
Fainder: A Fast and Accurate Index
for Distribution-Aware Dataset Search

Lennart Behme
BIFOLD & TU Berlin
l.behme@tu-berlin.de

Sainyam Galhotra
Cornell University
sg@cs.cornell.edu

Kaustubh Beedkar
IIT Delhi

kbeedkar@cse.iitd.ac.in

Volker Markl
BIFOLD, TU Berlin & DFKI
volker.markl@tu-berlin.de

ABSTRACT

Efficient data discovery is crucial in the era of data-driven decision-
making. However, current practices face significant challenges due
to the intricacies of identifying datasets with specific distributional
characteristics, such as percentiles, when data repositories are de-
centralized. Traditional keyword-based search methods are insuffi-
cient for these complex requirements, often resulting in subopti-
mal dataset search results. To address these challenges, this paper
presents Fainder, a fast and accurate index for “percentile pred-
icates” on histogram-based data summaries, which streamlines
the search process for datasets with specific distributional require-
ments. Fainder can be constructed on heterogeneous histogram
collections and employs binary search in conjunction with multi-
step pruning techniques to efficiently identify search results for
percentile predicates. Thereby, it simplifies data provisioning and
improves the effectiveness of dataset discovery. Empirical evalua-
tion of our solution on three large-scale data repositories shows
that Fainder is effective for distribution-aware dataset search and
provides order-of-magnitude efficiency gains over baselines.

PVLDB Reference Format:

Lennart Behme, Sainyam Galhotra, Kaustubh Beedkar, and Volker Markl.
Fainder: A Fast and Accurate Index for Distribution-Aware Dataset Search.
PVLDB, 17(11): 3269 - 3282, 2024.
doi:10.14778/3681954.3681999

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/lbhm/fainder.

1 INTRODUCTION

In today’s data-driven world, where organizations collect vast
amounts of information from various sources, efficient and effective
data discovery has become indispensable. The increasing impor-
tance of data discovery is primarily driven by the growing popu-
larity of machine learning techniques, which require substantial
volumes of data. Consequently, this trend has led to a surge in data
sharing and trading within and across organizations [4, 33].

However, most data discovery systems (and hence data sharing
platforms) have limited utility due to two critical design choices
that we summarize in Table 1. First, these systems typically assume
that all datasets are completely accessible to the search algorithm for
indexing and processing [12, 13, 23, 25]. This assumption neglects

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681999

Table 1: Overview of query-driven dataset search approaches,

categorized by search mode and data access model.

Data access model

Search mode Full access Metadata access

Keyword [12, 13] [45, 46, 61]
By example‡ [8, 9, 12, 13, 50, 52] -
Distribution-aware [3, 14, 41] Fainder
‡ This includes finding joinable and unionable tables based on an input table.

the distributed nature of data repositories. Moving data to a central
server is often infeasible due to cost reasons and data owners’ reluc-
tance to relinquish control over their proprietary datasets. Instead, a
widely adopted data-sharing paradigm involves a distributed collec-
tion of data repositories, where each data provider only shares the
metadata with a search engine. This is commonly observed in data
market platforms, such as Datarade [19] and Dawex [20], as well as
federated data settings, such as Gaia-X [10] and Agora [54]. Second,
existing systems generally depend on users conducting keyword
search along with filters or providing example data to find relevant
datasets [12, 45]. Even though this search mode is intuitive, it limits
discovery in scenarios where users have specific data distribution
requirements. For example, users training amachine learningmodel
might seek datasets with a substantial number of samples from each
target group to avoid overfitting. More broadly, lack of access to
a representative sample for data analysis (also known as selection
bias) leads to flawed and unreliable outcomes. These challenges
are particularly evident in industrial settings due to repurposing or
reusing data [7, 17, 26, 63]. Several data science pipelines have failed
because of poor representation of training data [18, 40, 51, 53].

Together, the full data access assumption and restricted search
mode form a critical roadblock in developing practical data discov-
ery systems. We demonstrate this with the following example.

Example. Consider a data scientist training a cancer prediction
model. After developing a prototype, they want to test the robustness
of their solution with data from similar trials at other hospitals. To
qualify for their work, a dataset must cover different patient ages,
so at least 30% of patients should be younger than 40 and at least
30% older than 60. Since such studies contain sensitive information,
accessing them requires approval. Therefore, the datasets are not cen-
trally gathered but hosted by the organizations that own each dataset.
Consequently, the scientist must search through the publicly available
metadata of datasets across several independent data repositories.

While the status quo for search over decentralized data provides
basic functionality, it fails to address the nuanced complexities
of searching datasets with distributional requirements. In the ex-
ample above, our medical scientist only has two options when
using keyword-based dataset search: (1) either pose a general key-
word query (e.g., “cancer”) and manually review a large number

3269

https://doi.org/10.14778/3681954.3681999
https://github.com/lbhm/fainder
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681999
https://www.acm.org/publications/policies/artifact-review-and-badging-current

of datasets or (2) add more keywords to the query, hoping that all
those keywords are included in the dataset description so that no
relevant dataset is filtered out. As a consequence of these functional
limitations, users often face too many, off-topic, or no results at all.

In this work, we study the novel problem of distribution-aware
dataset search over decentralized data repositories, which comple-
ments existing search paradigms. To address the problem, we must
tackle three main challenges: (C1)Wemust develop easily adoptable
methods for searching over decentralized datasets; (C2) users must
be able to express distributional requirements in search queries; and
(C3) search engines must identify datasets that satisfy distributional
requirements accurately and efficiently at scale. To address all these
challenges, we propose Fainder, an index for distribution-aware
data discovery without raw data access, and a new query model.
(C1) Dataset profiles for search over decentralized data. Sim-
ilar to existing data discovery systems, Fainder assumes that data
providers share a profile for each of their datasets with a search
engine. To lower the barrier to enriching existing dataset profiles
with distribution-aware data synopses, a solution must require
as little additional information and effort beyond the status quo
as possible. One of the most widespread and simple yet flexible
synopses are histograms [16]. They are easy for data owners to gen-
erate and seamlessly integrate into dataset profiles. Some dataset
search engines, such as Auctus [12] or Kaggle [32], already present
histograms as a visual synopsis to the user (but do not use them
for distribution-aware search). Fainder allows each data owner
to create histograms of their data independently, as it is robust to
heterogeneous histograms. Thus, they may individually choose the
histogram granularity according to their data privacy sensitivity. If
a data owner refuses to provide histograms for a dataset, the search
engine can always fall back to only using existing search techniques.
(C2) Percentile predicates for specifying user requirements.

We introduce a new type of search predicate that we call percentile
predicate to offer a simple and intuitive way of specifying distribu-
tional requirements. Abstractly, a percentile predicate requires that
the dataset values from a given range must or must not represent
more than a certain percentage of all values. When composing mul-
tiple predicates, this allows users to approximate entire statistical
distributions, such as a normal distribution. To integrate with prior
work, we propose a simple query model based on Boolean algebra
that enables searching for datasets by seamlessly combining exist-
ing keyword-based techniques with distributional requirements.
(C3) Indexing for accurate and efficient dataset search. De-
signing an index for dataset search over decentralized data reposito-
ries requires taking multiple stakeholders into account: data owners
provide heterogeneous histograms, users expect accurate query re-
sults at interactive response times, and search engines aim to scale
to extensive dataset collections with minimal resource footprint.
We present two variants of Fainder to overcome this challenge.
Fainder Approx optimizes the execution time and allows users
to search with full precision or recall guarantees. Fainder Exact
combines these guarantees in a multi-step solution to prune the
search space efficiently. Both Fainder variants address histogram
heterogeneity by transforming the unique bins of independently
generated histograms into a globally aligned bin distribution. Lever-
aging the aligned bins, Fainder uses binary search at query time to

navigate the search space efficiently. Furthermore, we employ clus-
tering to optimize the trade-off between index accuracy and size.
Outline of Contributions. After introducing basic concepts and
our notation in Section 2, we make four major contributions.
• We formally define the problem of distribution-aware dataset

search on decentralized data repositories and propose a mini-
malistic yet effective query model that combines existing search
techniques (e.g., keywords) and percentile predicates (Section 3).

• We present Fainder (Section 4), an index for percentile predi-
cates that can be constructed on collections of heterogeneous,
independently generated histograms (Section 5).

• We introduce two query modes that trade off runtime and result
accuracy (Section 6). Fainder Approx achieves sublinear scaling
in the number of datasets while offering different trade-offs for
precision and recall. Fainder Exact yields exact query results
whilst being significantly faster than the state-of-the-art.
• We conduct an extensive experimental evaluation on real-world

open dataset collections (Section 7). Our evaluation shows that
Fainder Approx is up to more than two orders of magnitude
faster than our baselines. In addition, Fainder Exact also is up
to 25× faster than the state-of-the-art.
We close our study with a review of related work in Section 8

and an outlook on future research directions in Section 9. In short,
we are the first to investigate distribution-aware dataset search
over decentralized data repositories, which is a critical step towards
making dataset search practical.

2 PRELIMINARIES

We start by introducing basic definitions about decentralized data
repositories and presenting the notation we use throughout the
paper (summarized in Table 2).
Dataset. A dataset is a collection of related observations organized
and formatted in a particular way [15]. In this paper, we focus on
tabular datasets that contain at least one numerical column, as they
are both widespread and of particular interest when searching for
datasets that meet distributional requirements.

Definition (Tabular Dataset). A tabular dataset 𝐷 with a
schemaA≡⟨𝐴1,...,𝐴𝑙 ⟩ consists of 𝑙 columns and a collection of tuples
𝑇 such that 𝑡 ∈𝑇 contains 𝑙 values.

We refer to the 𝑖th column of a dataset 𝐷 as 𝐷 [𝑖]. Each dataset
(and its columns) is often accompanied by specific metadata used
for dataset search. For example, Google Dataset Search [45] allows
searching through textual dataset descriptions, while Auctus [12]
also supports search over column names and their types. Other
examples of metadata include row counts or spatiotemporal infor-
mation. We refer to these joint characteristics as dataset profiles.

Definition (Dataset Profile). A dataset profile 𝑃𝐷 is defined
as the properties or constraints the tuples in 𝐷 satisfy.

A dataset profile may contain any dataset description, such as
column headers, row counts, or licenses [2]. We assume that 𝑃𝐷
includes column identifiers, histograms of numerical columns, and
the unit of measurement of the histogram elements. Histograms
are widely used in data management: Database systems, such as
PostgreSQL, use them for query optimization [16], while dataset
search engines, such as Auctus [12], use them to visualize dataset

3270

D
at

a
re

po
si

to
ry

Data providers Search engine Data consumers

[…] and 50% of the people
are younger than 60.

𝒫𝑎𝑔𝑒,0.5,<,[0,60)

[…] and 30% of the people
have an income above 30K.

𝒫𝑖𝑛𝑐𝑜𝑚𝑒, 0.3,>, [30𝐾,∞)

Dataset search
queries

Profile ingestion

Index construction
(Section 5)

Query execution
(Section 6)

FAINDERD
at

a
re

po
si

to
ry

⋯ ⋯

D
at

a
re

po
si

to
ry

⋯ ⋯

Dataset profile

Name = census data
Year = 2023
Rows = 3014
Columns = {id, name, age, sex,…}
Description = “The dataset contains…”

Metadata

Age Income Status

Synopses

Figure 1: Schematic overview of distribution-aware dataset search and Fainder’s role in it: Data providers offer public dataset

profiles used by search engines to answer dataset search queries with distributional requirements effectively and efficiently.

contents. Since data owners can decide for which columns they
want to enable distribution-aware search and share histograms, we
consider them a low-barrier synopsis for enriching dataset profiles.
Histogram. A histogram is an approximate data synopsis that
discretizes a value collection into different bins and stores the fre-
quency of the values that fall into each bin [16]. Without loss of
generality, we assume that histograms contain relative frequencies
(i.e., densities) and that histogram bins are non-overlapping.

There are numerous ways to compute a histogram on top of
the values in a dataset [16]. Our setting is agnostic to the details
of histogram creation, as dataset search engines must handle a
heterogeneous set of dataset profiles provided by data owners. Con-
sequently, we define a histogram 𝐻𝐷 [𝑖] over a column 𝐷 [𝑖] as a
list of tuples ⟨𝑏,𝑣⟩, where bin 𝑏≡ [𝑏𝑙 ,𝑏ℎ) denotes an interval over
the values in 𝐷 [𝑖] and 𝑣 denotes the density of values in 𝑏. We use
edges (𝐻𝐷 [𝑖]) to refer to the list of all bin edges for the histogram
𝐻𝐷 [𝑖] and density (𝐻𝐷 [𝑖]) for the corresponding list of densities.
The subscript 𝐷 [𝑖] is ignored whenever it is clear from the context.
Data Repository. We consider a setting where different entities
(often called data providers) have their own set of datasets. A collec-
tion of datasets D= {𝐷1,...,𝐷𝑘 }, gathered by one or multiple data
providers, is called a data repository. Each data repository inde-
pendently computes synopses (histograms for our setting) along
with other metadata of its datasets and shares them with a search
engine. To support dataset search, the search engine processes these
synopses, collates a collection of histogramsH = {𝐻1,...,𝐻𝑛}, and
evaluates user queries with it to identify relevant datasets.

3 DISTRIBUTION-AWARE DATASET SEARCH

We formalize the problem of distribution-aware dataset search over
decentralized data repositories and discuss its research challenges.

3.1 Problem Definition

Figure 1 provides a semantic overview of the distribution-aware
dataset search setting. Based on the data market terminology by
Asudeh and Nargesian [3], we consider the passive-provider model,
where data owners provide information about their datasets to
search engines, and users come to a search engine to find relevant
datasets. We assume that users have complex search needs consist-
ing of multiple requirements about the data they seek. Specifically,
we focus on distributional requirements. In the following, we intro-
duce our query model and formalize the search problem.

Table 2: Notation overview.

Symbol Meaning Symbol Meaning Symbol Meaning

𝐷 Dataset 𝑏 Histogram bin 𝑛 # histograms
D Dataset collection 𝑐 Cluster I Fainder index
𝑃𝐷 Dataset profile of 𝐷 𝑘 # clusters 𝑄 Query
𝐻 Histogram B Bin budget K Keyword pred.
𝐻 ′ Aligned histogram B𝑐 Bin budget for 𝑐 P Percentile pred.
H Histogram collection H𝑐 Histograms in 𝑐 𝑆 Result set

Predicate. We model a user’s search query as a Boolean predicate
that can be checked with respect to any dataset or its corresponding
profile. Specifically, we consider keyword-based predicates, denoted
by K𝑤 (𝐷), that hold when 𝐷’s profile contains the specified key-
word𝑤 . For example, the predicate “title = ‘census’ ” returns true for
all datasets whose title field contains “census”. In contrast, the sim-
pler predicate “cancer” returns true whenever the word “cancer” ap-
pears anywhere in the dataset profile. To enable distribution-aware
dataset search, we additionally consider percentile predicates.

A percentile predicate specifies the condition for a specific dis-
tributional requirement. We define the predicate using the notions
of column identifier 𝐶 , fraction 0 < 𝑝 ≤ 1, comparison operator
𝜃 ∈ {<,≤,>,≥}, and range 𝑟 ≡ [𝑟𝑙 ,𝑟ℎ), where 𝑟𝑙 ,𝑟ℎ ∈R and 𝑟𝑙 <𝑟ℎ . For
a given𝐶 , 𝑝 , 𝜃 , and 𝑟 , the predicate P𝐶,𝑝,𝜃,𝑟 (𝐷) defined on a dataset
𝐷 holds whenever the dataset contains a column matched by𝐶 and
the comparison 𝑝𝜃 𝑓 is true, where 𝑓 is the fraction of values in the
column that lie within the range [𝑟𝑙 ,𝑟ℎ). Other range definitions
are possible but omitted for the sake of brevity. More formally:

P𝐶,𝑝,𝜃,𝑟 (𝐷)≔


true if ∃𝐷 [𝑖] :

(𝐷 [𝑖] ∈𝐶)∧
(
𝑝 𝜃
| {𝑥 :𝑥∈𝐷 [𝑖]∧𝑥∈[𝑟𝑙 ,𝑟ℎ) } |

|𝐷 [𝑖] |

)
false otherwise

The column identifier 𝐶 can be a simple string or a more complex
operation, such as a columnmatch based on semantic similarity [61].
In simple words, the predicate Page,0.5,≤,[0,60) (𝐷) holds if “dataset
𝐷 has a column ‘age’ and at least 50% of the people are younger than
60”. However, a key challenge of evaluating percentile predicates
over decentralized data repositories is that the search engine only
has access to dataset profiles instead of raw data. Therefore, wemust
design solutions capable of evaluating P(𝑃𝐷) rather than P(𝐷).
Query. A query 𝑄 is a Boolean combination of keyword and per-
centile predicates. Keyword-based dataset search has been exten-
sively studied in the literature [15, 45, 57, 61]. Here, we focus on
supporting distribution-aware search with 𝑄 (𝐷) ≡P(𝐷).

3271

We now define the distribution-aware dataset search problem.

Problem (Distribution-Aware Dataset Search). Given a col-
lection of data sources S, such that each source 𝑠 has a data repos-
itory D𝑠 = {𝐷1,...,𝐷𝑑 } and shares corresponding dataset profiles
M𝑠 =

{
𝑃𝐷1 ,...,𝑃𝐷𝑑

}
, and a dataset search query 𝑄 , find the set of

datasets 𝑆 = {𝐷 :𝐷 ∈D and 𝑄 (𝑃𝐷) holds}.

3.2 Research Challenges

Of the three challenges presented in Section 1, we address C1 by
using histograms and C2 by proposing percentile predicates. We
now discuss the difficulties of designing a fast and accurate solution
for evaluating percentile predicates on histograms (C3). Across all
stakeholders, the desiderata for a distribution-aware dataset search
engine are: (1) interactive query execution time with sublinear
scaling in the number of datasets, (2) accurate results, and (3) a
minimal resource (i.e., memory) footprint of any data structures
other than dataset profiles. These three dimensions form a triangle
with a performance trade-off since we cannot maximize all dimen-
sions simultaneously: producing accurate results in minimal time
requires precomputation, which implies higher memory usage; ac-
curate results without additional memory usage require an iterative
execution with linear runtime; and returning results in sublinear
time with minimal memory usage effectively means guessing with
arbitrary accuracy. Therefore, at least one dimension will always
perform worse than if we solely optimized a solution for it. Beyond
this trade-off, a central challenge of our problem is the handling of
heterogeneous histograms provided by the data owners.
Predicate EvaluationWithHistograms. In principle, evaluating
a percentile predicate using a histogram 𝐻 is straightforward, as
its bin edges and densities include the required information. Con-
sider the exemplary histograms from Figure 2 and our predicate
Page,0.5,≤,[0,60) , looking for datasets where at least 50% of the peo-
ple are younger than 60. To evaluate it, we sum up the density 𝑓

of all bins that fall into [𝑟𝑙 ,𝑟ℎ). For 𝐻𝑎 , we have 𝑓 = 0.6; thus, the
predicate holds. Likewise, it is straightforward to see that P does
not hold for 𝐻𝑏 . Yet, the triviality of this example does not extend
to decentralized data repositories, as each data provider indepen-
dently creates histograms of their data at will so that a bin may only
partially overlap with [𝑟𝑙 ,𝑟ℎ), such as in the case of histogram 𝐻𝑐 .

Evaluating a predicate on heterogeneous histograms often re-
quires estimating a bin’s contribution to 𝑓 . There are several intra-
bin value distribution estimation strategies [16]. Common strategies
are to underestimate (ignore bin 𝑏), overestimate (add the total den-
sity of 𝑏), or assume a continuous value distribution and add a
share of 𝑏’s density proportional to the overlap with range 𝑟 . Unless
we overestimate 𝑓 for 𝜃 =“<” and underestimate it for 𝜃 =“>”, we
risk filtering out dataset columns that match the predicate. Since a
histogram is a lossy representation of 𝐷 , this approach may pro-
duce false positives (a limitation of synopsis-based dataset search).
However, the approach guarantees full recall, a crucial requirement
to ensure effectiveness. If full recall is not required, the estimation
could be changed to achieve full precision or to maximize 𝐹1 score.
Predicate Evaluation Over Dataset Collections. A simple yet
effective way to evaluate a percentile predicate at the dataset collec-
tion level is a technique we call profile-scan. It iterates through
each histogram𝐻 , determines the bins that fall into the range 𝑟 , and

Hb
0.8

0.2

Hc

0.2 0.2
0.6

Ha

0.2 0.4 0.4

0 18 60 80 0 67 100 0 25 50 75

Figure 2: Histograms 𝑯𝒂 , 𝑯𝒃 , and 𝑯𝒄 .

adds 𝐻 to the result set 𝑆 if the predicate is fulfilled. This makes it
an accurate and memory-efficient solution, as it uses no additional
data structures. However, a major limitation is that it scales linearly
in the number of histograms. Even though profile-scan can filter
the histogram collection based on column identifier 𝐶 , a signifi-
cant number of histograms can remain after filtering. For example,
Kaggle [32] has more than 15000 datasets that match the keyword
“age” and more than 23000 datasets matching the query “date” as
of February 2024. This problem becomes exacerbated if users pose
generic column identifier predicates instead of keywords, such as
“match any column related to finance”. Thus, profile-scan leaves a
need for a fast and accurate as well as a fast and resource-efficient
solution, which we address in this paper.

The critical problem for the sublinear scalability of percentile
predicate evaluation is the heterogeneity of histograms from decen-
tralized data repositories. As the histograms have different numbers
and distributions of bins, we must individually identify the bins
within a predicate’s range per histogram. Allowing arbitrary value
ranges in a predicate further complicates the problem since an in-
finitely large number of possible ranges must be considered for
an index. If we instead require that either 𝑟𝑙 =−∞ or 𝑟ℎ =∞, we
can achieve orders of magnitude speedups for percentile predi-
cates with intelligent precomputation. Such “one-sided” intervals
for specifying a range enable us to execute queries similar to the
ones in our motivating example. Assuming that 𝑟𝑙 =−∞ or 𝑟ℎ =∞,
the range 𝑟 of a predicate effectively cuts the number line into two
parts. Consequently, we can rewrite any predicate with 𝑟𝑙 =−∞ into
a predicate with 𝑟ℎ =∞ (and vice versa) by setting 𝑟𝑙 =𝑟ℎ , replacing
𝑝 with 1−𝑝 and flipping the comparison operator 𝜃 . Without loss of
generality, we therefore assume 𝑟𝑙 =−∞ and simplify the notation
of a percentile predicate to P𝐶,𝑝,𝜃,𝑟ℎ (𝑃𝐷) for the rest of this paper.

4 FAINDER

We propose Fainder, an index for percentile predicates that attains
robust scalability and accurate (optionally exact) results to address
the identified research challenges. This section gives an overview
of Fainder’s architecture. Subsequently, we discuss the technical
details of index construction and querying in Sections 5 and 6.
Key Insights. The central intuition behind Fainder is that when-
ever all histograms have the same set of bins, we can precompute a
subset of cumulative densities to answer percentile predicates effi-
ciently with sublinear time complexity. Conceptually, we achieve a
logarithmic scaling by sorting the histograms’ cumulative densities
at each bin boundary and using a two-stage binary search over the
bins and densities to identify the result set. In practice, however, his-
togram heterogeneity prevents us from directly using binary search
on a collection. To overcome this limitation, Fainder homogenizes
histograms by mapping them to a collection-wide consistent bin dis-
tribution. Changing the bin edges of a histogram and reassigning a
bin’s density to one or multiple new bins is inherently approximate.
Thus, we must ensure that Fainder has high accuracy comparable
to profile-scan during index construction. Naive approaches to

3272

Querying

Online

Clustering
Histogram
alignment

Percentile
computation

Index construction

FAINDER

Figure 3: Overview of Fainder.

Do you require exact query results?

Do you have a tight memory budget?

Use Fainder Approx with
rebinning-based alignment.

Use Fainder Approx with
conversion-based alignment.

Use Fainder Exact with
conversion-based alignment.

No

Yes No

Yes

Figure 4: Flowchart for choosing a Fainder variant.

creating such a global distribution are constructing the union of all
original bin edges or creating 𝜖-sized bins between the minimum
and maximum value of a collection. However, these approaches
lead to an excessive memory footprint or subpar result accuracy, as
we show with a concrete example in Section 5.1. Fainder addresses
these challenges by creating a clustered global bin distribution in-
stead. Empirical evaluation on one million datasets (GitTables [29])
shows that our clustering approach reduces the memory footprint
from more than one TB to 3.2 GB without a substantial increase in
runtime while maintaining high accuracy.
System Overview. Figure 3 summarizes the lifecycle of Fainder.
The starting point is a histogram collection H and a mapping
column(𝐻) that projects each histogram to its associated column
identifier. At first, Fainder clustersH based on the bin edges of
each histogram. As part of the clustering phase, we must decide
what share of the global bin budget (i.e., memory budget) we assign
to each cluster and how the bin edges within a cluster should be dis-
tributed. Next, Fainder aligns the histogramsH𝑐 in a cluster 𝑐 by
distributing the original bin density density(𝐻) to density(𝐻 ′)
based on the cluster bins edges(H𝑐). For this, we introduce two
alternative histogram alignment techniques, rebinning and conver-
sion, that offer different trade-offs for precision, recall, and index
size. Having aligned all histograms in a cluster, Fainder indexes
them by precomputing and sorting the cumulative density per his-
togram and bin. Finally, Fainder evaluates percentile predicates
using binary search at query time. Like any search index, Fainder
amortizes its additional memory consumption and one-time con-
struction cost through repeated execution time savings each time it
evaluates a predicate. We discuss the conceptual index maintenance
costs in Section 5.3 and experimentally evaluate them in Section 7.4.
Index Variants. The two histogram alignment techniques enable
us to design three unique Fainder variants that cater to different re-
quirements. Figure 4 summarizes themwith guidelines for choosing
an appropriate version. If exact results are not required or execution
time is paramount, rebinning and conversion offer two alternative
FainderApprox variants.While rebinningminimizes the index size
and construction time, conversion allows users to select a full preci-
sion or recall guarantee at query time. Thus, Fainder Exact utilizes
a conversion-based index to efficiently prune the search space be-
fore conducting profile-scan on a small subset of histograms.
Note that a conversion-based index can be used for both approx-
imate and exact results based on the runtime preference per query.
Therefore, the primary decision during index construction is to
choose either rebinning- or conversion-based histogram alignment.

0 4020 60 80

0.25 0.25 0.25 0.25

1 43 5 8
0.1 0.4 0.2 0.3

4010 70 100

0.6 0.10.3

10 2 3
0.3 0.20.5

𝐻1
𝐻2

𝐻3 𝐻4

H1 H2

Figure 5: Histograms 𝐻1–𝐻4 and clustersH1,H2.

5 INDEX CONSTRUCTION

We discuss the construction of Fainder, which consists of the steps
clustering, histogram alignment, and percentile computation.

5.1 Clustering

The clustering phase computes a feature vector for each histogram,
clusters them, and defines the aligned bins for each cluster. The
motivation for this phase are the bin width and value range differ-
ences between histograms in a dataset collection. To illustrate this,
consider the histogram collection from Figure 5, which we use as a
running example throughout this section, and assume that there
is another histogram 𝐻5 with edges(𝐻5)= [−100,−85,−70] (not de-
picted for brevity). The global value range of this collection is [-100,
100]. However, no histogram covers the interval (-70, 0). Therefore,
allocating bins in the global bin distribution for this region would
be a waste of space, as there are no density changes. Furthermore,
𝐻1 and 𝐻4 both cover the interval [0, 3] but with vastly different
bin widths. Thus, converting edges(𝐻1) and edges(𝐻4) to a joint
bin distribution would be too detailed for 𝐻1 or too coarse for 𝐻4.
Considering that Fainder should have a minimal memory foot-
print, aligned bins must only cover relevant parts of the global
value range with a locally appropriate bin width to achieve accu-
rate query responses efficiently. Since we do not know user queries
in advance, an optimal solution is query-agnostic and minimizes
the information loss between original and global bins, given a user-
defined bin budget B. Formally, we consider the overlap of each
original bin 𝑏𝑖 ≡ [𝑏𝑖𝑙 ,𝑏𝑖ℎ) with the closest global bin 𝑏𝑔

𝑗
as a proxy

for mitigating information loss and thus aim to maximize it:

argmax
𝑏𝑔

𝑂 =
∑︁
𝑖

max
𝑗

©­­«
max

(
min(𝑏

𝑖ℎ
,𝑏
𝑔

𝑗ℎ
)−max(𝑏

𝑖𝑙
,𝑏
𝑔

𝑗𝑙
),0

)
max

(
width(𝑏𝑖),width(𝑏𝑔𝑗)

) ª®®¬ (1)

The cumulative overlap 𝑂 reflects the overlap between an original
bin and the most closely fitting global bin (red), normalized by the
bin width (blue), and summed across original bins (brown). If we
consider each possible global bin as a unit-weight item whose value
is its marginal improvement of 𝑂 , finding an optimal solution with
a limited number of bins is a variation of the knapsack problem
(i.e., NP-hard). Therefore, we use a three-step procedure based on
clustering to break down the global bin definition problem into
smaller parts and efficiently find an approximate solution.
Clustering Features. Clustering aims to partition the histogram
collectionH into sets of histograms that cover similar value ranges
with similar bin widths. Therefore, we compute a feature vector

𝒗𝐻 =
[
min(edges(𝐻)) max(edges(𝐻)) avgWidth(edges(𝐻))

]

3273

0 4020 60 80

4010 70 100

0 5025 75 100

𝐻1
𝐻3
H1

0 21 3

31 8

0 42 6 8

4 5

𝐻4
𝐻2
H2

Figure 6: Cluster bin assignment forH1 andH2 (B=8).

0 4020 60 805025 75 100

0.25 0.25 0.25 0.25

0.3125 0.3125 0.3125

0.0675

(a) 𝐻1→𝐻 ′1

1 43 5 80 2 6

0.1 0.4 0.2 0.30.05

0.45

0.3 0.2

(b) 𝐻2→𝐻 ′2

4010 70 1000 5025 75

0.6 0.3 0.1

0.3
0.4

0.217

0.083

(c) 𝐻3→𝐻 ′3

0.8

10 2 3 4 6 8
0.5 0.3 0.2

0.2

0.0 0.0

(d) 𝐻4→𝐻 ′4
Figure 7: Rebinning-based histogram alignment. The aligned

histogram bins and densities are shown in red.

for each histogram, where avgWidth represents the average bin
width of a histogram. Due to the heterogeneity of histograms, di-
rectly clustering the feature vectors would yield suboptimal results.
Therefore, we preprocess them with a non-linear quantile trans-
form [49], which maps all features to a uniform distribution on the
interval [0,1] to reduce the impact of outliers. The intuition for this
transformation is to make the different value scales of our features
more directly comparable while being robust to outliers.
Clustering Algorithm. Fainder requires a scalable clustering
algorithm to partition all histograms into reasonable, ideally bal-
anced clusters. Conceptually, the clustering algorithm choice is a
hyperparameter of Fainder and orthogonal to the other stages.
Concretely, we use k-Means [37] for clustering and discuss our
investigation of alternative clustering algorithms in Section 7.3.
Cluster Bin Assignment. After clustering, we must distribute the
global bin budget B across clusters. Figure 6 demonstrates this final
step of the clustering phase with our running example. The simplest
method is to assign a budget proportional to the cluster size:

B𝑐 =max
(
1,

⌊
B |H𝑐 |∑𝑘

𝑖=1 |H𝑖 |

⌋)
(2)

However, in the worst case, this results in small clusters only con-
sisting of a single bin, whereas large clusters might receive a much
more fine-grained bin width than needed. Therefore, we use addi-
tive smoothing [38] to anneal the proportional bin budget towards
a uniform assignment based on the parameter 𝛼 . Given a cluster
(value range) and bin budget, we create equi-width bins edges(H𝑐)
for each cluster. Conceptually, the cluster bin assignment strategy
is a hyperparameter that a search engine operator can adapt. For
example, we could instead allocate the same bin budget to each clus-
ter or choose an individual bin definition algorithm for each cluster,
such as equi-height bins (which are more costly to compute).

5.2 Histogram Alignment

Given a cluster of histogramsH𝑐 and its cluster bins edges(H𝑐),
the task of histogram alignment is to transform each 𝐻 ∈H𝑐 to 𝐻 ′,
such that density(𝐻 ′) represents the original value distribution

of 𝐻 on edges(H𝑐). This requires distributing the density of each
original bin to one or multiple new bins. Consequently, histogram
alignment requires approximating the data distribution within a
bin and strongly influences the downstream index accuracy.

We present two alternative approaches for histogram alignment
that offer different trade-offs between index accuracy and resource
requirements. Rebinning aims to minimize the index size but does
not provide a formal accuracy guarantee. It allows the system oper-
ator to make an assumption about the intra-bin value distribution
and will balance precision and recall if the assumption holds. While
rebinning is an intuitive and efficient way to align histograms, there
are scenarios where guaranteeing total precision or recall is critical.
For example, precision is essential if users only want to review a
few guaranteed true results. Contrarily, total recall is crucial to
use Fainder as a pruning tool for an exact solution. Thus, conver-
sion ensures total recall or precision at query time but requires
additional storage compared to rebinning.
Rebinning. The principal idea of rebinning is to compute the
overlap interval 𝑜𝑖 𝑗 = [max(𝑏𝑖𝑙 ,𝑏 𝑗𝑙),min(𝑏𝑖ℎ,𝑏 𝑗ℎ)) between all pairs
of bins 𝑏𝑖 from the original histogram and 𝑏 𝑗 from the respec-
tive cluster bins. Given 𝑜𝑖 𝑗 , we compute the fraction of the orig-
inal bin’s density density(𝐻) [𝑖] that lies within 𝑜𝑖 𝑗 and add it
to density(𝐻 ′) [𝑗]. Since a histogram does not contain informa-
tion about the distribution of values within a bin, rebinning must
approximate this fraction if 𝑜𝑖 𝑗 ≠ 𝑏𝑖 . The simplest intra-bin den-
sity estimation assumes a uniform value distribution within a bin
(i.e., we add width(𝑜𝑖 𝑗)

width(𝑏𝑖) % of𝑏𝑖 ’s density to𝑏 𝑗) [16]. However, a search
engine can make other assumptions about the data distribution. For
instance, cubic spline interpolation is a more costly alternative but
can better estimate non-uniform value distributions.

Figure 7 continues our running example and shows how to rebin
𝐻1–𝐻4 based on the cluster bins. For example, the fourth bin of 𝐻2
has the range [5,8]. Thus, its overlapwithH2 [2] is𝑜32= [5,6). Under
a continuous value assumption, this means that one-third of𝐻2 [3]’s
density (0.1) is assigned to density(𝐻 ′2) [2], which, together with
the contributions from 𝐻2 [2], has a total density of 0.3.
Conversion. The central intuition of conversion-based histogram
alignment is to compute a lower and upper bound for the density at
each bin. To compute these bounds, we create a conversion matrix
𝐶𝑀 for every array pair (edges(𝐻), edges(H𝑐)) of original bins
and cluster bins. 𝐶𝑀 is a Boolean matrix that is true for each bin
pair that partially or fully overlaps. Based on 𝐶𝑀 , we know which
original bin might or must contribute to the density of any bin in
𝐻 ′. Since the original and cluster bins form an n:m relationship, we
cannot assume that the upper bound of 𝐻 ′ [𝑖] is the lower bound of
𝐻 ′ [𝑖+1]. This requires us to store two numbers per bin, resulting in
a 2× index size compared to rebinning. At the same time, conversion
enables predicate evaluation with full precision or recall, as we do
not perform any intra-bin estimation but fully add density(𝐻) [𝑖]
to density(𝐻 ′) [𝑗] if it contributes to the lower or upper bound
of the bin’s density. Depending on the comparison operator in a
predicate, Fainder uses the respective density bound to prevent
false positives or negatives. Given a query, such as “at least 50% of
the values are lower than 60” with a total recall requirement, the
upper density bound lets us filter out those histograms that do not
have a cumulative density higher than 50% in the bin where 60 lies.

3274

1 1 0 0

0 1 0 0

0 0 1 0

0 0 1 1ed
ge
s
(𝐻

2)
edges(H2)

[0,2) [2,4) [4,6) [6,8]

[1,3)

[3,4)

[4,5)

[5,8] 1 43 5 80 2 6
0.1 0.4 0.2 0.3

0, 0.1

0.4, 0.5 0.2, 0.5

0, 0.3

𝐶𝑀 (𝐻2,H2) 𝐻2→𝐻 ′2

Lo
w
er

bo
un

d
U
pp
er

bo
un

d

Figure 8: Conversion-based histogram alignment: (left) con-

version matrix for computing percentile bounds, (right)

aligned histogram with lower and upper bounds in red.

25 50 750 100

0.625

0.7

0

0

0.3

0.3125

0.917

0.9375

1

1

H1 H3

2 4 60 8

0.5

1

0

0

0.05

0.8

0.8

1

1

1

H2 H4H1 H2

Aligned bin edges

Cumulative densities

Histogram pointers

Figure 9: Rebinning-based Fainder index for 𝐻1–𝐻4. Red
color outlines evaluating the predicate “at least 65% of the val-
ues are less than 50”. Dashed arrows are histogram pointers.

Figure 8 shows the conversion matrix for histogram 𝐻2 and clus-
terH2 on the left. On the right, we visualize the bin-wise conversion
of𝐻2. In practice, we do not convert each bin separately but directly
compute the lower and upper bounds for the cumulative density of
a bin. By knowing which cluster bins an original bin partially con-
tributes to, we also know that this bin must fully contribute to the
cumulative density of all following cluster bins, highlighted by the
green lower bound area. The orange upper bound area consists of
the lower bound area and the bins whose contribution is unclear.We
compute the cumulative bounds by summing up the density of all
original bins that contribute to a cluster bin’s lower or upper bound.
The cumulative density of𝐻 ′2 [2], for example, is bounded by [0.5,1]
since the first two bins of𝐻2 (green area) fully contribute to the bin’s
density. In contrast, the orange area (bins 1-4) comprises the original
bins that might contribute to the cumulative density of 𝐻 ′2 [2].

5.3 Percentile Computation

The percentile computation phase consists of initialization, density
summation, and sorting. We demonstrate its result in the upper part
of Figure 9. For each cluster 𝑐 , Fainder creates a (𝑛𝑐×B𝑐) array to
store percentiles and a pointer array of the same size to keep a ref-
erence to the respective histograms. For conversion-based indices,
this array pair is created twice for the lower and upper percentile
bounds. Next, Fainder computes the cumulative density per cluster
bin and histogram. Since all histograms in a cluster have the same
bins, Fainder uses vectorization to compute the cumulative sums
efficiently and stores them in the percentile array. Lastly, we sort
the percentile array and corresponding pointers column-wise. This
way, Fainder knows that all histogram pointers after a given one
in the current bin have an equal or higher cumulative density.
Index Size and Maintenance Costs. Fainder’s query execution
time improvements must justify its overhead, specifically the mem-
ory consumption and maintenance cost. Without clustering, Fain-
der’s asymptotic space complexity is 𝑂 (𝑛B), as we must store a
percentile-pointer pair for each histogram and global bin. However,
with clustering, we do not have to process the full Cartesian product
of histograms and bins across clusters, making construction faster

Algorithm 1: Percentile predicate evaluation with Fainder.
Input: index I, cluster bins {edges(H𝑐) }𝑘𝑐=1 , predicate P
Output: Solution set 𝑆

1 𝐶,𝑝,𝜃,𝑟ℎ←P, 𝑆←{ }, 𝑙←0
2 if 𝜃 ∈ {<,≤} then 𝑙←1 // Upper bound for “at least” predicates

3 for 𝑐←1 to 𝑘 do

4 if min(edges(H𝑐)) ≤ 𝑟ℎ ≤ max(edges(H𝑐)) then
5 𝑖←binarySearch(edges(H𝑐),𝑟ℎ) // Bin index 𝑖

6 𝑗←binarySearch(I𝑃
𝑐𝑙
[:,𝑖],𝑝) // Histogram index 𝑗

7 if 𝜃 ∈ {<,≤} then // “at least” predicate

8 𝑆←𝑆∪I𝐻
𝑐𝑙
[𝑗 :,𝑖] // Include all rows after 𝑗

9 else // “at most” predicate

10 𝑆←𝑆∪I𝐻
𝑐𝑙
[: 𝑗,𝑖] // Include all rows before 𝑗

11 else // 𝑟ℎ not in cluster range

12 if (𝑟ℎ ≤ min(edges(H𝑐))∧𝜃 ∈ {>,≥}) ∨
(𝑟ℎ ≥ max(edges(H𝑐))∧𝜃 ∈ {<,≤}) then

13 𝑆←𝑆∪I𝐻
𝑐𝑙

// Add all pointers from cluster

14 foreach 𝑠 ∈𝑆 do

15 if column(𝑠) ∉𝐶 then 𝑆←𝑆−𝑠
16 return S

and the index smaller. The more clusters an index has, and the more
evenly balanced they are, the smaller the size of Fainder. In the
case of a perfectly even distribution, the size shrinks to 𝑂 (𝑛B

𝑘
).

The maintenance costs of Fainder are divided into one-time
construction costs and repeated histogram insertion and deletion
costs. Since we have to initially cluster and individually align each
histogram, the construction costs scale linearly with 𝑛. However,
these costs are mitigated by the fact that an index is seldom created
but often queried. More importantly, we can insert into and delete
from Fainder at minimal cost since histogram alignment is an
incremental process as long as we do not change the cluster bins
and assign new histograms to existing clusters.

6 INDEX QUERYING

We discuss using Fainder’s design for fast and accurate percentile
predicate evaluation. Our index offers two query modes, Fainder
Approx and Fainder Exact, which we delineate in this section.

6.1 Fainder Approx

The approximate version of our index is designed to minimize run-
time while offering two different approaches to trade off resource
efficiency and accuracy guarantees. Algorithm 1 shows the query
procedure for a conversion-based index with full recall guarantees.
Formally, Fainder is a data structure I≡ (I𝑃 ,I𝐻) that consists of
percentile and histogram pointer arrays. We use I𝑐𝑙 to denote the
cluster 𝑐 ∈ {1,...,𝑘} and the lower or upper percentile limit 𝑙 ∈ {0,1}.
Fainder first decides which bound to use based on the predicate’s
comparison operator 𝜃 . For a rebinning-based index, 𝑙 is always 0.
Then, it iterates through each index cluster 𝑐 . If the query’s range
value 𝑟ℎ does not fall into the range of a cluster, Fainder adds
either all or no histograms from the cluster to 𝑆 , depending on 𝜃

and whether 𝑟ℎ lies above or below the cluster range. Otherwise,
Fainder first performs binary search to identify which cluster bin
𝑟ℎ falls into (line 5). Then, it conducts another binary search within
that bin to identify the first (for “at least” predicates) or last (for
“at most”) histogram that matches 𝑝 (line 6). Finally, it adds the his-
togram pointer from the identified cell and all following (“at least”,

3275

line 8) or preceding (“at most”, line 10) pointers from the column to
𝑆 . The query procedures for rebinning- or conversion-based indices
with total precision differ from Algorithm 1 in a few conditional
statements that we omit for improved readability.

Figure 9 concludes our running example by visualizing the pred-
icate “at least 65% of the values are less than 50” on our example
index (in red). In clusterH1, 𝐻1 has a cumulative density of only
0.625 at bin edge 50, wherefore it is excluded from the result. For
H2, we can directly append all histograms to the result without
performing a binary search since the cluster range implies that
100% of all values must be smaller than or equal to eight.

Asymptotically, the time complexity of Fainder Approxwithout
clustering is 𝑂 (log(𝑛) log(B) + |𝑆 |), where |𝑆 | denotes the result
size. With 𝑘 clusters of asymptotically similar size, the complexity
changes to 𝑂 (log(𝑛

𝑘
)log(B

𝑘
)𝑘+|𝑆 |). In Section 7.4, we analyze the

practical impact of 𝑘 and B on runtime, accuracy, and index size.

6.2 Fainder Exact

While Fainder Approx is a fast and resource-efficient solution, it
does not address the requirement of a fast and accurate solution
from the performance triangle we discussed in Section 3.2. To fill
this gap, we present Fainder Exact, a multi-step extension of our
index. Albeit Fainder is an approximate index in its core, we use
conversion’s recall and precision guarantees to construct an exact
solution that is up to 25× faster than profile-scan in practice.

Fainder Exact uses Fainder Approx as an effective pruning
technique in a three-step solution by leveraging the accuracy guar-
antees of conversion. First, we use the recall variant of Fainder Ap-
prox to filter out most false results while preventing false negatives.
Next, we apply Fainder with total precision to identify histograms
that definitely are part of the result set. At last, we perform profile-
scan on the set of results that are part of the full recall but not the
full precision result to filter out the remaining false positives. In our
evaluation, Fainder Exact had to evaluate an order of magnitude
fewer histograms than a full profile-scan in the third stage with-
out impairing accuracy. Running a query in total recall as well as to-
tal precisionmode and comparing the results also benefits the user’s
search experience without a subsequent profile-scan. By com-
puting the set difference between the two results, a search engine
can categorize results as “guaranteed” or “potential”, giving users
more information for choosing which datasets to review manually.

7 EVALUATION

We experimentally evaluate the efficacy of Fainder in three steps.
After describing our setup, we first investigate the efficiency of
Fainder. Next, we analyze our approach’s effectiveness. Lastly, we
conduct a set of micro-benchmarks to demonstrate how Fainder’s
core parameters jointly influence all dimensions of its performance.

Most importantly, our evaluation shows that Fainder Exact
dominates our baselines in a skyline analysis while FainderApprox
is up to more than two orders of magnitude faster than them.

7.1 Experimental Setup

We implemented our prototype for Fainder in Python, leveraging
performance optimizations from packages like NumPy and scikit-
learn [49]. Our experiments used an Ubuntu 22.04 server with two
Intel Xeon 6330 CPUs (112 vCores @ 2.0GHz) and 512 GB RAM.

Table 3: Overview of benchmark dataset collections. Size

represents the total size of all files in the collection.

Name ID # Datasets Size (GB) # Histograms

SportsTables [35] ST 1183 0.3 19862
Open Data [23] OD 5966 29 68313
GitTables [29] GT 1018649 39 5017619

Dataset Collections. Table 3 summarizes the three real-world
dataset collections we used. SportsTables [35] is interesting to ana-
lyze because it has been explicitly curated to contain many numeric
columns with realistic value distributions. Open Data [23] is an
excerpt of datasets from Open Data Portal Watch [44], which ag-
gregates statistics from 280 open data portals, such as NYC Open
Data. Lastly, we used GitTables [29] to evaluate the scalability of
Fainder. None of the collections currently include dataset profiles
with histograms, wherefore we downloaded the raw data and gener-
ated histograms ourselves. We randomized the number of bins per
histogram to simulate heterogeneous dataset profiles from different
data repositories. The histogram value range and average bin width
of Open Data and GitTables span more than 15 orders of magnitude.
Baselines. profile-scan (Section 3.2) is a natural baseline for our
problem. We consider the results of profile-scan as the ground
truth for a query since there is no way to compute a more accurate
answer to a percentile predicate based on histograms. In addition,
binsort is an optimized baseline that precomputes lower and upper
percentile estimates for each bin edge and sorts the percentiles by
their bin edge. At query time, binsort can use binary search on the
bin edge domain but has to perform a linear scan over the results to
evaluate the percentile requirement since there is no total sort order
over both dimensions. Thus, it represents a middle point between
profile-scan and Fainder, which is able to leverage binary search
on both dimensions. To evaluate the space-efficiency of Fainder,
we furthermore introduce normal-dist, which approximates each
numerical column with a normal distribution and thus only has to
store two values per column instead of B𝑐 values per histogram.
Note that while normal-dist is space-efficient, it does not achieve
a sublinear execution time, as the two parameters of a normal
distribution do not have a total ordering in one dimension.
Benchmark Queries. To the best of our knowledge, there is no
benchmark for distribution-aware dataset search queries, requiring
us to define the set of evaluation queries ourselves. Since there also
is no widely agreed-upon metric to estimate the “difficulty” of a
dataset search query in terms of answering it quickly and accu-
rately, we randomly generated a diverse set of 10000 queries with
percentile predicates and categorized them based on three different
metrics: query selectivity describes the percentage of histograms a
query matches (e.g., 0.9 means that 90% of the histograms match a
query); the share of clustermatchesmeasures the number of clusters
in an index that a predicate’s value range overlaps with (since Fain-
der can directly tell if all or no histograms in a cluster match a predi-
cate if the value ranges do not overlap); finally, the bin edge matches
count how many original histogram bin edges fall on the edge of
a predicate’s value range (because predicates with many matches
might be harder to evaluate accurately after aligning the histogram
bins). In a preliminary experiment, we analyzed the value distri-
bution of each metric across the generated queries and our dataset
collections. We observed that the query selectivity metric splits the

3276

profile-scan binsort Fainder w/ results w/o results

101

103

105

T
im

e
(s
)

48310
7906

284

0.29100

101

102

188

36.3

1.53

0.40

(a) SportsTables

100

101

102

103 654

109

5.44

0.66

(b) Open Data

101

103

105 48310
7906

284

0.29

(c) GitTables

Figure 10: Runtime comparison of profile-scan, binsort,
and Fainder Approx over 999 queries.

profile-scan binsort Fainder w/ results w/o results

100

101

102

103

T
im

e
(s

)

487

71.3

2.55

0.29

100

2.79

0.55

0.350.37

(a) SportsTables

100

101 7.26

1.62

0.540.60

(b) Open Data

100

101

102

103 487

71.3

2.55

0.29

(c) GitTables

Figure 11: Runtime comparison of profile-scan, binsort,
and Fainder Approx over 999 queries with low selectivity.

queries into subsets with a high (>90%), medium (10-90%), or low
(<10%) selectivity, whereas the other two metrics did not prove to be
robust query categorizations. Most predicate ranges overlapwith 10-
40% of the clusters, while the number of exact matches with the orig-
inal bin edges is zero for next to all queries. Therefore, we catego-
rized based on query selectivity and randomly sampled 333 queries
from each selectivity group to collate a diverse set of 999 benchmark
queries. In addition, we sampled another 100 queries per category
to obtain a set of 300 queries that we used for a comprehensive grid
search (see Section 7.3) to identify the best parameters of our index.

7.2 Solution Efficiency

We start our evaluation of Fainder with an efficiency analysis
and present five experiments: a runtime comparison, a scalability
analysis, runtime breakdowns of Fainder Approx and Exact, and
an index construction time analysis. Since normal-dist has no
runtime advantage over profile-scan, we omit it in this section.
Runtime Comparison. Figure 10 shows an execution time com-
parison for our 999 test queries. The figure highlights that Fainder
Approx is more than two orders of magnitude faster than pro-
file-scan and 20−28× faster than binsort on all three dataset
collections. Furthermore, we observe that FainderApprox achieves
interactive execution times for each collection if we scale down the
runtime to an individual predicate evaluation.

As we only benchmark the runtime of individual percentile pred-
icates instead of large composite queries in this experiment, the
result set 𝑆 can become quite large. Therefore, we also ran a modi-
fied version of Fainder that performs all steps from Algorithm 1
until line 13 but returns a dummy result of size 1 to filter out the
linear time impact of processing the result set. This “without re-
sults” execution time demonstrates the potential runtime impact
of 𝑆 . While the difference to the regular execution of Fainder is
4−5× for SportsTables and Open Data, Fainder is another two
orders of magnitude faster on GitTables when not returning results.
This shows how significant Fainder’s runtime advantage over the
baselines is if the execution is not dominated by 𝑆 – either because
users run composite queries with multiple different predicates or
because a percentile predicate itself has very low selectivity.

.25 .5 1 2

100

101

102

103

T
im

e
(s

)

w/ results

w/o results

Figure 12: Runtime on Git-

Tables across scaling factors.

ST OD GT

10−5

10−4

10−3

10−2

0.0001 0.0001

0.0065
Cluster skip

Result update

Histogram search

Bin search

Bootstrap

Figure 13: Predicate evalua-

tion runtime breakdown.

To specifically test the runtime of Fainder when a percentile
predicate has very low selectivity, we simulated a restrictive column
identifier that only matches 1% of the histograms and then ran our
benchmark queries on the resulting histogram subset. The average
selectivity of our queries when combining the column identifier
and the distributional requirement lies at 0.5%. Figure 11 highlights
that Fainder maintains its performance lead over the baselines
for low-selectivity queries, while the relative advantage shrinks
for the small dataset collections SportsTables and Open Data. This
is because Fainder’s runtime grows or shrinks logarithmically
with the collection size while the baselines benefit linearly from a
smaller collection.We also see that the result set 𝑆 no longer impacts
the runtime for the small collections. Regarding GitTables, about
10 000 histograms remain after prefiltering so that Fainder still
outperforms all baselines by orders of magnitude, consistent with
Figure 10. Overall, the experiment shows that Fainder is a superior
choice in terms of runtime, especially for large-scale dataset search.
Scalability. We investigate the scalability of Fainder by creating
four versions of our largest collection GitTables, including each
histogram 0.25, 0.5, 1, and 2 times on average to achieve a respective
scaling factor. Figure 12 summarizes the runtime of Fainder for
all scaling factors. To account for the impact of the solution size
𝑆 , we again conduct the experiment with and without processing
the search results. We see that the execution time of the runs that
return results increases linearly with the scaling factor since |𝑆 | also
increases linearly with the scaling factor. Contrarily, the runtime of
Fainder is almost constant without returning results, highlighting
its logarithmic scaling in the number of histograms and bins.
Fainder Approx. After reviewing the scalability of Fainder,
we zoom into the individual phases of predicate evaluation with
Fainder Approx. Due to the challenges of tracing a system-under-
test without altering its performance [31], we only measure the
conceptually necessary steps of Fainder in this experiment. Note
that tracing those steps already increases a query’s execution time
by one order of magnitude due to logging overhead.

Figure 13 dissects the core operations of our index for the exem-
plary predicate P∗,0.1,<,50. The experiment shows that the two most
critical operations, bin and histogram search, scale sublinearly with
the dataset collection size. While bin search time is almost the same
across collections, histogram search only grows by 7× for GitTables,
although the collection is 252× and 73× larger than the other two
collections. The result set update, on the other hand, scales linearly
with |𝑆 | and thus takes noticeably more time for GitTables. Cluster
skip partially also scales with |𝑆 | as all histograms from a cluster
might have to be added to 𝑆 depending on line 12 in Algorithm 1.
Fainder Exact. Building on the analysis of Fainder Approx, we
investigate the efficiency of our exact solution. Figure 14 shows the

3277

profile-scan binsort F. Approx full prec. F. Approx full rec.

Full
scan

bin-
sort

Fainder
Exact

103

104

T
im

e
(s

)

48310

1914

7906

1109

Full
scan

bin-
sort

Fainder
Exact

100

101

102

188

8.6

36.3

5.5

(a) SportsTables

Full
scan

bin-
sort

Fainder
Exact

101

102

103 654

64.7
109

20.6

(b) Open Data

Full
scan

bin-
sort

Fainder
Exact

103

104

48310

1914

7906

1109

(c) GitTables

Figure 14: Execution time breakdown of Fainder Exact

compared to baselines for 999 queries.

Clustering Rebinning Conversion

0.0 0.2 0.4 0.6 0.8 1.0
Number of cluster

0.00

0.25

0.50

0.75

1.00

T
im

e
(s

)

50 500 1000
Number of clusters

0

1000

2000

104 105 106

Bin budget

102

103

Figure 15: Construction time of Fainder on GitTables with

a bin budget of 50000 (left) and 100 clusters (right).

runtime of its three phases compared to our exact baselines. Since
profile-scan and binsort both yield exact results, we can use
either for the third stage of Fainder Exact. Conceptually, Fainder
Exact has no guaranteed speedup as the improvement depends on
the combined pruning factor of the first two stages. Nevertheless,
in practice, it is 10−25× faster than profile-scan and 5−7× faster
than binsort, as it can prune (a) 98%, (b) 93%, and (c) 98% of the
histograms on average for our benchmark queries. Noticeably, the
third iterative stage still dominates the runtime in many cases.

Note that while binsort appears like an overall better baseline,
its performance depends not only on the number of histograms in a
collection but also on the number of bins per histogram, as it creates
an index entry for each bin. However, we cannot control the number
of bins per histogram in our setting since they are created by the
data owners. In a side experiment, we verified that the runtime of
binsort increases linearly if we simulate collections with more
average bins per histogram. Therefore, the optimal algorithm choice
for stage three depends on the histogram collection, while both
choices generally yield speedups over the baselines.

Index Construction. In Figure 15, we measure the index construc-
tion time on GitTables and vary the number of clusters 𝑘 while
keeping the bin budget B fixed and vice versa. We divide index
construction time into clustering and histogram alignment, separat-
ing rebinning and conversion for histogram alignment. We observe
that the impact of 𝑘 and B on clustering time is negligible, as k-
Means has robust scalability and Fainder’s aligned bins are only
assigned after the histograms have been clustered. Rebinning and
conversion time decreases with an increasing 𝑘 because the index
becomes smaller with more evenly distributed clusters, resulting in
fewer percentiles to compute. Conversely, B increases histogram
alignment time by increasing the number of percentiles in the index.
Overall, the index construction time for a reasonable selection of 𝑘
is feasible, considering that histogram insertion and deletion are
incremental. We only need to construct Fainder from scratch at
the beginning or when processing significant bulk updates.

7.3 Solution Effectiveness

We analyze the effectiveness of Fainder in three parts: We discuss a
qualitative case study of distribution-aware dataset search on exist-
ing search engines, examine the findings of our hyperparameter grid
search, and finally compare Fainder’s accuracy with our baselines.

Case Study. We conducted a qualitative case study to estimate
the time a human needs to run a search with percentile require-
ments, combining keyword queries and manual investigation. For
this, we continued our initial motivating example to show the cur-
rent user experience’s shortcomings concretely. We used Kaggle
Datasets [32] in our study, as it is a comprehensive collection of
datasets specifically intended for machine learning (i.e., a use case
that benefits from percentile predicates). As of February 2024, our
example’s keyword query “lung cancer age” yielded 67 results that
our data scientist needs to review. We make a conservative estimate
and assume they need one minute per dataset on average, including
datasets they can quickly rule out and datasets they have to down-
load and analyze with a tool like Pandas. This would take them
about one hour instead of less than a second with Fainder. Since
users often search for datasets in a work context, this showcases
the considerable economic potential of distribution-aware search.

Hyperparameter Grid Search. We conducted an extensive grid
search on our validation query set to analyze Fainder’s configura-
tion robustness. Below, we summarize our key insights regarding
the choice of clustering algorithm (𝐴), clustering feature transfor-
mation (𝑇), number of clusters (𝑘), and bin budget (B).

(𝐴) We examined three classes of clustering algorithms: density-
based clustering with HDBSCAN [11], agglomerative clustering,
and k-Means. Density-based clustering does not require choosing
the hyperparameter 𝑘 . However, it can classify an arbitrarily large
share of points as outliers. This is detrimental in our setting since
we need to index all histograms, and forming a heterogeneous out-
lier cluster yields catastrophic query accuracy within that cluster.
Agglomerative clustering makes no assumptions about the feature
distribution and is robust to outliers. Yet, it does not achieve a fea-
sible runtime for large dataset collections; we aborted a grid search
on GitTables because it took more than 2.5 days, while k-Means
took less than 5 hours for the same search. k-Means achieved the
best overall performance, producing clusterings that yield accurate
indices within less than two minutes for each dataset collection.

(𝑇) Next to a quantile transform [49], we also investigated simple
and robust standardization, as well as no feature preprocessing in
our experiments. If the features fall into clearly separable clusters
by default, such as with SportsTables, we found that simple stan-
dardization or no preprocessing can yield the best results. However,
across dataset collections and index configurations, the quantile
transform is most robust to heterogeneous histogram features and
thus produces the smallest and most accurate indices on average.

(𝑘) Using a reasonably large value for 𝑘 (> 100) generally yields
a good result accuracy. Increasing 𝑘 beyond this point presents a
trade-off between index size and runtime, as 𝑘 has a linear impact
on the runtime but reduces the number of computed percentiles.

(B) The bin budget should be chosen according to the mem-
ory capacity and in conjunction with 𝑘 , as more clusters result
in smaller indices. A higher bin budget generally produces more
precise indices, although with diminishing returns.

3278

All queries Low selectivity Mid selectivity High selectivity

profile-
scan

normal-
dist

F. Approx
low mem.

F. Approx
full rec.

Fainder
Exact

0

25

50

75

100

F
1

sc
o
re

(%
)

100

0.7

53.9

98.4

66

99 99.7

66

99.499.7 100

profile-
scan

normal-
dist

F. Approx
low mem.

F. Approx
full rec.

Fainder
Exact

0

25

50

75

100
100

93.797.799.5
93.998.799.8

91.6
98.299.8 100

(a) SportsTables

profile-
scan

normal-
dist

F. Approx
low mem.

F. Approx
full rec.

Fainder
Exact

0

25

50

75

100
100

8.6

64.4

94.5
82.1

93.3
99.9

90
99.5100 100

(b) Open Data

profile-
scan

normal-
dist

F. Approx
low mem.

F. Approx
full rec.

Fainder
Exact

0

25

50

75

100
100

0.7

53.9

98.4

66

99 99.7

66

99.499.7 100

(c) GitTables

Figure 16: 𝑭1 score of profile-scan, normal-dist, Fainder Approx, and Fainder Exact, grouped by query selectivity.

Low selectivity Mid selectivity High selectivity

normal-
dist

F. Approx
low mem.

F. Approx
full rec.

0

25

50

75

100

P
re

c
is

io
n

(%
)

0.88

55

99

50

99 99

50

99 99

normal-
dist

F. Approx
low mem.

F. Approx
full rec.

0

25

50

75

100

P
ru

n
in

g
fa

c
to

r
(%

)

0.68

53.3

97.7

1.77

54.7

100

1.78

55.2

100

Figure 17: Precision and pruning factor of approximate solu-

tions on GitTables.

Based on our grid search results, we selected index configura-
tions that optimize result accuracy and reduce the index size for
our other experiments. Concretely, we use k-Means and preprocess
all collections but SportsTables using a quantile transform. In ad-
dition, we use (230, 250, 750) clusters and (5K, 50K, 100K) bins for
SportsTables, Open Data, and GitTables.

Accuracy Comparison. Figure 16 presents the 𝐹1 score of pro-
file-scan, normal-dist, Fainder Approx low memory (based
on rebinning), Fainder Approx full recall (based on conversion), as
well as Fainder Exact. For the approximate solutions, we group the
results by query selectivity. We observe that all approaches perform
best on SportsTables, with its manually curated datasets that often
match a normal distribution. For Open Data and GitTables, the
results are more diverse. normal-dist performs consistently worse
than Fainder Approx variants, especially on the more challenging
collections. Fainder Approx constructed with conversion performs
better than rebinning on Open Data due to its guaranteed recall of
1 but at the cost of using more memory. Overall, low and medium
selectivity queries have a lower 𝐹1 score.

To explain the worse 𝐹1 score for queries with lower selectivity,
we show the precision and pruning factor of approximate solutions
on GitTables in Figure 17. Comparing the results to the 𝐹1 score
from Figure 16 (c), we observe that a lower precision predominantly
causes the performance decrease. Considering the pruning factor,
we see that Fainder Approx variants nevertheless filter out around
98% of the histograms. If the cardinality of the true result is low, a
small absolute number of false positives can cause a sizeable relative
performance decrease in precision. Thus, we argue that the worse
performance for low selectivity queries has limited practical impact,
as the absolute number of false results is small.

We also jointly investigated each approach’s result accuracy and
runtime performance. Figure 18 highlights that Fainder strictly
dominates the baselines in a skyline analysis for all three dataset
collections. Fainder Exact achieves 100% 𝐹1 score in 5−53× less
time than the exact baselines. Fainder Approx variants achieve the
fastest runtime overall at the cost of producing a few false results.
normal-dist presents a worse accuracy-runtime trade-off than

profile-scan

normal-dist

binsort

Fainder Exact

Fainder Approx low mem.

Fainder Approx full rec.

102 103 104

Time (s)

0

25

50

75

100

F
1

sc
o
re

(%
)

100 101

Time (s)

0

25

50

75

100

(a) SportsTables

100 101 102

Time (s)

0

25

50

75

100

(b) Open Data

102 103 104

Time (s)

0

25

50

75

100

(c) GitTables

Figure 18: 𝑭1 score over runtime of profile-scan, normal-
dist, binsort, and Fainder variants.

1 100 200 400 600 800 1000
Number of clusters

0.1

1

T
im

e
(s

)

102

103

104

In
d
e
x

si
z
e

(M
B

)

0

20

40

60

80

100

F
1

sc
o
re

(%
)

w/ results w/o results Index size Low mem. Full rec.

Figure 19: Query runtime, index size, and 𝑭1 score of Fain-
der Approx over the number of clusters on Open Data.

our solutions on all collections. Therefore, we argue that its space
savings (𝑂 (2) vs. 𝑂 (B𝑐) per column) are not justified unless the
vast majority of columns follow a normal distribution.

7.4 Micro-Benchmarks

We conclude our experimental evaluation with a holistic analysis
of the impact of the number of clusters and the bin budget on all
three dimensions of Fainder’s performance. Finally, we distill our
investigation into two easy-to-follow steps for practitioners.
Impact of Clustering. Figure 19 demonstrates the interplay of
runtime, result accuracy, and index size for a varying number of
clusters and 50000 bins on Open Data. Without a sufficient number
of clusters (𝑘 < 10 in this case), accuracy and index size deterio-
rate significantly as the aligned bins become less precise and the
clusters less balanced. For 𝑘 = 1, the memory consumption (and
index construction time) becomes unfeasible. Thus, clustering is
a critical component of Fainder. Fortunately, the choice of 𝑘 for
larger values is robust concerning the result accuracy, making Fain-
der easy to configure. This experiment supports our grid search’s
finding that increasing 𝑘 presents a trade-off between index size
and runtime. However, when comparing the two blue lines, we see
that the runtime impact of a growing 𝑘 is partly mitigated if we also
consider the result processing time. This is because more clusters
can yield a more precise index, resulting in a smaller result set size.

3279

102 103 104 105 106

Bin Budget

1

T
im

e
(s

)

100

101

102

103

In
d
e
x

si
z
e

(M
B

)

0

20

40

60

80

100

F
1

sc
o
re

(%
)

w/ results w/o results Index size Low mem. Full rec.

Figure 20: Query runtime, index size, and 𝑭1 score of Fain-
der Approx over varying bin budgets on Open Data.

Impact of Bin Budget. In Figure 20, we fix the number of clusters
to 100 and vary the bin budget. We observe that (1) the runtime
is robust to the bin budget due to our use of binary search; (2) the
𝐹1 score increases from 84% to 93% and 96% with an increasing
bin budget, although at diminishing returns; and (3) the index size
grows linearly with B. Note that, in general, the size of Fainder
scales with the number but not the size of the datasets. This makes
Fainder relatively large for dataset collections with many small
datasets, such as GitTables. On the other side, it is robust to dataset
collections for machine learning, where individual datasets can take
up many gigabytes or even terabytes of storage.
Practical Guidance for Index Configuration. First, select the
largest possible value of 𝑘 acceptable for runtime. To ensure perfor-
mance, 𝑘 should be at least 100× smaller than |H |. Then, choose
the largest possible value of B acceptable in terms of index size.

8 RELATEDWORK

Prior work on dataset search can be broadly classified into data lake
navigation [42, 43, 47], data discovery by example [50], task-driven
search [23] for machine learning pipelines [6], and query-driven
search. We focus our discussion on the latter, as the other three con-
cepts require access to a dataset collection’s raw data. Within query-
driven dataset search, we distinguish two central settings: data
lakes, where the raw data are fully accessible, and metadata-based
search, where search engines must rely on data owner-provided,
heterogeneous, and potentially missing metadata. Moreover, there
are different types of search predicates. In the following, we specif-
ically discuss distribution-aware and keyword search. We close by
reviewing related work on data profiling and histograms.
Full Data Access. There is a long line of prior work on data dis-
covery in data lakes [8, 9, 13, 21, 25, 34, 39, 60, 62, 24]. However,
data lake-focused discovery techniques assume full data access and
thus are not applicable in our problem setting.
Metadata Access. Existing metadata-based dataset search engines,
such as Google Dataset Search [45] and CKAN [46], are limited to
keyword search (possibly extended with facets). Auctus [12] is a
hybrid between the full and metadata access settings, as it collects
existing metadata from multiple federated data repositories but also
downloads raw data from openly available datasets to profile them
individually. Based on this auxiliary information, Auctus allows
users to add advanced facets to their queries, such as spatiotemporal
or column type filters. In general, dataset search onmetadata has not
yet been explored as thoroughly as data lake search. The continuum
between the two settings, where more or less metadata and samples
from a dataset are available, is an exciting direction for future work.

In practice, solutions must deal with varying degrees of dataset
profile heterogeneity and information granularity.
Distribution-Aware Search. Recently, Asudeh and Nargesian [3]
developed a system vision for the new field of distribution-aware
data discovery. While their vision targets the data lake setting, it
highlights the importance of distributional queries over dataset
collections. For the same setting, Nargesian et al. [41] proposed dis-
tribution tailoring to meet fairness requirements in data integration
and Chai et al. [14] presented distribution-aware data augmentation
for model training. Our work expands distribution-aware dataset
search and proposes solutions that do not require raw data access.
Keyword Search. The extensive work on keyword search is sur-
veyed in [36, 48, 58, 59]. Our contributions complement keyword
search, as our query model incorporates keyword predicates and
integrates them with distribution-aware (i.e., percentile) predicates.
Recent advances in large language models have led to a new line of
work focusing on retrieving relevant datasets given a natural lan-
guage query [28, 55, 56]. However, these works either focus on tex-
tual information about datasets or require full data access, whereas
we target distribution-aware queries on heterogeneous synopses.
Data Profiling. Prior work on data profiling [2] and cleaning [1,
27, 22] is orthogonal to our contributions on searching over het-
erogeneous histograms. There are various methods for creating
histograms [16], such as equi-height or equi-width, but the prob-
lem of optimizing histograms to reduce estimation error [5, 30]
or improve visibility is complementary to our setting, where data
owners generate histograms independently of the search engine.

9 CONCLUSION AND FUTUREWORK

We introduced the novel problem of distribution-aware dataset
search on decentralized data repositories and proposed Fainder,
a fast and accurate index for percentile predicates. Fainder offers
exact and approximate solutions, achieving more than two orders
of magnitude speedups over baseline approaches and dominating
the start-of-the-art in an accuracy-runtime skyline analysis.

Our work gives rise to several interesting directions for future
work, of which we discuss three that we consider most important.
To effectively integrate Fainder into a system, a search engine
should combine it with semantic keyword similarity search and
dataset profile alignment techniques to amplify the column iden-
tifier in a percentile predicate. Once a dataset search engine sup-
ports multiple predicate types, query planning and optimization
are paramount problems. Beyond system integration, we see an
opportunity to leverage our query model for designing distribution-
aware dataset search predicates based on data synopses other than
histograms, such as sketches. For example, using synopses to rank
each dataset’s similarity to an input dataset or a reference dis-
tribution is challenging. Lastly, while Fainder can approximate
percentile predicates with two-sided ranges via a combination of
one-sided predicates, developing an index that natively supports
range predicates presents novel research challenges.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the German Federal Min-
istry of Education and Research under the grants BIFOLD24B and
01IS17052 (for the Software Campus project FDaaS).

3280

REFERENCES

[1] Ziawasch Abedjan, Xu Chu, Dong Deng, et al. 2016. Detecting Data
Errors: Where Are We and What Needs To Be Done? Proceedings of
the VLDB Endowment, 9, 12, 993–1004.

[2] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling
Relational Data: A Survey. The VLDB Journal, 24, 4, 557–581.

[3] Abolfazl Asudeh and FatemehNargesian. 2022. TowardsDistribution-
aware Query Answering in Data Markets. Proceedings of the VLDB
Endowment, 15, 11, 3137–3144.

[4] Santiago Andrés Azcoitia and Nikolaos Laoutaris. 2022. A Survey of
Data Marketplaces and Their Business Models. SIGMOD Record, 51,
3, 18–29.

[5] Rachel Behar and Sara Cohen. 2020. Optimal Histograms with
Outliers. Proceedings of the 23rd International Conference on Extending
Database Technology (EDBT ’20), 181–192.

[6] Lennart Behme, Saravanan Thirumuruganathan, Alireza Rezaei Mah-
diraji, et al. 2023. The Art of Losing to Win: Using Lossy Image
Compression to Improve Data Loading in Deep Learning Pipelines.
Proceedings of the 39th IEEE International Conference on Data Engi-
neering (ICDE ’23), 936–949.

[7] Jelke Bethlehem. 2010. Selection Bias in Web Surveys. International
Statistical Review, 78, 2, 161–188.

[8] Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha.
2021. Discovering Related Data at Scale. Proceedings of the VLDB
Endowment, 14, 8, 1392–1400.

[9] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Niko-
laos Konstantinou. 2020. Dataset Discovery in Data Lakes. Proceed-
ings of the 36th IEEE International Conference on Data Engineering
(ICDE ’20), 709–720.

[10] Arnaud Braud, Gaël Fromentoux, Benoit Radier, and Olivier Le
Grand. 2021. The Road to European Digital Sovereignty with Gaia-X
and IDSA. IEEE Network, 35, 2, 4–5.

[11] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. 2013.
Density-Based Clustering Based on Hierarchical Density Estimates.
Proceedings of the Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD ’13), 160–172.

[12] Sonia Castelo, Rémi Rampin, Aécio Santos, et al. 2021. Auctus:
A Dataset Search Engine for Data Discovery and Augmentation.
Proceedings of the VLDB Endowment, 14, 12, 2791–2794.

[13] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, et al. 2018.
Aurum: A Data Discovery System. Proceedings of the 34th IEEE
International Conference on Data Engineering (ICDE ’18), 1001–1012.

[14] Chengliang Chai, Jiabin Liu, Nan Tang, et al. 2022. Selective data
acquisition in the wild for model charging. Proceedings of the VLDB
Endowment, 15, 7, 1466–1478.

[15] Adriane Chapman, Elena Simperl, Laura Koesten, et al. 2020. Dataset
Search: A Survey. The VLDB Journal, 29, 1, 251–272.

[16] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jer-
maine. 2011. Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches. Foundations and Trends® in Databases, 4, 1,
1–294.

[17] Aron Culotta. 2014. Reducing Sampling Bias in Social Media Data for
County Health Inference. Proceedings of the Joint Statistical Meetings
(JSM ’14).

[18] Jeffrey Dastin. 2022. Amazon Scraps Secret AI Recruiting Tool that
Showed Bias against Women. In Ethics of Data and Analytics. Kirsten
Martin, (Ed.) Auerbach Publications, 296–299.

[19] Datarade. 2024. Find the right data, effortlessly. Retrieved Feb. 6,
2024 from https://datarade.ai/.

[20] Dawex. 2024. Data Marketplaces, Data Hubs & Data Spaces. Re-
trieved Feb. 6, 2024 from https://www.dawex.com/en/.

[21] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abed-
jan. 2022. MATE: Multi-Attribute Table Extraction. Proceedings of
the VLDB Endowment, 15, 8, 1684–1696.

[22] Sainyam Galhotra, Anna Fariha, Raoni Lourenço, et al. 2022. Dat-
aPrism: Exposing Disconnect between Data and Systems. Proceedings
of the ACM International Conference on Management of Data (SIG-
MOD ’22), 217–231.

[23] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023.
Metam: Goal-Oriented Data Discovery. Proceedings of the 39th IEEE
International Conference on Data Engineering (ICDE ’23), 2780–2793.

[24] Yue Gong, Sainyam Galhotra, and Raul Castro Fernandez. 2024.
Nexus: Correlation Discovery over Collections of Spatio-Temporal
Tabular Data. Proceedings of the ACM on Management of Data, 2, 3,
154:1–154:28.

[25] Yue Gong, Zhiru Zhu, Sainyam Galhotra, and Raul Castro Fernandez.
2023. Ver: View Discovery in the Wild. Proceedings of the 39th IEEE
International Conference on Data Engineering (ICDE ’23), 503–516.

[26] Zerrin Asan Greenacre. 2016. The Importance of Selection Bias in
Internet Surveys. Open Journal of Statistics, 6, 3, 397–404.

[27] Alon Halevy, Flip Korn, Natalya F. Noy, et al. 2016. Goods: Or-
ganizing Google’s Datasets. Proceedings of the ACM International
Conference on Management of Data (SIGMOD ’16), 795–806.

[28] Jonathan Herzig, Thomas Müller, Syrine Krichene, and Julian Eisen-
schlos. 2021. Open Domain Question Answering over Tables via
Dense Retrieval. Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT ’21), 512–519.

[29] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTa-
bles: A Large-Scale Corpus of Relational Tables. Proceedings of the
ACM on Management of Data, 1, 1, 30:1–30:17.

[30] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, et al. 1998. Opti-
mal Histograms with Quality Guarantees. Proceedings of the 24rd
International Conference on Very Large Data Bases (VLDB ’98), 275–
286.

[31] Raj K. Jain. 1991. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. Wiley Computer Publishing.

[32] Kaggle Inc. 2024. Kaggle Datasets. Retrieved Jan. 29, 2024 from
https://www.kaggle.com/datasets.

[33] Javen Kennedy, Pranav Subramaniam, Sainyam Galhotra, and Raul
Castro Fernandez. 2022. Revisiting Online Data Markets in 2022.
SIGMOD Record, 51, 3, 30–37.

[34] Christos Koutras, George Siachamis, Andra Ionescu, et al. 2021.
Valentine: Evaluating Matching Techniques for Dataset Discovery.
Proceedings of the 37th IEEE International Conference on Data Engi-
neering (ICDE ’21), 468–479.

[35] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten
Binnig. 2023. SportsTables: A New Corpus for Semantic Type
Detection. Proceedings of the BTW, 995–1008.

[36] Thuy Ngoc Le and Tok Wang Ling. 2016. Survey on Keyword Search
over XML Documents. SIGMOD Record, 45, 3, 17–28.

[37] Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28, 2, 129–137.

[38] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
2008. Introduction to Information Retrieval. Cambridge University
Press.

[39] Renee J. Miller, Fatemeh Nargesian, Erkang Zhu, et al. 2018. Making
Open Data Transparent: Data Discovery on Open Data. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering,
41, 2, 59–70.

[40] Molly Mulshine. 2015. A major flaw in Google’s algorithm allegedly
tagged two black people’s faces with the word ’gorillas’. Business

3281

https://datarade.ai/
https://www.dawex.com/en/
https://www.kaggle.com/datasets

Insider. Retrieved Feb. 6, 2024 from https://www.businessinsider.
com/google-tags-black-people-as-gorillas-2015-7.

[41] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2021. Tai-
loring data source distributions for fairness-aware data integration.
Proceedings of the VLDB Endowment, 14, 11, 2519–2532.

[42] Fatemeh Nargesian, Ken Pu, Bahar Ghadiri-Bashardoost, et al. 2023.
Data Lake Organization. IEEE Transactions on Knowledge and Data
Engineering, 35, 1, 237–250.

[43] Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, et al. 2020. Organizing
Data Lakes for Navigation. Proceedings of the ACM International
Conference on Management of Data (SIGMOD ’20), 1939–1950.

[44] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. 2016. Au-
tomated Quality Assessment of Metadata across Open Data Portals.
Journal of Data and Information Quality, 8, 1, 1–29.

[45] Natasha Noy, Matthew Burgess, and Dan Brickley. 2019. Google
Dataset Search: Building a Search Engine for Datasets in an Open
Web Ecosystem. Proceedings of the World Wide Web Conference
(WWW ’19), 1365–1375.

[46] Open Knowledge Foundation. 2022. CKAN. Retrieved Aug. 28, 2022
from http://ckan.org/.

[47] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, et al. 2021.
RONIN: Data Lake Exploration. Proceedings of the VLDB Endowment,
14, 12, 2863–2866.

[48] Jaehui Park and Sang-goo Lee. 2011. Keyword Search in Relational
Databases. Knowledge and Information Systems, 26, 2, 175–193.

[49] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, et al. 2011.
Scikit-learn: Machine Learning in Python. Journal of Machine Learn-
ing Research, 12, 85, 2825–2830.

[50] El Kindi Rezig, Anshul Bhandari, Anna Fariha, et al. 2021. DICE:
Data Discovery by Example. Proceedings of the VLDB Endowment,
14, 12, 2819–2822.

[51] Adam Rose. 2010. Are Face-Detection Cameras Racist? Time. Re-
trieved Feb. 6, 2024 from https://time.com/archive/6906847/are-face-
detection-cameras-racist/.

[52] Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire.
2022. A Sketch-based Index for Correlated Dataset Search. Proceed-
ings of the 38th IEEE International Conference on Data Engineering
(ICDE ’22), 2928–2941.

[53] Tess Townsend. 2017. Most engineers are white — and so are the
faces they use to train software. Vox. Retrieved Feb. 6, 2024 from
https://www.vox.com/2017/1/18/14304964/data-facial-recognition-
trouble-recognizing-black-white-faces-diversity.

[54] Jonas Traub, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker
Markl. 2021. Agora: Bringing Together Datasets, Algorithms, Models
and More in a Unified Ecosystem. SIGMOD Record, 49, 4, 6–11.

[55] Fei Wang, Kexuan Sun, Muhao Chen, et al. 2021. Retrieving Com-
plex Tables with Multi-Granular Graph Representation Learning.
Proceedings of the 44th International ACM Conference on Research and
Development in Information Retrieval (SIGIR ’21), 1472–1482.

[56] QimingWang and Raul Castro Fernandez. 2023. Solo: Data Discovery
Using Natural Language Questions Via A Self-Supervised Approach.
Proceedings of the ACM on Management of Data, 1, 4, 262:1–262:27.

[57] Bifan Wei, Jun Liu, Qinghua Zheng, et al. 2013. A Survey of Faceted
Search. Journal of Web Engineering, 12, 1, 41–64.

[58] Jianye Yang, Wu Yao, and Wenjie Zhang. 2021. Keyword Search on
Large Graphs: A Survey. Data Science and Engineering, 6, 2, 142–162.

[59] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. 2010. Keyword Search in
Relational Databases: A Survey. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 33, 1, 67–78.

[60] Haoxiang Zhang, Aécio Santos, and Juliana Freire. 2021. DSDD:
Domain-Specific Dataset Discovery on the Web. Proceedings of
the 30th ACM International Conference on Information & Knowledge
Management (CIKM ’21), 2527–2536.

[61] Shuo Zhang and Krisztian Balog. 2018. Ad Hoc Table Retrieval using
Semantic Similarity. Proceedings of the World Wide Web Conference
(WWW ’18), 1553–1562.

[62] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in
Data Lakes for Interactive Data Science. Proceedings of the ACM
International Conference onManagement of Data (SIGMOD ’20), 1951–
1966.

[63] Jiongli Zhu, Sainyam Galhotra, Nazanin Sabri, and Babak Salimi.
2023. Consistent Range Approximation for Fair Predictive Modeling.
Proceedings of the VLDB Endowment, 16, 11, 2925–2938.

3282

https://www.businessinsider.com/google-tags-black-people-as-gorillas-2015-7
https://www.businessinsider.com/google-tags-black-people-as-gorillas-2015-7
http://ckan.org/
https://time.com/archive/6906847/are-face-detection-cameras-racist/
https://time.com/archive/6906847/are-face-detection-cameras-racist/
https://www.vox.com/2017/1/18/14304964/data-facial-recognition-trouble-recognizing-black-white-faces-diversity
https://www.vox.com/2017/1/18/14304964/data-facial-recognition-trouble-recognizing-black-white-faces-diversity

	Abstract
	1 Introduction
	2 Preliminaries
	3 Distribution-Aware Dataset Search
	3.1 Problem Definition
	3.2 Research Challenges

	4 Fainder
	5 Index Construction
	5.1 Clustering
	5.2 Histogram Alignment
	5.3 Percentile Computation

	6 Index Querying
	6.1 Fainder Approx
	6.2 Fainder Exact

	7 Evaluation
	7.1 Experimental Setup
	7.2 Solution Efficiency
	7.3 Solution Effectiveness
	7.4 Micro-Benchmarks

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments

