
DARKER: Efficient Transformer with Data-driven Attention
Mechanism for Time Series

Rundong Zuo
Hong Kong Baptist University
csrdzuo@comp.hkbu.edu.hk

Guozhong Li
King Abdullah University of Science

and Technology
guozhong.li@kaust.edu.sa

Rui Cao
Hong Kong Baptist University
csrcao@comp.hkbu.edu.hk

Byron Choi
Hong Kong Baptist University
bchoi@comp.hkbu.edu.hk

Jianliang Xu
Hong Kong Baptist University

xujl@comp.hkbu.edu.hk

Sourav S Bhowmick
Nanyang Technological University

assourav@ntu.edu.sg

ABSTRACT
Transformer-based models have facilitated numerous applications
with superior performance. A key challenge in transformers is
the quadratic dependency of its training time complexity on the
length of the input sequence. A recent popular solution is using
random feature attention (RFA) to approximate the costly vanilla
attention mechanism. However, RFA relies on only a single, fixed
projection for approximation, which does not capture the input
distribution and can lead to low efficiency and accuracy, especially
on time series data. In this paper, we propose DARKER, an efficient
transformer with a novel DAta-dRiven KERnel-based attention
mechanism. To precisely present the technical details, this paper
discusses them with a fundamental time series task, namely, time
series classification (tsc). First, the main novelty of DARKER lies
in approximating the softmax kernel by learning multiple machine
learning models with trainable weights as multiple projections
offline, moving beyond the limitation of a fixed projection. Second,
we propose a projection index (called pIndex) to efficiently search
the most suitable projection for the input for training transformer.
As a result, the overall time complexity of DARKER is linear with
the input length. Third, we propose an indexing technique for
efficiently computing the inputs required for transformer training.
Finally, we evaluate our method on 14 real-world and 2 synthetic
time series datasets. The experiments show that DARKER is 3×-
4× faster than vanilla transformer and 1.5×-3× faster than other
SOTAs for long sequences. In addition, the accuracy of DARKER is
comparable to or higher than that of all compared transformers.
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Figure 1: The approximation error of softmax in Per-
former [5] and our method. Two matrices, 𝑄 and 𝐾 , are ini-
tialized consisting of N pairs of query and key vectors. Then,
the key vector is scaled with a scalar 𝛾 and rotated with an
angle 𝛼 .

1 INTRODUCTION
Time series data, widely generated in various domains such as smart
cities, economics, human activity recognition [17, 32], has received
lots of research attention for numerous fundamental tasks, includ-
ing classification [4, 7, 57], clustering [3, 33, 43], forecasting [39, 52,
56], abnormal detection [41, 49], and similarity search [10]. Recently,
transformer-basedmethods exhibit impressive performance on time
series tasks, e.g., classification [57, 62] and forecasting [28, 60]. How-
ever, previous transformer-based methods [50, 60] suffer from the
well-known inefficient time complexity 𝑂 (𝑁 2) of attention mecha-
nism, where𝑁 is the length of the input sequence. Many researchers
have remarked on the efficiency issue of transformers, and some
representative ones are quoted as follows.

• ". . . vanilla Transformer has a time and memory complexity
of𝑂 (𝑁 2), which becomes the computational bottleneck when
dealing with long sequences." [50]

• ". . . due to its L-quadratic computation and memory consump-
tion on L-length inputs/outputs." [60]

Extensive methods have been proposed to address the efficiency
issue of the transformer on image and language tasks [25, 42]. How-
ever, most of them require priors, such as the sparsity [60], low
rank [48] of attention weight matrices, or identical input query
and key matrices [16]. These prerequisites limit the applicability of
relevant methods. To avoid the priors, nowadays, Random Feature
Attention (RFA) methods (a.k.a kernel-based methods) have been pro-
posed and become one of the well-received methods for improving
the efficiency [5, 34, 36, 59]. RFA considers the exp(·) function in the
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Figure 2: The overview of DARKER

attention mechanism as a kernel function and then approximate it
by a fixed projection 𝜙 with random features. Although RFA methods
achieve linear space and time complexity without priors, they face
several challenges when being applied to time series analyses. For
precise discussions, this paper focuses on time series classification
(tsc), one of the fundamental analyses.
Challenges. A comprehensive theoretical analysis of three chal-
lenges of RFA on time series shall be detailed in Section 3. Here, we
briefly highlight the challenges when applying RFA to time series.
1○ RFA methods require numerous computations of random fea-
tures for all time series in each training epoch, which is inefficient
when training a transformer model. 2○ Computing exp( ∥𝑥 ∥

2

2 ) for
time series in RFA methods may lead to overflow1, where 𝑥 is an
input vector. Attributed to the high dimensionality and variance
inherently in time series data, the L2-norm of 𝑥 can be large, and
hence, the exponential term could become extremely large. This
phenomenon has been observed in various datasets, e.g., BasicMo-
tions, Cricket, and Phoneme in Section 5.3. 3○ RFA methods, while
claiming to be an unbiased estimator of exp(·), are not an unbiased
estimator of the entire softmax in the attention mechanism [59]. This
results in a high mean square error (MSE) when approximating
attention weights, which may be particularly problematic in most
cases of time series data with significant variances. As illustrated in
Figure 1, the MSE in Performer [5] (a representative RFA method)
increases substantially as 𝛾 increases.
Our solution. In this paper, we propose an efficient transformer,
DARKER (overview shown in Figure 2), whose noveltymainly lies in
a DAta-dRiven KERnel-based attentionmechanism.DARKER learns
and indexesmultiple projections, rather than a single fixed projection
used in previous kernel-based methods.

First, inDARKER, we propose to utilize machine learning models
trained from time series instances as data-driven projections for
approximating softmax instead of directly using exp(·) as kernel
function and repeatedly applying a fixed projection to approximate
softmax for all time series instances. Specifically,DARKER attention
mechanism consists of two stages: (i) learning projections and (ii)
data-driven attention. (i) In the stage of learning projections, since it
is difficult to train a single machine learning model to approximate
softmax for entire time series data, we separately train an additional
model for each input 𝑆 , where 𝑆 ∈ 𝑆Φ. These models share a uniform
structure, yet each is trained on an individual time series instance
(shown in Figure 3). The model with its learned weights is regarded

1Python reports overflow when a value is larger than the upper bound 21024 .

as the projection 𝜙 . As such, each time series instance is paired
with its specific projection and stored in a hashmap 𝐼 . (ii) In the
data-driven attention stage for training a transformer model, we
retrieve the projection for each time instance from 𝐼 . Then, the
projection is utilized to approximate and replace softmax for 𝑆 .
Therefore, DARKER reduces the original time complexity to 𝑂 (𝑁 ).
We remark that since the projections are learned from the input
data, DARKER has a lower approximating error in handling most
real-time series data than one fixed data-agnostic projection.

Second, when training a transformer, it is natural to encounter an
input 𝑆𝜃 whose projection is not learned in the first stage (𝑆𝜃 ∈ SΦ).
Instead of inefficiently learning 𝑆𝜃 ’s projection in the second stage,
we further propose a projection index (called pIndex) to efficiently
search its projection based on existing 𝐼 . Third, discriminative time
series subsequences, or simply shapes, are crucial for training mod-
els of specific tasks such as tsc, but their discovery is computation-
ally costly (e.g., [12, 20]). We conduct a preprocessing to discover
shapes 𝑆 as the input of DARKER and propose a cluster-to-distance
index, called 𝐼𝑐2𝑑 , to optimize its efficiency.

We conduct extensive experiments on both 14 real-world and 2
large synthetic time series datasets. The result shows thatDARKER is
about 3×-4× faster than the vanilla transformer and 1.5×-3× faster
than the other compared methods, including RFA methods and
SOTA efficient transformer for time series. Our contributions are
summarized as follows:

• We propose DARKER, an efficient transformer with a data-
driven kernel-based attention mechanism, which learns
multiple projections for time series instead of one fixed
projection. Thus, DARKER reduces time complexity from
quadratic to linear.

• In DARKER, we propose an index named pIndex for effi-
ciently retrieving the learned projection for time series.

• We optimize shape discovery through building an 𝐼𝑐2𝑑 to
improve efficiency of transformer training.

• Extensive experiments on both 14 real and 2 synthetic time
series datasets show the efficiency and effectiveness of
DARKER, especially for long input sequences.

Organization. The rest of this paper is organized as follows. We
introduce the preliminaries in Section 2. The analysis of the ran-
dom feature attention is presented in Section 3. The details of our
DARKER are given in Section 4. Section 5 reports the experimental
results. Section 6 reviews the related works. Section 7 concludes
the paper and presents our future work.

3230



2 BACKGROUND
This section previews the terminologies used in the paper. Table 1
summarizes some frequently used notations and their meanings.
Time series instance. A time series instance (or simply time series)
is denoted as 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑡 }, which records the events of 𝑡
timestamps. For a univariate time series (uts), 𝑥 represents a single
value, whereas in a multivariate time series (mts), 𝑥 is a vector of 𝑣
variables. A time series dataset D consists of N time series.
Time series subsequence. A time series subsequence𝑇 is denoted
as {𝑥𝑝 , 𝑥𝑝+1, . . . , 𝑥𝑞}, where 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑡 . Time series subse-
quences can be generated by applying a sliding window technique
to a time series 𝑋 .
Time series classification (tsc). Given a time series dataset D
consists ofN time series instances. For each time series𝑋𝑖 , 𝑖 ∈ [1,N]
has a corresponding class label 𝑌𝑖 ∈ {0, 1, · · · ,𝐶-1}, where 𝐶 is the
total number of classes in D. Time series classification is to predict
a label 𝑌𝑖 of 𝑋𝑖 by a specific model.
Efficient transformer. A transformer-based model has a time
complexity 𝑂 (𝑁 2), where 𝑁 is the number of inputs. The goal of
an efficient transformer is to minimize the model’s training time.

2.1 Self-Attention Mechanism
Most transformer-based methods apply the softmax self-attention
mechanism in their models [46, 48, 62], which results in their qua-
dratic time complexity. We briefly review the self-attention mecha-
nism in the following.

In the vanilla self-attention mechanism, the input token 𝑆 is
a set of 𝑁 embeddings and the embedding type depends on the
specific tasks, e.g., word embedding for NLP [8, 46], image patch
for CV [9, 25], and time series subsequences for time series [28, 62].
The input 𝑆 is transmitted to three projections: 𝑄 (query), 𝐾 (key),
and 𝑉 (value), which are defined as follows:

𝑄 = 𝑆𝑊𝑞, 𝐾 = 𝑆𝑊𝑘 ,𝑉 = 𝑆𝑊𝑣 (1)
where 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈ R𝑑×𝑑 are learnable weights and 𝑑 is the
dimension of input. The matrix calculation of the self-attention
mechanism is defined as follows:

𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
⊤
√
𝑑
)𝑉 (2)

Let 𝑞𝑖 , 𝑘 𝑗 be the 𝑖-th and 𝑗-th row of 𝑄 , 𝐾 . For a query 𝑞𝑖 ∈ 𝑄 , the
Equation 2 can be formulated in a vector format:

𝐴𝑡𝑡𝑛(𝑞𝑖 , 𝐾,𝑉 ) =
𝑁∑︁
𝑗=1

exp(𝑞⊤
𝑖
𝑘 𝑗 )∑𝑁

𝑗 ′=1 exp(𝑞⊤𝑖 𝑘 𝑗 ′ )
𝑣⊤𝑗 (3)

Intuitively, Equation 2 determines the normalized similarity scores
across all query-key pairs (𝑞 and 𝑘), which are then utilized to weigh
the value vectors 𝑣 . Consequently, the time complexity of softmax
attention is 𝑂 (𝑁 2𝑑). Typically, since 𝑑 ≪ 𝑁 , the time complexity
of the self-attention mechanism simplifies to 𝑂 (𝑁 2).

2.2 Random Feature Attention
To tackle the quadratic time complexity in softmax self-attention,
statistical RFA methods are proposed to build the self-attention
based on kernels [5, 59] without any 𝑝𝑟𝑖𝑜𝑟𝑠 .

The core idea of RFA is to take the exponential function in Equa-
tion 3 as an exponential kernel function exp(𝑥⊤𝑦). Ideally, two

Table 1: Summary of Frequently Used Notations

Notation Description

𝑋 a time series instance
𝑇 a time series subsequence generated from 𝑋

𝑠 a shape, which is 𝑑-dimension vector
𝑆 an input for a transformer, consisting of 𝑁 shapes
D a time series dataset, consists of N time series
T time series subsequences generated from D
S a shape set for D, consists of N shapes 𝑆
𝐶 a cluster center
𝑁 the number of input shapes (i.e., the input sequence length)
𝑊 the weights for training

𝜙1, 𝜙𝑤 , 𝜙2 the projection functions of input matrix
Φ𝑖 a set of projections 𝜙1, 𝜙𝑤 , 𝜙2 for a time series instance 𝑋𝑖

high-dimension projections 𝜙 (𝑥) and 𝜙 (𝑦) of the input 𝑥 and 𝑦,
respectively, are employed to calculate the exponential kernel as
follows:

exp(𝑥⊤𝑦) = 𝜙 (𝑥)𝜙 (𝑦) (4)

In practice, we can hardly find the exact projection 𝜙 which
satisfies Equation 4. Rahimi et al. [37] propose that 𝜙 can be ap-
proximated using 𝑓 (𝜔⊤𝑥) based on Monte Carlo method:

𝜙 (𝑥) ≈ ℎ(𝑥)√
𝑚
(𝑓 (𝜔⊤1 𝑥), ..., 𝑓 (𝜔

⊤
𝑚𝑥), ..., 𝑓 (𝜔⊤1 𝑥), ..., 𝑓 (𝜔

⊤
𝑚𝑥))⊤, (5)

where 𝜔1, 𝜔2, ..., 𝜔𝑚 are random features selected from a Gaussian
distribution, ℎ(𝑥), 𝑓 (𝑥) are two given functions of a RFA method.
Under the guidance of Bochner’s theorem [2], Equation 4 can be
reformulated as the following expectation [59]:

exp
(
𝑥⊤𝑦

)
= E𝜔∼N(𝜔 ;0,I)

[
𝜙 (𝑥, 𝜔)⊤𝜙 (𝑦,𝜔)

]
, (6)

where N(𝜔 ; 0, I) denotes a Gaussian distribution with the mean of
zero and identical covariance matrix. The function 𝜙 (·, ·) denotes a
random projection from the input vector 𝑥 ∈ R𝑑 to a high dimen-
sion vector 𝜙 (𝑥, 𝜔) ∈ R2𝑚 as shown in Equation 5. Here𝑚 is the
number of random features sampled from a Gaussian distribution.

After approximating the expectation, 𝑞𝑖 and 𝑘 𝑗 are designated
as 𝑥 and 𝑦 in Equations 5 and 6, respectively. Subsequently, these
variables are incorporated into the vector format of softmax self-
attention in Equation 3 to derive the random feature attention
(namely, RFAttn) as follows:

𝑅𝐹𝐴𝑡𝑡𝑛 (𝑞𝑖 , 𝐾,𝑉 ) =
𝑁∑︁
𝑗=1

exp(𝑞⊤
𝑖
𝑘 𝑗 )∑𝑁

𝑗 ′=1 exp(𝑞⊤𝑖 𝑘 𝑗 ′ )
𝑣⊤𝑗

≈
∑𝑁
𝑗=1 𝜙 (𝑞𝑖 , 𝜔)

⊤ 𝜙
(
𝑘 𝑗 , 𝜔

)
𝑣⊤
𝑗∑𝑁

𝑗 ′=1 𝜙 (𝑞𝑖 , 𝜔)
⊤ 𝜙

(
𝑘 𝑗 ′ , 𝜔

)
=
𝜙 (𝑞𝑖 , 𝜔)⊤

∑𝑁
𝑗=1 𝜙

(
𝑘 𝑗 , 𝜔

)
𝑣⊤
𝑗

𝜙 (𝑞𝑖 , 𝜔)⊤
∑𝑁
𝑗 ′=1 𝜙

(
𝑘 𝑗 ′ , 𝜔

)
(7)

In Equation 7, the original exponential kernel between 𝑞𝑖 and 𝑘𝑖
is replaced by a series of functions 𝜙 (·, ·). Thus, it only calculates∑𝑁
𝑗=1 𝜙

(
𝑘 𝑗 , 𝜔

)
𝑣⊤
𝑗
and

∑𝑁
𝑗 ′=1 𝜙

(
𝑘 𝑗 ′ , 𝜔

)
, and uses the results for all

𝑞𝑖 to compute the attention. Because there are 𝑁 queries, the final
time complexity of RFA is 𝑂 (𝑁 ).
Problem statement. This paper investigates an efficient trans-
former method for time series, and applies it to solve tsc. □
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3 CHALLENGES OF RFA ON TIME SERIES
In this section, we present a comprehensive analysis of the chal-
lenges faced by RFA methods in time series, specifically focusing
on efficiency, overflow, and approximation error.

3.1 Efficiency
The precision of 𝜙 for approximating the exponential kernels is
crucial for the RFA method. Several works [14, 34] tried to min-
imize the approximation error between RFA by optimizing 𝜙 . A
classical choice [34, 37] is to let ℎ(𝑥) = exp

(
1
2 ∥𝑥 ∥

2
)
, and 𝑓 (𝜔, 𝑥) =[

sin
(
𝜔⊤𝑥

)
, cos

(
𝜔⊤𝑥

) ]⊤. By substituting them into the projection
𝜙 of Equation 5, we obtain Equation 8 as follows:

𝜙𝑡𝑟𝑖𝑔 (𝑥, 𝜔) = 1
√
𝑚

exp
(
∥𝑥 ∥2
2

)
( sin

(
𝜔⊤1 𝑥

)
, . . . , sin

(
𝜔⊤𝑚𝑥

)
,

cos
(
𝜔⊤1 𝑥

)
, . . . , cos

(
𝜔⊤𝑚𝑥

)
)⊤ .

(8)

Since the projection 𝜙 in Equation 8 uses trigonometric func-
tions for random features, the corresponding attention is named as
trigonometric random feature attention.

A positive random feature attention is further proposed in Per-
former [5], which reduces the approximation error of trigono-
metric attention. It makes ℎ(𝑥) = exp

(
− ∥𝑥 ∥

2

2

)
and 𝑓 (𝜔, 𝑥) =[

exp
(
𝜔⊤𝑥

)
, exp

(
−𝜔⊤𝑥

) ]⊤, then substitutes them into Equation 5.
The projection 𝜙𝑝𝑜𝑠 of positive random feature attention in Per-
former is shown as below:

𝜙𝑝𝑜𝑠 (𝑥,𝜔) = 1
√
2𝑚

exp
(
− ∥𝑥 ∥

2

2

)
( exp

(
𝜔⊤1 𝑥

)
, . . . , exp

(
𝜔⊤𝑚𝑥

)
,

exp
(
−𝜔⊤1 𝑥

)
, . . . , exp

(
−𝜔⊤𝑚𝑥

)
)⊤ .
(9)

After applying 𝜙𝑝𝑜𝑠 to each 𝑞𝑖 and 𝑘𝑖 , 𝑄 ′ and 𝐾 ′ are expressed
using 𝜙𝑝𝑜𝑠 (𝑞,𝜔) and 𝜙𝑝𝑜𝑠 (𝑘,𝜔). The matrix calculation of positive
random attention is written as follows:

𝑃𝑜𝑠𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = 𝐷−1
(
𝑄 ′

( (
𝐾 ′

)⊤
𝑉

))
,

𝐷 = 𝑑𝑖𝑎𝑔

(
𝑄 ′

( (
𝐾 ′

)⊤ 1𝐿)) . (10)

For previous RFA-based methods, when calculating the projec-
tion𝜙 (𝑥, 𝜔) in Equation 8 and 9, the random features𝜔⊤1 , 𝜔

⊤
2 , · · · , 𝜔

⊤
𝑚

need to be assigned for all time series in each epoch during the
training process. Thus, their efficiency is constrained by the number
of random features𝑚.

3.2 Overflow
Given a shape 𝑠 ∈ 𝑆 identified from the shape setS in tsc datasets [1].
An overflow will occur when taking 𝑠 as the input 𝑥 for RFA meth-
ods because of calculating the term exp( ∥𝑥 ∥

2

2 ) in Equation 8, 9.
To better illustrate the overflow in RFA methods, an example is
provided in Example 1:

Example 1. Considering an input shape 𝑠 from BasicMotions, 𝑠 =
[10.31,−11.37,−13.42,−13.42, 13.88, 14.75, 16.54, 14.25, 5.05,−12.29],
the length of shape 𝑠 is 10, and the value of ∥𝑠 ∥2 is 1659.45. Take 𝑠 as
the input 𝑥 for Equation 8 or 9 to calculate random feature attention.

The term exp( ∥𝑥 ∥
2

2 ) exceeds the upper bound of Python 21024. As a
result, it leads to the overflow for computing both trigonometric and
positive random feature attention.

In practice, the overflow can be found across many time series
datasets shown in Section 5.3.2, leading to the failure of updating
weights when training a transformer model on these datasets.

3.3 Approximation error
For a given RFA method, the approximation error of RFA to vanilla
softmax attention is defined as follows:

Definition 1. The approximation error for positive or trigonomet-
ric random feature attention to vanilla softmax attention is defined
by Mean Square Error (MSE):

𝑀𝑆𝐸 (𝑅𝐹𝐴𝑡𝑡𝑛) = 1
𝑁

𝑁∑︁
𝑖=1
(𝑅𝐹𝐴𝑡𝑡 (𝑞𝑖 , 𝐾,𝑉 ) − 𝑆𝑀𝐴𝑡𝑡 (𝑞𝑖 , 𝐾,𝑉 ))2

=
1
𝑁

𝑁∑︁
𝑖=1
[
𝑁∑︁
𝑗=1
(

𝜙 (𝑞𝑖 , 𝜔)⊤ 𝜙
(
𝑘 𝑗 , 𝜔

)∑𝑁
𝑗 ′=1 𝜙 (𝑞𝑖 , 𝜔)

⊤ 𝜙
(
𝑘 𝑗 ′ , 𝜔

)
−

exp(𝑞⊤
𝑖
𝑘 𝑗 )∑𝑁

𝑗 ′=1 exp(𝑞⊤𝑖 𝑘 𝑗 ′ )
)𝑣⊤𝑗 ]

2

(11)
Drawing from Definition 1, Lemma 3.1 is established as follows:

Lemma 3.1. Given a trigonometric or positive random feature at-
tention, E𝜔∼N(𝜔 ;0,I) [𝑅𝐹𝐴𝑡𝑡𝑛(𝑞𝑖 , 𝐾,𝑉 )] ≠ 𝑆𝑀𝐴𝑡𝑡𝑛(𝑞𝑖 , 𝐾,𝑉 ) based
on Equation 6.

Proof. Make 𝑎𝑖 𝑗 := 𝜙 (𝑞𝑖 , 𝜔)⊤𝜙 (𝑘 𝑗 , 𝜔). With Equation 6 and
the property of expectation, we achieve E𝜔∼N(𝜔 ;0,I)

[∑𝑁
𝑗=1 𝑎𝑖 𝑗

]
=∑𝑁

𝑗=1 exp
(
𝑞⊤
𝑖
𝑘 𝑗
)
. However, 𝑎𝑖 𝑗 and 1∑𝑁

𝑗=1 𝑎𝑖 𝑗
are generally not inde-

pendent, i.e., 𝐶𝑜𝑣 (𝑎𝑖 𝑗 , 1∑𝑁
𝑗=1 𝑎𝑖 𝑗

) ≠ 0.

Thuswe haveE𝜔∼N(𝜔 ;0,I) (
𝑎𝑖 𝑗∑𝑁
𝑗=1 𝑎𝑖 𝑗

) ≠ E(𝑎𝑖 𝑗 )·E( 1∑𝑁
𝑗=1 𝑎𝑖 𝑗

). Based
on the above equations, we can rewrite it as:

E𝜔∼N(𝜔 ;0,I) (
𝑎𝑖 𝑗𝑣

⊤
𝑗∑𝑁

𝑗=1 𝑎𝑖 𝑗
) ≠

exp
(
𝑞⊤
𝑖
𝑘 𝑗
)
𝑣⊤
𝑗∑𝑁

𝑗=1 exp
(
𝑞⊤
𝑖
𝑘 𝑗

) (12)

□

The approximation error, as detailed in Definition 1, does exist in
practice and influences the accuracy of the classification of a trans-
formermodel. In addition, from Lemma 3.1, while𝜙 (𝑞𝑖 , 𝜔)⊤𝜙 (𝑘 𝑗 , 𝜔)
in Equation 6 is an unbiased estimation of exp(𝑞⊤

𝑖
𝑘 𝑗 ), 𝑄 ′ (𝐾 ′)⊤ in

Equation 10 still holds a biased estimation to softmax(𝑄𝐾⊤). This
produces a high approximation error, as we have shown in Figure 1.
Consequently, the classifiers based on RFA methods can exhibit
unstable accuracy results.
Discussion. In summary, we identify the fundamental issue as the
reliance of RFAmethods on a single fixed projection (Equations 8, 9)
to mathematically approximate the softmax kernel, without consid-
ering the original data. Importantly, the distribution of time series
data varies significantly across different real-world applications. For
example, the time series in human activity recognition exhibits a
larger data range and variance compared to the time series in EMA
(ElectroMagnetic Articulograph), which records the movement of
the human’s lips and tongue [1]. Therefore, it is desirable to have a
data-driven approach on 𝜙 when handling time series.
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4 EFFICIENT TRANSFORMER – DARKER
In this section, we propose an efficient transformer, called DARKER,
for time series. In particular, we first introduce the data-driven
kernel-based attention mechanism, which utilizes the projections
learned from multiple time series in Section 4.1. We then construct
an index, called pIndex to efficiently search the projection fitting
𝑆 in Section 4.2. In Section 4.3, we optimize shape discovery from
time series subsequences via an index named 𝐼𝑐2𝑑 after clustering.
Finally, Section 4.4 discusses several optimizations in DARKER.

4.1 DARKER Attention Mechanism
To tackle time series data, we take the number of shapes 𝑁 as an
input for our transformer model with DARKER.2 Extracting shapes
is treated as a preprocessing in our approach.

We propose to use machine learning models, with their learnable
weights, as a data-driven projection for input data to approximate
the softmax kernel in DARKER. These models trained on input data
demonstrate superior data fitting capabilities and avoid computing
the exp( ∥𝑥 ∥

2

2 ) function in both trigonometric (Equation 8) and
positive (Equation 9) random feature attention methods, effectively
mitigating the overflow.

Our solution has two stages, namely learning projections and
data-driven attention.

4.1.1 DARKER Learning projections. We begin with Equation 1,
which describes the query-key-value mapping to input before atten-
tion mechanism. This is subsequently incorporated into Equation 2,
as details below:

𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾⊤)𝑉
= softmax(𝑆𝑊𝑄 (𝑆𝑊𝐾 )⊤)𝑉
= softmax(𝑆 (𝑊𝑄𝑊 ⊤𝐾 )𝑆

⊤)𝑉
= softmax(𝑆𝑊𝑆𝑆⊤)𝑉

(13)

where𝑊𝑆 = 𝑊𝑄𝑊
⊤
𝐾

represents the learnable weights for the at-
tention mechanism. The matrices 𝑄 and 𝐾 with a size of 𝑁 ∗ 𝑑 in
Equation 2 are transformed into two fixed matrices 𝑆 , 𝑆⊤ and a size
of 𝑑 ∗ 𝑑 learnable weight matrix𝑊𝑆 . 𝑆 and 𝑆⊤ are the input shape
and its transpose.

Our Equation 13 transforms the uncertain matrices𝑄 and 𝐾 into
two fixed matrices 𝑆 , 𝑆⊤, and a small size changing 𝑑 ∗ 𝑑 matrix,
𝑊𝑆 . For a specific time series instance, the operation allows us to
build a model on 𝑆 , 𝑆⊤ with a changing𝑊𝑆 , instead of on 𝑄 and 𝐾 .
Considering that the size of𝑊𝑆 (𝑑 ∗ 𝑑) is much smaller than that of
𝑄 and 𝐾 (𝑁 ∗𝑑), it becomes easier to train a model as the projection
for 𝑆 ,𝑊𝑆 , and 𝑆⊤.

The task then launches into finding the projections for the three
matrices 𝑆 ,𝑊𝑆 , and 𝑆⊤ that satisfy the following Equation:

𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = softmax(𝑆𝑊𝑆𝑆⊤)𝑉
≈ 𝜙1 (𝑆)𝜙𝑤 (𝑊𝑆 )𝜙2 (𝑆⊤)𝑉

(14)

Since the data distribution of time series varies, even time series
from the same dataset can be significantly different. To ensure that
the model can adapt to different time series instances, we separately
train the model for each time series and build an index for storing

2The effectiveness of the discriminative time series subsequences (simply called shapes)
for tsc has been demonstrated [12, 18, 20].

Figure 3: Learning projections in DARKER

the model instead of training a single one for all time series. The
weights for all input shapes are obtained during the model training
phase, and then an index is created to query the weights of the
model for a specific time series. We denote the projection for the
𝑖-th shape 𝑆𝑖 as Φ𝑖 .

It is critical to note that MLPs can approximate arbitrary con-
tinuous functions [13, 21, 22]. Thus we design a neural network
consisting of two linear layers, namely 𝐿𝑖𝑛𝑒𝑎𝑟1 and 𝐿𝑖𝑛𝑒𝑎𝑟2, and a
ReLU layer as the basic block, which are collectively referred to as a
linear block, for our model. We build our model𝑚𝑜𝑑𝑒𝑙𝐿 by applying
three linear blocks to the three inputs as shown in the right part of
Figure 3. As a result, each of 𝑆 ,𝑊𝑆 , 𝑆⊤ has its corresponding linear
block. We denote these three linear blocks as 𝜙1 (), 𝜙𝑤 (), 𝜙2 (), and
make Φ = ⟨𝜙1, 𝜙𝑤 , 𝜙2⟩. Formally, we have Equation 15 following
Equation 13:

softmax(𝑆𝑊𝑆𝑆⊤) ≈𝑚𝑜𝑑𝑒𝑙𝐿 (𝑆,𝑊𝑆 , 𝑆⊤)
= 𝐿𝑖𝑛𝑒𝑎𝑟2 (𝑅𝑒𝑙𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟1 (𝑆)))∗
𝐿𝑖𝑛𝑒𝑎𝑟2 (𝑅𝑒𝑙𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟1 (𝑊𝑆 )))∗
𝐿𝑖𝑛𝑒𝑎𝑟2 (𝑅𝑒𝑙𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟1 (𝑆⊤)))

= 𝜙1 (𝑆)𝜙𝑤 (𝑊𝑆 )𝜙2 (𝑆⊤)

(15)

Here, 𝑆 ,𝑊𝑆 , and 𝑆⊤ are the inputs of our 𝑚𝑜𝑑𝑒𝑙𝐿 . The 𝐿𝑖𝑛𝑒𝑎𝑟1,
𝐿𝑖𝑛𝑒𝑎𝑟2, and the ReLU activation function are used to approximate
the corresponding kernel function. Moreover, the weight matrix
𝑊𝑆 is sampled from a Gaussian distribution for each input 𝑆 when
training the neural network.

Example 2. Assume that we have 𝑆1 = [𝑠1, 𝑠2, 𝑠3, 𝑠4]⊤, where 𝑠1 =
[0.78, 0.25], 𝑠2 = [0.51, 0.93], 𝑠3 = [0.18, 0.68], and 𝑠4 = [0.77, 0.87].
After applying them to𝑚𝑜𝑑𝑒𝑙𝐿 , we have corresponding projections
𝜙1, 𝜙𝑤 , and 𝜙2. Based on Figure 3 and Equation 15, we obtain the
hypothetical weight matrices for the projection 𝜙1 in linear layer
1 [0.66, 0.23, 0.98, 0.87] and linear layer 2 [0.54, 0.12, 0.78, 0.98]⊤.
Similarly, we also have those corresponding matrices for 𝜙𝑤 (1 :
[0.57, 0.34, 0.87, 0.23], 2 : [0.91, 0.78, 0.26, 0.46]⊤) and 𝜙2 (1 : [0.12,
0.56, 0.90, 0.34], 2 : [0.98, 0.54, 0.21, 0.87]⊤).

WeuseMean Square Error (MSE) loss as presented in Equation 16
because the purpose of the model is to approximate the softmax
kernel.
L𝑀𝑆𝐸 = ∥softmax(𝑆𝑊𝑆𝑆⊤) − 𝜙1 (𝑆)𝜙𝑤 (𝑊𝑆 )𝜙2 (𝑆⊤)∥2 (16)

The details of learning projections for approximating softmax
kernel are presented in Algorithm 1. We define SΦ as the input
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Algorithm 1: DARKER’s learning projections
Input: Shape set SΦ, the number of training epochs 𝑒𝑝𝑜𝑐ℎ𝑠
Output: Index 𝐼

1 𝐼 .init(); // Initialize I as a hashmap

2 for 𝑆 𝑖𝑛 S do
3 Initialize a model𝑚𝑜𝑑𝑒𝑙𝐿 ;
4 for 𝑒𝑝𝑜𝑐ℎ ∈ {0, · · · , 𝑒𝑝𝑜𝑐ℎ𝑠} do
5 // Using 𝑚𝑜𝑑𝑒𝑙𝐿 to approximate softmax
6 𝑙𝑜𝑠𝑠 ← MSE(softmax(𝑆𝑊𝑆𝑆⊤) −𝑚𝑜𝑑𝑒𝑙𝐿 (𝑆,𝑊𝑆 , 𝑆⊤));
7 𝑚𝑜𝑑𝑒𝑙𝐿 .backward(𝑙𝑜𝑠𝑠);
8 ⟨𝜙1, 𝜙𝑤 , 𝜙2⟩ ←𝑚𝑜𝑑𝑒𝑙𝐿 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠;
9 Φ← ⟨𝜙1, 𝜙𝑤 , 𝜙2⟩;

10 𝐼 .insert(𝑆,Φ);
11 return 𝐼

shape set where projections of shapes are learned while SΦ =

S − SΦ as the shape set where projections of the shapes have not
been learned. We first initialize an empty hashmap as index 𝐼 (Line
1). For each 𝑆 in SΦ (Line 2), we initialize𝑚𝑜𝑑𝑒𝑙𝐿 (Line 3). We then
train our𝑚𝑜𝑑𝑒𝑙𝐿 on 𝑆 with the loss function in Equation 16 (Lines
4-7). The weights of 𝑚𝑜𝑑𝑒𝑙𝐿 with corresponding 𝑆 are stored in
a hashmap 𝐼 (Lines 8-10). This hashmap is further extended to a
pIndex for searching the projections of 𝑆𝜃 ∉ SΦ in Section 4.2.

4.1.2 DARKER Data-driven attention. After learning projections,
we construct a hashmap 𝐼 , which is used in data-driven attention
for querying projections to input. We illustrate our data-driven
attention using the hashmap 𝐼 (Figure 4(b)) and vanilla attention
mechanism (Figure 4(a)), where (·) means the multiplication of two
matrices.

In our data-driven attention, we first query 𝑆 in hashmap 𝐼 to
obtain its corresponding Φ. Since all 𝑆 in SΦ have been stored in 𝐼 ,
the time complexity of searching the trained weights Φ for 𝑆 ∈ SΦ
is𝑂 (1). The obtained Φ𝑖 is then used to compute the projections of
three matrix 𝑆 ,𝑊𝑆 , 𝑆⊤, as shown in the following Equation 17:
𝐷𝐴𝑅𝐾𝐸𝑅𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ) = Φ(𝑄,𝐾)𝑉

= 𝜙1 (𝑆)𝜙𝑤 (𝑊𝑄𝑊𝐾 )𝜙2 (𝑆⊤)𝑉
= 𝜙1 (𝑆) (𝜙𝑤 (𝑊𝑄𝑊𝐾 ) (𝜙2 (𝑆⊤)𝑉 ))

(17)

Due to the associative property of matrix multiplication, we first
multiply 𝜙2 (𝑆⊤) and 𝑉 to obtain a matrix with dimension 𝑑 ∗ 𝑑 in
Equation 17. We then use the obtained result to multiply matrix
𝜙𝑤 (𝑊𝑄𝑊𝐾 ) and matrix 𝜙1 (𝑆). Under this reverse order, we avoid
the computation to a large𝑁 ∗𝑁 matrix, reducing the computational
complexity to 𝑂 (𝑁𝑑).

The steps of training a transformer model (named𝑚𝑜𝑑𝑒𝑙𝑇 ) for
tsc are shown in Algorithm 2.𝑚𝑜𝑑𝑒𝑙𝑇 is training on all input 𝑆𝑖 for
many epochs (lines 2-3). It is worth noting that the query operation
(line 4) only needs to be executed once for all training epochs with
respect to an input. Then, after obtaining the loss (line 5) and using
it for backward propagation (line 6), the output𝑚𝑜𝑑𝑒𝑙𝑇 is used in
inference for predicting the class label.

In a nutshell, DARKER differentiates itself from existing RFA
methods by training a𝑚𝑜𝑑𝑒𝑙𝐿 for fitting input data when learning
projections and utilizing𝑚𝑜𝑑𝑒𝑙𝐿 to train𝑚𝑜𝑑𝑒𝑙𝑇 for downstream
tasks. As opposed to manually selecting a fixed projection in other

Algorithm 2: Training of transformer based on DARKER
Input: Shape set SΦ, Index 𝐼 , label 𝑌 , the number of

training epochs 𝑒𝑝𝑜𝑐ℎ𝑠
Output: trained transformer model𝑚𝑜𝑑𝑒𝑙𝑇

1 Initialize a transformer classification model𝑚𝑜𝑑𝑒𝑙𝑇 with
DARKER;

2 for epoch in epochs do
3 for 𝑆 𝑖𝑛 SΦ do
4 Φ← 𝐼 .𝑔𝑒𝑡 (𝑆);// Φ = ⟨𝜙1, 𝜙𝑤 , 𝜙2⟩
5 𝑙𝑜𝑠𝑠 ←𝑚𝑜𝑑𝑒𝑙𝑇 (𝑆,Φ, 𝑌 );
6 𝑚𝑜𝑑𝑒𝑙𝑇 .backward(𝑙𝑜𝑠𝑠);
7 return𝑚𝑜𝑑𝑒𝑙𝑇

(a) Vanilla attention (b) DARKER

Figure 4: Vanilla and DARKER attention mechanism

methods, this approach aims to approximate the softmax kernel
with projections learned from input, which improves the efficiency
of transformer models and tackles the challenges in Section 3.

4.1.3 DARKER Time complexity analysis. We analyze and provide
the time complexity of DARKER. As shown in Figure 4(b), we have:
1○ Query time (in a hashmap): 𝑂 (1). 2○ The time complexity of Φ:
The time complexity of three linear blocks in Φ are 𝑂 (𝑁𝑑), 𝑂 (𝑑2),
and 𝑂 (𝑁𝑑), respectively. 3○ The matrix multiplication time: The
time complexity of twomatrixmultiplications is both𝑂 (𝑁𝑑). There-
fore, the total time complexity of theDARKER attention mechanism
is 𝑂 (1 + 𝑁𝑑 + 𝑁𝑑) = 𝑂 (𝑁 ) since 𝑑 ≪ 𝑁 .

4.2 Search Projections for SΦ

In Section 4.1.1, we discussed the step of learning projections and
the use of an index 𝐼 implemented as a hashmap. However, in
practical applications, users are highly likely to encounter an input
𝑆𝜃 ∈ SΦ whose projection has not been learned and stored in 𝐼 ,
and DARKER should be capable of handling them. To tackle this
problem, we propose a pIndex for efficiently searching projection
for both 𝑆𝜃 ∈ SΦ and 𝑆𝑖 ∈ SΦ. Since we have introduced the
process of directly using a hashmap for 𝑆𝑖 , we present the details
of searching projection Φ𝜃 for 𝑆𝜃 as follows.

First, we show the precondition of searching projection for 𝑆𝜃
in Lemma 4.1:
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Lemma 4.1. Suppose 𝑆𝑁 ∗𝑑
𝜃
∈ SΦ and 𝑆𝑁 ∗𝑑

𝑖
∈ S𝜃 . ∀ 𝑆𝑖 and 𝑆Φ,

Pr[∥𝑆𝜃 − 𝑆𝑖 ∥ ≤ 𝜀0] = 1 − O(𝑝𝑁𝑑 )

⇒ Pr[∥𝑆𝜃𝑊𝑆𝑆⊤𝜃 − 𝑆𝑖𝑊𝑆𝑆𝑖
⊤∥ < 𝜀] ≥ 1 − O(𝑝𝑁𝑑 )

(18)

𝑤ℎ𝑒𝑟𝑒 𝜀0 = o(1), 𝜎𝑖 = ∥𝑆𝜃 − 𝑆𝑖 ∥, and 𝑝 =
𝜎𝑖

max(𝜎𝑖 ) , 𝜀 is a variable
with quadratic dependency on 𝜎𝑖 .

The proof of Lemma 4.1 is given in Appendix A.5.1. In Lemma
4.1, Equation 18 provides a rough bound for the accuracy of our
approximation on 𝑆𝜃𝑊𝑆𝑆⊤𝜃 using 𝑆𝑖𝑊𝑆𝑆𝑖⊤. Here 𝜎𝑖 = ∥𝑆𝜃 − 𝑆𝑖 ∥
denotes the distance between 𝑆𝜃 and 𝑆𝑖 , 𝜀0 = 𝑜 (1) represents a
infinitesimal and 𝑝 =

𝜎𝑖
max(𝜎𝑖 ) is a ratio of given 𝜎𝑖 to the maximum

𝜎 when 𝑆𝑖 changes. The other 𝜀 denotes a quadratic polynomial
with respect to 𝜎𝑖 , and its specific form is shown in the proof of
Lemma 4.1.

Consequently, large |SΦ | monotonically results in a discrete
distribution of 𝑆𝑖 , possibly leading to a decrease in 𝑝 . Thus we can
reduce the potential for arbitrary errors by replacing Φ𝜃 with Φ𝑖 .
Note that the performance can be enhanced by increasing the size
of SΦ when we sample finite representative shapes. This can also
be confirmed by our experiments in Section 5.4.2.

We then show the correctness of replacing Φ𝜃 with Φ𝑖 as follow-
ing Theorem 4.2:

Theorem 4.2. Suppose 𝑆𝑁 ∗𝑑
𝜃
∈ SΦ and 𝑆𝑁 ∗𝑑

𝑖
∈ S𝜃 . ∀ 𝑆𝑖 and 𝑆Φ,

Pr[∥Φ𝜃 (𝑆𝜃𝑊𝑆𝑆⊤𝜃 ) − Φ𝑖 (𝑆𝜃𝑊𝑆𝑆
⊤
𝜃
)∥ < (𝐿𝜃 + 𝐿𝑖 )𝜀 + 2𝜂𝑖 ]

≥ [1 − O(𝑝𝑁𝑑 )]2 · [1 − O(𝑞𝑁𝑑 )]𝑁−1
(19)

where 𝐿𝜃 and 𝐿𝑖 are two positive constants, 𝜀 is a variable with
quadratic dependency of 𝜎𝑖 , 𝜎𝑖 = ∥𝑆𝜃 − 𝑆𝑖 ∥, 𝜂𝑖 = ∥Φ𝑖 (𝑆𝑖𝑊𝑆𝑆⊤𝑖 ) −
softmax(𝑆𝑖𝑊𝑆𝑆⊤𝑖 )∥, 𝑝 =

𝜎𝑖
max(𝜎𝑖 ) , and 𝑞 =

𝜂𝑖
max(𝜂𝑖 ) .

The proof of Theorem 4.2 can be found in Appendix A.5.2. Equa-
tion 19 gives us another rough bound about the approximation of
projections based on Equation 18. In addition to the existing sym-
bols in Lemma 4.1, 𝐿𝜃 and 𝐿𝑖 are two Lipsitz constants, 𝜂𝑖 represents
the difference between Φ𝑖 (𝑆𝑖𝑊𝑆𝑆⊤𝑖 ) and softmax(𝑆𝑖𝑊𝑆𝑆⊤𝑖 ), and 𝑞
denotes the ratio of 𝜂𝑖 to the maximum 𝜂 when Φ𝑖 changes.

In Theorem 4.2, a smaller 𝜎𝑖 = ∥𝑆𝜃 − 𝑆𝑖 ∥ and 𝜂𝑖 = ∥Φ𝑖 (𝑥𝑖 ) −
𝑆𝑀 (𝑥𝑖 )∥ indicates larger probability of finding existing Φ𝑖 to ac-
curately approximate Φ𝜃 . Therefore, to find projection Φ𝜃 fitting
𝑆𝜃 , we need to search for the nearest 𝑆𝑖 in the shape set SΦ to 𝑆𝜃 .
Lemma 4.1 and Theorem 4.2 illustrate that Φ𝜃 approximately equals
to Φ𝑖 on the same domain field 𝑆𝜃𝑊𝑆𝑆⊤𝜃 .

In such case, our problem can finally be reduced to an Approx-
imate Nearest Neighbor (ANN) search task on S. Each element
from S is a matrix 𝑆 with size 𝑁 × 𝑑 , which means we need to
search a matrix (two dimensions) rather than a vector (one dimen-
sion) in most existing ANN methods [19, 35]. This two-dimensional
distinction leads to an inefficient search process.

Our proposed solution, pIndex, leverages the clustering process
during shape discovery as detailed in Section 4.3. This process
serves as a method of feature reduction to achieve a low-dimension
representation 𝑅 for 𝑆 . Specifically, we take 𝐶𝑆 , which represents
the clusters of all shapes within 𝑆 identified in shape discovery,
as the representation 𝑅. We justify the use of representation 𝑅 in
pIndex as follows: each shape 𝑠 , one row of 𝑆 , is the nearest time
series subsequence to the cluster center and is selected in the order

Figure 5: The process of transmitting 𝑆 to representation 𝑅
and computing the Hamming Distance
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(b) Hamming Distance Based on 𝑅

Figure 6: The distance of a selected instance from Class 1 to
others

Figure 7: pIndex of searching Φ for 𝑆

of these cluster centers. If most shapes from 𝑆𝑖 and 𝑆𝜃 in the same
row belong to the same cluster, this suggests a smaller 𝜎𝑖 = ∥𝑆𝜃−𝑆𝑖 ∥
in Theorem 4.2. Therefore, it is more likely that 𝑆𝑖 and 𝑆𝜃 share the
same Φ.

Given that 𝑅 represents the clusters to which the shapes in 𝑆
belong, we can consider 𝑅 as a sequence composed of 𝑁 symbols,
with each symbol corresponding to a specific cluster. To quantify
the similarity between two such representations, 𝑅1 and 𝑅2, we
employ the Hamming Distance metric focusing on their respective
cluster centers. The definition of the Hamming Distance is provided
in the Equation 20:

𝑑𝐻 (𝑅1, 𝑅2) =
𝑁∑︁
𝑖=1

𝛿 (𝑟 𝑖1, 𝑟
𝑖
2) (20)

where 𝑟 𝑖1, 𝑟
𝑖
2 are the 𝑖-th value of two vector 𝑅1, 𝑅2, and 𝛿 (𝑟 𝑖1, 𝑟

𝑖
2)

denotes Kronecker Function measuring if 𝑟 𝑖1 and 𝑟
𝑖
2 are equal.

Figure 5 illustrates the process of utilizing clusters as represen-
tations and calculating Hamming distances based on these repre-
sentations. An example of this process is provided below:

Example 3. Suppose 𝑆1 and 𝑆2. Each of them consists of four
shapes, 𝑆𝑖 = [𝑠1, 𝑠2, 𝑠3, 𝑠4], where 𝑠 is a vector with length 𝑑 . The
cluster centers of 𝑠 in 𝑆𝑖 are 𝐶𝑖 . We use the cluster centers as the
representation 𝑅1 = [𝐴,𝐴, 𝐵,𝐶] for 𝑆1 and 𝑅2 = [𝐴, 𝐵, 𝐵, 𝐵] for 𝑆2.
Thus, the Hamming Distance between 𝑅1 and 𝑅2 is 2.

3235



To demonstrate the effectiveness of our proposed representation
𝑅, we randomly select a time series instance from Class 1 in the
test set. We compute the Hamming Distance based on 𝑅 and the
Euclidean Distance based on 𝑆 against all instances in the training
set. The results are shown in Figure 6, where the x-axis represents
the IDs of the time series in the training set, divided by the class
label. Our observations indicate that the nearest class to the ran-
domly selected time series instance, for both distance measures,
is Class 1—consistent with the instance’s true class label. Further-
more, we notice that the Hamming distances for time series from
Class 1 to the other classes are significantly larger compared to
the distances within Class 1. In contrast, the Euclidean distances
exhibit minimal disparity between Class 1 and Class 3. These results
underscore the superiority of representation 𝑅 and the effectiveness
of employing Hamming Distance over Euclidean Distance in this
context. Moreover, the dimension reduction from 𝑆 to 𝑅 coupled
with the application of Hamming Distance significantly enhances
the efficiency of ANN within our pIndex.

We apply the Ball Tree based on Hamming Distance to searching
the nearest neighbor for 𝑆 in our pIndex, because of its efficiency
in handling high-dimensional data [31]. We note that there may be
other solutions for ANN. As the selection or proposal of a better
index for ANN is orthogonal to our method, we simply use Ball
Tree here. Any other advanced index for ANN to data series based
on Hamming Distance can further improve our efficiency.

Finally, we show the details of pIndex in Figure 7. When the
input 𝑆 is in SΦ, we directly use a hashmap from Section 4.1.1 to
obtain its projection; when 𝑆 is in SΦ, we conduct a ANN search
to obtain 𝑆𝑖 ∈ SΦ based on the representation 𝑅 of 𝑆 and then take
the projection 𝑃ℎ𝑖 from a hashmap. We also give an example for
illustrating pIndex as follows:

Example 4. Assume there is a 𝑆𝜃 = [𝑠1, 𝑠2, 𝑠3, 𝑠4]⊤, the cluster
centers of them are [𝐴,𝐴, 𝐵,𝐶] after clustering. So we have its rep-
resentation 𝑅𝜃 = [𝐴,𝐴, 𝐵,𝐶]. We query 𝑅𝜃 in a ball tree based on
Hamming Distance to find the nearest 𝑅𝑖 = [𝐴,𝐴, 𝐵, 𝐵] to 𝑅𝜃 . Then,
the projection Φ𝑖 of 𝑆𝑖 is taken as Φ𝜃 for 𝑆𝜃 .

It should be remarked that each input is required to search for its
projection in pIndex only once at the beginning of the training and
then used in all epochs of training. In our datasets, the height of a
ball tree in pIndex is always smaller than a constant 32, which is
much smaller than the number of epochs. Hence, the training time
is dominated by matrix multiplications in each epoch, presented in
Section 4.1.3.

4.3 Optimized Preprocessing of Shape Discovery
[12, 18, 20, 62] have confirmed that the discriminative time series
subsequences (or simply called shapes) lead to better performance
on tsctasks. Inspired by the previous works, we also employ a pre-
processing to discover shapes based on clustering algorithm (e.g.,
kmeans) and take them as the input for a transformer model. How-
ever, the discovery process is time-consuming. Thus, we propose
an efficient shape discovery algorithm shown in Algorithm 3.

The details of selecting time series subsequences as shapes for
representing time series can be described as follows. First, we ini-
tialize a shape setS and a set T of time series subsequences (Line 1).
Then, we apply sliding windows to all time series 𝑋 𝑗 from dataset

Algorithm 3: Shape discovery for DARKER’s input
Input: Time series dataset D
Output: shape set S

1 Initialize set S, T ;
2 for 𝑋 𝑗 𝑖𝑛 D do
3 T ← T ⋃

slideTS(𝑋 𝑗 );
4 // build 𝐼𝑐2𝑑 to store clusters and distance

5 ⟨𝐼𝑐2𝑑 , {𝐶1,𝐶2, ...,𝐶𝐾 }⟩ ← kmeans(T );
6 for 𝑋 𝑗 𝑖𝑛 D do
7 Initialize 𝑆 𝑗 ← [];
8 for 𝐶𝑖 𝑖𝑛 {𝐶1,𝐶2, ...,𝐶𝑁 } do
9 // retrieve the distance from 𝐼𝑐2𝑑

10 dist(𝐶𝑖 , 𝑋 𝑗 ) ← 𝐼𝑐2𝑑 .get(𝐶𝑖 , 𝑋 𝑗 );
11 // Select the nearest 𝑇 to 𝐶𝑖 as 𝑠

12 𝑠𝑖 ← select_min(dist(𝐶𝑖 , 𝑋 𝑗 ));
13 𝑆 𝑗 [𝑖] ← 𝑠𝑖 ;
14 S.add(𝑆 𝑗 );
15 return S

D to generate a large number of time series subsequences as T
(Line 2-3). Afterward, a kmeans is applied to these time series sub-
sequences T . As a result, we obtain their clusters {𝐶1,𝐶2, ...,𝐶𝑁 }
and build an index 𝐼𝑐2𝑑 based on the clusters and their distances to
time series subsequences (Line 4-5). We define dist(𝐶𝑖 , 𝑋 𝑗 ) as a set
of distances {dist(𝐶𝑖 ,𝑇 1

𝑗
), (𝐶𝑖 ,𝑇 2

𝑗
)...} between the center of cluster

𝐶𝑖 and time series subsequences {𝑇 1
𝑗
,𝑇 2
𝑗
, ...}, where {𝑇 1

𝑗
,𝑇 2
𝑗
, ...} are

derived from sliding over𝑋 𝑗 . Given a𝑋 𝑗 (Line 6), we retrieve the set
of distances dist(𝐶𝑖 , 𝑋 𝑗 ) for a cluster𝐶𝑖 (Lines 7-10) and select the
nearest time series subsequence𝑇 as a shape 𝑠𝑖 to the i-th row of 𝑆 𝑗
(Line 11-13). We give a concise example to illustrate this process.

Example 5. Assume that we have a time series instance 𝑋 =

[0.21, 0.58, 0.34, 0.26]. We apply a sliding window to the instance and
obtain three time series subsequences {𝑇 1,𝑇 2,𝑇 3} from𝑋 , where𝑇 1 =
[0.21, 0.58], 𝑇 2 = [0.58, 0.34], and 𝑇 3 = [0.34, 0.26]. After running
the kmeans algorithm, we have three cluster centers {𝐶1,𝐶2,𝐶3},
and 𝐼𝑐2𝑑 = {𝐶1 : 0.12, 0.32, 0.16;𝐶2 ...;𝐶3 ...} for 𝑋 , where 0.12, 0.32,
and 0.16 are the distances from cluster center 𝐶1 to 𝑇1,𝑇2, and 𝑇3,
respectively. Since 0.12 is the minimum among the three distances,
we take 𝑇1 corresponding to cluster center 𝐶1 as a shape 𝑠1. After
repeating the selection of the nearest time series subsequences to three
cluster centers {𝐶1,𝐶2,𝐶3}, we obtain 𝑆 = {𝑠1, 𝑠2, 𝑠3}, where 𝑠1, 𝑠2, 𝑠3
are the shapes for 𝑋 .

Compared to existing methods [18, 62] that also use the near-
est time series subsequence as the shape, we introduce 𝐼𝑐2𝑑 in
DARKER to index distances from cluster centers to shapes during
clustering, thereby avoiding recalculating distances by retrieving
them from 𝐼𝑐2𝑑 . The process of extracting shapes 𝑆 𝑗 from a time se-
ries 𝑋 𝑗 as input for DARKER by querying (𝐶𝑖 , 𝑋 𝑗 ) in 𝐼𝑐2𝑑 is shown
in Figure 8.

Given a time series instance 𝑋 𝑗 from a dataset D, we have
slideTS(𝑋 𝑗 ) = {𝑇 1

𝑗
,𝑇 2
𝑗
, ...,𝑇 𝑡

𝑗
}. Considering clusters {𝐶𝑖 }𝑁𝑖=1 of

T =
⋃N
𝑗=1

⋃𝑡
𝑘=1𝑇

𝑘
𝑚 , a shape 𝑠𝑖 for time series 𝑋 𝑗 corresponding

to a cluster 𝐶𝑖 satisfies 𝑑𝑖𝑠𝑡 (𝑠𝑖 ,𝐶𝑖 ) = 𝑚𝑖𝑛{𝑑𝑖𝑠𝑡 (𝑇𝑘𝑚 , 𝐶𝑖 )},𝑇𝑘𝑗 ∈ 𝑋 𝑗 .
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Figure 8: Extracting a shape for input 𝑋 𝑗 in cluster 𝐶𝑖

Proposition 4.3 justifies why we select the nearest time series sub-
sequence as the shape for DARKER rather a random sample.

Proposition 4.3. Considering random picking a 𝑠′
𝑖
, it introduces

more noise to the training data compared with the shape 𝑠𝑖 , i.e.,
𝑑𝑖𝑠𝑡 (𝑠′

𝑖
,𝐶𝑖 ) = 𝑑𝑖𝑠𝑡 (𝑠𝑖 ,𝐶𝑖 )+𝜂𝑖 where 𝜂𝑖 is the noise. Moreover, the vari-

ance of training data with 𝑠′
𝑖
𝑉𝑎𝑟 (𝑠𝑖 ) = 1

N−1
∑N
𝑖=1 (𝑠𝑖 −𝐶𝑖 )2 increases

with the noise 𝜂𝑖 .

After conducting Algorithm 3, every time series 𝑋 is associated
with a 𝑆 , which contains 𝑁 shapes. 𝑆 is taken as an input to a
transformer model. With 𝑁 shapes in 𝑆 , there exists a 𝑂 (𝑁 2) time
complexity efficiency problem, which is solved in Section 4.1. In
addition, we store the clusters 𝐶𝑆 of those shapes in 𝑆 , which are
used to obtain the representation 𝑅 for 𝑆 in Section 4.2.

4.4 Optimization and Implementation
For self-contained presentation, we present some techniques used
for optimization and implementation of ourmethod inDARKER and
shape discovery with 𝐼𝑐2𝑑 .

For time series classification, the lengths of discriminative time
series subsequences may vary [4, 38]. Therefore, in Section 4.3, in
order to extract multi-scale shapes from time series, we follow the
same strategy [18, 62] as existing works, which employs multi-scale
windows, instead of a single length as the size of sliding windows.
For all training processes of both𝑚𝑜𝑑𝑒𝑙𝐿 in Algorithm 1 and𝑚𝑜𝑑𝑒𝑙𝑇
in Algorithm 2, we employ the popular Adam optimizer, which has
adaptive learning rates that adjust based on the gradient [15]. It
allows the models to converge faster and handle various large,
complex time series datasets. Since the model architecture is fixed
as shown in Figure 3, storing𝑚𝑜𝑑𝑒𝑙𝐿 as Φ for each time series in the
index is equivalent to storing weights of the𝑚𝑜𝑑𝑒𝑙𝐿 . We only store
the weights of𝑚𝑜𝑑𝑒𝑙𝐿 for each time series in practice. To further
prevent overfitting during training, we incorporate a dropout layer
into our transformer model [40].

5 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation DARKER.
In particular, we report the experiment setup in Section 5.1. We
then briefly introduce the compared benchmarked methods in Sec-
tion 5.2. Section 5.3 reports the overall evaluation of DARKER,
which includes both the efficiency (Section 5.3.1) and accuracy (Sec-
tion 5.3.2). In Section 5.4, we conduct an experiment to show the
efficiency of our pIndex and evaluate the performance on various
ratios for learning projections. Finally, we report the running time
of our shape discovery and approximating error relative to vanilla
attention in Section 5.5 and Section 5.6.

5.1 Experiment Setup
Environment. All experiments are conducted on the hardware of
a machine with a single NVIDIA V100S GPU and one Xeon Gold
6226 CPU @ 2.70GHz. We use Python 3.8 and Pytorch 1.10.0 as the
software environment.Metrics.We evaluate DARKER on both effi-
ciency and effectiveness. For efficiency, we employ training/running
times as evaluation metrics. Furthermore, we use FLOPs (floating-
point operations per second) for the transformer model, which are
commonly applied to measure the computational performance of a
neural network model. For effectiveness, we utilize the accuracy
metric, given that we present our work with tsc. In addition, follow-
ing existing works [18, 57, 62], we calculate the average accuracy
and average rank, and conduct Friedman andWilcoxon signed-rank
tests on all methods. Datasets.We use 14 UEA archive datasets [1]
from various domains for tsc, supplemented by 2 synthetic datasets
to assess performance on larger scales (with training sizes of 10, 000
and 20, 000). Some characteristics of the datasets are presented in
Appendix A.1. Implementation details. For the experiment on
training time, we set hyperparameters to be the same across all
datasets. For training, we follow the previous work [57, 62] to split
the training set into two parts, namely 80% and 20%, where the
20% part is as the validation set to tune the hyperparameters. The
details of hyperparameters are also provided in Appendix A.3.

5.2 Benchmarked Methods
We compareDARKER against six benchmarkedmethods: the vanilla
transformer [46] and five SOTA efficient transformers. Among the
five efficient transformers, RFA-trig and RFA-pos employ random
feature attention, while the remaining three are efficient trans-
formers optimized for time series. Full attention [46]: Vanilla
transformer models employ softmax attention (also called full at-
tention) across all query-key pairs, resulting in 𝑂 (𝑁 2) time com-
plexity. Informer [60]: Informer, the SOTA efficient transformer
for time series, introduces the ProbSparse attention mechanism,
selectively processing dominant query-key pairs to achieve an im-
proved 𝑂 (𝑁𝑙𝑜𝑔𝑁 ) time complexity. Fedformer [61]: Fedformer
is a frequency-enhanced decomposed transformer for time series,
which selects a fixed number of Fourier components and achieves
linear computational complexity. Pyraformer [23]: Pyraformer
applies a pyramidal attention module in the transformer for time
series. The time complexity scales linearly with input length. RFA-
trig [34]: An representative method of the RFA mechanism uses
trigonometric random features defined in Equation 8 to approxi-
mate attention. RFA-pos [5]: An advanced RFA approach within
the Performer framework utilizes positive random features for effi-
cient attention approximation (defined in Equation 9, 10). Besides,
we compared our method with two non-transformer methods in
terms of accuracy. EDI [1]: The 1-Nearest Neighbour classifier
with Euclidean distance. Rocket [7]: The SOTA non-transformer
method for tscon UEA archive reported by the survey [38].

5.3 Overall Evaluation
5.3.1 Experiment on efficiency. We evaluate the efficiency of our
method by reporting the training time of both 14 real and 2 synthetic
datasets ordered byN, which is the dataset size.We vary the number
of shapes 𝑁 (the number of inputs) as the x-axis and present their
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Figure 9: Training time on varying the number of shapes 𝑁
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Figure 10: FLOPs of all methods on two datasets

training time as the y-axis. Due to space limitations, we report only
the results for 8 out of 16 datasets in Figure 9, with consistent trends
across all datasets. Full details are in Appendix A.2.

In our experiments, DARKER demonstrates a clear improvement
in computational efficiency. Specifically, it achieves a 3×-4× faster
compared to full attention and 1.5×-3× improvement over other
SOTAs at𝑁 = 212. Notably, as𝑁 grows from 27 to 212, our method’s
training time scales modestly by 6×-10×, contrasting with the full
attention mechanism’s 30×-44× increase, highlighting DARKER’s
scalability. Particularly on large datasets, DARKER shows substan-
tial efficiency advantages, such as 4.8× faster processing on Spoke-
nArabicDigits and 4× on Synthetic A, compared to full attention.
This efficiency is consistent across dataset sizes, with a training
time increase of less than 7-fold from 27 to 𝑁 = 212, compared to a
41-fold increase with full attention.

Furthermore, we compare the FLOPs across all methods on two
datasets, namely BasicMotions and UWaveGestureLibrary. We can
observe that DARKER reduces FLOPs by over 30× relative to full
attention, and 18× to RFA-pos and RFA-trig at 𝑁 = 212 in Figure 10,
which shows its potential for handling large-scale data efficiently.

5.3.2 Experiment on accuracy. To evaluate the effectiveness of
DARKER, we report the accuracy ofDARKER alongside all methods
across 14 representative datasets, detailed in Table 2. The results

show that DARKER achieves the highest average accuracy among
all methods, trailing closely behind full attention. Meanwhile, the
average rank of DARKER is only slightly worse than Rocket and
full attention, while 𝑝-values indicating no significant differences
among the three methods. However, it is observed that the accuracy
of Rocket on a large dataset SpokenArabicDigits is about 0.3 lower
than most transformer methods. In a nutshell, as evidenced by the
supplementary experiment in Appendix A.6, both the accuracy and
efficiency of Rocket are limited in large datasets, which aligns with
existing findings on non-transformer approaches [11, 27]. Addition-
ally, we observed overflow in 6 out of 14 datasets for RFA-pos and
8 out of 14 for RFA-trig, highlighting such datasets are prone to
inaccurate time series analysis. In contrast, DARKER consistently
exhibits both high accuracy and efficiency.

5.4 Experiment on pIndex
5.4.1 The efficiency of pIndex. To evaluate the efficiency of our
pIndex for retrieving projections to 𝑆𝜃 , we conduct 100 queries
on pIndex and calculate the average time. This is benchmarked
against a baseline method of performing an ANN search on 𝑆 using
Euclidean Distance. The evaluation spanned four datasets, with
𝑁 ranging from 27 to 212. According to Figure 11, our method
consistently outperforms the baseline, being at least 20× faster,
underscoring the effectiveness of pIndex. We also observe that
the datasets with larger N (e.g., ArticularyWordRecognition), the
efficiency advantage of pIndex becomes even more significant,
highlighting its capability in handling large-scale datasets.

5.4.2 Accuracy on the ratios for learning projections. To evaluate
the impact of the size of SΦ handling in learning projection to the
accuracy, we sample different ratios of S as SΦ, and the rest of
S is taken as SΦ. The experiment is conducted on four datasets,
namely, ArticularyWordRecognition, BasicMotions, Cricket, and
SelfRegulationSCP1. Figure 12 reveals a general trend: an increase
in the ratio typically enhances our method’s accuracy, aligning
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Table 2: Accuracy of our method and 8 benchmarked methods on UEA datasets3

EDI Rocket RFA-pos RFA-trig Informer Fedformer Pyraformer Full Attn Ours
ArticularyWordRecognition 0.970 0.996 0.967 0.877 0.980 0.970 0.970 0.980 0.963
BasicMotions 0.676 0.990 0.250 0.250 1.000 1.000 0.975 1.000 1.000
CharacterTrajectories 0.964 N/A 0.060 0.060 0.962 0.974 0.970 0.972 0.976
Cricket 0.944 1.000 0.083 0.083 0.889 0.819 0.917 0.944 1.000
EigenWorms 0.549 0.863 0.420 0.420 0.710 0.756 0.420 0.732 0.565
Epilepsy 0.666 0.991 0.928 0.246 0.964 0.957 0.935 0.957 0.964
Handwriting 0.200 0.567 0.340 0.042 0.319 0.289 0.319 0.334 0.305
Libras 0.833 0.906 0.811 0.783 0.856 0.133 0.840 0.850 0.722
Phoneme 0.104 0.284 0.026 0.026 0.175 0.172 0.154 0.178 0.169
RacketSports 0.868 0.928 0.263 0.263 0.783 0.796 0.736 0.770 0.809
SelfRegulationSCP1 0.771 0.866 0.502 0.502 0.659 0.683 0.590 0.669 0.785
SelfRegulationSCP2 0.483 0.514 0.500 0.500 0.478 0.467 0.505 0.511 0.561
SpokenArabicDigits 0.967 0.630 0.100 0.100 0.972 0.968 0.971 0.973 0.979
UWaveGestureLibrary 0.881 0.944 0.888 0.125 0.881 0.903 0.897 0.900 0.906
Avg.Acc 0.705 0.749 0.438 0.306 0.760 0.706 0.727 0.769 0.765
Avg.Rank 5.714 2.393 7.143 8.214 4.464 4.857 5.393 3.357 3.464
Wilcoxon Test p-value 0.049 0.286 0.005 0.004 0.593 0.055 0.035 0.801 -
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Figure 11: Query time of pIndex on four datasets
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Figure 12: Accuracy on ratios for learning projections.

with Theorem 4.2 in Section 4.2. Meanwhile, for the BasicMotions
dataset, the accuracy first increases when the ratio is from 20% to
60%, then stabilizes when the ratio is larger than 60%. This indicates
that optimal accuracy can be attained without utilizing the full S.

3An underline indicates an overflow, resulting in accuracy similar to random guesses.
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Figure 13: Efficiency on shape discovery of SVP-T, and ours

 0

 0.2

 0.4

 0.6

 0.8

 1

27 28 29 210 211 212

Ac
cu

ra
cy

N

SVP-T             Ours    Random

Figure 14: Accuracy on three shape discovery methods

5.5 Experiment on Shape Discovery
In this subsection, we evaluate our shape discovery method, as
detailed in Section 4.3, against the preprocessing component of
SVP-T, the latest method using shapes for a transformer model.

5.5.1 Efficiency of shape discovery. Figure 13 illustrates that our
method’s shape discovery process is approximately 10× faster than
that of SVP-T across various 𝑁 values on both datasets. Mean-
while,DARKER exhibits a more pronounced superiority over SVP-T
on ArticularyWordRecognition. This is due to the longer subse-
quences present in ArticularyWordRecognition, where our method
efficiently retrieves distances between these subsequences and clus-
tering centers, as outlined in Lines 9-10 of Algorithm 3.

5.5.2 Overall Accuracy of Shape Discovery. We further conducted
an experiment on the performance of our shape discovery method
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(Section 4.3) and the number of clustering centers (the number of
shapes 𝑁 ) affects the accuracy of the dataset ArticularyWordRecog-
nition. In addition to the most relevant work, SVP-T, we present the
accuracy of randomly selecting time series subsequences as shapes.
As depicted in Figure 14, a larger 𝑁 will generally lead to better
accuracy across all three methods, and thus, we set 𝑁 = 212. As a
reference, the accuracy of a transformer with randomly selected
time series subsequences as input does not exceed 0.6, which is
significantly lower than the accuracy of the other two methods. In
contrast, the accuracy of our method is nearly the same as SVP-T,
while ours is, on average, 10× faster, as shown in Figure 13.

5.6 Approximation Error
We investigate the approximation error of DARKER in contrast to
the RFAmethod across different attention sizes by varying 𝑁 on the
ArticularyWordRecognition and UWaveGestureLibrary datasets.
We choose RFA-pos as the benchmark due to its generally lower
approximation error compared to RFA-trig [5]. As depicted in Fig-
ure 15, the approximation errors of our method consistently remain
below 2−10, outperforming RFA-pos in all tested scenarios, with the
only exception at 𝑁 = 211 for the UWaveGestureLibrary dataset.
The lower and more stable approximation errors highlight the supe-
rior performance of ourmethod in approximating softmax attention,
particularly for time series data.

6 RELATED WORK
In this section, we review some related works on efficient trans-
former and transformer-based methods for time series.

6.1 Efficient Transformers
Transformer model has found broad applications not only in natural
language processing [8, 46, 55] and computer vision [9, 25], but
also in time series [44, 57, 60, 62]. Consequently, a research trend
has emerged, focusing on improving transformer efficiency [26].
Interested readers can refer to a recent survey paper [42].

In this subsection, we introduce some relevant works of efficient
transformers. Reformer [16] employs locality-sensitive hashing
(LSH) attention that focuses on a small subset of keys for each query.
However, it assumes that the𝑄 and 𝐾 matrices are identical, a prior,
which is too restrictive in practical scenarios. Cluster-former [47],
in contrast, applies the kmeans algorithm to cluster hidden states
rather than using LSH. Informer [60], an efficient transformer vari-
ant designed for time series forecasting, exploits the prior of sparsity
in the attention weights matrix to reduce the time complexity to

𝑂 (𝑁 log𝑁 ). Despite the improvements, the training of Informer is
still time-consuming and nearly the same as vanilla transformer.
More recently, the matrix approximationmethod has been proposed
for improving the efficiency [42]. Linformer, for example, uses a
low-rank matrix to approximate attention, achieving both mem-
ory and time efficiency [48]. However, we find that these efficient
transformers require priors, which may not hold in time series data.
Kernel-based methods [5, 34, 36, 59], are also referred to as ran-
dom feature attention (RFA) methods or kernel-based methods in
recent literature [34, 42]. We have adopted the term RFA in this
paper. These methods redefine the attention mechanism by repre-
senting the exponential operation in attention as a kernel function
and need no priors. They aim to find a projection, 𝜙 , with random
feature to approximate the exponential kernel without any priors.
However, 𝜙 is defined as a fixed projection (e.g., Equation 8), which
cannot capture the input distribution. As a result, this leads to three
challenges when applying kernel-based methods to time series, as
detailed in Section 3.

6.2 Transformer-based Methods for Time Series
Recently, transformer model has been introduced to many time
series tasks, including forecasting [24, 29, 60], imputation [30, 58],
anomaly detection [45, 53], and classification [54, 57, 62], which
have demonstrated the superior performance [51]. Since we present
our techniques with tsc, here, we introduce some tsc methods
using a transformer model. Zerveas et al. [57] utilized the trans-
former for time series representation learning with classification as
one of the downstream tasks. Their approach, treating the value at
each timestamp as an input for the transformer, requires high train-
ing time when handling long time series. In contrast, TARNet [6]
leverages the transformer tomask the timestamp and conduct recon-
struction for tsc. SVP-T [62] takes the shapes discovered through
clustering as input to the transformer, enabling the processing of
time series of any length. However, transformer-based methods for
tsc still necessitate quadratic computational complexity.

7 CONCLUSION
In conclusion, this is the first work undertaking the approach that
utilizes a series ofmachine learningmodels, and an index to improve
the efficiency of a time-consuming transformer model. Specifically,
in DARKER, we propose a data-driven kernel-based attention that
reduces the time complexity from quadratic to linear. In addition,
we construct a pIndex based on cluster information to efficiently
search projection. Finally, we build an inverted index to optimize
the shape discovery. The experiment shows that our method is more
efficient than all compared methods and achieves nearly the same
average rank in terms of accuracy compared to vanilla attention. In
the future, we plan to applyDARKER to optimize other downstream
tasks of time series, such as time series clustering, and reducing the
I/O time in GPU shown in Appendix A.4.
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