
Maximum Balanced (𝑘, 𝜖)-Bitruss Detection in Signed Bipartite
Graph

Kai Hiu CHUNG

Hong Kong University of Science and Technology

qzhongaf@cse.ust.hk

Alexander ZHOU

Hong Kong University of Science and Technology

atzhou@cse.ust.hk

Yue WANG

Shenzhen Institute of Computing Sciences

yuewang@sics.ac.cn

Lei CHEN

Hong Kong University of Science and Technology

leichen@cse.ust.hk

ABSTRACT
Signed bipartite graphs represent relationships between two sets of

entities, including both positive and negative interactions, allowing

for a more comprehensive modeling of real-world networks. In this

work, we focus on the detection of cohesive subgraphs in signed

bipartite graphs by leveraging the concept of balanced butterflies.

A balanced butterfly is a cycle of length 4 that is considered stable

if it contains an even number of negative edges. We propose a

novel model called the balanced (𝑘, 𝜖)-bitruss, which provides a

concise representation of cohesive signed bipartite subgraphs while

enabling control over density (𝑘) and balance (𝜖). We prove that

finding the largest balanced (𝑘, 𝜖)-bitruss is NP-hard and cannot be

efficiently approximated to a significant extent. Furthermore, we

extend the unsigned butterfly counting framework to efficiently

compute both balanced and unbalanced butterflies. Based on this

technique, we develop two greedy heuristic algorithms: one that

prioritizes followers and another that focuses on balanced support

ratios. Experimental results demonstrate that the greedy approach

based on balanced support ratios outperforms the follower-based

approach in terms of both efficiency and effectiveness.

PVLDB Reference Format:
Kai Hiu CHUNG, Alexander ZHOU, Yue WANG, and Lei CHEN. Maximum

Balanced (𝑘, 𝜖)-Bitruss Detection in Signed Bipartite Graph. PVLDB, 17(3):

332 - 344, 2023.

doi:10.14778/3632093.3632099

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/qixiaoz/BalancedBitruss.

1 INTRODUCTION
Bipartite graphs are widely used in various areas, including social

network analysis and recommendation systems. They are particu-

larly useful in modeling positive relationships between two distinct

sets of entities, such as consumers and products [44], authors and

papers [5], users and items in e-commerce websites [9]. However,

many real-world networks involve not only positive interactions

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.

doi:10.14778/3632093.3632099

but also negative ones, which can represent conflicts, competition,

or distrust between entities [13]. For example, consumers may not

only “like” some products, but also “dislike” some products. To

capture such polarized relationships, signed bipartite graphs have

been introduced as a natural extension of unsigned bipartite graphs

[13]. Balance theory, a concept in social psychology that proposes

people strive for consistency and balance in their attitudes and be-

liefs towards others [18], is a well-established approach to studying

signed graphs.

In unipartite graphs, balance theory suggests that a triangle is

balanced if it contains an even number of negative edges, and unbal-

anced if it contains an odd number of negative edges [6], reflecting

the intuition that the “friends of friends are friends” and “the ene-

mies of enemies are friends”. Despite many works applying balance

theory on unipartite graphs [12][43][3][37], balance analysis on

bipartite graphs has not yet been extensively explored. The first

comprehensive analysis and validation of balance theory using the

smallest cycle in signed bipartite networks, signed butterfly, was

conducted in a previous work [13]. A butterfly is a cycle of length

4, and it is balanced (i.e. stable) if it contains an even number of

negative edges, and unbalanced otherwise. By examining the iso-

morphism classes of balanced butterflies, we can gain insights into

the underlying patterns of balanced relationships in signed bipar-

tite graphs. Figure 1 shows the isomorphism classes of balanced

butterflies.

To interpret the meaning of a balanced butterfly formed by nodes

𝑢0, 𝑢1, 𝑣0, 𝑣1 in a signed bipartite graph, we can conceptualize 𝑢0, 𝑢1
as consumers and 𝑣0, 𝑣1 as products. The sign of edges reflects the

consumers’ attitudes towards the products. A balanced butterfly

involving these nodes signifies that consumers 𝑢0, 𝑢1 possess ei-

ther identical (in class (A), (C), (E)) or opposite (in class (B), (D))

preferences concerning products 𝑣0, 𝑣1. In cases of identical prefer-

ences, 𝑢0, 𝑢1 may share a liking or disliking for both products, or

both consumers might independently dislike both products, corre-

sponding to isomorphism class (A), (C), (E) in Figure 1, respectively.

Conversely, opposite preferences could manifest as 𝑢0 liking 𝑣0 and

𝑣1 while 𝑢1 dislikes both, or 𝑢0 liking 𝑣0 but disliking 𝑣1 while 𝑢1
exhibits the opposite preference, corresponding to isomorphism

class (B), (D) in Figure 1, respectively. Notably, in either case, these

relationships are stable according to the balanced theory, with con-

sumers in classes (A), (C), and (E) viewing each other as friends

due to their identical preferences, while those in classes (B) and

(D) considering each other as enemies owing to their divergent

preferences. On the other hand, an unbalanced butterfly (in class

332

https://doi.org/10.14778/3632093.3632099
https://github.com/qixiaoz/BalancedBitruss
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632099
https://www.acm.org/publications/policies/artifact-review-and-badging-current


𝑢0 𝑢1

𝑣0 𝑣1

𝑢0 𝑢1

𝑣0 𝑣1

𝑢0 𝑢1

𝑣0 𝑣1

𝑢0 𝑢1

𝑣0 𝑣1

𝑢0 𝑢1

𝑣0 𝑣1

(A) (B) (C) (D) (E)

Balanced

𝑢0 𝑢1

𝑣0 𝑣1

𝑢0 𝑢1

𝑣0 𝑣1

(F) (G)

Unbalanced

Figure 1: Isomorphism Classes of Signed Butterflies. In this
paper, the positive edges are colored in black and the negative
edges are colored in red.

(F), (G)) formed by these nodes does not imply that consumers𝑢0, 𝑢1
share friendship or enmity preferences regarding the products. To

determine whether 𝑢0 and 𝑢1 are friends or enemies, at least one

edge needs to switch its sign, illustrating the inherent instability of

unbalanced butterflies according to the balance theory.

Detecting cohesive subgraphs in signed bipartite graphs is a

crucial task that helps uncover patterns of positive and negative

relationships, providing valuable insights into the underlying social

dynamics [16]. One of the popular models for cohesive subgraphs

is the fully-connected subgraph, known as biclique [27][17]. While

previous studies about biclique mining mainly focus on unsigned

bipartite graphs, Sun et. al. [35] pay initial attention to the bicliques

in signed bipartite graphs. To consider the stability of cohesive

structure regarding the sign information, they employ balance the-

ory and investigate the balanced signed biclique. The balanced

bicliques in a signed bipartite graph are defined as the bicliques

free from unbalance butterflies. This work enumerates all maximal

balanced signed bicliques over a certain size threshold. However,

bicliques are the most stringent model of cohesive structures on

bipartite graphs [26]. In practice, bicliques in real bipartite graphs

are often numerous, small, scattered, and likely to overlap, and

only a small proportion of them are useful for practical applications

after being found by an algorithm [1]. Furthermore, the balanced

signed biclique may not be able to capture more comprehensive

signed relationships between entities, as it only considers bicliques

and does not allow for edges that are not part of a biclique. The

balanced signed biclique does not take into account the density or

proportion of unbalanced butterflies. Therefore, bicliques may not

always be the best model for dense subgraphs.

Bitruss is a cohesive subgraph defined based on butterflies, with

a parameter 𝑘 that controls the density of the community it rep-

resents [47]. The larger 𝑘 , the denser the community represented

by a 𝑘-bitruss. Compared to other cohesive models such as quasi-

bicliques [33] and (𝛼, 𝛽)-cores [25], bitruss is a more natural and

succinct model as the balance of a signed bipartite graph depends

on the butterflies within it [13]. Additionally, a single maximal

bitruss can cover the cohesive parts of the entire bipartite graph,

making it a flexible model for bipartite graphs of different densities.

To apply bitruss to signed bipartite graphs, we limit the proportion

of unbalanced butterflies that each edge can be contained in within

a bitruss. This is reasonable as the balance of an edge depends

on the butterflies it is contained, and limiting the proportion of

unbalanced butterflies ensures that the every edge in the bitruss

𝑢0

𝑣0

𝑢1

𝑣1

𝑢2

𝑣2

𝑢3

𝑣3

𝑢4

𝑣4

𝑢5

𝑣5

𝑢0

𝑣0

𝑢1

𝑣1

𝑢2

𝑣2

𝑢2 𝑢3

𝑣1 𝑣2 𝑣3 𝑣4

𝑢3

𝑣3

𝑢4

𝑣4

𝑢5

𝑣5

Figure 2: Example of a balanced bitruss and the maximal
balanced signed bicliques it contains.

remains balanced. Inspired by this, we propose a new model, bal-

anced (𝑘, 𝜖)-bitruss. In a signed bipartite graph, a subgraph 𝑆 is

a balanced (𝑘, 𝜖)-bitruss if (1) each edge in the 𝑆 is contained in

at least 𝑘 butterflies, and (2) for each edge, among all butterflies

containing the edge, the proportion of unbalanced butterflies is at

most 𝜖 .

Example 1. Consider a social network where users (𝑢0, . . . , 𝑢5)
are connected to movies (𝑣0, . . . , 𝑣5) they have watched and rated.
The edges in the network are signed based on the sentiment of the
user’s rating. A positive edge indicates a positive sentiment, while
a negative edge indicates a negative sentiment. Suppose we want to
identify a group of users and movies that have strong and stable sen-
timent towards each other. In this scenario, we could use the balanced
(𝑘, 𝜖)-bitruss to identify cohesive subgraphs with a specific density
and proportion of unbalanced butterflies. Indeed, all butterflies in the
graph are balanced, so this graph represents a cohesive and balanced
community, forming a (3, 0)-bitruss. However, if we use the balanced
signed biclique enumeration algorithm to identify maximal (2, 3)-
balanced signed bicliques in this graph, we will find three balanced
bicliques as depicted in the lower part of Figure 2. Each biclique only
reveals a fragment of the community, resulting in three distinct frag-
ment of a community. It is not desirable to have multiple fragmented
communities instead of a single giant (3, 0)-bitruss that represents
the entire cohesive and balanced community. Moreover, the balanced
signed biclique would not be able to capture the density or proportion
of unbalanced butterflies in the subgraph.

Unlike the original 𝑘-bitruss on an unsigned bipartite graph,

there may exist multiple maximal balanced (𝑘, 𝜖)-bitrusses in a

signed bipartite graph. As we will explain later, it is computation-

ally impractical to enumerate all maximal balanced (𝑘, 𝜖)-bitrusses
in a signed bipartite graph. Therefore, to capture the largest possi-

ble communities or groups of entities that exhibit a certain degree

of balance in their relationships, we aim to find the balanced (𝑘, 𝜖)-
bitruss with the largest size, given 𝑘 and 𝜖 . By maximizing the size

of the balanced (𝑘, 𝜖)-bitrusses, our goal is to capture the most com-

prehensive balanced cohesive patterns in the signed bipartite graph.

The balanced (𝑘, 𝜖)-bitruss can be used in various applications. A

few examples are given below.

Antagonistic group detection: In a customer-product signed net-

work, the balanced butterflies can be a useful reference for identi-

fying friendly and hostile users. By analyzing the sign information,

333



we can detect groups of users who tend to have similar or opposite

preference to each other [15], which can help with targeted mar-

keting or customer service interventions. In the example shown

in Figure 2, the subgraph induced by {𝑢0, 𝑢1, 𝑢5, 𝑣0, 𝑣1, 𝑣4} and the

subgraph induced by {𝑢2, 𝑢3, 𝑢4, 𝑣2, 𝑣3, 𝑣5} can be regarded as an-

tagonistic groups each other, because the inner-group edges are

mostly positive and the inter-group edges are mostly negative.

Stable community detection: By identifying cohesive subgraphs

that satisfy the balanced (𝑘, 𝜖)-bitruss condition, we can detect

closely related communities where each edge is guaranteed a cer-

tain degree of balance [28]. This can help in understanding social

dynamics in various contexts, such as online social networks [4] or

political organizations [14].

Recommendations: Since a balanced (𝑘, 𝜖)-bitruss in a signed

bipartite graph is sufficiently balanced, existing techniques [13]

can be adopted to predict unconnected vertex pairs that are likely

to have positive or negative interactions, or suggest switching the

sign of existing edges to improve overall network balance. This can

be useful in recommendation systems [22], such as for e-commerce

or social media platforms, where personalized recommendations

can improve user engagement and satisfaction.

1.1 Challenges
To our best knowledge, we are the first to propose the community

detection problem on signed bipartite graphs while considering

the customizable density (𝑘) and degree of balance (𝜖). Our inves-
tigation reveals that the problem of finding the largest balanced

(𝑘, 𝜖)-bitruss is NP-hard, and furthermore, it cannot be efficiently

approximated in any non-trivial proportion. Unlike unsigned bi-

partite graphs where the 𝑘-bitruss is unique [47], we show that

there may exist multiple balanced (𝑘, 𝜖)-bitrusses in signed bipartite

graphs, making the application of previous techniques on unsigned

bitruss unsuitable for this problem. While a straightforward ap-

proach could be to first calculate the unsigned 𝑘-bitruss utilizing

existing algorithms and subsequently eliminate the least number

of edges required to create a maximum balanced (𝑘, 𝜖)-bitruss, the
computation expense of this method is prohibitive even on small

graphs due to the extensive number of edge combinations that re-

quire removal. For example, there are (1000
100

) > 10
139

combinations

to remove 100 edges from a bitruss of 1,000 edges.

1.2 Contributions
To handle such hardness of the problem, we first propose a tech-

nique (count) that extends the unsigned butterfly counting frame-

work [39] to efficently compute both balanced and unbalanced

butterflies. We then utilize this technique to modify the Bloom-

Edge (BE) index [40] to adapt to signed bipartite graphs, improving

the performance of updating information about signed butterflies

after the removal of an edge. Moreover, we introduce a pruning

strategy based on the bitruss that counts balanced butterflies only,

which filters the unpromising search space. We then propose two

greedy heuristic algorithms, GreedyF and GreedyS. The GreedyF
is based on the followers of an edge, and the GreedyS based on the

ratio of unbalanced butterfly support to the total butterfly support

of an edge. In our experiments, we compare the performance of

the two greedy heuristic algorithms to that of the exact algorithm

(Exact) on a couple of small datasets. Overall, the heuristic algo-

rithms are significantly more efficient than the exact one, without

compromising too much on the result size.

Our major contributions can be summarized as following:

• We formally define balanced (𝑘, 𝜖)-bitruss and the the max-

imum balanced (𝑘, 𝜖)-bitruss search problem.

• We prove the NP-hardness of the problem, and the NP-

hardness of an approximation solution to this problem,

with any nontrivial approximation ratio.

• We develop novel strategies to speed up the counting of

balanced and unbalanced butterflies, and their updates after

edge removals. Equipped with these strategies, we propose

two greedy heuristic algorithms.

• We conduct experiments on real-world datasets to evaluate

our techniques and algorithms.

2 RELATEDWORK
Truss and bitruss: Cohesive subgraphs have been extensively studied
in social network analysis. Cohen [11] introduced the concept of a

𝑘-truss, where every edge belongs to at least 𝑘−2 triangles, offering
efficient computation and capturing social cohesion. Che et al. [7]

improved truss decomposition efficiency in massive networks. Zhao

et al. [45] extended the truss model to signed networks with the

signed 𝑘-truss, focusing on friend and foe relationships. Wu et al.

[42] introduced the signed (𝑘, 𝑟 )-truss for signed networks. Zou

[47] proposed the bitruss model for bipartite graphs, and Wang et

al. [40] developed the BE-Index for efficient bitruss decomposition.

Leveraging the BE-Index, we designed the signed BE-Index for

balanced and unbalanced support in balanced (𝑘, 𝜖)-bitruss. While

these models target cohesive subgraphs in various network settings,

the balanced (𝑘, 𝜖)-bitruss uniquely considers the proportion of

unbalanced butterflies, enhancing its ability to capture community

cohesiveness and balance in signed bipartite graphs. This extension

of the truss and bitruss concepts to signed contexts enhances its

relevance in real-world applications.

Butterfly counting: Butterfly is the simplest non-trivial motif in

signed bipartite graphs and serves as a building block for commu-

nity structure [24][29], measuring graph cohesion [2], and com-

puting clustering coefficients [19]. Several studies have focused on

developing efficient algorithms for counting butterflies in bipar-

tite networks. A deterministic solution for butterfly counting on

regular bipartite networks has been established [38], and subse-

quent improvements have led to the current best solution, which

utilizes a vertex priority approach [30][39]. For the the baseline

signed butterfly counting algorithm in this work, we use a trivial

extension of the vertex priority approach. Additionally, parallel

[32] and cache-aware [41] solutions are explored to improve the

efficiency of butterfly counting. Furthermore, butterfly counting

has expanded to include a number of problem variations, such as

counting in uncertain bipartite graphs [46], counting in bipartite

graph streaming [31], and counting approximation by sampling

[30], making it an active and diverse research area.

Other cohesive subgraph models in signed networks: Cohesive
subgraph mining in signed networks has seen increased attention

recently, with various models proposed. Li et al. [23] introduced the

(𝛼, 𝑘)-clique model, while Chen et al. [8] explored the maximum

334



signed 𝜃 -clique. Both models employ efficient branch and bound

enumeration algorithms. However, they do not consider balance

theory. The balanced clique model [10][36] addresses this gap, fo-

cusing on enumerating maximal balanced cliques. Kim et al. [20]

introduced the (𝑝, 𝑛)-core model, ensuring specific positive and

negative neighbor counts within cores. Sun et al. [34] proposed the

stable 𝑘-core model for community detection in signed networks.

Sun et al. [35] tackled the enumeration of maximal balanced signed

bicliques in signed bipartite graphs. However, none of these models

consider the proportion of unbalanced relationships, a key feature

of our balanced (𝑘, 𝜖)-bitruss model. This additional parameter of-

fers greater flexibility in characterizing community structures in

signed bipartite graphs, capturing cohesion and balance under vary-

ing degrees of unbalanced relationships. It’s worth noting that all

these cohesive subgraph models in signed graphs, including ours,

are NP-hard to find.

3 PRELIMINARIES
In this section, we formally describe our notations and definitions

of our problem, which are summarized in Table 1.

Definition 1 (Signed bipartite graph). A signed bipartite
graph is an undirected bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸 = 𝐸

+ ∪ 𝐸
−),

where 𝑈 and 𝑉 are two disjoint sets of nodes, and 𝐸 ⊂ 𝑈 ×𝑉 is the
set of edges with two partitions, 𝐸+ and 𝐸−.

For an edge 𝑒 ∈ 𝐸
+
, we call 𝑒 a positive edge and write sign(𝑒) =

‘+’. For an edge 𝑒 ∈ 𝐸
−
, we call 𝑒 a negative edge and write sign(𝑒) =

‘-’. In this paper, we color positive edges in black and negative edges

in red.

Definition 2 (Neighbor). Let 𝐺 = (𝑈 ,𝑉 , 𝐸 = 𝐸
+ ∪ 𝐸

−) be a
signed bipartite graph. For a vertex 𝑢 ∈ 𝑈 , we call 𝑁𝐺 (𝑢) ∶= {𝑣 ∈ 𝑉 ∶
(𝑢, 𝑣) ∈ 𝐸} the neighbors of 𝑢. Moreover, 𝑁+

𝐺 (𝑢) ∶= {𝑣 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈
𝐸
+} is called the positive neighbors of 𝑢, and 𝑁

−
𝐺 (𝑢) ∶= {𝑣 ∈ 𝑉 ∶

(𝑢, 𝑣) ∈ 𝐸
−} is called the negative neighbors of 𝑢. Similar definitions

are settled for a vertex 𝑣 ∈ 𝑉 .

We use deg𝐺 (𝑢), called the degree of 𝑢, to indicate ∣𝑁𝐺 (𝑢)∣.

Table 1: Table of Notations

Notation Definition
𝐺 = (𝑈 ,𝑉 , 𝐸 = 𝐸

+ ∪ 𝐸
−) Signed bipartite graph

𝑒 = (𝑢, 𝑣) Edge form by 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉

sign(𝑒) Sign of 𝑒

𝑁
(±)
𝐺

(𝑢) (Signed) neighbors of node 𝑢 in 𝐺

deg𝐺 (𝑢) Degree of node 𝑢 in 𝐺

⧖ = (𝑒0, 𝑒1, 𝑒2, 𝑒3) Butterfly

= [𝑢0, 𝑢1, 𝑣0, 𝑣1]
𝐵 Bloom

Sup𝐺 (𝑒) Supports of edge 𝑒 in 𝐺

(𝑢, 𝑣,𝑤 ) Wedge

<𝑝 Vertex priority relation

twin(𝐵, 𝑒) Twin edge of 𝑒 in bloom 𝐵

𝑢0 𝑢1 𝑢2 𝑢3

𝑣0 𝑣1 𝑣2 𝑣3

𝐻1:

𝐻2:

Figure 3: Example of a signed bipartite graph with two maxi-
mal balanced (𝑘, 𝜖)-bitrusses.

Definition 3 (Bicliqe). Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a bipartite graph
and 𝑆 = (𝑈𝑆 ,𝑉𝑆 , 𝐸𝑆 ) a subgraph of 𝐺 . Then 𝑆 is called a biclique if
𝐸𝑆 = 𝑈𝑆 ×𝑉𝑆 .

We may omit the edge set 𝐸𝑆 when we indicate a biclique. To

specify the size of a biclique, we may say 𝑆 is a (∣𝑈𝑆 ∣, ∣𝑉𝑆 ∣)-biclique.
We use the name 𝑘-bloom, or bloom, to indicate either a (2, 𝑘)-
biclique or a (𝑘, 2)-biclique [40].

Definition 4 (Signed Butterfly [13]). In a signed bipartite
graph 𝐺 = (𝑈 ,𝑉 , 𝐸), a signed butterfly is a (2, 2)-biclique ({𝑢0, 𝑢1},
{𝑣0, 𝑣1}). The signed butterfly is called balanced if is has even number
of negative edges, and unbalanced otherwise.

We write ⧖ = ((𝑢0, 𝑣0), (𝑢0, 𝑣1), (𝑢1, 𝑣0), (𝑢1, 𝑣1)) or ⧖ = [𝑢0, 𝑢1,
𝑣0, 𝑣1] for simplicity. From previous work [13] we know that signed

butterfly has 7 isomorphism classes, where 5 of them are balanced

and 2 of them are unbalanced, as shown in Figure 1.

Definition 5 (Balanced / Unbalanced Supports). Given a
signed bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸) and an edge 𝑒 ∈ 𝐸, the support of
𝑒 in𝐺 , denoted as Sup𝐺 (𝑒), is the number of butterflies in𝐺 containing
𝑒 . Specifically, the balanced support Sup+𝐺 (𝑒) is the number of balanced
butterflies containing 𝑒 , and the unbalanced support Sup−𝐺 (𝑒) is the
number of unbalanced butterflies containing 𝑒 .

Definition 6 (Balanced (𝑘, 𝜖)-bitruss). For a signed bipartite
graph𝐺 , a positive integer 𝑘 , and a real number 𝜖 ∈ [0, 1], a balanced
(𝑘, 𝜖)-bitruss is a subgraph 𝐻 where,

(1) 𝐻 is a 𝑘-bitruss, i.e., for each edge 𝑒 in 𝐻 , Sup𝐻 (𝑒) ≥ 𝑘 ;
(2) for each edge 𝑒 in 𝐻 , Sup−𝐻 (𝑒)/ Sup𝐻 (𝑒) ≤ 𝜖 ;

Note that we do not require a balanced (𝑘, 𝜖)-bitruss to be con-

nected.

Lemma 1. Themaximal balanced (𝑘, 𝜖)-bitruss in a signed bipartite
graph 𝐺 is not unique. In other words, there may exists multiple
maximal balanced (𝑘, 𝜖)-bitrusses in 𝐺 .

Proof. Consider the signed bipartite graph shown in Figure 3,

suppose 𝑘 = 1 and 𝜖 = 0. Then there are two balanced (𝑘, 𝜖)-bitruss,
namely,𝐻1 = 𝐺({(𝑢0, 𝑣0), (𝑢0, 𝑣2), (𝑢1, 𝑣0), (𝑢1, 𝑣2), (𝑢2, 𝑣1), (𝑢2, 𝑣2), (𝑢2,
𝑣3), (𝑢3, 𝑣1), (𝑢3, 𝑣2), (𝑢3, 𝑣3)}) and 𝐻2 = 𝐺({(𝑢0, 𝑣0), (𝑢0, 𝑣1), (𝑢0, 𝑣2),
(𝑢1, 𝑣0), (𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢2, 𝑣1), (𝑢2, 𝑣3), (𝑢3, 𝑣1), (𝑢3, 𝑣3)}). □

3.1 Problem Definition
Given a signed bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), a positive integer

𝑘 , and a real number 𝜖 ∈ [0, 1], we aim to find the balanced (𝑘, 𝜖)-
bitruss𝐻 = (𝑈𝐻 ,𝑉𝐻 , 𝐸𝐻 )with the largest edge size ∣𝐸𝐻 ∣. The largest

335



edge size is preferred over the largest vertex size because the edge

size reflects both the capacity and density of communities.

4 PROBLEM ANALYSIS
Theorem 1. Given a signed bipartite graph 𝐺 , the problem of

computing the maximum balanced (𝑘, 𝜖)-Bitruss is NP-hard.
Theorem 2. Given a signed bipartite graph 𝐺 , it is NP-hard to

approximate the maximum balanced (𝑘, 𝜖)-bitruss within a factor of
∣𝐸∣1−𝛿 , for any 𝛿 > 0.

See proofs in our supplementary materials
1

.

5 SOLUTIONS
In this section, we first propose techniques for signed butterfly

counting and support maintenance, as well as a pruning method

based on the supports. Since the problem is computationally chal-

lenging, we also propose two heuristic strategies in addition to an

exact solution.

5.1 Signed Butterfly Counting
To determine a maximum balanced (𝑘, 𝜖)-bitruss, we need to know

the balanced support and unbalanced support of every edge. There-

fore, the first step to solve the maximum balanced (𝑘, 𝜖)-bitruss
problem is to count the balanced butterflies and the unbalanced

butterflies in the given signed bipartite graph.

5.1.1 Baseline. Our baseline algorithm of signed butterfly count-

ing is an extension from an existing unsigned butterfly counting

algorithm (BFC-VP)[39], which relies on the concept of wedges and

vertex priority.

Definition 7 (Wedge). In a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), a
wedge redis a path of length 2 and we denote a wedge as (𝑢, 𝑣,𝑤 ),
where 𝑢 and𝑤 are the endpoint vertices, and 𝑣 is the middle vertex.

Definition 8 (Vertex Priority [39]). Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a
bipartite graph and 𝑖𝑑 ∶ 𝑈 ∪𝑉 → {1, . . . , ∣𝑈 ∣+∣𝑉 ∣} a bijective function
called the index of vertices. Then the vertex priority <𝑝 is the strict
total order on vertices (𝑈 ∪𝑉 ) satisfying the following:

𝑢 <𝑝 𝑣 ⇔ {𝑖𝑑(𝑢) < 𝑖𝑑(𝑣) if deg𝐺 (𝑢) = deg𝐺 (𝑣)
deg𝐺 (𝑢) < deg𝐺 (𝑣) otherwise.

According to the literature [39], the vertex priority is effective

to avoid repetitive counting of butterflies and reduce the time cost

of butterfly counting algorithm. To import the BFC-VP algorithm

to our problem, we need to distinguish the balanced butterflies and

the unbalanced butterflies in the given signed bipartite graph.

The details of the baseline algorithm for signed butterfly count-

ing is shown in Algorithm 1, where Line 1 through Line 8 is the

framework of BFC-VP [39]. We sort the neighbors of each node in

the order of vertex priority <𝑝 (Line 1). For every node 𝑢 (Line 3),

we create a Hash-map 𝐻 of vertex lists taking the vertices with the

same side with 𝑢 as its keys, and for each two-hop neighbor𝑤 of

𝑢 with 𝑤 <𝑝 𝑢, we store each node 𝑣 in 𝐻 (𝑢,𝑤 ) if 𝑣 <𝑝 𝑢 and the

wedge (𝑢, 𝑣,𝑤 ) exists (Line 4-7). Guaranteed by the properties of the
vertex priority [39], every wedge will be iterated exactly once (note

1

https://github.com/qixiaoz/BalancedBitruss

Algorithm 1 Signed-BFC-Base

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸): Signed bipartite graph

Output: 𝑐
+
: Balanced butterfly count

𝑐
−
: Unbalanced butterfly count

1: Sort 𝑁𝐺 (𝑢) of each 𝑢 ∈ 𝑈 ∪𝑉 by vertex priority <𝑝

2: 𝑐
+
← 0, 𝑐

−
← 0

3: for each 𝑢 ∈ 𝑈 ∪𝑉 do
4: Create 𝐻 (𝑢,𝑤 ) for each node𝑤 at same side as 𝑢

5: for each 𝑣 ∈ 𝑁𝐺 (𝑢) ∶ 𝑣 <𝑝 𝑢 do
6: for each𝑤 ∈ 𝑁𝐺 (𝑣) ∶ 𝑤 <𝑝 𝑢 do
7: 𝐻 (𝑢,𝑤 ).append(𝑣)
8: for each node𝑤 ∶ 𝐻 (𝑢,𝑤 ) > 1 do
9: for each pair of distinct 𝑣0, 𝑣1 ∈ 𝐻 (𝑢,𝑤 ) do
10: if [𝑢,𝑤, 𝑣0, 𝑣1] is balanced then
11: 𝑐

++ = 1

12: else 𝑐−+ = 1

that (𝑢, 𝑣,𝑤 ) and (𝑤, 𝑣,𝑢) are identical). We observe the butterfly

[𝑢,𝑤, 𝑣0, 𝑣1] exists if there are wedges (𝑢, 𝑣0,𝑤 ) and (𝑢, 𝑣1,𝑤 ) for
each pair of distinct vertices 𝑣0 and 𝑣1. Clearly there are (∣𝐻 (𝑢,𝑤)∣

2
)

butterflies for each nontrivial 𝐻 (𝑢,𝑤 ), but we have to figure out

which of them are balanced and which of them are unbalanced

(Line 8-12).

Theorem 3. The time-complexity of the Signed-BFC-Base algo-
rithm is 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢)

2

, deg𝐺 (𝑣)
2}).

Proof. We know [39] that the time-complexity of the BFC-VP

algorithm is 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}), which is domi-

nated by the wedge iteration (Algorithm 1, Line 3-8). According to

the vertex priority, for each pair of vertices 𝑢,𝑤 with𝑤 <𝑝 𝑢, there

are at most deg𝐺 (𝑤 ) wedges in which 𝑢 and 𝑤 are the endpoints.

In addition to the BFC-VP, since the Signed-BFC-Base algorithm

iterates every combination of two wedges (𝑢, 𝑣0,𝑤 ) and (𝑢, 𝑣1,𝑤 ),
while there are at most (deg𝐺 (𝑤)

2
) ∈ 𝑂(deg𝐺 (𝑤 )2) such combina-

tions, then the time-complexity of Signed-BFC-Base turns out to

be 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢)
2

, deg𝐺 (𝑣)
2}). □

Corollary 1. The space-complexity of the Signed-BFC-Base algo-
rithm is 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}). □

5.1.2 Improvements. Indeed, it is possible to calculate the number

of balanced (and unbalanced) butterflies induced by𝑢,𝑤 and𝐻 (𝑢,𝑤 )
in the Algorithm 1 without enumeration. To do so, we need to

categorize the wedges in a signed bipartite graph into two types.

Definition 9 (S-Wedge And D-Wedge [35]). Let (𝑢, 𝑣,𝑤 ) be a
wedge in a signed bipartite graph. Then (𝑢, 𝑣,𝑤 ) is called an s-wedge
if sign((𝑢, 𝑣)) = sign((𝑣,𝑤 )), or is called a d-wedge if sign((𝑢, 𝑣)) ≠
sign((𝑣,𝑤 )), as shown in Figure 4.

Lemma 2. Let𝑏 = [𝑢0, 𝑢1, 𝑣0, 𝑣1] be a butterfly in a signed bipartite
graph. Then 𝑏 is balanced if (𝑢0, 𝑣0, 𝑢1) and (𝑢0, 𝑣1, 𝑢1) are both s-
wedges or both d-wedges; 𝑏 is unbalanced if there are one s-wedge
and one d-wedge from (𝑢0, 𝑣0, 𝑢1) and (𝑢0, 𝑣1, 𝑢1).

336



Proof. Observe that an s-wedge has either 0 or 2 negative edges,

and a d-wedge has 1 negative edge. Therefore, butterfly 𝑏 has even

number of negative edges, i.e. balanced, if and only if there are even

number of d-wedges from (𝑢0, 𝑣0, 𝑢1) and (𝑢0, 𝑣1, 𝑢1). □

Utilizing Lemma 2, we present our improvement of signed but-

terfly counting in Algorithm 2.

Algorithm 2 Signed-BFC

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸): Signed bipartite graph

Output: 𝑐
+
: Balanced butterfly count

𝑐
−
: Unbalanced butterfly count

1: Sort 𝑁𝐺 (𝑢) of each 𝑢 ∈ 𝑈 ∪𝑉 by vertex priority <𝑝

2: 𝑐
+
← 0, 𝑐

−
← 0

3: for each 𝑢 ∈ 𝑈 ∪𝑉 do
4: Create 𝐻𝑠 (𝑢,𝑤 ) and 𝐻𝑑 (𝑢,𝑤 ) for each node𝑤 at same side

as 𝑢

5: for each 𝑣 ∈ 𝑁𝐺 (𝑢) ∶ 𝑣 <𝑝 𝑢 do
6: for each𝑤 ∈ 𝑁𝐺 (𝑣) ∶ 𝑤 <𝑝 𝑢 do
7: if (𝑢, 𝑣,𝑤 ) is an s-wedge then
8: 𝐻𝑠 (𝑢,𝑤 ).append(𝑣)
9: else 𝐻𝑑 (𝑢,𝑤 ).append(𝑣)
10: for each node𝑤 ∶ 𝐻𝑠 (𝑢,𝑤 ) + 𝐻𝑑 (𝑢,𝑤 ) > 1 do
11: 𝑐

++ = (∣𝐻𝑠 (𝑢,𝑤)∣
2

) + (∣𝐻𝑑 (𝑢,𝑤)∣
2

)
12: 𝑐

−+ = ∣𝐻𝑠 (𝑢,𝑤 )∣∣𝐻𝑑 (𝑢,𝑤 )∣

The framework of Algorithm 2 is similar to that of Algorithm 1,

except that for each vertex 𝑢, we create two different Hash-maps,

namely 𝐻𝑠 (𝑢,𝑤 ) and 𝐻𝑑 (𝑢,𝑤 ), to store s-wedges and d-wedges

respectively (Line 4). Specifically, for each wedge (𝑢, 𝑣,𝑤 ) where
𝑣,𝑤 <𝑝 𝑢, we put 𝑣 into 𝐻𝑠 (𝑢,𝑤 ) if (𝑢, 𝑣,𝑤 ) is an s-wedge, and into

𝐻𝑑 (𝑢,𝑤 ) if (𝑢, 𝑣,𝑤 ) is a d-wedge (Line 5-9). According to Lemma 2,

each pair of s-wedges or pair of d-wedges with endpoints at 𝑢 and

𝑤 forms a balanced butterfly, while there are (∣𝐻𝑠 (𝑢,𝑤)∣
2

)+ (∣𝐻𝑑 (𝑢,𝑤)∣
2

)
such pairs (Line 11). On the other hand, each pair of one s-wedge and

one d-wedge endpoints at 𝑢 and𝑤 forms an unbalanced butterfly,

while there are ∣𝐻𝑠 (𝑢,𝑤 )∣∣𝐻𝑑 (𝑢,𝑤 )∣ such pairs (Line 12).

Theorem 4. The time-complexity of the Signed-BFC algorithm is
𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}). Also, The space-complexity of

Signed-BFC is 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}).

Proof. Immediate from Theorem 3 and Corollary 1. □

𝑢

𝑣

𝑤 𝑢

𝑣

𝑤

s-wedges

𝑢

𝑣

𝑤 𝑢

𝑣

𝑤

d-wedges

Figure 4: Isomorphism classes of s-wedges and d-wedges.

5.2 Balanced / Unbalanced Supports
Maintenance

With our improved balanced and unbalanced butterfly counting al-

gorithm, obtaining the balanced and unbalanced supports of a given

edge becomes straightforward, enabling us to efficiently prune

edges that do not meet the constraints of a maximal balanced (𝑘, 𝜖)-
bitruss. Nevertheless, when an edge is removed, updates are re-

quired for the edges that participate in at least one butterfly that

contains the removed edge. Hence, an efficient management system

for tracking the balanced and unbalanced supports of each edge

is essential to optimize the overall performance of the algorithm.

For the sake of convenience, we adopted the definition of maximal

priority-obeyed bloom [40] to indicate the hash maps 𝐻𝑠 (𝑢,𝑤 ) and
𝐻𝑑 (𝑢,𝑤 ) in the Algorithm 2.

Definition 10 (Maximal Priority-Obeyed Bloom [40]). In
a bipartite graph, a maximal priority-obeyed bloom is a 𝑘-bloom
𝐵 = (𝑈𝑆 ,𝑉𝑆 ) such that

(1) If a node 𝑢 ∈ 𝑈𝑆 (or 𝑣 ∈ 𝑉𝑆 respectively) has the greatest
vertex priority among all nodes in the bloom, then ∣𝑈𝑆 ∣ = 2

(or ∣𝑉𝑆 ∣ = 2 respectively) and ∣𝑈𝑆 ∣ (or ∣𝑉𝑆 respectively) is
called the dominant node set of 𝐵, denoted as dom(𝐵).

(2) No other bloom containing 𝐵 satisfies the condition above.

Clearly for each pair of two-hop neighbors 𝑢 and𝑤 mentioned

in Algorithm 2, {𝑢,𝑤} and 𝐻𝑠 (𝑢,𝑤 ) ∪ 𝐻𝑑 (𝑢,𝑤 ) form a maximal

priority-obeyed bloom. In addition to butterfly counting, the maxi-

mal priority-obeyed blooms are also useful to calculate the balanced

and unbalanced supports. A maximal priority-obeyed bloom can

be viewed as a set of s-wedges and d-wedges. In each such wedge,

we say one edge is the twin edge [40] of the other.

Definition 11 (Twin edge [40]). Given a maximal priority-
obeyed 𝑘-bloom 𝐵 = (𝑈𝑆 ,𝑉𝑆 ) and an edge 𝑒 in the bloom, the twin
edge of 𝑒 in the bloom 𝐵, denoted as twin(𝐵, 𝑒), is the edge in the bloom
that forms a wedge with 𝑒 where the endpoints are the dominant node
set of 𝐵.

The wedge formed by 𝑒 and twin(𝐵, 𝑒) is called a priority-obeyed
wedge in 𝐵, and there are 𝑘 priority-obeyed wedges in 𝐵.

Example 2. In the signed bipartite graph shown in Figure 3, ({𝑢0, 𝑢1,
𝑢2, 𝑢3}, {𝑣1, 𝑣2}) is a maximal primary-obeyed bloom, in which the
priority-obeyed wedges are (𝑣1, 𝑢0, 𝑣2), (𝑣1, 𝑢1, 𝑣2), (𝑣1, 𝑢2, 𝑣2), and
(𝑣1, 𝑢3, 𝑣2).

Lemma 3. Let 𝐵 be a maximal priority-obeyed bloom in a signed
bipartite graph, and 𝑒 an edge in 𝐵. Suppose 𝑛𝑠 is the number of
priority-obeyed s-wedges in 𝐵, and𝑛𝑑 is the number of priority-obeyed
d-wedges in 𝐵. Then

Sup
+
𝐵 (𝑒) = {𝑛𝑠 − 1 if sign(𝑒) = sign(twin(𝐵, 𝑒))

𝑛𝑑 − 1 if sign(𝑒) ≠ sign(twin(𝐵, 𝑒))

Sup
−
𝐵 (𝑒) = {𝑛𝑑 if sign(𝑒) = sign(twin(𝐵, 𝑒))

𝑛𝑠 if sign(𝑒) ≠ sign(twin(𝐵, 𝑒)).

Proof. If sign(𝑒) = sign(twin(𝐵, 𝑒)), then the priority-obeyed

constructed by 𝑒 and twin(𝐵, 𝑒) is an s-wedge, and there are 𝑛𝑠 −
1 other priority-obeyed s-wedges in 𝐵. According to Lemma 2,

337



each of the 𝑛𝑠 − 1 s-wedges forms a balanced butterfly with 𝑒 and

twin(𝐵, 𝑒)), and each of the 𝑛𝑑 priority-obeyed d-wedges in 𝐵 forms

an unbalanced butterfly with 𝑒 and twin(𝐵, 𝑒)).
On the other hand, if sign(𝑒) ≠ sign(twin(𝐵, 𝑒)), then the priority-

obeyed constructed by 𝑒 and twin(𝐵, 𝑒) is a d-wedge, and there are

𝑛𝑑 − 1 other priority-obeyed d-wedges in 𝐵. According to Lemma 2,

each of the 𝑛𝑑 − 1 d-wedges forms a balanced butterfly with 𝑒 and

twin(𝐵, 𝑒), and each of the 𝑛𝑠 priority-obeyed s-wedges in 𝐵 forms

an unbalanced butterfly with 𝑒 and twin(𝐵, 𝑒). □

According to Wang et al. [40], every butterfly in a bipartite

graph is included in a single maximal priority-obeyed bloom. As

a result, we can use Lemma 3 to determine the balanced support

and unbalanced support of an edge 𝑒 in a signed bipartite graph 𝐺 ,

which can be computed as follows: Sup
+
𝐺 (𝑒) = ∑𝑒∈𝐵𝑖

Sup
+
𝐵𝑖
(𝑒) and

Sup
−
𝐺 (𝑒) = ∑ 𝑒 ∈ 𝐵𝑖 Sup

−
𝐵𝑖
(𝑒).

When an edge is removed from a signed bipartite graph, we must

update the balanced and unbalanced supports for any edges that

share at least one butterfly with the removed edge. To accelerate

this process, we propose Signed Bloom-Edge Index (or SBE index),

which is inspired from the BE-Index proposed in the literature [40].

Definition 12 (Signed Bloom-Edge Index). Given a signed
bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), the Signed Bloom-Edge Index of 𝐺 is a
3-tuple of functions 𝐼 = (𝐻𝐵, 𝐻𝑠 , 𝐻𝑑 ), where

(1) 𝐻𝐵 maps every edge 𝑒 to the set {dom(𝐵) ∶ 𝑒 ∈ 𝐵}, where 𝐵
is a priority-obeyed bloom;

(2) 𝐻𝑠 maps every pair of two-hop neighbors 𝑢,𝑤 to the set {𝑣 ∶
(𝑢, 𝑣,𝑤 ) is a priority-obeyed s-wedge}; and

(3) 𝐻𝑑 maps every pair of two-hop neighbors 𝑢,𝑤 to the set
{𝑣 ∶ (𝑢, 𝑣,𝑤 ) is a priority-obeyed d-wedge}.

All three functions can be implemented by hash-maps. Indeed

𝐻𝑠 and 𝐻𝑑 are already constructed in Algorithm 2. We extend it

to complete the SBE index and calculate balanced supports and

unbalanced supports, as described in Algorithm 3. For simplicity,

we use 𝑒𝑢,𝑣 to denote the edge induced by 𝑢 and 𝑣 .

Line 4-9 of Algorithm 3 follows the framework of the construc-

tion of the BE-Index [40], but in addition, we need to distinguish

s-wedges and d-wedges during iteration and handle them respec-

tively. Also, note that Line 12-17 of Algorithm 3 is an application

of Lemma 3.

Theorem 5. The time-complexity of the SBE-Index-Construction
is 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}). Also, The space-complexity

of SBE-Index-Construction is 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}).

Proof. In addition to the framework of Algorithm 2, the bal-

anced / unbalanced support updates in Line 12-21 is a priority-

obeyed wedge iteration in different pattern, which takes time com-

plexity of 𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}), as discussed in the

proof of Theorem 3. The space complexity is immediate from Corol-

lary 1. □

After the construction of the SBE index, we can efficiently update

the supports caused by edge removal. Algorithm 4 elaborate the

process to remove an edge, in which we use 𝐵𝑢,𝑤 to denote the

maximal priority-obeyed bloom with dom𝐵𝑢,𝑤 = {𝑢,𝑤}.

Algorithm 3 SBE-Index-Construction

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸): Signed bipartite graph

Output: 𝑐
+
: Balanced butterfly count

𝑐
−
: Unbalanced butterfly count

Sup
+
𝐺 : balanced support of every edge

Sup
−
𝐺 : unbalanced support of every edge

𝐼 = (𝐻𝐵, 𝐻𝑠 , 𝐻𝑑 ): SBE Index

1: Line 1-2 of Algorithm 2

2: for each 𝑒 ∈ 𝐸 do
3: Sup

+
𝐺 (𝑒) ← 0, Sup

−
𝐺 (𝑒) ← 0

4: for each 𝑢 ∈ 𝑈 ∪𝑉 do
5: for each 𝑣 ∈ 𝑁𝐺 (𝑢) ∶ 𝑣 <𝑝 𝑢 do
6: for each𝑤 ∈ 𝑁𝐺 (𝑣) ∶ 𝑤 <𝑝 𝑢 do
7: 𝐻𝐵 (𝑒𝑢,𝑣).append((𝑢,𝑤 ))
8: 𝐻𝐵 (𝑒𝑤,𝑣).append((𝑢,𝑤 ))
9: Line 7-9 of Algorithm 2

10: for each node𝑤 ∶ 𝐻𝑠 (𝑢,𝑤 ) + 𝐻𝑑 (𝑢,𝑤 ) > 1 do
11: Line 11-12 of Algorithm 2

12: for each node 𝑣 ∈ 𝐻𝑠 (𝑢,𝑤 ) do
13: Sup

+
𝐺 (𝑒𝑢,𝑣), Sup

+
𝐺 (𝑒𝑤,𝑣)+ = ∣𝐻𝑠 (𝑢,𝑤 )∣ − 1

14: Sup
−
𝐺 (𝑒𝑢,𝑣), Sup

−
𝐺 (𝑒𝑤,𝑣)+ = ∣𝐻𝑑 (𝑢,𝑤 )∣

15: for each node 𝑣 ∈ 𝐻𝑑 (𝑢,𝑤 ) do
16: Sup

+
𝐺 (𝑒𝑢,𝑣), Sup

+
𝐺 (𝑒𝑤,𝑣)+ = ∣𝐻𝑑 (𝑢,𝑤 )∣ − 1

17: Sup
−
𝐺 (𝑒𝑢,𝑣), Sup

−
𝐺 (𝑒𝑤,𝑣)+ = ∣𝐻𝑠 (𝑢,𝑤 )∣

Algorithm 4 Remove-Edge

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸): Signed bipartite graph

𝑒 : the edge to be removed

1: for each (𝑢,𝑤 ) ∈ 𝐻𝐵 (𝑒) do
2: if sign(𝑒) = sign(twin(𝐵𝑢,𝑤 , 𝑒)) then
3: for each 𝑣 ∈ 𝐻𝑠 (𝑢,𝑤 ) do
4: if 𝑒 = 𝑒𝑢,𝑣 ∨ 𝑒 = 𝑒𝑤,𝑣 then
5: Remove 𝑣 from 𝐻𝑠 (𝑢,𝑤 )
6: else Sup+𝐺 (𝑒𝑢,𝑣), Sup

+
𝐺 (𝑒𝑤,𝑣)− = 1

7: for each 𝑣 ∈ 𝐻𝑑 (𝑢,𝑤 ) do
8: Sup

−
𝐺 (𝑒𝑢,𝑣), Sup

−
𝐺 (𝑒𝑤,𝑣)− = 1

9: Sup
+
𝐺 (twin(𝐵𝑢,𝑤 , 𝑒))− = ∣𝐻𝑠 (𝑢,𝑤 )∣

10: Sup
−
𝐺 (twin(𝐵𝑢,𝑤 , 𝑒))− = ∣𝐻𝑑 (𝑢,𝑤 )∣

11: else
12: for each 𝑣 ∈ 𝐻𝑑 (𝑢,𝑤 ) do
13: if 𝑒 = 𝑒𝑢,𝑣 ∨ 𝑒 = 𝑒𝑤,𝑣 then
14: Remove 𝑣 from 𝐻𝑑 (𝑢,𝑤 )
15: else Sup+𝐺 (𝑒𝑢,𝑣), Sup

+
𝐺 (𝑒𝑤,𝑣)− = 1

16: for each 𝑣 ∈ 𝐻𝑠 (𝑢,𝑤 ) do
17: Sup

−
𝐺 (𝑒𝑢,𝑣), Sup

−
𝐺 (𝑒𝑤,𝑣)− = 1

18: Sup
+
𝐺 (twin(𝐵𝑢,𝑤 , 𝑒))− = ∣𝐻𝑑 (𝑢,𝑤 )∣

19: Sup
−
𝐺 (twin(𝐵𝑢,𝑤 , 𝑒))− = ∣𝐻𝑠 (𝑢,𝑤 )∣

20: Remove (𝑢,𝑤 ) from 𝐻𝐵 (twin(𝐵𝑢,𝑤 , 𝑒))
21: Remove 𝑒

338



In Algorithm 4, we iterate every maximal priority-obeyed bloom

𝐵𝑢,𝑤 containing 𝑒 using the SBE index (Line 1). According to Lemma

2, if 𝑒 and its twin edge in 𝐵𝑢,𝑤 form an s-wedge (Line 2), then each

edge from other s-wedges in 𝐵𝑢,𝑤 lose one balanced support (Line

6) and each edge from d-wedges in 𝐵𝑢,𝑤 should lose one unbalanced

support (Line 8); if 𝑒 and its twin edge in 𝐵𝑢,𝑤 form a d-wedge (Line

11), then each edge from other d-wedges in 𝐵𝑢,𝑤 lose one balanced

support (Line 15) and each edge from d-wedges in 𝐵𝑢,𝑤 should lose

one unbalanced support (Line 17). Since 𝑒 is removed from 𝐵𝑢,𝑤 ,

so is its twin (Line 20). Moreover, twin(𝐵𝑢,𝑤 , 𝑒) loses all butterfly
supports from 𝐵𝑢,𝑤 , so its balanced support and unbalanced support

decrement as indicated in Lemma 3 (Line 9-10, 18-19).

Theorem 6. The time-complexity of the RemoveEdge algorithm is
𝑂(Sup𝐺 (𝑒)).

Proof. Algorithm 4 iterates every butterfly containing 𝑒 ex-

actly once, and operations of constant time are performed in each

iteration. Thus, the overall time-complexity of the RemoveEdge

algorithm is 𝑂(Sup𝐺 (𝑒)). □

5.3 Pruning Unpromising Edges
With the supports update mechanism due to edge removal, we can

now propose a pruning strategy that removes those edges that are

certainly not part of a balanced (𝑘, 𝜖)-bitruss, for given 𝑘 and 𝜖 .

Definition 13 (Pruned (𝑘, 𝜖)-bitruss). Given a signed bipartite
graph 𝐺 = (𝑈 ,𝑉 , 𝐸), let 𝑃 (𝐺) be a subgraph of 𝐺 such that

(1) for every edge 𝑒 in𝐺𝑃 we have Sup𝑃 (𝐺)(𝑒) ≥ 𝑘 and Sup+
𝑃 (𝐺)(𝑒)

≥ 𝑘(1 − 𝜖);
(2) no other subgraph containing𝐺𝑃 satisfies the condition above.

Then 𝑃 (𝐺) is called the pruned (𝑘, 𝜖)-bitruss of 𝐺 .

Lemma 4. The pruned (𝑘, 𝜖)-bitruss of 𝐺 is unique.

Proof. Suppose for contradiction that there are two distinct

subgraphs 𝑃1(𝐺), 𝑃2(𝐺) of𝐺 satisfying both conditions. Consider𝐻
′
,

the union graph of 𝑃1(𝐺) and 𝑃2(𝐺). For an edge 𝑒 in𝐻 ′
, 𝑒 is in either

𝑃1(𝐺) or 𝑃2(𝐺). If 𝑒 is in 𝑃1(𝐺), then Sup𝐻 ′ (𝑒) ≥ Sup𝑃
1
(𝐺)(𝑒) ≥ 𝑘 and

Sup
+
𝐻 ′ (𝑒) ≥ Sup

+
𝑃
1
(𝐺)(𝑒) ≥ 𝑘(1 − 𝜖); if 𝑒 is in 𝑃2(𝐺), then Sup𝐻 ′ (𝑒) ≥

Sup𝑃
2
(𝐺)(𝑒) ≥ 𝑘 and Sup

+
𝐻 ′ (𝑒) ≥ Sup

+
𝑃
2
(𝐺)(𝑒) ≥ 𝑘(1−𝜖). Thus,𝐻 ′

is a

nontrivial supergraph of 𝐻1 that satisfies the first condition, which

contradicts to the second condition of 𝐻1. □

We can obtain 𝑃 (𝐺) by iteratively removing the edges 𝑒 from 𝐺

where Sup𝐺 (𝑒) < 𝑘 and Sup
+
𝐺 (𝑒) < 𝑘(1 − 𝜖) by Algorithm 4, until

no such edges remain. Indeed, the purpose to have 𝐻 is that 𝐻 has

the same maximum balanced (𝑘, 𝜖)-bitruss as 𝐺 .

Lemma 5. Given a signed bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸), and𝐺𝑃 be
its pruned (𝑘, 𝜖)-bitruss, then a balanced (𝑘, 𝜖)-bitruss is a subgraph
of 𝐺𝑃 .

Proof. Let 𝐼 be a balanced (𝑘, 𝜖)-bitruss of 𝐺 , and 𝑒 an edge

of 𝐼 . By definition we have Sup𝐼 (𝑒) ≥ 𝑘 and Sup
−
𝐼 (𝑒)/ Sup𝐼 (𝑒) ≤ 𝜖 .

Namely,

Sup
−
𝐼 (𝑒)

Sup
+
𝐼
(𝑒) + Sup

−
𝐼
(𝑒)

= 1 −
Sup

+
𝐼 (𝑒)

Sup
+
𝐼
(𝑒) + Sup

−
𝐼
(𝑒)

≤ 𝜖

⇒
Sup

+
𝐼 (𝑒)

Sup
+
𝐼
(𝑒) + Sup

−
𝐼
(𝑒)

≥ 1 − 𝜖

⇒
Sup

+
𝐼 (𝑒)

Sup
+
𝐼
(𝑒) + Sup

−
𝐼
(𝑒)

⋅ Sup𝐼 (𝑒) = Sup
+
𝐼 (𝑒) ≥ 𝑘(1 − 𝜖).

Hence 𝐼 is a subgraph of 𝐺𝑃 . □

By removing edges from 𝐺 that do not meet the conditions of

𝑃 (𝐺), we can construct a smaller graph that is computationally

efficient and the maximum balanced (𝑘, 𝜖)-bitruss still remains un-

changed.

5.4 Exact Approach
We first propose an exact algorithm for our problem. Based on

the greedy framework presented in Algorithm 5 and partition by

butterfly-connected components, the exact algorithm explores the

search space of all possible subgraphs of the given signed bipartite

graph by branch-and-bound, and prunes subgraphs that are guar-

anteed not to be the maximum balanced (𝑘, 𝜖)-bitruss. Although
the exact algorithm provides the optimal solution to our problem,

its running time is exponential in the worst case.

5.5 Greedy Heuristic Approaches
To address the computational complexity of the maximum balanced

(𝑘, 𝜖)-bitruss problem, we propose a framework of greedy heuristic

approach shown in Algorithm 5. The algorithm begins by construct-

ing the signed BE-index of the signed bipartite graph 𝐺 (Line 1).

Next, we prune the unpromising edges as discussed in Lemma 13

and Lemma 5 (Line 2-3). We use the notation 𝐸𝐶 to represent the set

of edges that do not satisfy the condition of a balanced (𝑘, 𝜖)-bitruss
(Line 4). The algorithm then iteratively selects the best edge to re-

move (Line 6-7), updates 𝐸𝐶 and 𝐸 based on Lemma 13 and Lemma

5 again (Line 8-9), and repeats this process until 𝐸𝐶 = ∅ (Line 5),

meaning that all remaining edges satisfy the balanced (𝑘, 𝜖)-bitruss
condition.

Algorithm 5 Greedy

Input: 𝐺 = (𝑈 ,𝑉 , 𝐸): Signed bipartite graph

𝑘 : support constraint

𝜖 : balanced supports ratio constraints

Output: The maximum balanced (𝑘, 𝜖)-bitruss
1: SBE-Index-Construction (Algorithm 3) with 𝐺

2: while ∃𝑒 ∈ 𝐸, Sup𝐺 (𝑒) < 𝑘 or Sup
+
𝐺 (𝑒) < 𝑘(1 − 𝜖) do

3: Remove-Edge (Algorithm 4) with 𝐺, 𝑒

4: 𝐸𝐶 ← {𝑒 ∈ 𝐸 ∶ Sup−𝐺 (𝑒)/ Sup𝐺 (𝑒) > 𝜖}
5: while 𝐸𝐶 ≠ ∅ do
6: 𝑒 ← the best edge
7: Remove-Edge (Algorithm 4) with 𝐺, 𝑒

8: Prune 𝐸 by Line 2-3 of Algorithm 5

9: Update 𝐸𝐶

10: return 𝐺

339



We next present two strategies to choose the best edge to remove.

5.5.1 Greedy Heuristic By Followers. When an edge is removed, it

may caused other edges to become unpromising edges as indicated

in Lemma 13 and Lemma 5. Referring to the literature [34], these

edges are called the followers of the removed edge.

Definition 14 (Followers). Given a signed bipartite graph 𝐺 =

(𝑈 ,𝑉 , 𝐸), let 𝐻 = 𝑃 (𝐺) be the pruned bitruss of 𝐺 . Then the followers
of an edge 𝑒 is defined as 𝐹𝐻 (𝑒) ∶= 𝐸𝐻 \𝑃 (𝐻\{𝑒}), where 𝐸𝐻 is the set
of edges in 𝐻 , and 𝐻\{𝑒} is the graph 𝐻 with 𝑒 removed.

Hence to determine the best edge for removal in Line 6 of Algo-

rithm 5, it is reasonable to choose the edge in 𝐸𝐶 with the minimum

number of followers. However, identifying this edge can be compu-

tationally intensive. In fact, it may take up to𝑂(∣𝐸∣ (∑𝑒∈𝐸 Sup𝐺 (𝑒))
time, as we need to simulate an edge removal for every edge, and

in each removal simulation, we must remove the pruned edges in

cascade. The worst-case scenario occurs when all edges are pruned.

The bottleneck to identify the edge with the least followers is

that the number of followers of every edge is calculated by edge

removal simulation. To overcome this bottleneck, we propose two

techniques to terminate the algorithm early. Firstly, record the

current minimum number of followers 𝑓min. If an edge is found

having more than 𝑓min followers, then this edge cannot have the

fewer followers than 𝑓min and its followers counting can stop earlier.

Secondly, if the minimum number of followers for any edge 𝑒
′

becomes 1, as indicated by 𝑓min = 1, then the edge 𝑒
′
must have

the minimum number of followers. This is because any edge must

have at least one follower, which is itself. In this case, the followers

counting can terminate without considering the followers of the

remaining edges.

5.5.2 Greedy Heuristic By Ratio of Balanced Supports. Apart from
the greedy heuristic strategy by followers, we propose an alternative

approach that is greedy by balanced supports ratio. Instead of the

edge with minimum number of followers, this strategy takes the

edge 𝑒 with maximum value of Sup
−
𝐺 (𝑒)/ Sup𝐺 (𝑒) as the best edge

to remove in Line 6 of Algorithm 5.

Compared to the greedy heuristic by followers, the greedy heuris-

tic by balanced supports ratio takes a different perspective on best

edge selection. The most noticeable advantage of the greedy heuris-

tic strategy by balanced supports ratio is that is only takes up to

𝑂(∣𝐸∣) running time to identify the best edge to remove.

5.5.3 Complexities of Greedy Heuristics.

Theorem 7. The time-complexity of the Greedy framework is
𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)} + Sup𝐺 ((𝑢, 𝑣)) + 𝑆), where 𝑆 is
the time-complexity to select the best edge to remove in each iteration.

Proof. Theorem 3 states that the SBE-index construction takes

𝑂 (∑(𝑢,𝑣)∈𝐸 min {deg𝐺 (𝑢), deg𝐺 (𝑣)}) time, and Theorem 4 shows

that edge removal takes 𝑂(Sup𝐺 (𝑒)) time, where each edge can be

removed at most once. Meanwhile, note that the best edge selection

can occur at most 𝑂(∣𝐸∣) times. Thus, the theorem holds. □

5.6 Selecting 𝑘 and 𝜖

When applying the maximum balanced (𝑘, 𝜖)-bitruss model to an-

alyze signed bipartite graphs, choosing the right values for 𝑘 and

Figure 5: Performance of Counting Algorithms

𝜖 is critical. Users should consider the trade-off between cohesive

community detection and comprehensiveness based on user goals.

5.6.1 Effect of 𝑘 on Cohesion and Community Size. The parameter

𝑘 dictates the minimum number of balanced butterflies an edge

must participate in within the resulting subgraph. Higher 𝑘 values

emphasize tighter connections, resulting in smaller, more cohesive

communities within the graph. Additionally, the graph’s density

plays a role; dense graphs may require larger 𝑘 values to capture

cohesive substructures [47].

5.6.2 Effect of 𝜖 on Tolerance for Unbalanced Structures. The pa-
rameter 𝜖 represents the proportion of unbalanced butterflies the

subgraph can contain. Lower 𝜖 values (e.g., 0.3 or lower) prioritize

balanced structures, yielding subgraphs with fewer unbalanced

elements. Higher 𝜖 values allow for more tolerance of unbalanced

structures, potentially including diverse or noisy patterns.

6 EXPERIMENTAL STUDY
6.1 Experiment Setup
Since the balanced (𝑘, 𝜖)-bitruss is a new problem, while current

bitruss decomposition approaches [47][40] does not consider signs

and balanced butterflies, we evaluate the following algorithms, in

the experiments:

- countBL: Algorithm 1, the baseline signed butterfly counting.

- countI: Algorithm 2, our improved signed butterfly counting.

- Exact: Our exact solution mentioned in Section 5.4.

- GreedyF: Algorithm 5, the greedy heuristic maximum balanced

(𝑘, 𝜖)-bitruss searching algorithm that regards the best edge as the

edge with the fewest followers, introduced in Section 5.5.1.

- GreedyS: Algorithm 5, regarding the best edge as the edge with

highest unbalanced support ratio, introduced in Section 5.5.2.

- Random: Algorithm 5 but randomly selecting an edge in 𝐸𝐶 as the

best edge. For each tested 𝑘 and 𝜖 in each dataset, we repeat this

algorithm 10 times and record the average runtime and result sizes.

Since 𝐸𝐶 varies from time to time, it takes 𝑂(∣𝐸𝐶 ∣) time to select a

random edge in 𝐸𝐶 in our implementation.

Table 2 lists the details of the 9 real-world datasets we consider.

Dataset Bonanza
2

and WikiElec
3

are native signed bipartite graphs,

while others
45

are rating networks which can also be regarded as

2

http://www.bonanza.com

3

http://snap.stanford.edu

4

http://konect.cc

5

http://jmcauley.ucsd.edu/data/amazon/

340



Table 2: Statistics of Datasets. “Balanced” is short for balanced butterflies and “Unbalanced” is short for unbalanced butterflies.

Dataset ∣𝑈 ∣ ∣𝑉 ∣ ∣𝐸+∣ ∣𝐸−∣ Index Size Avg. deg 𝑘 Balanced Unalanced
AmazonWang (AW) 26,112 799 22,900 6,001 0.661 MB 2.148 3 2,986 589

Bonanza (BA) 7,919 1,973 35,805 738 6.177 MB 7.388 20 641,108 30,785

TripAdvisor (TA) 145,316 1,759 151,340 24,315 8.489 MB 2.389 3 8,373 2,954

WikiElec (WE) 2,384 6,129 81,378 22,369 233.2 MB 24.374 120 26,277,607 9,767,363

BookCrossing (BC) 77,802 185,955 363,250 70,402 327.8 MB 3.288 6 1,112,973 344,357

CiaoDVD (CD) 21,019 71,633 1,518,033 107,447 1684 MB 35.088 200 5,581,587,857 154,596,407

AmazonRating (AR) 2,146,057 1,230,915 4,954,292 788,966 6443 MB 3.401 6 27,355,430 8,493,874

Epinions (EP) 120,492 755,760 13,348,412 319,908 18393 MB 31.197 200 169,361,642,036 942,128,969

Amazon (AZ) 21,176,522 9,874,211 71,699,784 10,977,347 145606 MB 5.325 12 714,670,270 151,078,721

signed networks [21]. For these rating data, we set high ratings

(i.e., 3 and above out of 5) as positive and low rating as negative.

The total numbers of signed butterflies are shown in the Balanced
column and the Unbalanced column, and the sizes of the SBE

index are shown in the Index Size column. In the dataset Epinions,

even though there are over 170 billion butterflies, the size of the

SBE index does not exceed 20 GB.

Figure 6: Performance of Greedy Heuristics Algorithms with
Default Parameters

(a) AW (b) BA (c) TA

Figure 7: Performance Compared to Exact Solutions

(a) AW (b) BA (c) TA

Figure 8: Effectiveness Compared to Exact Solutions

(a) WE (b) BC (c) CD

(d) AR (e) EP (f) AZ

Figure 9: Performance of GreedyS and GreedyF Varying 𝑘

(a) WE (b) BC (c) CD

(d) AR (e) EP (f) AZ

Figure 10: Performance of GreedyS and GreedyF Varying 𝜖

Table 3: Parameter Selections on WE: Varying 𝑘 , 𝜖 = 0.3

𝑘 ∣𝐸+∣ ∣𝐸−∣ Balanced Unbalanced Avg. deg
15 74,542 10,234 22,783,447 3,035 32.94

30 73,036 9,387 22,745,255 2,211 35.93

60 70,184 8087 22,608,951 2,761 40.19

120 64,231 5,852 22,022,821 0 43.95

180 57,850 4,312 21,060,828 0 46.30

240 50,729 3,152 19,683,048 0 47.59

341



(a) WE (b) BC (c) CD

(d) AR (e) EP (f) AZ

Figure 11: Effectiveness of GreedyS and GreedyF Varying 𝑘

(a) WE (b) BC (c) CD

(d) AR (e) EP (f) AZ

Figure 12: Effectiveness of GreedyS and GreedyF Varying 𝜖

Figure 13: Scalability Test on Epinions with 𝑘 = 4, 𝜖 = 0.3

Table 4: Parameter Selections on WE: Varying 𝜖, 𝑘 = 120

𝜖 ∣𝐸+∣ ∣𝐸−∣ Balanced Unbalanced Avg. deg
0 64,378 5,817 22,025,322 0 43.91

0.2 64,343 5,847 22,024,512 0 43.94

0.4 64,399 5,856 22,043,184 9,867 43.99

0.5 64,425 5,903 22,054,310 17,481 44.02

0.6 67743 5852 22,269,633 387,069 44.46

0.8 70,130 16,504 25,701,195 9,005,633 48.59

1 70,471 17,036 22,022,821 9,574,670 48.62

Experiments of maximum balanced (𝑘, 𝜖)-bitruss searching al-

gorithms are conducted by varying parameters 𝑘 and 𝜖 . For each

dataset, the default value of 𝑘 (shown in column 𝑘) are decided

depending on the density, which can be reflected by the average de-

gree (shown in column Avg. deg). All algorithms are implemented
6

in C++11 and performed on a server with Intel Xeon Gold 6240R

CPU @2.40GHz and 1TB of memory. If an experiment does not

terminate in 100 hours, we terminate it and denote its runtime as

Inf.

6.2 Performance Evaluation of Signed Butterfly
Counting

Figure 5 reports the runtime of signed butterfly counting algorithms

countBL and countI. The results showed that count outperforms

countBL on all datasets, and the difference is larger for denser

graphs. Dataset CD and EP, which are the densest, showed a run-

time difference of more than 10 times. These findings suggest that

the countI algorithm is more efficient and scalable, especially for

larger and denser graphs. The efficiency of signed butterfly counting

plays a vital role in our maximum balanced (𝑘, 𝜖)-bitruss search-
ing algorithm. On dataset EP, for instance, the process of signed

butterfly counting occupies about 40% total runtime of GreedyS.

6.3 Evaluation of the Exact Solution
Due to the high time complexity of the Exact, we evaluate the ef-
fectiveness and performance of Exact, GreedyS, and GreedyF algo-
rithms only on the three small datasets (AW, BA, and TA) with spe-

cific values for𝑘 and 𝜖 . According to Figure 8, GreedyS and GreedyF
had result sizes very close to the exact result size, but GreedyS was

usually closer. This indicates that the greedy heuristic algorithms

usually provide near-optimal solutions on real datasets. Figure 7

displayed the runtime results of Exact, GreedyS, and GreedyF on
the three datasets, with varying 𝑘 and the same 𝜖 as in Figure 8.

Unlike Exact, which has exponential time complexity, GreedyS
and GreedyF had much lower time costs, further highlighting their

efficiency and practicality in real-world scenarios.

6.4 Evaluation of Greedy Heuristic Solutions
The runtime of algorithms GreedyS, GreedyF, and Random on 6

datasets with default 𝑘 and 𝜖 = 0.3 are visible in Figure 6. The

results are consistent to our analysis that GreedyS has lower time

complexity than GreedyF. Due to the additional time needed to

compute followers of edges on each iteration, GreedyF is much

slower in large and dense dataset, and does not terminate in 100

hours on the EP and AZ datasets. While both GreedyS and Random
algorithms share the same time complexity, it is worth noting that

GreedyS tends to outperform Random in terms of runtime. This

efficiency can be attributed to the fact that GreedyS prioritizes the

removal of edges associated with a high proportion of unbalanced

butterflies, leading to a more rapid reduction in the size of 𝐸𝐶 .

6.4.1 Evaluation of Greedy Heuristics Algorithms with Varying 𝑘 .
The evaluation of algorithms GreedyS and GreedyF with varying

𝑘 and 𝜖 = 0.3 on six datasets is shown in Figure 9 and Figure

11. Increasing 𝑘 signifies denser communities, resulting in smaller

6

https://github.com/qixiaoz/BalancedBitruss

342



result sizes for both algorithms across all datasets due to fewer

edges satisfying support requirements. Higher 𝑘 also improves our

pruning technique’s efficiency, reducing runtime. In Figure 11, we

display the edge sizes of the unsigned 𝑘-bitruss for various 𝑘 values,

significantly larger than the signed balanced results, emphasizing

the distinction between the two by excluding edges from unbal-

anced environments. For the EP dataset, GreedyF did not complete

due to time constraints, suggesting computational challenges with

larger datasets. However, on the remaining four datasets, GreedyF
consistently performed the worst, indicating that discarding edges

without considering unbalanced butterflies is not a prudent strat-

egy.

6.4.2 Evaluation of Greedy Heuristics Algorithms with Varying 𝜖 .
Algorithm performance (including GreedyS, GreedyF, and Random)
is assessed with varying 𝜖 on six datasets, as depicted in Figure 10

and Figure 12. GreedyS maintains stable runtime with changing

𝜖 , whereas Random experiences increased processing times with

decreasing 𝜖 . Conversely, GreedyF generally exhibits increased

runtime and result sizes as 𝜖 rises, attributed to edge appearance

and disappearance due to unbalanced support changes. Lower 𝜖

values cause GreedyF to have smaller results than GreedyS. Result
fluctuations in GreedyF are influenced by edge order for follower

computation and edges with just one follower, crucial for GreedyF’s
early termination.

6.5 Scalability Test
In this section, we conduct a scalability test to assess the runtime

performance GreedyS and GreedyF, on the EP dataset. We run

these two algorithms on the subgraphs by uniformly sampling the

edges from EP by varying edge size from 1M to 10M, and keeping

𝑘 = 4 and 𝜖 = 0.3. The results in Figure 13 clearly demonstrate that

GreedyS exhibits superior scalability compared to GreedyF.

6.6 Case Study
The TripAdvisor dataset (TA) is a compilation of a rating network

extracted from TripAdvisor, where users can provide positive or

negative ratings to hotels. In a case study involving a subset of this

network, our objective is to validate the effectiveness of the maxi-

mum balanced (𝑘, 𝜖)-bitruss analysis. Using the GreedyS algorithm,

we extract a balanced (8, 0.3)-bitruss, revealing a cohesive and stable
community composed of users (lower layer) and rated hotels (upper

layer). Within this community, each user-hotel rating is balanced

within its nested group, as depicted in the left portion of Figure 14.

Notably, our result contains no unbalanced butterflies. However,

if we were to seek an unsigned 8-bitruss instead, the result would

include 110 more ratings and 153 unbalanced butterflies, rendering

the discovered community less stable. The right side of Figure 14

displays balanced bicliques containing at least two users within

the same subgraph. These bicliques, however, have the effect of

fragmenting the community and causing certain edges within it to

be overlooked.

6.7 Evaluation of Parameter Selections
To understand how different values of 𝑘 and 𝜖 impact outcomes, we

analyzed the WE dataset using the GreedyS algorithm, exploring

a
b

c
d

e
f

g

c
b f

e a
d

g
d b d

Balanced Bitruss Balanced Bicliques

Figure 14: A Case Study on TripAdvisor Rating Network.

a range of 𝑘 and 𝜖 values. The results, summarized in Table 3 and

Table 4, provide valuable insights.

Table 3 shows that increasing 𝑘 raises the average degree but

reduces subgraph size. This indicates a preference for tightly con-

nected edges as 𝑘 increases. In Table 4, we observe that for 𝜖 values

up to 0.5, unbalanced butterflies are minimal compared to balanced

ones. However, beyond 𝜖 = 0.5, unbalanced butterflies increase

notably. Therefore, we recommend 𝜖 ≤ 0.3 and advise determining

𝑘 based on graph density and specific user requirements.

7 CONCLUSION
In this work, we formally define balanced (𝑘, 𝜖)-bitruss and the

maximum balanced (𝑘, 𝜖)-bitruss search problem. We proved that

this problem is NP-hard and that any nontrivial approximation so-

lution to this problem is also NP-hard. To tackle this challenge, we

developed novel strategies to speed up the counting of balanced and

unbalanced butterflies and their updates after edge removals. We

proposed two greedy heuristic algorithms, GreedyS and GreedyF.
Our experimental results showed that GreedyS is more efficient and

generates better results, while GreedyF focuses on the followers of

edges instead of the unbalanced butterflies, making it a relatively

shortsighted strategy. We conducted experiments on real-world

datasets and found that our two greedy heuristic algorithms gener-

ate results that are very close to the exact results but with much

less runtime. Therefore, we conclude that GreedyS is the preferred

solution for our problem.

ACKNOWLEDGMENTS
Lei Chen’s work is partially supported by National Science Founda-

tion of China (NSFC) under Grant No. U22B2060, the Hong Kong

RGC GRF Project 16213620, CRF Project C2004-21GF, RIF Project

R6020-19, AOE Project AoE/E-603/18, Theme-based project TRS

T41-603/20R, China NSFC No. 61729201, Guangdong Basic and Ap-

plied Basic Research Foundation 2019B151530001, Hong Kong ITC

ITF grants MHX/078/21 and PRP/004/22FX, Microsoft Research

Asia Collaborative Research Grant and HKUST-Webank joint re-

search lab grants. Yue Wang (corresponding author) is partially

supported by China NSFC (No.62002235).

343



REFERENCES
[1] Aman Abidi, Lu Chen, Chengfei Liu, and Rui Zhou. 2022. On Maximising the

Vertex Coverage for Top-𝑘 𝑡 -Bicliques in Bipartite Graphs. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 2346–2358.

[2] Sinan G Aksoy, Tamara G Kolda, and Ali Pinar. 2017. Measuring and modeling

bipartite graphs with community structure. Journal of Complex Networks 5, 4
(2017), 581–603.

[3] Pranay Anchuri and Malik Magdon-Ismail. 2012. Communities and balance in

signed networks: A spectral approach. In 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining. IEEE, 235–242.

[4] Tibor Antal, Pavel L Krapivsky, and Sidney Redner. 2005. Dynamics of social

balance on networks. Physical Review E 72, 3 (2005), 036121.

[5] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep

behavior in social networks. In Proceedings of the 22nd international conference
on World Wide Web. 119–130.

[6] Dorwin Cartwright and Frank Harary. 1956. Structural balance: a generalization

of Heider’s theory. Psychological review 63, 5 (1956), 277.

[7] Yulin Che, Zhuohang Lai, Shixuan Sun, Yue Wang, and Qiong Luo. 2020. Accel-

erating truss decomposition on heterogeneous processors. Proceedings of the
VLDB Endowment 13, 10 (2020), 1751–1764.

[8] Chen Chen, Yanping Wu, Renjie Sun, and Xiaoyang Wang. 2021. Maximum

signed 𝜃 -clique identification in large signed graphs. IEEE Transactions on
Knowledge and Data Engineering (2021).

[9] Chen Chen, Qiuyu Zhu, Yanping Wu, Renjie Sun, Xiaoyang Wang, and Xijuan

Liu. 2022. Efficient critical relationships identification in bipartite networks.

World Wide Web 25, 2 (2022), 741–761.
[10] Zi Chen, Long Yuan, Xuemin Lin, Lu Qin, and Jianye Yang. 2020. Efficient

maximal balanced clique enumeration in signed networks. In Proceedings of The
Web Conference 2020. 339–349.

[11] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National security agency technical report 16, 3.1 (2008), 1–29.
[12] Tyler Derr, Charu Aggarwal, and Jiliang Tang. 2018. Signed network modeling

based on structural balance theory. In Proceedings of the 27th ACM international
conference on information and knowledge management. 557–566.

[13] Tyler Derr, Cassidy Johnson, Yi Chang, and Jiliang Tang. 2019. Balance in signed

bipartite networks. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management. 1221–1230.

[14] Tyler Derr and Jiliang Tang. 2018. Congressional vote analysis using signed net-

works. In 2018 IEEE International Conference on Data MiningWorkshops (ICDMW).
IEEE, 1501–1502.

[15] Ming Gao, Ee-Peng Lim, David Lo, and Philips Kokoh Prasetyo. 2016. On detect-

ing maximal quasi antagonistic communities in signed graphs. Data Mining and
Knowledge Discovery (2016).

[16] Christos Giatsidis, Bogdan Cautis, Silviu Maniu, Dimitrios M Thilikos, and

Michalis Vazirgiannis. 2014. Quantifying trust dynamics in signed graphs, the

s-cores approach. In Proceedings of the 2014 SIAM International Conference on
Data Mining. SIAM, 668–676.

[17] Yang Hao, Mengqi Zhang, Xiaoyang Wang, and Chen Chen. 2020. Cohesive

subgraph detection in large bipartite networks. In 32nd International Conference
on Scientific and Statistical Database Management. 1–4.

[18] Fritz Heider. 1946. Attitudes and cognitive organization. The Journal of psychology
21, 1 (1946), 107–112.

[19] Zan Huang. 2010. Link prediction based on graph topology: The predictive value

of generalized clustering coefficient. Available at SSRN 1634014 (2010).
[20] Junghoon Kim, Hyun Ji Jeong, Sungsu Lim, and Jungeun Kim. 2023. Effective

and efficient core computation in signed networks. Information Sciences 634
(2023), 290–307.

[21] Wataru Kudo, Mao Nishiguchi, and Fujio Toriumi. 2020. Gcnext: graph convo-

lutional network with expanded balance theory for fraudulent user detection.

Social Network Analysis and Mining 10 (2020), 1–12.

[22] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting pos-

itive and negative links in online social networks. In Proceedings of the 19th
international conference on World wide web. 641–650.

[23] Rong-Hua Li, Qiangqiang Dai, Lu Qin, Guoren Wang, Xiaokui Xiao, Jeffrey Xu

Yu, and Shaojie Qiao. 2018. Efficient signed clique search in signed networks.

In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
245–256.

[24] Pedro G Lind, Marta C Gonzalez, and Hans J Herrmann. 2005. Cycles and

clustering in bipartite networks. Physical review E 72, 5 (2005), 056127.

[25] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2019. Efficient (𝛼 , 𝛽)-core computation: An index-based approach. In The World
Wide Web Conference. 1130–1141.

[26] Wensheng Luo, Kenli Li, Xu Zhou, Yunjun Gao, and Keqin Li. 2022. Maximum

Biplex Search over Bipartite Graphs. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 898–910.

[27] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum biclique search at billion scale. Proceedings of the VLDB
Endowment (2020).

[28] Julian O Morrissette. 1958. An experimental study of the theory of structural

balance. Human Relations 11, 3 (1958), 239–254.
[29] Garry Robins and Malcolm Alexander. 2004. Small worlds among interlocking

directors: Network structure and distance in bipartite graphs. Computational &
Mathematical Organization Theory 10 (2004), 69–94.

[30] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018.

Butterfly counting in bipartite networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2150–2159.

[31] Aida Sheshbolouki and M Tamer Özsu. 2022. sGrapp: Butterfly approximation in

streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD)
16, 4 (2022), 1–43.

[32] Jessica Shi and Julian Shun. 2020. Parallel algorithms for butterfly computations.

In Symposium on Algorithmic Principles of Computer Systems. SIAM, 16–30.

[33] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu. 2006. Min-

ing maximal quasi-bicliques to co-cluster stocks and financial ratios for value

investment. In Sixth International Conference on Data Mining (ICDM’06). IEEE,
1059–1063.

[34] Renjie Sun, Chen Chen, Xiaoyang Wang, Ying Zhang, and Xun Wang. 2020.

Stable community detection in signed social networks. IEEE Transactions on
Knowledge and Data Engineering 34, 10 (2020), 5051–5055.

[35] Renjie Sun, Yanping Wu, Chen Chen, Xiaoyang Wang, Wenjie Zhang, and

Xuemin Lin. 2022. Maximal balanced signed biclique enumeration in signed

bipartite graphs. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 1887–1899.

[36] Renjie Sun, Qiuyu Zhu, Chen Chen, Xiaoyang Wang, Ying Zhang, and Xun

Wang. 2020. Discovering cliques in signed networks based on balance theory.

In Database Systems for Advanced Applications: 25th International Conference,
DASFAA 2020, Jeju, South Korea, September 24–27, 2020, Proceedings, Part II 25.
Springer, 666–674.

[37] Vida Vukašinović, Jurij Šilc, and Risth Škrekovski. [n.d.]. Modeling acquaintance

networks based on balance theory. International Journal of Applied Mathematics
and Computer Science 24, 3 ([n. d.]), 683–696.

[38] Jia Wang, Ada Wai-Chee Fu, and James Cheng. 2014. Rectangle counting in large

bipartite graphs. In 2014 IEEE International Congress on Big Data. IEEE, 17–24.
[39] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex

Priority Based Butterfly Counting for Large-scale Bipartite Networks. PVLDB
(2019).

[40] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Effi-

cient bitruss decomposition for large-scale bipartite graphs. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 661–672.

[41] KaiWang, Xuemin Lin, Lu Qin,Wenjie Zhang, and Ying Zhang. 2023. Accelerated

butterfly counting with vertex priority on bipartite graphs. The VLDB Journal
32, 2 (2023), 257–281.

[42] Yanping Wu, Renjie Sun, Chen Chen, Xiaoyang Wang, and Qiuyu Zhu. 2020.

Maximum signed (𝑘, 𝑟 )-truss identification in signed networks. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
3337–3340.

[43] Zhaoming Wu, Charu C Aggarwal, and Jimeng Sun. 2016. The troll-trust model

for ranking in signed networks. In Proceedings of the Ninth ACM international
conference on Web Search and Data Mining. 447–456.

[44] Xianhang Zhang, Hanchen Wang, Jianke Yu, Chen Chen, Xiaoyang Wang, and

Wenjie Zhang. 2022. Bipartite graph capsule network. World Wide Web (2022),
1–20.

[45] Jun Zhao, Renjie Sun, Qiuyu Zhu, Xiaoyang Wang, and Chen Chen. 2020. Com-

munity identification in signed networks: a k-truss based model. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
2321–2324.

[46] Alexander Zhou, Yue Wang, and Lei Chen. 2021. Butterfly counting on uncertain

bipartite graphs. Proceedings of the VLDB Endowment 15, 2 (2021), 211–223.
[47] Zhaonian Zou. 2016. Bitruss decomposition of bipartite graphs. In Database

Systems for Advanced Applications: 21st International Conference, DASFAA 2016,
Dallas, TX, USA, April 16-19, 2016, Proceedings, Part II 21. Springer, 218–233.

344


	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Related Work
	3 Preliminaries
	3.1 Problem Definition

	4 Problem Analysis
	5 Solutions
	5.1 Signed Butterfly Counting
	5.2 Balanced / Unbalanced Supports Maintenance
	5.3 Pruning Unpromising Edges
	5.4 Exact Approach
	5.5 Greedy Heuristic Approaches
	5.6 Selecting k and ε

	6 Experimental Study
	6.1 Experiment Setup
	6.2 Performance Evaluation of Signed Butterfly Counting
	6.3 Evaluation of the Exact Solution
	6.4 Evaluation of Greedy Heuristic Solutions
	6.5 Scalability Test
	6.6 Case Study
	6.7 Evaluation of Parameter Selections

	7 Conclusion
	Acknowledgments
	References

