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ABSTRACT

Distributed in-memory processing frameworks accelerate applic-
ation runs by caching important datasets in memory. Allocating
a suitable cluster configuration for caching these datasets plays a
crucial role in achieving minimal cost. We present Agile-ant, a
self-managing framework that identifies important datasets and
scales out the cluster memory to cache them on the fly without any
human interaction, without any prior knowledge of the applica-
tion, the characteristics of the input data, the specification of the
computing resources and their utilization by multiple-tenants. We
evaluate Agile-ant on various real-world applications. Compared
with our baseline, Agile-ant reduces execution cost by 78.3 % on
average and provides better performance than the related work.
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1 INTRODUCTION

Distributed in-memory processing platforms like Spark acceler-
ate the performance of big data applications by utilizing multiple
executors in parallel and using each executor’s memory (executor
cache) for caching [55]. Caching appropriate datasets reduces exe-
cution time and cost significantly [10, 30, 38], and increasing the
cluster size (i.e. adding executors) to allocate sufficient cluster cache
(executor cache × #executors) avoids cache evictions [8]. Ideally,
developers of applications or libraries (e.g. Spark MLlib [37] and
GraphFrames [40]) need to make correct caching decisions, i.e. to
appropriately cache and unpersist (remove) datasets, and cluster ad-
ministrators need to select the optimal cluster size for caching [10].
However, it is very difficult to achieve both because of the following.

Firstly, many factors like cluster cache size and data characterist-
ics are only available during application runs. Thus, the developers
make caching decisions based on conjectures (§3.1), as they lack
crucial information like the computation times and sizes of datasets.
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Secondly, as the memory of each executor is used for execution
and caching [10], to select the optimal cluster size, the administrat-
ors need to predict the required memory for execution to avoid GC
overheads and the size of cached datasets to avoid evicting and, as
a result, recomputing them [8]. They can use cardinality estimation
techniques [22, 25, 28, 32, 51], but they need to know the inner
workings of operators. Alternatively, they could use linear models
for the prediction [8], but the performance might be poor (§3.2).

Thirdly, the two challenges above are compounded because de-
velopers and administrators are required to tackle them in unison
(§3.3). Developers make caching decisions independently of the
cluster cache size, after which administrators try to determine a
suitable cluster configuration. And since administrators handle
application binaries [26], they cannot modify the caching decisions.

Some contributions try to avoid poor performance in advance by
supporting developers in making caching decisions [9, 30], admin-
istrators in selecting cluster configurations [8, 12, 35, 48] or both
[10]. Others try to optimize performance during application runs by
caching datasets [38], reconfiguring the cluster [23, 27, 52] or enfor-
cing cache eviction policies [41, 53]. All of these tackle specific use
cases with predefined assumptions (§4) e.g. available data samples,
recurring applications etc. In contrast, we make a strong step to-
wards fully self-managing clouds that minimize the execution cost
of big data applications. To this end, we propose Agile-ant, a self-
managing framework that makes correct caching decisions and
selects optimal cluster sizes: (a) for all application types (iterat-
ive, data-intensive, compute-intensive etc.) and domains (machine
learning, graph analysis etc.), (b) with no prior knowledge of the
inner workings of the applications or the characteristics of the input
data, (c) for a huge list of application parameters, (d) with no avail-
able history of previous runs or data samples, and (e) in the face of
uncertainties due to multi-tenancy. Note that: (i) Minimizing the
execution cost is not at the expense of the execution time, as there is
a correlation between the two, i.e. execution cost = execution time
× #executors. (ii) On public clouds where a pay-as-you-go pricing
model is used [21], reducing the execution cost minimizes monetary
costs. (iii) Minimizing the execution cost increases the execution
efficiency and leads to better utilization of limited resources [35].

Agile-ant performs a repetitive cycle of three steps. Firstly,
it caches/unpersists datasets based on their reuse pattern (§6).
Secondly, it observes their computation time and size and eval-
uates whether caching them is beneficial or not (§7). Thirdly, it
adjusts the cluster cache (i.e. adds/removes executors) to cache all
partitions of the beneficial datasets (§8). It also ensures a balanced
distribution of cached partitions among executors to avoid having
straggler executors in case of skewed data (§7.2). It does this ad-
aptively in the face of changes in cluster utilization resulting from
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Figure 1: DAG (lir).
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Figure 2: Caching datasets (lir).

multi-tenancy (§8.2.2). Compared to existing work (§4), Agile-ant
is best suitable where making the optimal caching decisions and
predicting the optimal cluster size is not possible before the actual
run (§3). It is not always possible to predict exactly how the applic-
ation run will be because (i) some applications are non-recurring
and without historical runs, (ii) sample/training data is often not
representative, (iii) many application parameters contribute to the
sizes of datasets and the execution DAG of data-driven applications,
and (iv) users submit ad hoc queries in interactive sessions, etc.
Agile-ant frees developers from making caching decisions and
enables administrators to simply select a single executor and set
the maximum number of executors. It then handles the rest.

Our evaluation using 21 applications shows that Agile-ant re-
duces execution cost by 78.3 % compared to our baseline. Its cost is
32.6 %, 57.6% and 16.3 % of that of cache eviction policies, on-the-fly
caching approaches and cost optimization frameworks respectively.
Its learning overhead with regards to caching decisions and cluster
size selection is 13.3% and 3.5% respectively compared to hand-
picking the optimal caching decisions and cluster sizes in advance.

2 BACKGROUND

Below, we discuss Spark as a use case. The underlying concepts
also apply to other distributed in-memory frameworks (see §9.1).

2.0.1 Execution Model. Spark runs applications on a driver and
a set of executors that perform various operations in parallel on
Resilient Distributed Datasets (RDDs) [54]. Transformations are op-
erations that create new RDDs from existing ones while actions
return a value to the driver. An application consists of job(s), each
of which is triggered by an action. A job is represented by a DAG,
comprising a sequence of transformations followed by an action.
Each RDD points back to its parent, which entails the parent-child
dependencies. The DAG of each job is constructed starting from the
action. Then the parent RDDs are constructed one by one, based on
the parent-child dependencies, towards the root RDDs that depend
on no other RDDs. Note that the direction of these dependencies is
opposite that of the data flow. A transformation is either narrow or
wide. Wide transformations split the DAG, at shuffle boundaries,
into stages. Each stage comprises tasks that run concurrently on
executors to perform the same computation on different RDD parti-
tions [49]. The driver starts the application run by constructing the
DAG of the first job (based on the first action). Then, all executors
execute the job (in tasks) and return the result to the driver. The
driver then constructs the DAG of the second job (based on the
second action), and so on. If an RDD is cached, the driver notifies
all executors to cache its partitions in their local cache. In data-
driven applications, the driver constructs the DAG of a job based
on the results of the previous one. Therefore, predicting the whole

Time

C
ac

h
e 

D
5

C
ac

h
e 

D
5

 &
 D

4
1

T0

Job 4                                                                           Job 5

Memory            Block of dataset 5 with index 0             Block of dataset 41 with index 0             Task with id 0 0 0 T0

0

T0

0

T0

0 0

T1

0 1

T1

0 1
T1

1 1

T0

0

T0

0

T0

0 0

T1

0 1

T1

0 1
T1

1 1

1

1

Figure 3: Cyclic eviction in Spark.

application DAG is not possible. Jobs are executed sequentially and
the DAG of each job is constructed immediately before the job’s
execution. Thus, while executing a job, the DAGs of the subsequent
jobs are not yet available. For example, in the K-Means application,
the driver keeps modifying the centroid in iterations (i.e. jobs) until
the convergence is reached [42]. For the remainder of this paper,
we refer to an RDD as a dataset (D) and RDD partitions as blocks.

2.0.2 Caching. Jobs may have transformations in common. Fig. 1
shows the DAG of 22 jobs in the Linear Regression (lir) implement-
ation of Spark MLlib. The computation of the datasets can be traced
in a depth-first traversal order, starting from 𝐷0. Without caching,
the number of computations of a dataset is determined by the num-
ber of its child branches, e.g. 𝐷5, 𝐷35 and 𝐷41 will be computed
22, 17 and 16 times respectively. The number of computations of a
dataset decreases if its child is cached, as it will not be recomputed
to recompute the child. For example, if 𝐷41 is cached, it will not
be recomputed and, thus, 𝐷5 will be computed 7 times. Assuming
the computation time of 𝐷5 is x and the computation time of 𝐷41
starting from 𝐷5 is y, caching 𝐷41 reduces the execution time by (x
+ y) × 15 while caching 𝐷5 reduces it by x × 21. Developers of Spark
MLlib cached 𝐷5 and 𝐷41 (shown in green in Fig. 1). Spark provides
an API for developers to cache/unpersist datasets in/from memory
and allows replicating cached blocks across executors [5, 31, 54].

2.0.3 Memory Management. The unified memory (M) of each ex-
ecutor is shared between the storage and the execution regions,
respectively used for caching and computing datasets such that if
the execution memory is not utilized, the entire M can be used for
caching, and vice versa [57]. There is a minimum storage memory
(R) below which cached blocks are not evicted. Thus, if more execu-
tion memory is required during the application run, some cached
blocks are first evicted (until reaching R) based on a cache eviction
policy (§2.0.5) and then GC takes place to free up execution memory.
The actual caching capacity (between R and M) of each executor
depends on the application’s execution memory requirements [10].

2.0.4 Skipped Stages. While conducting wide transformations,
Spark persists shuffled blocks [2, 9]. Thus, a stage that already
computed shuffled blocks will be skipped in their later usage.

2.0.5 Eviction Policy. Spark applies the LRU policy to evict some
blocks in case of cluster cache limitations. It does not evict a block to
cache another one from the same dataset, thereby avoiding wasteful
cyclic replacement of blocks [4]. In Fig. 3, we show the impact on
the performance of LIR when the cluster cache is not sufficient
to cache 𝐷5 and 𝐷41 and how each task caches, evicts, and reads
blocks. Consider two sequential tasks on an executor with a cache
that fits two blocks and all blocks are equal in size. The memory of
an executor is shared among all tasks running on the executor. If
only𝐷5 is cached, 𝑡𝑎𝑠𝑘0 and 𝑡𝑎𝑠𝑘1 cache𝐷5_0 and𝐷5_1 respectively
in memory in 𝑗𝑜𝑏4 and read them in 𝑗𝑜𝑏5. But if 𝐷5 and 𝐷41 are
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cached, in 𝑗𝑜𝑏4, 𝑡𝑎𝑠𝑘0 caches𝐷5_0, then𝐷41_0. To cache𝐷5_1, 𝑡𝑎𝑠𝑘1
evicts 𝐷41_0 not 𝐷5_0 because 𝐷5_0 belongs to the same dataset as
𝐷5_1. 𝑇𝑎𝑠𝑘1 then evicts 𝐷5_0 to cache 𝐷41_1 because 𝐷5_1 is still
locked by 𝑡𝑎𝑠𝑘1. In 𝑗𝑜𝑏5, 𝑡𝑎𝑠𝑘0 recomputes 𝐷5_0 and 𝐷41_0, and
caches them after evicting 𝐷5_1 and 𝐷41_1, and the cycle goes on.

2.0.6 Push-Based Execution. Spark follows a push-based execution
model [44]. Non-blocking transformations (e.g. filter) process tuples
one by one while blocking transformations (e.g. sort) accumulate all
tuples in a batch. To cache a block, the execution of a transformation
(whether blocking or non-blocking) is blocked in that all tuples are
accumulated and then the whole block is stored in memory.

2.0.7 Call-site. Spark provides a call-site for each dataset that iden-
tifies the point in the application code where the dataset is defined.
Datasets that share the same call-site have a comparable reuse
pattern [38] and we refer to them as similar datasets.

2.0.8 Dynamic Resource Allocation. Spark provides the option to
add and remove executors during an application run based on the
waiting time of tasks in the execution queue (see [3] for details).

3 PROBLEM STATEMENT AND MOTIVATION

3.1 Caching Decisions

Input Data.We run the Principal Component Analysis (pca) imple-
mentation of SparkMLlib on our cluster (§10.1) with a 16.8GB input
data generated using HiBench [6]. No dataset in PCA was cached
by the developers. We modify Spark MLlib to cache a dataset that is
reused in 600 iterations. Thereafter, the average execution time and
cost across all cluster sizes reduced by 53.8 % and 71.9 % respectively.
We show this in Fig. 4 and highlight three areas: (1) Area A (1-2
executors): the cluster cache is not enough to cache all the blocks of
the cached dataset, leading to recomputations of the evicted blocks
in each iteration. Adding more executors increases the cluster cache
size and thus reduces the execution time and cost. (2) Area C (3
executors): the cluster cache is just sufficient for all cached blocks,
resulting in the minimal execution cost. (3) Area B (4-12 executors):
the cluster cache is larger than needed, which reduces the execu-
tion time but increases the execution cost [10]. However, the same
dataset is used only once when running PCA on 7.5GB input data.
Thus, a sample/historical run on 7.5GB does not capture the reuse
patterns in an actual run on 16.8GB. Henceforth, we only discuss
execution costs since our target is the minimal execution cost (§1).
Application Parameters. We run the Random Forest Classifier
(rfc) implementation of Spark MLlib on a 7.7MB input data. When
we set the maxDepth to 1, no dataset is reused, whereas when we
set it to 10, one dataset is reused 30 times. Thus, caching decisions
need to consider the value of certain application parameters.
Application Nature. We run the Latent Dirichlet Allocation (lda)
implementation of Spark MLlib on a 246.0MB input data. We cache
an uncached dataset that is reused 22 times, similarly to PCA, but
realize no performance gains because unlike PCA, the dataset’s
computation time is very small compared to the total iteration time.
Thus, caching a frequently reused dataset is not always beneficial.

3.2 Cluster Configuration

We run the Label Propagation (lp) application [40] on the cit-
Patents [29] and road-road-usa [43] datasets of sizes 267.5MB and
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Figure 4: Caching decision and cluster configuration (PCA).

469.7MB respectively. Although road-road-usa is only about double
the size of cit-Patents, the optimal cluster sizes for their respective
LP runs are 9 and 1 (§10.2). Thus, linear models may not predict
the optimal cluster size accurately. Also, a slight error in selecting
the cluster size could lead to a dramatic overhead. For example, our
experiments show that running the Page Rank (pr) application on
road-road-usa takes 12.8 minutes on 9 executors and, surprisingly,
more than one week on 8 executors (see §10.2 for explanation).

3.3 Multivariate Optimization Problem

We run LIR on all cluster sizes with 44.7GB input data, 15 itera-
tions and three caching options (§2.0.2): (1) cache 𝐷5 (2) cache 𝐷41
(3) cache both. Each of 𝐷5 and 𝐷41 fits in a 5-executor cluster cache.
Fig. 2 shows that caching both datasets is the best option if more
than 7 executors are allocated. Otherwise, caching one dataset is the
best option (see §2.0.5 for an explanation). Hence, caching decisions
shall consider the cluster cache. Achieving this synergy is difficult,
as developers make caching decisions regardless of the cluster size.

4 RELATEDWORK

Caching Decisions. SparkCAD [9], CacheCheck [30] and ReSpark
[38] cache datasets based only on their reuse patterns. SparkCAD
relies on a sample run, which might not represent the actual runs
(§3.1). CacheCheck requires the whole application source code to
detect caching-related bugs, which is impossible if binaries of other
libraries are used. ReSpark [38] caches datasets during actual runs
regardless of whether they fit in the cluster cache or not.
Cache Evictions Policies. LRC [53] and MRD [41] improve per-
formance when multiple cached datasets do not fit in the cluster
cache. They neither change caching decisions nor resize the cluster
cache, which renders them not useful if one or no dataset is cached
and not able to completely avoid recomputations. Similarly, buffer
pool management of databases loads pages from disk to memory
and uses eviction policies if not all pages fit in memory [19, 20, 24].
ClusterConfiguration. Ernest [48] andMasha [11] conduct sample
runs to predict the performance of big data applications. Cherry-
pick [12] and [7] rely on historical runs to recommend cluster con-
figurations. Although Blink [8] considers cache limitations while
predicting the optimal cluster size, it relies on linear size predic-
tion models which might lead to poor performance (§3.2). [50]
and CherryPick predict the interference of multiple tenants before
conducting actual runs but they do not measure cluster utilization
changes during actual runs. Some frameworks support elasticity
[3, 15, 23, 33, 34], but they scale out reactively i.e. after starting to
incur performance penalties e.g. due to memory limitations. Jug-
gler [10] is a training-based framework that recommends caching
decisions and cluster sizes. It conducts training runs using tiny data-
sets, which might lead to wrong caching decisions (see PCA in §3.1).
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It considers only two application parameters for training its linear
models, which might lead to poor performance (§3.2). Also, buffer
pool management of databases adjusts sizes of the multiple buffer
pools based on prior runs and the database workload [17, 36, 45].

In summary: (1) Relying on previous runs leads to poor caching
decisions (§3). (2) Not adapting caching decisions when there are
cache limitations results in poor performance (§3.1 and §3.3). (3) Not
extending resources on the fly incurs performance losses (§3.1 and
§3.2). Unlike the works above, Agile-ant adapts both caching de-
cisions and cluster resources in unison without relying on previous
runs. It is compatible with frameworks that support elasticity. But
unlike their reactive approach, Agile-ant proactively requests for
resources before any performance penalties. Also, buffer pool man-
agement techniques in databases propose tuning parameters of
non-extendable memory and propose eviction policies for fixed-
sized pages. Contrarily, cloud computing systems support elasticity
i.e. extending the cluster memory during application runs, where
the sizes of blocks may vary even if they belong to the same dataset.

5 AGILE-ANT

Agile-ant caches suitable datasets and allocates a suitable number
of executors to avoid evictions. To this end, we introduce three
new components on the driver side, as depicted in Fig. 5: (1) The
Auto-cacher, which makes caching decisions (§6). (2) The Cluster-
-cache Manager, which is the interface between the driver and the
executors (§7). (3) The Scale-out Manager, which manages resources
(§8). We also introduce a new component on the executor side, i.e.
the Executor-cacheManager, whichmanages cache evictions (§7.1.2),
blocks migration (§8.2) and communications. From this point on-
wards, executor refers to the default executor functionalities while
Executor-cache Manager refers to the added component of ours.

5.1 Life Cycle

Before Job Execution. The Auto-cacher first evaluates the cach-
ing decisions of the previous job whereby it keeps the beneficial
datasets cached and unpersists the non-beneficial datasets (§6.1.1).
A dataset is beneficial for caching if its computation is costly. Next,
the Auto-cacher traverses the DAG of the current job to cache
new datasets, i.e. recently cached datasets, based on their number of
computations and call-sites (§6.1.2). Later, it unpersists any cached
datasets that do not exist in the current job’s DAG, depending on
the unpersistence-distance of their call-sites (§6.1.3). Lastly, for each
recently cached dataset, each Executor-cache Manager is notified
of the target number of blocks that the executor shall cache (§6.1.4).
During Job Execution. While an executor runs tasks and caches
blocks, the Executor-cache Manager profiles the computation time
and size of each block (§7.1). It first uses the metrics of a few
blocks to predict whether the target number of blocks fits in the
executor cache and, if not, proactively sends a notification, i.e. a
cache-limitation vote, to the Cluster-cache Manager (§7.1.1). When
the number of votes across all executors exceeds a certain threshold,
the Auto-cacher conducts an early evaluation to check whether the
recently cached datasets are beneficial or not. Accordingly, the
Scale-out Manager extends the cluster cache by adding new execut-
ors to cache the blocks of the beneficial datasets (§8.1). When a
new executor arrives, each Executor-cache Manager is notified to
migrate some of its cached blocks to the newly arrived executor.

Auto-cacher

Scale-out 
Manager

Cluster-
cache 

Manager

Executor-
cache 

Manager
Cluster 

Manager
e.g. Yarn

Executor cache
(2)

(3)(4)

(1)

(5)

(6)(7)

(8) (9) (10)

(11)

ExecutorDriver

Figure 5: Life cycle of Agile-Ant.

After Job Execution. Each Executor-cache Manager sends its
cache status to the Cluster-cache Manager, which then notifies the
Executor-cache Managers of the overloaded executors to migrate
some of their cached blocks to the less-loaded executors (§7.2).
5.1.1 Illustrative Example.

We select LIR (see Fig. 1 and Fig. 2) to explain how the three
components of Agile-ant work together to optimize the execution
cost of an actual run on our cluster (§10.1). Later in §6, §7 and §8,
we justify our design decisions. The execution starts with a single
executor 𝐸0. We consider two cases, namely 𝐿𝐼𝑅1 and 𝐿𝐼𝑅2, where
the maximum number of executors is 6 and 12 respectively.

Before 𝑗𝑜𝑏1 is executed, the Auto-cacher detects that 𝐷0−5 will
be computed for the second time (first in 𝑗𝑜𝑏0). Therefore, it decides
to cache 𝐷5 (i.e. annotates it as cached), as caching it saves recom-
puting it and its parents (§2.0.2). With this annotation, whenever
an executor computes a block of 𝐷5, it will cache the block. At this
point, 𝐷5 is considered as a recently cached dataset (i.e. not evalu-
ated). The Auto-cacher then communicates the caching decision
and number of blocks of 𝐷5 (400 in this example) to the Cluster-
cacheManager (see (1) in Fig. 5), which notifies each Executor-cache
Manager (see (2) in Fig. 5) with the number of blocks the executor
shall cache. Since 𝐸0 is the only executor, it shall cache 400 blocks.

𝐸0 then starts executing 𝑗𝑜𝑏1 in tasks. Each task computes and
caches a block of 𝐷5, while the Executor-cache Manager of 𝐸0
profiles the block’s computation time and size. After a few tasks (8
in this example), the Executor-cache Manager conducts a local early
evaluation, where it calculates that the size of the 400 blocks will
be 35.5 GB based on the size of the 8 blocks while 𝐸0’s maximum
capacity (i.e. M in §2.0.3) is 7.02 GB. As a result, it sends a cache-
limitation vote to the Cluster-cache Manager, consisting of the
execution time of the 8 tasks and the metrics of the 8 blocks (see (3)
in Fig. 5). Based on amajority consensus, the Cluster-cacheManager
triggers the global early evaluation, where it sends the average
execution time of the 8 tasks and the average computation time of
the 8 blocks to the Auto-cacher (see (4) in Fig. 5), which evaluates
that 𝐷5 is beneficial and notifies the Cluster-cache Manager (see (5)
in Fig. 5). Accordingly, the Cluster-cache Manager requests for 5
executors from the Scale-out Manager (see (6) in Fig. 5), which starts
a scale out round by requesting for 𝐸1−5 from the cluster manager
(see (7) in Fig. 5). This round ends when the 5 executors arrive. By
the time a new executor arrives, 𝐸0 would have already cached some
blocks. To ensure uniform distribution of blocks among executors,
upon the arrival of each new executor (see (8) in Fig. 5), the Scale-
out Manager notifies the Cluster-cache Manager (see (9) in Fig. 5),
which in turn notifies 𝐸0 to migrate a few blocks to the new executor
(see (10) in Fig. 5). 𝐸0 notifies the Cluster-cache Manager when
the blocks migration ends (see (11) in Fig. 5). The Cluster-cache
Manager uses this notification to trace incomplete data migrations.
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Table 1: BenefitRatio of datasets (LIR). Time in milliseconds.

Dataset Avg CT of a Block Avg Task Execution Time BenefitRatio Already Cached
𝐷5 8473 9118 0.932 -
𝐷35 53 586 0.091 𝐷5
𝐷41 495 536 0.924 𝐷5

When 𝑗𝑜𝑏1 ends i.e. 𝐸0−5 execute all the 400 tasks, each Executor-
cache Manager sends the metrics of its executor’s tasks and cached
blocks to the Cluster-cache Manager for the final evaluation of 𝐷5.
Before 𝑗𝑜𝑏4 is executed, the Auto-cacher caches 𝐷35 and during
the early evaluation, it evaluates 𝐷35 as non-beneficial. Before 𝑗𝑜𝑏5
is executed, the Auto-cacher (i) conducts a final evaluation of 𝐷35
and unpersists it, and (ii) caches 𝐷41 and, during the early eval-
uation, evaluates it as beneficial. In the case of 𝐿𝐼𝑅1, after 𝑗𝑜𝑏5
and the final evaluation of 𝐷41, the Auto-cacher switches to the
resource-constrained mode since the maximum number of execut-
ors is reached with 6 executors and unpersists 𝐷5 as 𝐷41 is more
beneficial. Before 𝑗𝑜𝑏20 is executed, the Auto-cacher unpersists 𝐷41
and caches 𝐷5 again i.e. 𝐷5 will be recomputed in 𝑗𝑜𝑏20. While in
the case of 𝐿𝐼𝑅2, during the execution of 𝑗𝑜𝑏5, the Auto-cacher re-
mains in the scale-out mode and the Scale-out Manager requests for
6 more executors. Then, 𝐷41 is unpersisted before 𝑗𝑜𝑏20 is executed.
Discussion. The above example shows how Agile-ant addresses
the challenges of caching decisions (§3.1) and cluster configurations
(§3.2) by observing the metrics of each cached dataset. In the case
of 𝐿𝐼𝑅2, it extends the cluster size to cache both datasets while for
𝐿𝐼𝑅1, it adapts the caching decision by unpersisting 𝐷5 (§3.3).

5.2 Design Considerations

Agile-ant releases executors that: (i) end up not caching any block
after unpersisting datasets, or (ii) become idle when parallelism is
reduced. Furthermore, Agile-ant conducts only one early evalu-
ation per job to avoid adding further more executors for the recently
cached datasets, which are not yet fully evaluated (§6.1.1).

6 AUTO-CACHER

The Auto-cacher makes caching decisions based on the Agile-ant
mode: the scale-out mode or the resource-constrained mode. In the
scale-out mode (the default), the Auto-cacher keeps cached datasets
as long as they are used and requests for more executors in case of
cluster cache limitation. When the number of allocated executors
reaches the maximum number of available executors, it switches
over to the resource-constrained mode, where instead of scaling
out, it unpersists some datasets in case of cluster cache limitation.

6.1 Before Job Execution

6.1.1 Step 1: Evaluate the Previous Job’s Recently Cached Datasets.
The Auto-cacher starts by evaluating the recently cached datasets
of the previous job. The reason for this evaluation is that the Auto-
cacher made the caching decisions before the execution of the
previous job when the computation times and sizes of datasets
were not known (§6.1.2). Upon obtaining the computation times
and sizes of all blocks after the execution of the previous job, the
Auto-cacher conducts the final evaluation, where it calculates the
benefit and the benefit ratio of each dataset 𝐷𝑖 with ID 𝑖 as follows:

Benefit𝑖 =
computation time𝑖

size𝑖
(1)

BenefitRatio𝑖 =
Average computation time of 𝐷𝑖 blocks
Average execution time of 𝐷𝑖 tasks

(2)
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Figure 6: Typical classes of big data applications. Reused

similar datasets shown in the same color.

where 𝐷𝑖 tasks are those that compute 𝐷𝑖 blocks and computation
time𝑖 is the time required to compute 𝐷𝑖 starting from its immedi-
ate cached parent (if any) or the root dataset. This explains why
the benefit of a dataset increases when its direct cached parent is
unpersisted (see Eq. (3)). If BenefitRatio𝑖 is greater than a configur-
able threshold (0.25 by default), the Auto-cacher annotates 𝐷𝑖 as
beneficial, annotates the call-site of 𝐷𝑖 as beneficial, and keeps 𝐷𝑖

cached. Otherwise, the Auto-cacher unpersists 𝐷𝑖 and annotates
it as non-beneficial to avoid caching it again. A threshold of 0.25
means the dataset is considered beneficial if caching it saves at least
25% of the job’s execution time. The lower the threshold, the more
the datasets that are cached and, thus, the more the executors that
are added. Table 1 shows how the BenefitRatio is calculated for
each dataset in the LIR example (§5.1.1). 𝐷5 is beneficial as caching
it saves 93% of the execution time. After caching 𝐷5, the average
task execution time for computing 𝐷35 and 𝐷41 drops significantly.
A dataset’s computation time is calculated starting from its direct
cached parent. That is why the BenefitRatio of 𝐷35 is lower than
that of 𝐷5 and thus not cached despite 𝐷35 being a child of 𝐷5. If
three similar datasets are unpersisted consecutively because they
are non-beneficial, the Auto-cacher adds their call-site to the list
of non-beneficial call-sites to avoid caching similar datasets. The
reason for delaying adding a call-site to this list until after three
unpersists is that the benefit of similar datasets varies especially
in the case of nested loops where a child dataset is computed start-
ing from its parent that was computed at the same call-site in the
previous loop iteration, e.g. Class F applications in Fig. 6.

After the final evaluation, there might be new datasets evaluated
as beneficial. If the total size of the beneficial datasets becomes
larger than the cluster cache capacity and Agile-ant is in the
resource-constrained mode (§8), the Auto-cacher unpersists the
least beneficial datasets, based on their benefits (Eq. 1), one by one
until they all fit in the cluster cache.When a dataset p is unpersisted,
the benefit of each cached child c of p increases if c is a direct cached
child of p (i.e. there is no cached dataset between p and c) as follows:

Benefit𝑐 =
computation time𝑐 + computation time𝑝

size𝑐
(3)

Also, the benefit of c reduces if p is cached again. Consider three
datasets: A is a parent of B, B is a parent of C, and B and C are cached.
The benefit of B is updated if A is cached/unpersisted but the benefit
of C is not because it will be computed starting from B, whether A
is cached or not. Hence, whenever a dataset is cached/unpersisted,
the benefits of only its direct cached child datasets are updated.
6.1.2 Step 2: Traverse the Current Job’s DAG. We analyze 130 real-
world applications [9] and group them into 6 classes based on their
common execution patterns (see Fig. 6). We use Algorithm 1 and
the example in Fig. 7 and Table 2 to explain a job’s DAG traversal.
For each dataset, the Auto-cacher profiles: (i) Facts, which are meta
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Figure 7: DAG traversal by the Auto-cacher.

Algorithm 1: Traversal of Job’s DAG
Input :Current dataset D, Traversal type T

1 set D.current_job to true

2 if T is Type C then

3 foreach dep ∈ D.parent_dependencies do

4 Traverse to dep.parent with Type C

5 return

6 D.last_usage_job_id = id of current job

7 if D is cached then

8 foreach dep ∈ D.parent_dependencies do

9 Traverse to dep.parent with Type C

10 return

11 D.num_computations++

12 if T is Type B then

13 foreach dep ∈ D.parent_dependencies do

14 if dep is wide && dep is computed then

15 Traverse to dep.parent with Type C

16 else

17 Traverse to dep.parent with Type B

18 return

19 condition 1 ←− D.call-site is beneficial

20 condition 2 ←− D.call-site is not marked as non-beneficial &&

D is not marked as non-beneficial && D.num_computations > 1

21 if condition_1 || condition_2 then

22 cache(D)

23 foreach dep ∈ D.parent_dependencies do

24 if dep is wide && dep is computed then

25 Traverse to dep.parent with Type C

26 else if condition_2 then

27 Traverse to dep.parent with Type B

28 else

29 Traverse to dep.parent with Type A

data e.g. id and call-site. (ii) DAG data, which is updated during the
DAG traversal e.g. status (cached, unpersisted or N/A), number of
computations (#C), last usage job id (LUJI) and whether the dataset
is used in the current job (CJ). (iii) Metrics, which are collected from
the Cluster-cache Manager e.g. computation time and size.

As each dataset points back to its parent (§2.0.1), the Auto-cacher
traverses the job’s DAG recursively using these dependencies, start-
ing from the action. At the beginning i.e. before caching any

dataset, the traversal Type A (denoted by in Fig. 7) caches any
dataset that either belongs to a beneficial call-site (Line 19 of Algo.
1, e.g. 𝐷7 in 𝑗𝑜𝑏3) or satisfies the following conditions (Line 20 of
Algo. 1): (1) It is computed more than once (e.g. 𝐷1 in 𝑗𝑜𝑏1). (2) It
does not belong to the list of non-beneficial datasets. (3) Its call-site
does not belong to the list of non-beneficial call-sites. The Auto-
cacher selects a dataset for caching without knowing its size and
computation time. Thus, evaluating whether it is beneficial or not
is not possible at this point. It is only after the job execution, i.e.
when the dataset is fully computed, that the Auto-cacher conducts
a final evaluation to keep the dataset cached if it is beneficial, or
unpersist it otherwise (§6.1.1). The Auto-cacher adds the newly
cached dataset to the list of recently cached datasets i.e. cached
datasets that still need evaluation. As an exception, if the dataset
has been cached previously (i.e. already evaluated as beneficial) but

Table 2: DAG data. Green-colored and red-colored cells refer

to cache and unpersist instructions respectively.

𝐷0 𝐷1 𝐷2 𝐷3 𝐷4

#C CJ LUJI #C CJ LUJI #C CJ LUJI #C CJ LUJI #C CJ LUJI
𝐽 𝑜𝑏0 1 T 0 1 T 0 - - - - - - - - -
𝐽 𝑜𝑏1 2 T 1 2 T 1 1 T 1 1 T 1 1 T 1
𝐽 𝑜𝑏2 2 F 1 2 F 1 2 T 2 2 T 2 2 T 2
𝐽 𝑜𝑏3 3 T 3 3 T 3 3 T 3 3 T 3 2 F 2
𝐽 𝑜𝑏4 3 F 3 3 F 3 3 T 3 3 T 3 2 F 2
𝐽 𝑜𝑏5 3 T 3 3 T 5 3 T 3 3 T 5 2 F 2

unpersisted afterward, the Auto-cacher does not add it to the list.
This happens when a beneficial dataset is not used in a few jobs after
being cached and used again in later jobs (e.g. 𝐷1 in 𝑗𝑜𝑏3). To avoid
cache-unpersist cycles in such cases, the dataset’s unpersistence-
distance (1 by default) is calculated (i.e. current job id - LUJI) and
associated with its call-site if it is greater than the call-site’s current
unpersistence-distance. For example, the unpersistence-distance of
𝐷1 in 𝑗𝑜𝑏3 is set to 2 ( 𝑗𝑜𝑏3 ID - 𝑗𝑜𝑏1 ID) and is associated with its
call-site denoted by “+” and therefore 𝐷1 is not unpersisted in 𝑗𝑜𝑏4
despite its absence in 𝑗𝑜𝑏4’s DAG (see Fig. 7 and Table 2).

After the Auto-cacher caches a dataset (denoted by the light
green color), the Type B traversal (denoted by in Fig. 7) continues
towards the dataset’s parents (Line 27 of Algo. 1) and increments
their #C because the child has to be computed first, starting from
them, before being cached. The Auto-cacher does not cache any
parent during this traversal to avoid caching consecutive datasets.
Hence, the Auto-cacher prunes candidates for caching e.g. parents
of a cached dataset are no more candidates. So 𝐷0 and 𝐷1 are not
cached together as 𝐷0 will not be recomputed after caching 𝐷1.

If the Auto-cacher traverses a cached dataset (i.e. already
cached in a previous job, denoted by the dark green color), the Auto-
cacher continues traversing with the Type C traversal (denoted by
in Fig. 7; Line 9 of Algo. 1) to mark that the dataset’s parent is part

of the current DAG (Line 1 of Algo. 1) and, thus, avoid unpersisting
it in the next step (§6.1.3). The Auto-cacher does not cache the
parent or increment the parent’s #C because the parent will not
be computed since the child is already cached. Similarly, as shuffle
blocks are persisted (§2.0.4), by reaching a wide transformation that
has been computed in a previous job, the Auto-cacher considers it
as already cached data (Lines 15 and 25 of Algo. 1).

Since the DAGs of subsequent jobs are not yet available (§2.0.1),
the Auto-cacher might cache a dataset that will not be used later on.
This would decrease the efficiency of Agile-ant and all caching
solutions [10, 38, 41, 53]. However, Agile-Ant unpersists cached
datasets that are not used anymore (§6.1.3). Note that Agile-ant is
not limited to iterative applications where jobs (i.e. iterations) have
similar DAG topology because it caches/unpersists datasets based
on their reuse pattern whether the jobs are similar or not.

6.1.3 Step 3: Unpersist Unused Cached Datasets. After completing
the DAG traversal, the Auto-cacher unpersists any cached dataset
that does not belong to the DAG of the current job (i.e. not traversed
via any of the three traversal types) and has not been used for up
to the unpersistence-distance of its call-site. For example, the Auto-
cacher unpersists 𝐷1 in 𝑗𝑜𝑏2 because the DAG of 𝑗𝑜𝑏2 does not
include 𝐷1 and the difference between 𝑗𝑜𝑏2 ID and the LUJI of 𝐷1
(i.e. 1) has reached the unpersistence-distance of 𝐷1’s call-site (“+”),
i.e. 1. Contrarily, in 𝑗𝑜𝑏4, the Auto-cacher keeps 𝐷1 cached because
the unpersistence-distance of 𝐷1’s call-site becomes 2 (see above).
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6.1.4 Step 4: Notify Executors. Lastly, the Auto-cacher notifies the
Cluster-cache Manager, which in turn notifies each Executor-cache
Manager about the target number of blocks (#Blocks) from each
recently cached dataset that the respective executor is expected to
cache. For a dataset 𝐷𝑖 with ID 𝑖 , #Blocks𝑖 = ⌈ number of blocks of 𝐷𝑖

#executors ⌉.

7 CLUSTER-CACHE MANAGER

7.1 During Job Execution

Tasks perform the same computation on different blocks, in the
form of an execution lineage, starting from the last cached block
(if any) in the lineage. Fig. 8 shows how 𝑡𝑎𝑠𝑘0 in 𝑗𝑜𝑏4 of the LIR
example in Fig. 1 computes and caches a block from each of 𝐷5 and
𝐷41. If 𝐷410 (a block of 𝐷41 with index 0) is cached, 𝑡𝑎𝑠𝑘0 fetches it
and executes 𝑎𝑐𝑡𝑖𝑜𝑛4 starting from it. Otherwise, 𝑡𝑎𝑠𝑘0 computes
𝐷410 from 𝐷50 . 𝐷50 is fetched if cached or computed otherwise,
and the process goes on. The Executor-cache Manager profiles the
computation start and end timestamps of 𝐷410 (i.e. 𝑇𝑠0 and 𝑇𝑠3
respectively) as well as 𝐷50 (i.e. 𝑇𝑠1 and 𝑇𝑠2 respectively), from
which it obtains the computation time CT of each block as follows:

𝐶𝑇𝐷50 = 𝑇𝑠2 −𝑇𝑠1 𝐶𝑇𝐷410 = (𝑇𝑠3 −𝑇𝑠0) −𝐶𝑇𝐷50

If𝐷50 is already cached,𝐶𝑇𝐷50 drops to zero. Note that this timestamp-
based profiling method is not applicable for non-blocking trans-
formations (§2.0.6). This is why collecting metrics is limited to only
cached datasets because caching is a blocking operation (§10.4).

7.1.1 Early Evaluation. After an executor computes and caches
a certain configurable number of blocks (2 × #cores per executor
by default), the Executor-cache Manager calculates the size of the
target blocks Target Size𝐷𝑖

of each recently cached dataset 𝐷𝑖 as:

Target Size𝐷𝑖
=

total size of 𝐷𝑖 computed blocks × #𝐵𝑙𝑜𝑐𝑘𝑠𝑖
#computed blocks of 𝐷𝑖

The higher the configurable number above, the more the local early
evaluation is delayed and the higher the accuracy due to more com-
puted blocks. Each Executor-cache Manager calculates the required
cache size as the size sum of blocks that are already cached from
previous jobs and the predicted sizes of target blocks of all recently
cached datasets. If the required cache size is larger than the ac-
tual caching capacity (§2.0.3), the Executor-cache Manager sends
a cache-limitation vote to the Cluster-cache Manager including
the blocks metrics list. Each item in the list comprises (i) the block
id, (ii) whether the block is cached, evicted or failed to be cached
(§7.1.2), (iii) the id of the task that computes the block - to get the
task execution time afterward, (iv) the block size and computation
time. If the number of votes across all Executor-cache Managers ex-
ceeds a predefined configurable threshold (⌈ #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠3 ⌉ by default),
the Cluster-cache Manager predicts the computation time CT and
size of each dataset 𝐷𝑖 based on its blocks 𝐷𝑖 𝑗 metrics collected
from each voter i.e. Executor-cache Manager 𝑗 as follows:

Predicted size of 𝐷𝑖 =

∑︁voter
𝑗=1 total size of 𝐷𝑖 𝑗∑︁voter

𝑗=1 #𝐷𝑖 𝑗

× #𝐷𝑖 blocks

Predicted CT of 𝐷𝑖 =

∑︁voter
𝑗=1 total CT of 𝐷𝑖 𝑗∑︁voter

𝑗=1 #𝐷𝑖 𝑗

× #𝐷𝑖 blocks

Note that increasing the value 3 mentioned above results in the
global early evaluation being conducted with less delay and on a

Task 0

LoadInput data block 0 
from HDFS

D0_0 D5_0 D41_0 4

Fetch Compute or fetch (Timestamp: Ts1)     Compute or fetch (Timestamp: Ts0) 

Computed and cached (Timestamp: Ts2)    Computed and cached (Timestamp: Ts3)

Figure 8: Computing and caching multiple blocks in a task.

fewer number of blocks. The CT of a dataset represents the cumu-
lative time across all cores to compute it. Therefore, unlike response
time, CT is not divided by #cores. The Cluster-cache Manager then
sends the predicted size and computation time of each recently
cached dataset to the Auto-cacher, which evaluates if the dataset
is beneficial or not (Eq. (1) and Eq. (2)). If so, the Cluster-cache
Manager calculates the number of required executors as follows:

#Req. executors = ⌈
∑︁evaluated datasets
𝑖=1 size of 𝐷𝑖

executor actual cache capacity
⌉ − #executors

where the evaluated datasets are the datasets cached in previous
jobs and those evaluated as beneficial in the early evaluation. The
Cluster-cache Manager then sends a scale out request to the Scale-
out Manager (§8) and notifies all Executor-cache Managers of the
early evaluation results to maintain their eviction policy (§7.1.2).
Discussion. The early evaluation avoids delaying adding executors,
which would result in cache limitation and lead to recomputations
in the next job. Note that the early evaluation is not decisive because
it relies on prediction using a few blocks. In the case of data skews,
the size and computation time of blocks might vary and, therefore,
the final evaluation (§6.1.1) is required when the metrics of all
blocks are available after the job execution (§7.2).

7.1.2 Executor Cache Management. The Executor-cache Manager
enforces a cache eviction policy when the executor cache is fully
utilized to the extent that some blocks are evicted or not successfully
cached. This situation occurs when: (i) Tasks requiremore execution
memory (§2.0.3), (ii) Blocks are not uniformly distributed among
executors. (iii) A scale out request has not been made yet because
#voters is not enough. (iv) There are delays while adding new
executors (§8.1). The eviction policy assigns the highest priority to
beneficial datasets (i.e. from a previous job), followed by the recently
cached datasets evaluated as beneficial in the early evaluation, then
the recently cached datasets that have not yet been evaluated, and
finally the recently cached datasets evaluated as non-beneficial.
Within blocks of the same priority, the policy prioritizes parent
datasets over their children since the evicted child blocks can be
recomputed later from their parent blocks. As a result of this policy,
each block that the executor is supposed to cache either: (a) is
cached and remains cached, (b) is cached but evicted later, (c) fails
to be cached. A block’s computation time and size can be profiled
in all three cases and the first two cases, respectively. If a block fails
to be cached, its size cannot be obtained since it is not a complete
block in memory. Thus, the Executor-cache Manager predicts the
complete block size by linear scaling based on the number of tuples
in the incomplete block and the size of the incomplete block.

7.2 After Job Execution

After a job is executed, each Executor-cache Manager sends its
blocks metrics list (§7.1.1) to the Cluster-cache Manager, which cal-
culates the metrics of each recently cached dataset and sends them
to the Auto-cacher for the final evaluation (§6.1.1). Then if there is
no pending data migration or scale out round, the Cluster-cache
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Manager balances the caching load among executors depending on
whether there are overloaded executors (§7.2.1) or not (§7.2.2).
7.2.1 Borrow Remote Cache. Overloaded executors are executors
that have blocks evicted or failing to be cached. The Cluster-cache
Manager uses the blocks metrics list of each executor to search for
overloaded and less-loaded executors, from which to borrow space.
It then notifies each overloaded executor to migrate blocks to a less-
loaded executor (§8.2). The notification consists of the ID of the less-
loaded executor and the size of the blocks to migrate, which equals
half of the difference of the size of cached blocks in both executors.
The cluster cache is enough to cache any block of a beneficial
dataset: in the scale-out mode, more executors can be added, and
in the resource-constrained mode, the less beneficial datasets are
already unpersisted (§6.1.1). Agile-ant initially considers the actual
cache capacity of each executor to be the whole unified memory
(M §2.0.3). However, on an overloaded executor (where caching
capacity reaches the limits between R and M), Agile-ant sets the
actual cache capacity to be equal to the total size of cached blocks
in the overloaded executor and, correspondingly, recalculates the
cluster cache size and scales out if needed. This is how Agile-ant is
adaptive towards changes in the execution memory utilization and
how it covers various applications with different memory footprints.

7.2.2 Balance Executors’ Cache. Even without any overloaded ex-
ecutors, some executors might cache more blocks than others (i.e.
in terms of the total size of cached blocks). And even without cache
evictions, their tasks will take longer execution time than those of
other executors. These straggler executors then become the per-
formance bottleneck since a job execution finishes only when the
last executor executes all its tasks. Thus, the Cluster-cache Manager
iteratively migrates blocks from the executor with the maximum
size of cached blocks to the one with the minimum size if the former
caches 10% (experimentally selected) more than the average size of
cached blocks across executors and the latter caches 10% less.

8 SCALE-OUT MANAGER

The Scale-out Manager receives requests from the Cluster-cache
Manager and, if Agile-ant is in the scale-out mode, adds executors
without exceeding the maximum number of executors which is
given by administrators or cluster managers e.g. YARN [47]. If the
number of executors after the scale out reaches the maximum num-
ber, Agile-ant switches over to the resource-constrained mode.

8.1 Scale Out

There are factors to considerwhen requesting new executors. (1) Cluster
managers take time before allocating new executors due to resource
negotiation. (2) Requested executors arrive at different times. (3) The
delays in the arrival of executors are unpredictable. The Scale-out
Manager initiates a scale out round only when all requested ex-
ecutors in the previous round have arrived. Upon the arrival of a
new executor (N), the Scale-out Manager notifies the Cluster-cache
Manager, which in turn notifies the Executor-cache Manager of
each executor (O) that is not among the newly added executors to
migrate part of its cached blocks to N as follows:

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛-𝑟𝑎𝑡𝑖𝑜 =
1

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠𝑏𝑠 + #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠𝑛𝑒𝑤
(4)

𝑆 (𝑏𝑙𝑜𝑐𝑘𝑠𝑂𝑁 ) = 𝑆 (𝑎𝑙𝑙 𝑐𝑎𝑐ℎ𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑛 𝑂) ×𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛-𝑟𝑎𝑡𝑖𝑜
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Figure 9: Execution costs of LIR.

where 𝑆 (𝑏𝑙𝑜𝑐𝑘𝑠𝑂𝑁 ) is the size of blocks to migrate from O to N
and #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠𝑏𝑠 and #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠𝑛𝑒𝑤 are the number of executors
before scaling out and the newly added executors respectively.
For example, if 3 executors are already allocated and then 2 new
executors are added, each of the initial 3 executors will migrate 1/5
of its cached blocks to each new executor. By the end of the scale
out round, each executor will have around 3/5 of the cached blocks.

8.2 Blocks Migration

The Cluster-cache Manager notifies the Executor-cache Manager of
a sender executor to migrate some of its cached blocks to a receiver
executor. If the migration is triggered by a scale out request (§8.1),
the notification includes the id of the receiver executor and the
𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛-𝑟𝑎𝑡𝑖𝑜 , from which the sender’s Executor-cache Manager
calculates the size of blocks to migrate. Whereas if the migration is
triggered by borrow remote cache or balance executors cache (§7.2),
the notification already includes the size of blocks to migrate.
8.2.1 Selected Blocks for Migration. The sender may cache blocks
of different datasets. Consider blocks migration starting in LIR
(§5.1.1) while 𝐷5 and 𝐷41 are cached. The Executor-cache Manager
defines a partition index counter starting from zero and searches
for the blocks lineage, i.e. all blocks having this partition index
(𝐷5_0 and 𝐷41_0). If no block is found, it searches for the next (𝐷5_1
and 𝐷41_1). For two blocks of the same lineage where the parent
block is cached while the child block is not (e.g. 𝐷5_0 is cached and
𝐷41_0 is not), the parent is migrated. This means the child is either
evicted, not successfully cached or not yet computed. (§7.1.2). But
if both are cached, both are migrated. This approach avoids having
the majority of 𝐷5 blocks in a set of executors while those of 𝐷41
are in another set. Without this, problems would arise in the next
job when the tasks dispatcher selects the executors of the latter set
to execute the tasks since they have the blocks of the child 𝐷41, and
leave the executors of the former set not utilized. The selection of
blocks continues until the target migration blocks size is reached.
8.2.2 Migrating Selected Blocks. The sender’s Execution-cache
Manager migrates selected blocks in two batches using the blocks
transfer API (§2.0.2). In the first batch, it migrates the blocks of
the first blocks lineage only to the receiver and evicts them from
the sender’s cache. It then compares the time required to transfer
1 MB with the time required to compute 1 MB of the migrated
blocks. If the former is larger, it unpersists all the selected blocks
without migrating them i.e. it cancels the second batch. In this case,
they will be recomputed later, which is less costly than transferring
them. Otherwise, it migrates the remaining selected blocks in the
second batch and unpersists them afterwards. Finally, it sends an
end-of-migration notification to the Cluster-cache Manager. This
notification is important so that load balancing of blocks (§7.2) is
not conducted if there is a pending data migration. This two-batch
approach of blocks migrationmakes Agile-ant adaptive to changes
in the cluster utilization by multiple tenants during the actual run.
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Table 3: Details of evaluated applications.

Application Input data (size) #jobs Library Class Properties

Analyzing Co-Occurrence Networks (ACON) MEDLINE [1] (67.9 MB) 44 Advanced Analytics C&F Many small cached datasets
Anomaly Detection in Network Traffic (ADNT) KDD Cup 1999 [1] (708.2 MB) 1349 Advanced Analytics D&E Many small cached datasets

Predicting Forest Cover (PFC) Covtype [1] (71.7 MB) 734 Advanced Analytics C&D&E Many small cached datasets
Recommending Music (RM) Audioscrobbler [1] (463.2 MB) 474 Advanced Analytics D&E&F Many small cached datasets

Connected Components (CC) road-road-usa.mtx [43] (469.7 MB) 58 GraphFrames C&E Many small cached datasets
Label Propagation (LP) road-road-usa.mtx [43] (469.7 MB) 8 GraphFrames C&F Many large cached datasets

Page Rank (PR) road-road-usa.mtx [43] (469.7 MB) 26 GraphFrames F Many large cached datasets
Strongly Connected Components (SCC) road-road-usa.mtx [43] (469.7 MB) 126 GraphFrames C&F Many large cached datasets

Nweight (NW) HiBench datasets [6] (849.1 MB) 1 HiBench B Few large cached datasets
Scala Page Rank (SPR) HiBench datasets [6] (2.8 GB) 1 HiBench B One large cached dataset

Scala Sort (Sort) HiBench datasets [6] (9.5 GB) 1 HiBench A No cached datasets
Word Count (WC) HiBench datasets [6] (30.3 GB) 1 HiBench A No cached datasets

Alternating Least Squares (ALS) HiBench datasets [6] (9.3 MB) 35 Spark MLlib C&F Many small cached datasets
Dense K-means (DKM) HiBench datasets [6] (18.5 GB) 103 Spark MLlib D Few large cached datasets

Gradient Boosted Trees (GBT) HiBench datasets [6] (91.7 MB) 202 Spark MLlib E&F Many small cached datasets
Latent Dirichlet Allocation (LDA) HiBench datasets [6] (246.6 MB) 47 Spark MLlib C Many small non-beneficial datasets

Linear Regression (LIR) HiBench datasets [6] (44.7 GB) 156 Spark MLlib D Few large cached datasets
Logistic Regression (LOR) HiBench datasets [6] (7.5 GB) 68 Spark MLlib D Few large cached datasets

Principal Components Analysis (PCA) HiBench datasets [6] (16.8 GB) 647 Spark MLlib C No cached datasets
Random Forest Classifier (RFC) HiBench datasets [6] (7.5 GB) 18 Spark MLlib D Few large cached datasets
Support Vector Machine (SVM) HiBench datasets [6] (37.3 GB) 106 Spark MLlib D One large cached dataset

9 DISCUSSION

9.1 Distributed In-Memory Processing

Frameworks on clouds e.g. Spark[55], Snowflake[18], Databricks[33],
Flink[16], Storm[46], etc., are conceptually similar, although dif-
ferent in implementation. They run applications as dataflows on a
driver and executors to process distributed datasets in parallel. They
also utilize executor memory for caching as per eviction policies
and support elasticity by adding/releasing executors on demand.

Although Agile-ant is implemented on Spark, its main concepts
are applicable with minor modifications to any framework that
supports (1) caching datasets in memory based on eviction policies
and (2) elasticity with data migration between executors. A minor
modification, for example, is if a framework does not cache shuffled
data blocks (§2.0.4), the Auto-cacher shall not consider a computed
wide transformation as cached during the traversal. Also, features of
Agile-ant do not need to be re-implemented if a framework already
supports them. For example, the Catalyst optimizer of Spark-SQL
[14] provides the application DAG and the size of datasets before the
execution. Hence, Agile-ant determines the reusability of datasets
and the required cluster size to cache them before the actual run.

9.2 Shared Computing Clusters

Agile-ant optimizes the execution cost of a single application run.
And since the optimal cluster size of each application run is not
known in advance (§1), scheduling resources on demand between
multiple concurrent application runs might result in some of them
waiting for resources occupied by others. This could be overcome
using Agile-ant by the cluster manager (e.g. Yarn) asynchronously
notifying the Scale-out Manager of each run with the new available
number of executors whenever executors are occupied or released.
For example, consider two application runs A and B on our 12-
node cluster (§10.1), with the maximum number of executors set
to 12 for both runs. Initially, each run starts with one executor.
Then A requests 10 executors and, later on, B requests 10 executors.
As a result, the scale-out round of B will not be completed until A
releases the executors that B requires, which increases the execution
time and cost of B significantly. In this case, when A occupies 10

executors, B is notified of the available number of executors and,
accordingly, switches to the resource-constrained mode and when
A releases executors, B switches back to the scale-out mode.

10 EVALUATION

10.1 Workloads and Experimental Setup

We conduct all experiments on our 12-node Spark cluster. Each node
is equipped with an Intel Core i5 CPU running at 4x 2.90 GHz, 16 GB
RAM, 1 TB disk, 1 GBit/s LAN, HDFS and runs Hadoop MapReduce
2.7, Spark 3.1.2, Java 8u102 and Apache YARN. We allocate 12 GB
of memory and 4 cores to each executor in all experiments.
Applications. Table 3 shows the 21 applications we study from
various libraries and the class of Fig. 6 for each application.
Execution Costs.We calculate the execution cost of a run as the
sum of the allocation times of all executors. For example, the execu-
tion cost of 𝐿𝐼𝑅2 and 𝐿𝐼𝑅1 (§5.1.1) with 100 iterations (represented
by the shaded areas in Fig. 9) is 86.1 and 101.5 executor minutes
respectively. 𝐿𝐼𝑅2 is faster and cheaper than 𝐿𝐼𝑅1 due to the re-
computation of 𝐷5 in 𝑗𝑜𝑏20 of 𝐿𝐼𝑅1. Note that cloud providers use
a pay-as-you-go pricing model. Thus, our way of calculating the
execution costs represents the monetary costs on public clouds.
However, as they vary in price rates and offers [39], the cost ratios
in our comparisons might not accurately reflect the monetary cost
ratios on public clouds, but the conclusions are similar. For example,
the monetary costs of 𝐿𝐼𝑅2 will still be less than those of 𝐿𝐼𝑅1.

10.2 Agile-Ant vs Alternatives

We compare Agile-ant with three alternatives: (1) Our baseline i.e.
default runs with the caching decisions of developers and the LRU
policy. (2) An alternative i.e. LRC runs with the developers’ caching
decisions but with the LRC policy, in order to quantify how much
cache eviction policies reduce execution costs. As these policies
apply whenmore than one datasets are cached and the cluster cache
is not enough to cache them all, we exclude applications whose
default caching decisions cache one or no dataset and applications
that cache multiple small datasets that fit in a single executor cache.
(3) Another alternative i.e. ReSpark runs with ReSpark’s caching
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Figure 10: Default vs LRC vs ReSpark vs Agile-Ant runs.
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Figure 12: Agile-Ant vs Alternatives: Different cluster sizes.

decisions and the default LRU policy, so as to quantify how much
autonomous caching reduces execution costs. In addition, we run
each application using Agile-ant (Agile-Ant runs). Since the three
alternatives run on fixed-size clusters, we run each 12 times on all
cluster sizes (1 to 12 executors), and as Agile-ant is orthogonal
to any fixed cluster size, we run each Agile-Ant run a single time
starting from a single executor and set the maximum number of
executors to 12. For each application, we show in Fig. 10 the execu-
tion cost of the default runs ( ), the LRC runs ( ) and the ReSpark
runs ( ). We represent Agile-ant runs as horizontal lines ( )
because they are orthogonal to any fixed cluster size. Moreover,
since Agile-ant runs start with a single executor and might end
with more executors, we mark the number of executors when the
Agile-ant runs finish using a square ( ) on the horizontal lines.

From Fig. 10, we see that for Class A applications, the optimal
and worst cluster sizes are 1 and 12 respectively. This is because
adding more executors increases cost regarding the serial part of the
application and data shuffling between more executors [13, 48]. The
same applies to applications whose cached datasets fit in a single
executor cache (ACON, ADNT, CC, PFC, RM, ALS, and GBT), only
that their performance can be improved by ReSpark and Agile-ant
on a single-executor cluster by modifying the developers’ caching
decisions. For Class B applications, where the whole application
DAG is visible before the application starts, ReSpark and Agile-
ant cache all reusable datasets. In the case of SPR, one dataset is

reused and the developers cached it. Therefore, the default, ReSpark
and Agile-ant runs have the same performance. In NW, there are
multiple reused datasets. Increasing the cluster size is thus beneficial
to avoid evicting the beneficial datasets. On small cluster sizes, LRC
improves the performance as it resolves the cyclic eviction of LRU
(§2.0.5). Since ReSpark caches non-beneficial large datasets, large
cluster sizes do not completely eliminate evicting beneficial datasets.
The same applies to Class C applications (PCA and LDA) with the
difference that Agile-ant and ReSpark delay the caching decisions
such that a single recomputation of datasets is required. As to Class
D and Class E applications (DKM, LIR, LOR, RFC, and SVM), a
limited cluster cache leads to evictions in default and ReSpark runs.
Thus, a single-executor cluster is the worst for many applications.
LOR is an exception because it is a compute-intensive application
and recomputing reused datasets is not severe (similar to LDA
§3.1). LRC improves the performance of these applications on small
cluster sizes only slightly due to cache evictions that it cannot
avoid completely. But Agile-ant caches beneficial datasets and
scales out while running the applications. In Class F applications
(LP, PR, SCC), ReSpark somewhat improves the performance when
there are cache limitations because it unpersists datasets based on
their call-sites. However, as it keeps root datasets always cached
(§10.5), on small cluster sizes, it cannot avoid cache evictions. LRC
performs even better than ReSpark on small cluster sizes due to
evicting blocks of parent datasets that are not needed anymore (see
Fig. 6). Thus, it requires relatively less memory for caching and
outperforms the others (including Agile-ant) when the optimal
cluster size is selected. However, if the child datasets do not fit in
the cluster cache, the performance of LRC drops significantly. To
avoid such a problem, Agile-ant unpersists datasets based on their
unpersistence distance (§6.1.1) and scales out proactively (§7.1).

Our findings are as follows. (1) The default runs outperform the
others if developers make correct caching decisions and adminis-
trators select the optimal cluster sizes (e.g. SMV - 7 executors). (2) In
Class F applications, LRC outperforms the others if administrators
select the optimal cluster sizes (even if developers do not unpersist
datasets) (e.g. PR - 3 executors). (3) ReSpark outperforms the others
if developers do not cache beneficial datasets that fit in the cluster
cache (e.g. DKM - 9 executors). (4) Agile-ant achieves the optimal
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Figure 14: Overhead of profiling runtime metrics.

costs regardless of the initial caching decisions and cluster sizes.
However, it has learning overhead (§10.7). (5) The optimal cluster
size varies between applications. For example, 12 executors are
the optimal for SCC but the worst for LOR while 1 executor is the
optimal for GBT but the worst for DKM. Thus, fixing the cluster
size for all runs leads to high costs. In Fig. 11, we sum the costs
of all 21 runs of each alternative on each cluster size and compare
them with the total sum of the 21 runs of Agile-Ant. On all cluster
sizes, all the alternatives cost more than Agile-Ant. The alternative
having the minimal cost, i.e. ReSpark on 10 executors, costs 1.8x
compared with Agile-Ant. We also evaluate the costs if the admin-
istrators selected the optimal cluster sizes. We sum the costs of the
alternative runs on their optimal cluster sizes and compare with the
cost of Agile-Ant runs. Fig. 12 shows that Agile-Ant still outperform
the default and LRC runs while ReSpark costs 88.1% compared to
Agile-Ant. Note that selecting the optimal cluster size is difficult
(§3.2). The average costs of the default runs, the LRC runs and the
ReSpark runs are 4.6X, 3.1X, and 4.9X compared to the Agile-Ant
runs respectively. (6) The reason for the poor performance of PR
in the default runs on 8 executors is as follows. As more execution
memory is required, some blocks that would be needed later are
evicted, until reaching R (§2.0.3). Being a local minima problem,
more execution memory is then required to recompute them, which
leads to more evictions and GC rounds. But, for LRC runs on 3 ex-
ecutors, the R of each executor is enough to cache the blocks of
needed child datasets since LRC evicts parent datasets. Thus, LRC
has the best performance because when more execution memory
is required, the needed blocks are not evicted. As Agile-ant de-
tects overloaded executors (§7.2.1), it recalculates the actual cache
capacity, continuously, and scales out accordingly to increase the
cluster memory, which is used for caching and execution as well.

10.3 Agile-Ant vs Competitors

Juggler is limited to ML applications (§4). Thus, we compare it with
Agile-ant only on Spark MLlib applications. We run each schedule
[10] on its recommended cluster size and compare the schedule
having the minimal cost with Agile-ant. We also use SparkCAD
[9] to recommend a schedule and Blink [8] to recommend the op-
timal cluster size. Fig. 13 shows the cost of application runs using
Agile-ant, Juggler and SparkCAD & Blink. Juggler and SparkCAD
rely on previous runs which do not always reflect the actual applic-
ation behaviour (§3). Nevertheless, both outperform Agile-ant in
applications like LIR and DKM because they recommend the same
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Figure 15: Auto-cacher vs ReSpark runs.
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Figure 16: Scale out vs scale up.

caching decisions and cluster sizes as Agile-ant but without learn-
ing overheads (§10.7). SparkCAD caches all reused datasets, leading
to over-provisioning of executors. The total cost of Agile-ant is
15.9% and 16.3% of those of Juggler and SparkCAD & Blink respect-
ively. Juggler performs well on only 7 applications out of 21. And
even for those 7 applications, any change in application parameters
other than #examples and #features may drop its performance.

10.4 Agile-Ant Profiling Overhead vs SparkI

The runtime profiling of SparkI [10] is based on adding a profiling
transformation in-between each pair of transformations. The added
transformations are blocking ones (§2.0.6) and thus cause significant
overhead. In contrast, Agile-ant does not add any transformation
(§7.1). To quantify the overhead of both, we run each application
with its default caching decisions on 12 executors using the default
implementation of Spark, SparkI and a modified version of Agile-
ant (Agile-ant profiling), in which the Auto-cacher and the Scale-
out Manager are disabled. As Fig. 14 shows, the additional cost of
Agile-ant profiling and SparkI is 1.4% and 198.7% respectively.

10.5 Auto-cacher vs ReSpark

Similarly to the Auto-cacher, ReSpark [38] caches and unpersists
datasets on the fly based on their call-sites, making it suitable for
Class E and Class F applications (see Fig. 6). We implement ReSpark
in Agile-ant to replace the Auto-cacher so as to compare the Auto-
cacher (Agile-Ant runs) with ReSpark using its default LRU (Agile-
Ant ReSpark runs) as shown in Fig. 15. We exclude applications that
have no reused datasets. As ReSpark does not consider whether a
dataset is beneficial for caching, it caches a lot of datasets. Also, it
does not unpersist the first cached dataset of each call-site to have
a measure of the number of times the datasets of the same call-site
are reused. As a result, it keeps non-reused datasets cached. On
average, Agile-Ant runs cost 57.6% of Agile-Ant ReSpark runs.

10.6 Scale out vs scale up

Instead of scaling out, the caching capacity can be extended by using
storage e.g. SSDs. Therefore, we run each application on a single
executor equipped with a 500 GB, SATA 3.3, 6.0 Gb/s SSD (enough to
cache all datasets) using the developers’ caching decisions (Default
SSD runs) and ReSpark (ReSpark SSD runs) and compare them with
the Agile-Ant runs (§10.2). On average, the cost of Default SSD runs
and ReSpark SSD runs is 3.2X and 1.6X respectively compared with
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Figure 17: Agile-Ant runs with predictions.
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Figure 18: Evaluating the performance benefit of each feature of Agile-Ant.

the cost of Agile-Ant runs (see Fig. 16). In addition to the high
memory bandwidth compared to the SSD bandwidth, the main
reasons for having the high SSD runs costs are, firstly, persisting
blocks on disks requires serializing them and reading them from
disks requires deserializing them each time, which adds significant
overhead [56]. Secondly, the execution memory of a single executor
in SSD runs is limited inmany runs and results in huge GC overhead
(which forces us to terminate the execution of PR in Default SSD
runs) while Agile-ant reacts towards changes in the execution
memory utilization by scaling out (§7.2.1). The two problems above
remain even with SSDs as fast as memory. This experiment shows
that ReSpark still improves the performance with SSDs.

10.7 Learning Overhead of Agile-ant

The LIR example in §5.1.1 shows that there are unavoidable learning
overheads in Agile-ant runs. The first one results from caching
datasets in their second usage. For example, a recomputation of 𝐷5
will be saved if it was cached in 𝑗𝑜𝑏0 instead of 𝑗𝑜𝑏1. The second
one is due to delaying adding executors, which leads to evictions
and blocks migration overheads. For example, if 12 executors are
allocated in advance in 𝐿𝐼𝑅2, the blocks of𝐷5 and𝐷41 will be cached
in all executors at the end of 𝑗𝑜𝑏1 and 𝑗𝑜𝑏5 respectively.

To quantify these overheads, we collect the caching decisions
and the number of executors of Agile-ant runs (§10.2) and then
execute each application using (1) Agile-ant with the number
of executors selected right from the beginning (e.g. LIR on 12 ex-
ecutors), (2) Agile-ant with the caching decisions of Agile-ant
(e.g. cache 𝐷5 and 𝐷41 immediately upon their first usage and do
not cache 𝐷35 in LIR), and (3) Agile-ant with both the caching
decisions of Agile-ant and the number of executors selected right
from the beginning. We compare their execution costs in Fig. 17.

Firstly, selecting the number of executors right from the begin-
ning only saves 3.5% of the costs of Agile-ant runs because (i) A
single executor is the optimal cluster size for some applications.
(ii) The early evaluation proactively triggers adding executors be-
fore having cache limitations. (iii) Many applications execute in
phases such that at the beginning, no dataset is cached and, thus,
a single executor is the optimal choice for this phase. Secondly,
caching suitable datasets in advance saves 13.3% of the costs of
Agile-ant runs. In Class B applications, the application DAG is
accessible right from the beginning. Agile-ant thus makes caching
decisions without delays. However, caching the datasets in advance
saves 49.2% and 25.8% of the costs of Agile-ant runs in DKM and

LIR respectively because, as they are data-intensive applications,
a single re-computation of a dataset adds a significant overhead
(§10.1). Finally, caching suitable datasets and selecting the number
of executors in advance save 14.3% of the costs of Agile-ant runs.
Thus, using prediction frameworks reduces the cost of Agile-ant
runs and when they have errors, Agile-ant corrects them.

10.8 Zoom In

To measure the execution cost reduction that each feature of Agile-
ant brings, we conduct the following runs. In each run, we disable
one feature and keep the remaining ones. (1) Agile-ant without
auto-caching (A-A w/o a-c runs): disable the Auto-cacher and use
the developers’ caching decisions. (2) Agile-ant without scaling
out (A-A w/o s-o runs): keep the cluster size selected right from the
beginning (we run each experiment on 12 different cluster sizes
and take the average), (3) Agile-ant without the early evaluation
(A-A w/o e-e runs): disable the early evaluation and rely on the
final evaluation only for scaling out. (4) Agile-ant without data
migration (A-A w/o d-m runs): disable all data migration operations
whether during the scale-out (§8.1) or after job execution (§7.2.1
and §7.2.2). As Fig. 18 shows, on average, disabling the Auto-cacher
increases the cost by 2.97X, disabling the scaling out increases the
cost by 2.86X, disabling the early evaluation increases the cost by
1.18X and disabling the data migration increases the cost by 1.4X.
Note that disabling the Auto-cacher and relying on the developers’
caching decisions benefits performance in some cases like LIR and
SVM because the developers make correct caching decisions as the
Auto-cacher, but the latter with a learning overhead (§10.7).

11 CONCLUSION

In this paper, we have presented Agile-ant, a self-managing frame-
work that minimizes the execution costs of big data applications by
making correct caching decisions and selecting the optimal cluster
size on the fly. Overall, the evaluation of Agile-ant shows very
good results, in comparison with the baseline and related work.
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