset.

for lots over 25,000 sq.ft.), INDUS (proportion of non-retail busi-

ness acres per town), CHAS (Charles River dummy variable: 1 if

tract bounds river, 0 otherwise), NOX (nitric oxides concentration

in parts per 10m), RM (average number of rooms per dwelling),

AGE (proportion of owner-occupied units built prior to 1940), DIS

(weighted distances to five Boston employment centres), RAD (in-

dex of accessibility to radial highways), TAX (full-value property-

tax rate per $10k), PTRATIO (pupil-teacher ratio by town), B

(1000(𝐵𝑘 − 0.63)2) where Bk is the proportion of blacks by town,

LSTAT (% lower status of the population), andMEDV (Median value

of owner-occupied homes in thousands of dollars). MEDV serves

as our target variable.

We assign the features to three owners according to their mean-

ing (semantically): (1) property features RM and AGE to owner P;

(2) geographic features CHAS, NOX, DIS, and RAD to owner G; and

(3) social features CRIM, B, ZN, INDUS, TAX, PTRATIO, LSTAT to

owner S.

In this experiment, to keep the discussion easy to understand, we

use the entire dataset as our training set and simply use the training

error to define our utility function. Figure 6(a) shows the coefficients

of the attributes in the linear regression on all attributes. We sort

all attributes in the coefficient descending order in the figure.

Owner S has a higher Shapley value than owner P in the task

of linear regression. Which features are in the counterfactual ex-

planation? Since among the social features owned by S, LSTAT

and CRIM have the largest absolute values of the coefficients in

linear regression, an intuitive guess is that LSTAT and CRIM may

be the first two features selected for the counterfactual explanation.

Surprisingly, {LSTAT, PTRATIO} is the counterfactual explanation
returned by SV-Exp and does revert the Shapley value relation.

We further investigate the correlation among several features

as shown in Table 5. Interestingly, CRIM is more correlated with

LSTAT than PTRATIO is. This means, after LSTAT is chosen in the

counterfactual explanation, choosing CRIM is not as effective as

choosing PTRATIO in further reducing the utility of owner S and

enhancing the utility of owner P. Indeed, if we conduct a linear

regression using only four features, RM, which is the dominating

feature owned by P, LSTAT, PTRATIO, and CRIM, the absolute value

Table 5: Correlation matrix between four selected features
in the Boston Housing Prices dataset.

LSTAT CRIM RM PTRATIO

LSTAT 1.00 0.46 -0.61 0.37

CRIM 0.46 1.00 -0.22 0.29

RM -0.61 -0.22 1.00 -0.36

PTRATIO 0.37 0.29 -0.36 1.00

Table 6: Shapley values of the month’s data estimated using
Monte Carlo Sampling, where utility = 𝜂−log-loss, 𝜂 = 20,
and the task is Logistic Regression.

Jan Feb Mar Apr May Jun
0.71 1.58 1.67 1.78 1.72 1.87

Jul Aug Sep Oct Nov Dec
1.86 1.84 1.79 1.80 1.83 1.79

of coefficient of PTRATIO is larger than that of CRIM, as shown in

Figure 6(b).

Essentially, SV-Exp automatically feature selects one of the vari-

ables when there are different levels of correlation, simplifying

how we deal with multicollinearity and understand the features

of datasets with one algorithm. We make a case for the Shapley

counterfactual as a tool for feature selection.

In this illustrative case study, the counterfactual explanation

of Shapley values not only shows the comparative advantages be-

tween two feature sets but also facilitates the identification and

enhancement of features within one set based on those of the other.

4.7 Case Study 2: Counterfactual Explanations
and Differences of Distributions on the
Hotel Reservations Dataset

In this case study, we partition the Hotel Reservation dataset hori-
zontally. In this experiment, we use logistic regression to predict

the probability of whether a client will cancel the reservation. We

assign to each data owner all data of one month and thus we have

in total 12 data owners. The research question aims to determine

which months’ data contribute more in modeling reservation can-

cellations. By computing the counterfactual explanations we are

interested in understanding the differences in contribution between

two months. We perform pairwise experiments, testing all 144 pos-

sible pairs of months and thus data owners over 10 trials per pairing.

The diagonals represented the cases where 𝐴 and 𝐵 are the same

data owner and were thus moot experimentally. The sizes of the

data subsets from January to December owned by the 12 data own-

ers are 25, 37, 52, 45, 59, 61, 65, 79, 105, 117, 73, and 82, respectively.

The Shapley value of each month’s data is detailed in Table 6.

Figure 7 shows the initial difference in Shapley value between

different months. Theoretically the matrix should be symmetric.

However, due to the estimation errors in practice, the matrix is not

perfectly so.
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Figure 7: Initial Differential Shapley (ΨO (𝐴, 𝐵)) Between Data
Owners.

Figure 8: Average size of counterfactuals (from the SV-Exp
algorithm) between data owners in percentage of𝐴’s original
data. Zero values are left blank for more visual clarity, and
sizes of each month’s data are in parentheses on the axes
labels.

The differential Shapley values between all months and January

are similar, as shown in Figure 7, but the sizes of the Shapley coun-

terfactuals are vastly different (Figure 8). This is a clear example

showing that the similar differential Shapley values may mask im-

portant differences about how advantages between pairs of data

owners may be established. Take March and April as a concrete

example. Both of their Shapley values are about 1.0 larger than

the Shapley value of January. Moreover, their dataset sizes are also

close, March having 52 data entries and April 45. But the counter-

factual explanation of March against January takes about 19% of

the data in March, while the counterfactual explanation of April

against January takes 54% of the data in April. This indicates that

the data in April is much more “robust” than that in March with

respect to the data in January—most likely, the data distribution of

April is more different than that of January, while the data distribu-

tion in March is more similar. To verify if this insight holds, we use

the Wasserstein distance between two months to understand their

Figure 9: Coefficient of Variation on the average size of coun-
terfactuals produced by SV-Exp. Coefficient of Variation is
the ratio of the standard deviation to the mean.

relative differences in distribution. The Wassertein distance, or the

earth mover’s distance, measures the estimated “cost” of turning

one probability distribution into the other. TheWasserstein distance

between March and January is 3.24, while the Wasserstein distance

between April and January is 6.52. The much larger Wasserstein

distance between April and January confirms our conjecture. Just

for the reader’s reference, the Wasserstein distance between March

and April is 5.59.

This case study shows another interesting use of the counterfac-

tual explanation of Shapley values, capturing and understanding

the differences of data distributions between pairs of data owners.

4.8 Stability of Approximate Counterfactual
Explanations in SV-Exp

SV-Exp approximates counterfactual explanations of Shapley val-

ues. We now explore one last question: given that SV-Exp draws

random samples of coalitions, how stable are the approximate coun-

terfactuals? In this question, we only consider those cases where

the differential Shapley values are large, since a small differential

Shapley value can be reverted easily using any small counterfactual.

For example, if the initial differential Shapley is only very slightly

positive and any random item from 𝐴 could flip the Shapley rela-

tion, we do not get much more information about 𝐴 and 𝐵 from

the counterfactual. Thus, since we will be studying the content of

the outputted SV-Exp counterfactuals, we focus on those that are

larger—in these cases, the data entries making up the counterfac-

tuals will have some level of significance. We still use the Hotel

Reservations dataset as in Section 4.7.

We look at the coefficient of variation, also known as normalized

root-mean-square deviation (NRMSD), percent RMS, and relative

standard deviation (RSD), which is defined as the ratio of the stan-

dard deviation over the mean. Interestingly, in Figure 9, there are

many cases where the coefficient of variation is small, such as

March, May, June, August, and October against January. In those

3342



cases, SV-Exp often chooses the same subset of data entries in many

trials. As a concrete example, in the case of the counterfactual of

May against January, the subset of 18 data entries in May, {162, 628,
711, 651, 69, 63, 678, 379, 281, 524, 74, 355, 406, 439, 758, 662, 615,

609} (the numbers of the record-ids in the dataset) is chosen every

time by SV-Exp. This shows that SV-Exp demonstrates surprising

consistency on some datasets.

There are also some cases where the coefficient of variation

is large. For example, April has a similar Shapley value as March

(Table 6 and Figure 7), but its coefficient of variation is high as it has

a large standard deviation. Looking at the detailed counterfactual

results, we find that counterfactual explanations of April against

January can be as small as size 13 ({528, 289, 312, 218, 204, 725, 398,
559, 671, 301, 710, 774, 572}) and as large as size 40 ({572, 33, 462,
312, 588, 692, 792, 475, 559, 344, 192, 785, 301, 155, 134, 473, 360, 725,

671, 501, 218, 502, 362, 184, 248, 142, 141, 292, 461, 185, 510, 289, 81,

528, 95, 774, 346, 204, 398, 710}). Moreover, SV-Exp implicitly ranks

the data entries from most to least power in the subset, the ranking

of the entries is also very different from run to run. This indicates

that entries in the data of April may have utilities that are much

more sensitive to what coalition the samples drawn.

5 RELATEDWORK
In Section 1, we already discuss a series of related work on data

markets, the Shapley value, and computation. To the best of our

knowledge, we are the first to formulate the problem of counterfac-

tual explanation of the Shapley value. In this section, we focus on

briefly reviewing the related work on counterfactual explanations.

Counterfactual explanations [6, 20, 34, 41, 53, 59] have been

widely used in interpreting and understanding algorithmic deci-

sions made in many real world applications [6, 20, 34]. Those meth-

ods [6, 20, 41, 58] often explain a prediction on a given case using

small and interpretable perturbations on the case such that the pre-

diction is changed [41]. For example, Fong andVedaldi [20] interpret

image prediction by identifying the smallest pixel-deletion mask

that causes the most significant drop of the prediction score. Akula

et al. [6] find image patches that need to be added to or deleted

from an input image in order to change the prediction. Van Loov-

eren and Klaise [58] use class prototypes to produce counterfactual

explanations that are close to the classifier’s training data distribu-

tion. Moore et al. [40] propose a method to generate counterfactual

explanations from adversarial examples with gradient constraints.

Le et al. [34] propose an entropy-based feature selection method

to limit the features to be perturbed. Cong et al. [12] compute un-

derstandable counterfactual explanations for Kolmogorov-Smirnov

Test results. Bajaj et al. [8] provide counterfactual explanations for

graph nueral networks.

Surprisingly, the problem of a counterfactual explanation of the

Shapley value has not been studied in literature. Moreover, the

existing counterfactual explanation methods cannot be applied to

explain the Shapley value directly.

6 LIMITATIONS AND EXTENSIONS
Counterfactual explanations of the Shapley value present a novel

and significant challenge. This study represents an initial foray into

this promising problem. Despite our encouraging advancements,

our SV-Exp method remains subject to certain limitations. Chief

among these constraints is its scalability. Although SV-Exp demon-

strates superior scalability compared to brute force andMonte Carlo

methods, it encounters difficulties when confronted with very large

datasets. This challenge arises primarily due to the extensive train-

ing requirements inherent in SV-Exp. Notably, the utility function,

utilized twice for every sample, necessitates the training of a new

model for each iteration. Consequently, when handling substan-

tial datasets or data necessitating convolutional neural networks

(CNNs) or more intricate training algorithms, SV-Exp may prove

inefficient in identifying counterfactual explanations.

Our SV-Exp method can also account for variances of the coun-

terfactual explanation problem for Shapley values. For example,

instead of transferring items from 𝐴 to 𝐵, what is the minimal

number of items we need to simply delete from 𝐴 in order for

𝜙 (𝐴) < 𝜙 (𝐵)? Essentially, what is the minimal set of entries in 𝐴

that make up the difference in Shapley value between 𝐴 and 𝐵?

This is still an NP-hard problem with a feasible solution (worst

case, delete all of 𝐴), and our algorithm can easily be extended to

approximate a solution for this problem by simply taking away the

step where we transfer data entries to 𝐵.

7 CONCLUSION
Data valuation is a fundamental mechanism within a data market.

While there are more and more studies on efficient data valuation,

how we understand and explain data valuation remains an open

problem. In this paper, we formulate the problem of counterfactual

explanation of the Shapley value in data coalitions, which, to the

best of our knowledge, is the first study tackling this important

issue. We show the complexity of the problem, propose a series

of techniques, and develop a greedy approximation method. Our

experiments on real datasets clearly show the efficiency of our

approach and the effectiveness of a counterfactual Shapley expla-

nation in interpreting data value, feature selection, and detecting

data distribution differences.

Our study illuminates a methodical way to interpret how indi-

vidual data entries contribute to the overall value of a data owner’s

dataset in a game theoretic setting. This paper opens a new direction

for promising future work. For example, building on the general

framework developed in this study, it is interesting to explore more

effective and efficient approaches to Shapley value interpretation in

specific types of data collaboration, such as data assemblage [37, 38].

Moreover, in some applications, one may be interested in finding

coherent subsets of data as counterfactual explanations. It will also

be important to explore the explanation of other types of data

valuation metrics for data markets.
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