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ABSTRACT
This paper addresses the challenge of identifying super spreaders

within large, high-speed data streams. In these streams, data is seg-

mented into flows, with each flow’s spread defined as the number of

distinct items it contains. A super spreader is characterized as a flow

with a notably large spread. Current compact solutions, known as

sketches, are designed to fit within the constrained memory of on-

line devices. However, they struggle to accurately track the spread

of all flows due to the substantial memory requirement for monitor-

ing a single flow— a problem exacerbated when numerous flows are

involved. To overcome these limitations, this study proposes a more

precise sketch-based approach. Our solution introduces an innova-

tive non-duplicate sampler that effectively eliminates duplicates,

allowing for accurate post-sampling count of flow spread using only

counters. Additionally, it incorporates an exponential-weakening

decay technique to highlight large flows, markedly enhancing the

accuracy of super spreader identification. We offer a comprehen-

sive theoretical analysis of our method. Trace-driven experiments

validate that our approach statistically surpasses existing state-of-

the-art solutions in identifying super spreaders. It also demonstrates

the lowest time required to restore super spreaders and significantly

reduces bandwidth consumption by an order of magnitude when

offline restoration is conducted remotely.
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1 INTRODUCTION
The real-time analysis of large, high-rate data streams has a multi-

tude of applications, as highlighted in various studies [19, 23, 40, 48,

59, 63, 70, 79, 83, 84]. Conventionally, a data stream is represented

as a sequence of data items, denoted as 𝑑1, 𝑑2, 𝑑3, 𝑑2, .... The key

statistical metrics of interest traditionally include item frequencies

within the stream and the stream’s cardinality, which is the count

of distinct items [31, 38, 41, 42, 42, 56, 65, 66, 69, 71, 78, 78, 84].

However, the traditional model is unsuitable for many sophisti-

cated applications. To capture greater details of a data stream, we
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adopt a more general model where a data stream consists of data

items from multiple sub-streams also called flows and each data

item is a pair ⟨𝑓 , 𝑒⟩, where 𝑓 is a flow label that tells which flow

the item belongs to, and 𝑒 is the actual data (also referred to as

element) of interest in the flow. There are two fundamental flow

statistics: flow size, defined the number of elements in a flow, and

flow spread which this paper focuses on, defined as the number

of distinct elements in a flow. Flow size is the traditional item fre-

quency if we treat the item label as the flow label. However flow

spread is the traditional cardinality only in the special case where

we treat the whole stream as a single flow. Of particular importance

are large flows whose size or spread exceeds a user-set threshold,

called heavy hitters and super spreaders, respectively.
Identifying super spreaders in this generalized model has sig-

nificant implications in various domains, such as P2P hot-spot

localization [57], web caching prioritization [3, 85], detection of

DDoS attacks [2, 51], port scanning measurement [19], and worm

propagation detection [11, 58]. To illustrate this in the context of

Internet applications, consider a packet stream arriving at a high-

speed router, where each packet is modeled as ⟨𝑓 , 𝑒⟩. The definitions

of 𝑓 and 𝑒 can be arbitrarily based on packet header or payload

information to meet specific application requirements. For instance,

identifying a super spreader in a network could involve detect-

ing external sources that exhibit large spreads, i.e., flows with a

high number of distinct destination addresses. Conversely, by defin-

ing destination addresses as flow labels and source addresses as

elements, super spreader identification can assist in pinpointing

potential victims of DDoS attacks—those internal destination ad-

dresses receiving traffic from numerous distinct sources. Another

example involves a large server farm analyzing content popularity

by tracking distinct user accesses to each file [8], where each file

accessed forms a distinct flow. Super spreader identification is also

applied in various data analysis systems at Google, such as Sawzall

[53], Dremel [49], and PowerDrill [29], to estimate unique user

searches for particular keys.

Addressing the challenge of super spreader identification in large,

high-rate data streams involves meeting two practical requirements.

Firstly, the solution must be sufficiently rapid to match the item

arrival rate, ensuring minimal processing overhead per item. For

example, in packet streams, modern routers operate at speeds rang-

ing from hundreds of gigabits to terabits per second, equating to

processing millions of packets per second [43]. Secondly, memory

efficiency is crucial to facilitate software/hardware implementation

within the limited cache memory of streaming devices, such as the

approximately 10 MB SRAM found on routers and switches. The

allocation for measurement functions is further restricted due to

other critical routing, performance, and security functions, often

limiting safe memory allocation to a small fraction, like 10% or

5%. This severe memory limitation makes it impractical to assign
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individual spread estimators to each flow in a data stream, which

could comprise millions of per-source flows within one hour [17].

In recent decades, the research focus on super spreader identifica-

tion has evolved from per-flow tracking and sampling, which incur

significant computing or memory costs, to designing compact data

structures known as sketches. Notable examples include DCS [26],

FAST [40], CMH [15], OpenSketch, SpreadSketch [60], AROMA

[5], and GMF [44]. Among these, SpreadSketch, AROMA, and GMF

are recent innovations considered state-of-the-art. However, our

experimental results indicate that these sketches still struggle with

accuracy. SpreadSketch, for instance, tends to overestimate flow

spread and falsely identify super spreaders, while AROMA and

GMF exhibit large estimation variances. This is primarily due to the

challenge of duplicate removal when measuring flow spread—only

the first appearance of an item should increment the spread, with

subsequent duplicates ignored. To counteract the impact of du-

plicates, more sophisticated data structures are required beyond

simple counters used for single-flow size measurement. As mem-

ory constraints intensify, hash collisions among flows increase,

leading to heightened estimation errors. While AROMA adopts a

self-adaptive sampling approach, its sampling probability remains

small under memory constraints for the same reasons.

This paper approaches the problem from a novel angle. We re-

tain the sophisticated data structures utilized in prior sketches for

duplicate removal but repurpose them as a non-duplicate sampler
rather than a spread estimator. This sampler filters out duplicate

items, outputting them only at their first appearance with an evolv-

ing probability 𝑝 . This approach allows us to maintain a simple

counter for measuring a flow’s spread, incrementing the counter by

1

𝑝 each time a flow’s item is sampled. Furthermore, we incorporate

an exponential-weakening decay technique to effectively manage

hash collisions among flows mapped to the same non-duplicate

sampler, aiding in the accurate measurement and differentiation of

large flows. We provide a theoretical analysis of our proposed so-

lution’s performance. Trace-driven experiments demonstrate that

our approach significantly outperforms existing state-of-the-art

solutions in terms of super spreader identification accuracy.

2 BACKGROUND
2.1 System Model
A compact data streaming processing system comprises two main

components: an online recording module and an offline process-

ing module. The online module is tasked with monitoring the data

stream on various online processors, which could include web

servers, cache systems, routers, switches, gateways, intrusion de-

tection systems (IDS), online search engines, among others. To

manage the high-speed arrival rate of data items, this module is

ideally implemented on limited on-chip cache memory, allowing

for rapid processing. It is essential for the online module to be

lightweight, both in terms of memory footprint and processing

overhead, to efficiently handle the continuous data flow.

The offline module’s deployment varies depending on the user

and the system’s constraints. If the system itself serves as the user,

like in the case of a local server, the offline module is typically

integrated within the online processors. Here, the module operates

under more stringent time and resource constraints, necessitating

a focus on efficiency and compactness. Conversely, when real-time

constraints are not a pressing concern, the offline module can be

deployed on a more powerful server, allowing for broader and more

resource-intensive processing capabilities.

Operationally, the system divides time intomeasurement periods,

the length of which is determined by the application’s requirements.

During each period, the online module extracts relevant data from

incoming items and updates its data structures. At the period’s

end, the collected data is offloaded to the offline processing module,

which could be located on a server. This process involves resetting

the online module’s data structures to start anew for the next period.

For data offloaded to a server, compactness is key to minimize

bandwidth usage. Finally, the server processes this data to identify

offline super spreaders.

2.2 Problem Statement
Traditionally, a data stream is a sequence of data items, denoted

as . . . 𝑑 . . .. Classical measurements in this model include the

frequencies of data items [31, 38, 41, 42, 56, 78, 84] and the stream’s

spread (or cardinality) [42, 78], defined as the count of distinct items

in the stream. For instance, in a data stream of 𝑑1, 𝑑2, 𝑑1, 𝑑1, 𝑑1 has

a frequency of 3, 𝑑2 has a frequency of 1, and the stream’s spread

is 2, representing the two distinct items, 𝑑1 and 𝑑2.

This paper utilizes a generalized model where a data stream

comprises a continuous sequence of data items ⟨𝑓 , 𝑒⟩, with 𝑓 rep-
resenting a flow label and 𝑒 serving as an element identifier. Data

items sharing the same label constitute a flow. In essence, the stream

is segmented into multiple sub-streams or flows, each uniquely la-

beled and containing a set of elements. It’s worth noting that this

set is a multi-set, as elements can appear multiple times, which

will be further clarified through an example. Flow statistics can

vary and include: (1) flow size, the number of data items in a flow;

(2) the count of different flows; and (3) flow spread, the number of

distinct elements in a flow. The first two statistics align with those

in the traditional model when we substitute 𝑓 for 𝑑 and disregard

𝑒 . However, this paper specifically focuses on flow spread.

In most applications, large flows are of particular interest. Flows

with substantial size are referred to as heavy hitters, while those
with a large spread are known as super spreaders. A flow is deemed

large if its size or spread reaches a pre-set threshold𝑇 .The challenge

addressed in this paper is to design an efficient sketch, a compact

data structure that records the data items of a given stream. Af-

ter recording, this sketch should be able to output all flow labels

associated with super spreaders.

To illustrate this model, consider the gateway of an enterprise

network configured to monitor the inbound packet stream for scan

detection. Each packet is abstracted as a data item ⟨𝑓 , 𝑒⟩, with the

flow label 𝑓 being the source address from the packet header, and

element 𝑒 representing the destination address/port also found in

the packet header.

• Consider a packet flow {⟨𝑓1, 𝑒1⟩, ⟨𝑓2, 𝑒2⟩, ⟨𝑓1, 𝑒1⟩, ⟨𝑓1, 𝑒1⟩}. For
the first task, we count that there are three packets in flow 𝑓1 and

one packet in flow 𝑓2. Note that the same destination address/port

𝑒1 appears in flow 𝑓1 three times. For the second task, we count

that there are two flows. For the third task, we see that the spread

of flow 𝑓1 is one and that of flow 𝑓2 is also one.

3125



• Consider a packet flow {⟨𝑓1, 𝑒1⟩, ⟨𝑓2, 𝑒2⟩, ⟨𝑓1, 𝑒3⟩, ⟨𝑓1, 𝑒4⟩}. The

answers are all the same as in the previous case except for the spread

of 𝑓1 is now 3.

Consider a scenario where an external source (𝑓 ) sends 1,000,000

packets through the gateway. If these packets target the same des-

tination/port (𝑒), the source’s spread is 1. However, if the pack-

ets are directed to different destination/port pairs, the spread is

1,000,000, indicating a potential scan of the network. By monitor-

ing the spreads of all sources, the gateway can effectively detect

scanners. This application aligns well with our general model but is

not compatible with the traditional model. Additional application

examples are detailed in the introduction.

Identifying super spreaders is crucial for a variety of uses. On

social media platforms, the goal might be to identify trending topics

that a significant number of users have discussed [12, 74]. In the

context of e-commerce, a product gains the label of a super spreader

if a substantial number of unique users review it [36]. For online

advertising platforms, monitoring the unique click counts for each

advertisement is key to assessing its success [33]. Specifically, ads

that attract clicks from awide audience, termed super spreaders, can

prompt further action, such as the introduction of more related ads,

to boost profits. We list some specific definitions of super spreaders

in various applications in Table 1.

2.3 Heavy Hitters and Super Spreaders
The problem of heavy-hitter identification bears close relevance to

our study, which focuses on identifying flows with large sizes. The

predominant strategy in heavy-hitter identification involves main-

taining a small subset of flows, aiming to capture large flows within

this set while replacing smaller ones with new candidates. Notable

solutions in this domain include Frequent [16], Lossy Counting

[47], Space Saving [50], CSS [6], RHHH [7], Heavy Keeper [28],

SketchLearner [32], Elastic Sketch [78], Topkapi [46], and Nitros-

ketch [41]. The data structures employed to manage this subset

of flows range from min-heaps [13] and stream summaries [50]

to TinyTables [20] and hash tables [78]. Additionally, sampling

techniques have proven effective in filtering out smaller flows [41].

To illustrate, let’s consider two exemplary solutions. Space Sav-

ing [50] maintains a number of flows along with their sizes in a

stream summary, offering 𝑂 (1) time efficiency for updating any

flow’s size or identifying the smallest flow. Here, the counter for

a flow present in the summary is incremented by one upon the

arrival of its packet. Conversely, when a packet from a new flow

arrives, the smallest flow 𝑓 in the summary is replaced with this

new flow, whose size is set to the size of 𝑓 plus one. Heavy Keeper

[28], on the other hand, utilizes hash tables where each entry stores

a flow’s ID and a corresponding counter. When a packet from a

listed flow arrives, its counter is incremented. If a packet from a

new flow arrives and is hashed to an occupied entry, the existing

flow’s counter undergoes decay. Once this counter decays to zero,

the flow is replaced by the new one.

Another example solution to heavy hitter identification, Topkapi

[46] has a data structure of a two-dimension array, with each cell

consisting of a flow label field and a counting field. It updates the

data structure in item recording as follows: Decrease the counting

field by 1 deterministically when the flow label differs from existing

one stored in the flow label field and increases it by 1 otherwise.

Our design differs from Topkapi in 1) solving a different problem; 2)

containing a unique HLL sampler in each sampler; and 3) updating

the data structure probabilistically rather deterministically.

However, it’s important to note that these solutions, designed

for heavy hitter identification, are not suitable for super spreader

identification, as they rely on counters. Counters, by their nature,

are incapable of tracking a flow’s spread, which is defined as the

count of distinct elements in the flow.

2.4 Prior Art
Before exploring mainstream sketch-based solutions, let’s first con-

sider other existing approaches.

Per-flow tracking: In specific intrusion detection systems, such

as Snort [55] and FlowScan [54], the system maintains all active

connections for each source (defining the source address as the flow

label) to identify port scanning activities. This exacting counting

approach, though precise, leads to substantial memory consump-

tion. To improve memory efficiency, Estan et al. [21] propose using

a bitmap for sources with many connections. However, this method

still suffers from high memory consumption as the number of flows

can be numerous.

Sampling: To limit the number of distinct items processed

and enhance memory efficiency, hash-based sampling methods

[9, 35, 64] are proposed to monitor only a fraction of flows. The

likelihood of sampling super spreaders is high if the sampling

probability is appropriately set. However, as widely acknowledged,

sampling-based solutions are less accurate. They require processing

a sufficiently large number of items to converge. Below we review

the existing sketches for super spreader identification.

DCS [26] uses multiple hash tables, each with a different sam-

pling probability, to store ⟨𝑓 , 𝑒⟩ pairs, from which we can count

the number of distinct sampled elements from each flow in each

table, produce an estimate adjusted by sampling probability, select

the most accurate estimate from different hash tables, and identify

super spreaders. By storing the element identifiers (or encoding

them in Bloom filters), the memory overhead is very large.

FAST [40] maintains multiple arrays of HLL sketches [24]. For

each arrival packet ⟨𝑓 , 𝑒⟩, it splits 𝑓 into two parts, hashes one part
to 𝑑 HLL arrays, and in each array records 𝑒 in one HLL sketch for

every bit in the second part of 𝑓 whose value is one.Without storing

element identifiers, this method uses less memory than [24, 64].

However, it has to record element 𝑒 many times in each of 𝑑 arrays.

This still causes significant memory overhead and inaccuracy as

each HLL sketch has to be shared by many flows. Moreover, it is

very computationally expensive to recover the flow identifiers.

CMH [15] uses CountMin and a min-heap whose counters are

replaced by a data structure such as bitmap that can measure flow

spread. As we explained earlier, this method has significant memory

overhead. For each arrival packet ⟨𝑓 , 𝑒⟩, while recording the ele-

ment, it queries the spread of flow 𝑓 . If the estimated spread of 𝑓 is

larger than a threshold, it will report 𝑓 as a super spreader. However,

spread estimation is computationally expensive and not suitable

for online per-packet operation. In a similar design, as a general

framework, OpenSketch [82] replaces the counter in the CountMin

sketch [15] with a bitmap for super spreader identification.
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Table 1: Examples of super spreaders in broad database scenarios.

Tasks 𝑓 𝑒 Data type

Hot topics Topic tag users social tweets [12, 74]

Popular products product ID users produce reviews [36]

DDoS attacks dstIP srcIP network traffic [2, 51]

Port scanners srcIP-dstIP dstPort network traffic [19]

Successful ads ads ID users ads clicks [33]

Popular events serach keys users online search stream [53] [49] [29]

High-priority content file name users content access stream [8]

Table 2: Comparison of the proposed sketch with existing solutions. Solutions in bold are considered state of the art.

Group of Solutions Solutions Accuracy Memory Efficiency Remarks

Sketches

DCS [26] Low Low

Capable of storing labels of super spreaders

FAST [40] Low Low

CMH [15] Low High

OpenSketch [82] Low High

SpreadSketch [60] Medium High

AROMA [5] Medium High

GMF [44] Medium High

Per-flow

Tracking

Snort [55] High Low

Challenged by the sheer number of flows, impacting memory

efficiency

FlowScan [54] High Low

Estan et al. [21] High Low

Sampling-based

Solutions

Paper [9] Low High

Effective for a small set of flows. Requires very low sampling

probability for memory efficiency

Paper [35] Low High

Paper [64] Low High

Other Sketches

Degree Sketch [72] Low High

Cannot store labels of super spreaders, hence unable to

independently report them

Vector Bloom Filter [39] Low High

Extended Sketch [34] Medium High

This paper Our Solution High High Capable of storing and reporting super spreaders

SpreadSketch [60] can measure the spreads of many flows simul-

taneously and identify the super spreaders among them. Its data

structure follows Count-Min [14] but replaces each counter with

a multi-resolution bitmap (MRB) [22], a register and a label field.

MRB is designed to measure the spread of one flow. Each flow is

mapped to 𝑑 > 1 MRBs and will occupy an MRB by setting the

corresponding label field if it has the largest geometric hash value

𝐺 (·) among all flows mapped to the MRB, where𝐺 (·) = 𝑖 with prob-
ability of

1

2
𝑖 , 𝑖 ≥ 1. However, SpreadSketch has large estimation

error, which will result in low identification accuracy. Specifically,

there are severe hash collisions among flows, which “deposit” noise

to the MRB with respect to each other. Accordingly, the error is

large and the spread estimates usually deviate from real spread

positively a lot. For super spreader identification, SpreadSketch will

report a large number of false positives, making the performance

metric, i.e., F1 score in a low level.

AROMA [5] adopts a self-adaptive sampling strategy
1
. It allo-

cates a bucket array where each bucket stores a flow label and a

counter. It first hashes each packet ⟨𝑓 , 𝑒⟩ into a bucket in the array

and then produces another hash value of ⟨𝑓 , 𝑒⟩. If the hash value

is smaller than the counter of the bucket, the counter is set to this

1
AROMA can also be considered as a sampling based solution but we categorize it

into sketches.

value and the flow label is set to f. Because a flow of higher spread

has more distinct elements, they together are more likely to produce

small hash values, meaning that more of them will be more likely

to stay in the array. Hence, we can identify super spreaders by

finding the flow labels that appear most in the array, and estimate

their spreads based on their counts in the array. Storing the same

flow labels many times in the array can cost significant memory

overhead, especially when the flow labels are long (such as 104 bits

for each TCP flow label). In addition to TCP flow labels with 104

bits, the long flow labels are common in broad database domains.

For instance, mining hot topics in an application of super spreader

identification (refer to the last paragraph of Section 2.2), a hot topic

can be tens or hundreds of letters, each with 8 bits using ASCII

Code, resulting hundreds of thousands of bits for a flow key. More-

over, when there exists a flow of very large spread, it could push

other super spreaders of smaller spreads out of the array, causing

either failure in identifying some super spreaders or inaccuracy

in their spread estimations. Both cases will be evaluated in our

experiments.

Geometric-min Filter (GMF) [44] performs flow filtering to only

store the candidate flow labels in the hash table whose geometric

hash value is larger than a threshold, and then performs further flow
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spread estimation in existing sketches, i.e., vSketch(HLL) [85]. Its

accuracy is limited by vSketch(HLL) for per-flow spread estimation.

Other sketches: Degree Sketch [72] and Vector Bloom Filter

[39] assumes the knowledge of the entire flow key space, based

on which they can recover the candidate super spreaders offline

from the sketches that storing the encoded information during

item recording. They have two drawbacks. The first is the huge

computational overhead for recovering and the second is flow key

space is practically hard to know in advance or nearly infinite.

Extended Sketch [34] uses a two-dimensional data structure, where

flows are hashed to columns and elements are hashed to rows. They

can support reporting hot columns but cannot support reporting

super spreaders’ flow labels after item recording as they do not

store the flow labels in the data structure.

There are a thread of sketches dealing with per-flow spread

estimation, with the objective of supporting spread queries given

any flow label 𝑓 . However, these sketches do not store flow labels

and consequently these solutions cannot report the super spreaders

based on their own sketches. This thread includes CSE[80, 81],

vHLL [76, 77], vSketch/bSketch/cSketch [85], FreeBS, FreeRS [73],

Randomized Sketches [67, 68], kJoin/skJoin sketches [45]

Summary of existing solutions: In Table 2, we outline the

previous solutions to identifying super spreaders. Experimental

evidence from [60] shows that approaches such as DCS, CMH,

FAST, Degree Sketch, and Vector Bloom Filter fall short in accu-

racy when compared to SpreadSketch. Degree Sketch, and Vector

Bloom Filter are excluded for an additional reason that they do not

store the flow labels of super spreaders and hence cannot report

those super spreaders independently. Other solutions, such as those

in the “per-flow tracking” category of Table 1, are excluded for

evaluation because they are not memory efficiency, where mem-

ory overhead comes from the large number of flows. Therefore,

we regard SpreadSketch, AROMA, and GMF as the leading-edge

technologies in this domain. These methods will be thoroughly

examined and compared in our evaluation section.

Our design logic. We acknowledge the inevitability of hash

collisions in sub-linear sketch structures. Our objective, therefore, is

to ensure that larger flows are distinctly prominent and accurately

measured, even when they share the same memory space with

others. To achieve this goal,, we introduce an innovative approach

named the non-duplicate sampler in Section 3.2. This design lays

the foundation for our strategy to enable large flows to effectively

assert their presence in shared memory environments

3 ALGORITHM DESIGN
In the section, we first review existing sketches on single-flow

spread estimation, with a focus on the state of the art, i.e., HLL

sketch [24]. After that, we present out novel idea of turning HLL

into a non-duplicate sampler. Finally, we present out sketch design

on top of HLL non-duplicate samplers.

3.1 HLL Sketch for Single-flow Spread
Estimation

To measure the spread of a single flow, most prior work was based

on bitmaps [22, 23, 75], FM (Flajolet-Martin) sketches [25], LogLog

sketch [18] or HLL (HyperLogLog) sketches [24, 30]. Among them,

HLL sketches perform the best, with the largest estimation ranges

and the best overall estimation accuracy.

The data structure of HLL [24] is an array 𝐴 of𝑚 registers, each

of five bits. Consider a flow 𝑓 , which is recorded in 𝐴 for spread

estimation. For each arrival data item ⟨𝑓 , 𝑒⟩, we perform a uniform

hash ℎ(𝑒) ∈ [0,𝑚 − 1), which maps the item to a register 𝐴[ℎ(𝑒)].
We then calculate a geometric hash𝐺 (𝑒), which can be implemented

by counting the number of leading zeros from another uniform hash

𝐻 ′ (𝑒) and then adding one, denoted by 𝑧, such that 𝐺 (𝑒) = 𝑧 ≥ 1

with the probability of
1

2
𝑧 . Since each HLL register can count up to

31, we merge the cases of 𝑧 > 30. Accordingly, 𝐺 (𝑒) follows the
distribution:

𝐺 (𝑒) =
{
𝑖 with probability of

1

2
𝑖 if 1 ≤ 𝑖 ≤ 30

31 with probability of
1

2
30

if 𝑖 > 30

To record the item, we let 𝐴[ℎ(𝑒)] := max{𝐴[ℎ(𝑒)],𝐺 (𝑒)}. To
estimate the flow’s spread, denoted as 𝑛̂𝑓 , we compute

𝑛̂𝑓 = 𝛼𝑚 ×𝑚2

(∑︁𝑚−1
𝑖=0

2
−𝐴[𝑖 ]

)−1
where 𝛼𝑚 is a constant that can be calculated as 𝛼𝑚 = 0.7213

1+ 1.079
𝑚

when

𝑚 ≥ 128. Refer to [24, 30] for 𝛼𝑚 under other values of𝑚. With

5-bit registers, HLL can estimate flow spread up to many billions

(specifically 𝛼𝑚 ×𝑚 × 2
31
), with a relative standard error of

1.04√
𝑚
.

3.2 Turning HLL Sketch to HLL Sampler
The HLL sketch is hindered by a significant drawback: its high

query overhead. Specifically, the computational load involved in

generating a spread estimate is substantially greater than the over-

head per recorded item. For instance, when 𝑚 ≥ 128, the query

overhead can be hundreds of times more burdensome [67, 85], as

it necessitates accessing𝑚 registers compared to a single register

access and two hashes required for item recording. This limitation

obstructs real-time awareness of flow spreads during item record-

ing. However, we argue that real-time awareness of flow spreads

can help significantly improve the accuracy of identifying super

spreaders, which will be reflected in our design. To achieve this, we

expect to be able to perform real-time queries on the flow’s current

spread during item recording, motivating us to resolve the issue of

high query overhead associated with traditional HLL sketches.

In this paper, we propose a novel interpretation of the HLL sketch.

We view it as a non-duplicate sampler, a concept we define in detail

hereafter.

Definition 1 (Non-duplicate Sampler). Any data structure is
a non-duplicate sampler if it can block duplicate appearances of any
item and samples any item at its first appearance with a probability
𝑝 . The output of a non-duplicate sampler is the sampled item and its
associated probability 𝑝 . 𝑝 is not necessarily fixed.

It’s crucial to highlight that an HLL sketch inherently functions

as a non-duplicate sampler. When an item ⟨𝑓 , 𝑒⟩ arrives, and it’s

the item’s first appearance, it can only modify the HLL sketch 𝐴 if

𝐺 (𝑒) > 𝐴[ℎ(𝑒)], a condition that is met with a probability 𝑝 .
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Algorithm 1: 𝐻𝐿𝐿𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (𝑓 , 𝑒)
Input: 𝐴
Action: Perform sampling on ⟨𝑓 , 𝑒⟩ in HLL sampler

1 Intilization: 𝑝=1
2 Recording:
3 if 𝐴[ℎ(𝑒)] < 𝐺 (𝑒) then
4 𝑝′ = 𝑝
5 𝑝+ = − 1

𝑚 2
−𝐴[ℎ (𝑒 ) ] + 1

𝑚 2
−𝐺 (𝑒 )

6 𝐴[ℎ(𝑒)] = 𝐺 (𝑒)
7 return 𝑝′

8 return -1 // -1 indicates the item is not sampled

<f , e1>

0 0 0 2 0(a)

0 0 2 0(b)

p = 1  0.8125

p = 0.8125

<f , e1>

0 0 1 2 0(c) p = 0.8125  0.6875

<f , e2>

0 1 2 0(d) p = 0.6875

<f , e3>

Probability Sampled?

Yes (G(e1) = 2 > 0)

No (Duplicates)

Yes (G(e2) = 1 > 0)

No (G(e3) = 1 < 2)

Figure 1: Running example for an HLL sampler to process
a sequence of four items: ⟨𝑓 , 𝑒1⟩ in plot (a), ⟨𝑓 , 𝑒1⟩ in plot (b),
⟨𝑓 , 𝑒2⟩ in plot (c), and ⟨𝑓 , 𝑒3⟩ in plot (d). Each register in the
HLL sampler is initialized as 0, and the sampling probability
𝑝 is set as 1. In plot (a), ⟨𝑓 , 𝑒1⟩ is hashed to the ℎ(𝑒1) = 2th reg-
ister.With𝐺 (𝑒1) = 2 > 0, ⟨𝑓 , 𝑒1⟩ is sampled with probability of
1. We set the register value as 2 and 𝑝 is then updated from 1
to 0.8125 for the next item; In plot (b), a duplicate appearance
of ⟨𝑓 , 𝑒1⟩ arrives. It is hashed to the same ℎ(𝑒1) = 2th register.
With 𝐺 (𝑒1) = 2 ≤ 2, ⟨𝑓 , 𝑒1⟩ is not sampled; In plot (c), ⟨𝑓 , 𝑒2⟩ is
hashed to the ℎ(𝑒2) = 1th register. With 𝐺 (𝑒2) = 1 > 0, ⟨𝑓 , 𝑒2⟩
is sampled with probability of 0.8125. We set the register
value as 1 and 𝑝 is then updated from 0.8125 to 0.6875 for the
next item; In plot (d), item ⟨𝑓 , 𝑒3⟩ is hashed to the ℎ(𝑒3) = 2th
register but it does not update the value of the register as
𝐺 (𝑒3) = 1 ≤ 2. As a result, the item is not sampled.

𝑝 =
1

𝑚

∑︁𝑚−1
𝑖=0

(2−𝐴[𝑖 ]+1 + 2
−𝐴[𝑖 ]+2 + ... + 2

−30 + 2
−30)

=
1

𝑚

∑︁𝑚−1
𝑖=0

2
−𝐴[𝑖 ] . (1)

The above expression for 𝑝 is derived as any item will be mapped

to one of the HLL register 𝐴[𝑖], 0 ≤ 𝑖 < 𝑚 with equal probability,

i.e,
1

𝑚 and the probability for 𝐺 (𝑒) to be larger than the current

value in the register𝐴[𝑖], i.e.,𝐺 (𝑒) > 𝐴[𝑖] is (2−𝐴[𝑖 ]+1 +2−𝐴[𝑖 ]+2 +
... + 2

−30 + 2
−30) = 1

2
𝐴 [𝑖 ] according to the probability distribution

for 𝐺 (𝑒) in Section 3.1.

d rows

w buckets

Ki[j] Vi[j]Ci[j] KiKK [j[[ ] ViVV [j[[ ]CiCC [j[[ ]

Bucket Bi[j]

Ci[j]: HLL sampler

Ki[j]: flow key

Vi[j]: counter

Figure 2: Data structure of the proposed solution.

In cases of duplicate appearances, if an item’s initial occurrence

has already set 𝐴[ℎ(𝑒)] = 𝐺 (𝑒) when 𝐴[ℎ(𝑒)] < 𝐺 (𝑒), it follows
that𝐴[ℎ(𝑒)] ≥ 𝐺 (𝑒). Consequently, the item ⟨𝑓 , 𝑒⟩ won’t be able to
update the HLL sketch, leading to the packet being disregarded. To

circumvent the need to compute 𝑝 as per equation (1) every time

a register is updated, we implement a method where we keep a

decimal value for 𝑝 , initially set to 1.This value is adjusted whenever

a register𝐴[𝑖] changes its value from𝑘 to𝑘′, following the equation:
𝑝+ = − 1

𝑚 2
−𝑘 + 1

𝑚 2
−𝑘 ′

.

The formal algorithm of turning anHLL sketch to a non-duplicate

sampler is provided in Algorithm 1. We also provide a running

example in Figure 1. Redefining the HLL sketch as a non-duplicate

sampler, termed the HLL sampler, allows for the estimation of the

spread by maintaining an additional counter 𝑣 . Whenever the HLL

sampler generates an item and a probability 𝑝 , we update 𝑣 as

𝑣+ = 1/𝑝. In practice, 𝑣 is an integer and the actual update process

is:

𝑣+ = ⌈ 1
𝑝
⌉,with a probability of

1

𝑝

⌈ 1𝑝 ⌉
. (2)

HLL samplers effectively resolve the issue of high query over-

head associated with traditional HLL sketches. The query overhead

with an HLL sampler is minimized to accessing a single integer 𝑣 .

Additionally, the HLL sampler estimates spread using a Markov

chain, which provides an unbiased estimation [61]. Unlike the HLL

sketch where each register requires 5 bits to prevent overflow (with

𝐺 (𝑒) = 31 having a probability of 2
−30

and overflow occurring if

any register overflows), the HLL sampler can function effectively

as long as 𝑝 ≠ 0, which is achievable as long as not all 𝑚 HLL

registers reach their maximum value. Thus, we can reduce each

HLL register to 4 bits. Accordingly,𝐺 (𝑒) = 𝑖 has a probability of
1

2
𝑖

for 1 ≤ 𝑖 ≤ 14, or
1

2
14

if 𝑖 = 15.

3.3 Super Spreader Identification using HLL
Samplers

To monitor various flows in the data stream and pinpoint super

spreaders, we utilize a two-dimensional array structure, illustrated

in Figure 2. This consists of HLL samplers array𝐶 , flow labels array

𝐾 , and counters array 𝑉 , each comprising 𝑑 rows and𝑤 columns.

We denote the 𝑗𝑡ℎ HLL sampler, flow label, and counter in the

𝑖𝑡ℎ array as 𝐶𝑖 [ 𝑗], 𝐾𝑖 [ 𝑗], and 𝑉𝑖 [ 𝑗] respectively, for 0 ≤ 𝑖 < 𝑑 ,

0 ≤ 𝑗 < 𝑤 . These arrays can be collectively considered as a two-

dimensional bucket array 𝐵, where each 𝐵𝑖 [ 𝑗] contains𝐶𝑖 [ 𝑗],𝐾𝑖 [ 𝑗],
and𝑉𝑖 [ 𝑗]. Each array𝐶 is paired with an independent uniform hash

function ℎ𝑖 (·). Initially, all flow labels in 𝐾 are null, and all HLL

samplers and counters are set to 0.
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Algorithm 2: Online Item Recording

Input: 𝐶 , 𝐾 , 𝑉
Action: Perform online recording for each item ⟨𝑓 , 𝑒⟩

1 for 𝑖 from 0 to 𝑑 − 1 do
2 𝑝 = 𝐻𝐿𝐿𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (𝑓 , 𝑒) // Feed ⟨𝑓 , 𝑒⟩ to HLL

sampler; see Algorithm 1

3 if 𝑝 ≠ −1 then
// ⟨𝑓 , 𝑒⟩ passes the HLL sampler

4 if 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑛𝑢𝑙𝑙 then
5 Add Counter 𝐶𝑖 [ℎ𝑖 (𝑓 )] by 1

𝑝 according to (2).

6 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑓
7 else
8 if 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑓 then
9 Add Counter 𝐶𝑖 [ℎ𝑖 (𝑓 )] by 1

𝑝 according to

(2).

10 else
11 calculate 𝑝𝑑 = 𝑏−𝐶𝑖 [ℎ𝑖 (𝑓 ) ]

12 generate a random value 𝑟 ∈ [0, 1)
13 if 𝑟 < 𝑝𝑑 then
14 decrease 𝐶𝑖 [ℎ𝑖 (𝑓 )] by ⌈ 1𝑝 ⌉, with

probability

1

𝑝

⌈ 1

𝑝
⌉

15 if 𝐶𝑖 [ℎ𝑖 (𝑓 )] ≤ 0 then
16 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑓 , 𝐶𝑖 [ℎ𝑖 (𝑓 )]∗ = −1

Algorithm 3: Super Spreader Identification
Input: 𝐾 , 𝑉
Action: Report super spreaders

1 empty set 𝑆

2 for 𝑖 = 0 to 𝑑 − 1 do
3 for 𝑗 =0 to𝑤 − 1 do
4 add 𝐾𝑖 [ 𝑗] to 𝑆

5 for ∀𝑓 ∈ 𝑆 do
6 empty set 𝐸

7 for 𝑖 = 0 to 𝑑 − 1 do
8 if 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑓 then
9 add 𝐶𝑖 [ℎ𝑖 (𝑓 )] to 𝐸

10 𝑛̂𝑓 is the maximum counter’s value in 𝐸.

11 if 𝑛̂𝑓 > 𝑇 then
12 report 𝑓 as a super spreader

Recording: When an item ⟨𝑓 , 𝑒⟩ arrives, it is mapped to 𝑑 buck-

ets, 𝐵𝑖 [𝐻𝑖 (𝑓 )], for 0 ≤ 𝑖 < 𝑑 . In each bucket, the item is first

processed by the HLL sampler 𝐶𝑖 [𝐻𝑖 (𝑓 )]. If successfully sampled

with a probability 𝑝 , it leads to one of three cases:

• Case 1: If 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑛𝑢𝑙𝑙 , it means that no flows has passed

through the HLL sampler 𝐶𝑖 [ℎ𝑖 (𝑓 )] before. We set 𝐾𝑖 [ 𝑗] = 𝑓 and
add counter 𝐶𝑖 [ℎ𝑖 (𝑓 )] by 1

𝑝 according to (2).

null: 0

f1: 4

f3: 1

<f1 , e>

Figure 3: Running example: three recording cases when
recording an item ⟨𝑓1, 𝑒⟩. 𝑑 = 3 and in each of 𝑑 = 3 mapped
buckets, assuming ⟨𝑓1, 𝑒⟩ already passes the HLL sampler,
which is thus omitted in the figure. Text in each bucket rep-
resents flow key: counter.

• Case 2: If 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑓 , we directly add counter𝐶𝑖 [ℎ𝑖 (𝑓 )] by
1

𝑝 according to (2).

• Case 3: If 𝐾𝑖 [ℎ𝑖 (𝑓 )] ≠ 𝑓 , a hash collision is happening. In

this case, we introduce the exponential-weakening decay (EWD)

technique that is adopted in heavy hitter identification to proba-

bilistically keep the large flow dominating among all flows hashed

to the bucket 𝐵𝑖 [ℎ𝑖 (𝑓 )]. Specifically, we decrease 𝐶𝑖 [ℎ𝑖 (𝑓 )] by 1

𝑝

with a probability 𝑝𝑑 = 𝑏−𝐶𝑖 [ℎ𝑖 (𝑓 ) ]
. In the case that

1

𝑝 is not an

integer, we decrease by ⌈ 1𝑝 ⌉, with probability
1

𝑝

⌈ 1

𝑝
⌉ . The setting of 𝑝𝑑

will be explained shortly. After decreasing, if 𝐶𝑖 [ℎ𝑖 (𝑓 )] is negative,
we will reverse its value and replace the flow label 𝐾𝑖 [ℎ𝑖 (𝑓 )] with
𝑓 .

Running example: As shown in Figure 3 where 𝑑 = 3, given

an incoming item ⟨𝑓1, 𝑒⟩, we compute 𝑑 hash functions 𝐻𝑖 (𝑓1) ∈
[0,𝑤),∀0 ≤ 𝑖 < 𝑑 to find one bucket in each row. In each bucket,

the item will first be processed by the HLL sampler. For ease of

presentation, we assume the item already passed through the HLL

sampler with a probability of 𝑝𝑖 , 0 ≤ 𝑖 < 𝑑 in each mapped bucket

and thus omit the HLL sampler in the figure. In the mapped bucket

of the first row, the flow key field is null and the counter is 0, which
matches Case 1. Let 𝑝0 =

1

2
Accordingly, we increases the counter

by
1

𝑝0
= 2 and set the flow key field to 𝑓1. In the mapped bucket of

the second row, the flow key is exactly 𝑓1, which matches Case 2.

Let 𝑝1 =
1

3
. Accordingly, we directly increases the counter from 4

to 4 + 3 = 7. In the mapped bucket of the third row, the flow key is

not 𝑓1, which matches Case 3. Let 𝑝2 =
1

5
. Accordingly, we decrease

the counter by
1

𝑝2
= 5 with the probability of 𝑝𝑑 = 1.08−1 (assume

𝑏 = 1.08. If hitting the probability, the decrease will make the

counter to be 1− 5 = −4 and we will replace the flow key of 𝑓3 with

𝑓1 and reverse the counter from -4 to 4. In another example where

𝑝2 =
5

2
and

1

𝑝2
= 2.5 is not an integer, we will further decrease the

counter by ⌈ 1

𝑝2
⌉ = 3 with a probability of

1

𝑝
2

⌈ 1

𝑝
2

⌉ = 2.5
3

= 5

6
.

Why exponential-weakening decay (EWD)? EWD decreases

the value of counter 𝐶𝑖 [𝐻𝑖 (𝑓 )], 0 ≤ 𝑖 < 𝑑 when a hash collision

in the bucket 𝐵𝑖 [ℎ𝑖 (𝑓 )] happens. Decreasing the counter’s value

prevents the small flows from occupying the bucket just because

it they appear before large flows in the data stream. Small flows,

even if they may arrive before large flows and occupy the bucket

temporarily, the counter’s value will eventually be decreased to
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zero and the flow key field will be replaced by large flows. This

would not be possible if we were to increase or keep the counter

unchanged. Moreover, EWD decreases the counter’s value with a

probability that is an exponential function of the counter’s value. An

exponential function relative to the counter’s value allows smaller

values (representing smaller flows) an equitable chance to take the

flow label, while larger values (indicating a large flow’s presence)

are less likely to be replaced. This can make sure that large flows,

after adequate number of its distinct items are recorded, will keep

occupying the bucket afterwards. Multiple large flows colliding in

one HLL sampler is rare due to data skewness in practical datasets.

Even in such rare cases, our design is robust as each flow is hashed

to 𝑑 HLL samplers. The parameter 𝑏 is set as per [28], at 𝑏 = 1.08.

We want to further detail the novelty of EWD by comparing it

with the recording operation of one of the state-of-the-art solutions,

i.e., SpreadSketch [60]. Consider three flows colliding in one bucket.

SpreadSketch will store the flow label of one of the three flows as

the candidate super spreader and take the sum of these three as the

estimate of the candidate super spreader. If the three flows are two

small flows and one large non-super spreader, the candidate super

spreader will likely be the large non-super spreader. SpreadSketch,

with the addition of two small flows’ spreads, will estimate the

candidate super spreader’s spread larger than the threshold and

report it as a super spreader. In contrast, EWD will not have this

issue, as it will not add the small flows’ spreads to the counters

in the case of flow label mismatch. The small flows will almost

make no difference to the counter’s value, a circumstance that we

expect. This is because EWD decreases the counter’s value with

a probability 𝑝𝑑 and as the large non-super spreader begins to

dominate the bucket, 𝑝𝑑 will be extremely small and can almost be

neglected.

Our contribution with exponential-weakening decay. Our
main contribution is adapting the exponential-weakening decay

technique, commonly used in heavy hitter identification, for super

spreader identification. This adaptation overcomes the need for

real-time spread knowledge, which is usually acquired by accessing

the entire HLL sketch. By reinterpreting the HLL sketch as a non-

duplicate HLL sampler, we simplify the process to using a counter

behind the sampler for spread counting. This approach not only

allows for the application of EWD in super spreader identification

but also paves the way for further innovations in heavy hitter identi-

fication. Our experimental results demonstrate significant accuracy

improvements with the EWD technique. Additional benefits of this

reinterpretation are discussed in Section 3.2.

Super spreader identification: To identify the super spread-

ers, we first fetch all flow labels in 𝐾 , which comprise a set 𝑆 of

candidate super spreaders. For each flow label 𝑓 ∈ 𝑆 , we access
its 𝑑 hashed flow labels, 𝐾𝑖 [ℎ𝑖 (𝑓 )], 0 ≤ 𝑖 < 𝑑 . If 𝐾𝑖 [ℎ𝑖 (𝑓 )] = 𝑓 , 𝑓

is the dominant flow in the bucket 𝐵𝑖 [ℎ𝑖 (𝑓 )], and consequently,

add the counter 𝐶𝑖 [ℎ𝑖 (𝑓 )] to estimate set 𝐸. There are at most 𝑑

counters and at least one counter in 𝐸. We return the maximum

counter’s value in 𝐸 as the estimated spread of 𝑓 , denoted as 𝑛̂𝑓 ,

as we will prove shortly the EWD technique will only make the

estimate smaller than the real value, i.e., no over-estimation in each

counter, as will prove in Section 4. If 𝑛̂𝑓 ≥ 𝑇 , report 𝑓 as a super
spreader, otherwise, do nothing. The detailed item recording and

super spreader identification operations are given in Algorithms 2

and 3, respectively.

After recording the whole data stream, we only need 𝐾 and 𝐶

for identifying super spreaders. The major memory, i.e., 𝐶 can be

directly reset for recording in the next timewindow.This guarantees

a very good property: Compared to other sketch-based solutions

that use the whole data structure, our solution requires much less

transmission bandwidth if the offline super spreader identification

process is done remotely in some scenarios such as cyber security

and network monitoring. This will be evaluted in Section 5.

4 ANALYSIS
In this section, we first prove that the proposed sketch is expected

to under-estimate the spread of large flows in each array, which

provides a theoretical support of returning the maximum value as

the spread estimate in Algorithm 3. After that this section analyzes

the estimation accuracy.

Theorem 1. Let 𝑛̂𝑓 be the spread estimate of the large flow 𝑓

produced by Algorithm 3 and 𝑛𝑓 be the real spread of 𝑓 . We must
have

E(𝑛̂𝑓 ) ≤ 𝑛𝑓 . (3)

Proof. Consider the 𝑖𝑡ℎ array, 0 ≤ 𝑖 < 𝑑 . We prove by induction.

At the beginning, i.e., time 𝑡 = 0, the counter 𝑉𝑖 [ℎ𝑖 (𝑓 )] = 0 and 𝑛𝑓
at time 𝑡 = 0 is zero as well. Therefore, Eq. (3) holds.

Now let Eq. (3) holds at time 𝑡 ≤ 0 and 𝑛𝑓 = 𝑣 . When a new

item arrives at 𝑡 + 1 there are three cases in recording operations in

Section 3.3 according to Algorithm 2. In Case 1, the new item will

not be switched to this case. In Case 2, the new item belongs to 𝑓

and we increase the value of 𝑉𝑖 [ℎ𝑖 (𝑓 )] by ⌈ 1𝑝 ⌉ with the probability

of

1

𝑝

⌈ 1

𝑝
⌉ ∗ 𝑝 = 𝑓 𝑟𝑎𝑐1⌈ 1𝑝 ⌉. The expected value increase is 1. Since 𝑛𝑓

becomes𝑛𝑓 +1, Eq. (3) holds at time 𝑡+1. In Case 3, the new item does

not belong to flow 𝑓 . In this case, we decrease the value of𝑉𝑖 [ℎ𝑖 (𝑓 )]

by ⌈ 1𝑝 ⌉ with the probability of

1

𝑝

⌈ 1

𝑝
⌉ ∗ 𝑝 ∗ 𝑝𝑑 = 𝑓 𝑟𝑎𝑐1⌈ 1𝑝 ⌉ ∗ 𝑝𝑑 . The

expected value increase is 𝑝𝑑 ≤ 1. Therefore, Eq. (3) holds at time

𝑡 + 1. The theorem holds. □

Theorem 1 explains whywe use themaximum value as the spread

estimate of 𝑓 in line 10 of Algorithm 3.

Theorem 2. Let 𝑛𝑓 ,𝑖 be the spread estimate of 𝑓 in the 𝑖𝑡ℎ array.
Assuming that once the flow label of a large flow 𝑓 occupies the
hashed flow label, it is held all the time during recording. Given a
small positive number 𝜖 and an large flow 𝑓 whose spread is 𝑛𝑓 , we
have

Pr( |𝑛𝑓 ,𝑖 − 𝑛𝑓 | ≤ 𝜖𝑁 ) ≤ 1

𝜖𝑤𝑛𝑓 (𝑏 − 1) , (4)

where𝑤 the width of each array, 𝑏 is the exponential base and 𝑁 is
the total spread in the data stream.

The proof can be inferred from [28] and is omitted due to space

limit. Theorem 2 bounds the absolute error of the spread estimate

on flow 𝑓 . We connect the average absolute error to super spreader

identification: a non-super spreader is identified as a super spreader,

called a false positive, if max

0≤𝑖<𝑑
𝑛𝑓 ,𝑖 > 𝑇 , which is equivalent to
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Table 3: Number of true super spreaders in the CAIDA data
set under different super spreader threshold.

Threshold 100 200 300 400 500 600 700 800

Number 309 146 88 55 49 36 34 32

Table 4: Number of true super spreaders in the E-commerce
data set under different super spreader threshold.

Threshold 200 300 400 500 600 700 800

Number 659 263 146 75 52 35 24

∃0 ≤ 𝑖 < 𝑑 , the error 𝑛𝑓 ,𝑖 − 𝑛𝑓 > 𝑇 − 𝑛𝑓 . Likewise, a super

spreader is identified as a non-super spreader, called a false negative,

if max

0≤𝑖<𝑑
𝑛𝑓 ,𝑖 < 𝑇 , which is equivalent to ∀0 ≤ 𝑖 < 𝑑 , the error

𝑛𝑓 − 𝑛𝑓 ,𝑖 > 𝑛𝑓 − 𝑇 . False positives and false negatives will be

adopted as performance metrics in evaluation.

5 EVALUATION
5.1 Experimental Setup
We carried out the implementation of our proposed methodology

for super spreader identification, along with three leading solutions

in the field: AROMA [5], GMF [44], and SpreadSketch [60]. These

implementations were executed on a CPU platform, specifically on

a machine equipped with an Intel Core i7-8700 3.2GHz CPU and

16GB of memory. It’s important to emphasize that our inclusion of

these state-of-the-art solutions aims to deliver a comprehensive and

thorough comparison of accuracy in identifying super spreaders.

This selection is based on our extensive knowledge and commitment

to achieving high accuracy in this area. For insights into why other

sketch-based solutions aren’t categorized as state-of-the-art, please

refer to Section 2.4.

Data sets. Our evaluation utilizes two real-world data sets. The

first is the CAIDA data set, comprising real Internet traffic traces

sourced from CAIDA [62]. This data set includes 10 traces, each

containing tens of millions of packets. We conducted separate ex-

periments on each of these data streams and present the averaged

results. In this data set, the flow label 𝑓 is defined as the destination

address in each packet’s header, with each trace containing around

110k flows and approximately 430k distinct data items. The element

𝑒 is the source address, also from the packet header. A flow is all

packets directed towards the same destination, and the flow spread

represents the number of distinct sources communicating with a

destination. Anomalies in flow spread could indicate flash crowds

in service requests or denial-of-service attacks against a destination

service, necessitating attention from service administrators. Identi-

fying super spreaders helps detect such anomalies. Table 3 displays

the number of super spreaders for various threshold values.

The second data set is the e-commerce data set, acquired from an

actual e-commerce website [1]. This data set consists of three files,

of which we use the visitor behavior data. Each record in this file

corresponds to a product view, detailing properties such as visitor

ID, timestamp, item ID, etc. It encompasses about 1.4M visitors and

235k items, with roughly 1.2M distinct item-visitor pairs (⟨𝑓 , 𝑒⟩).
Here, the flow label 𝑓 is the item ID, and element 𝑒 is the visitor

ID. Views of the same item constitute a flow, with the flow spread

indicating the item’s popularity (number of distinct visitors viewing

it). Thus, a super spreader represents a popular product item. Table

4 shows the number of super spreaders at different thresholds,

illustrating that the e-commerce data set demands higher accuracy
in super spreader identification compared to the CAIDA data set due
to the greater number of flows around the threshold.

Performance metrics. We evaluate all sketches’ performance

in three aspects. The first is accuracy. We first define four terms

to facilitate the understanding of the performance metrics. True
Positive (TP) : Number of actual super spreaders identified. False
Positive (FP) : Number of non-super spreaders incorrectly identi-

fied as super spreaders. True Negative (TN) : Number of non-super

spreaders correctly not identified as super spreaders. False Negative
(FN) : Number of actual super spreaders not identified.

We have connected the false positives and false negatives to the

estimation error at the end of Section 4. Note that true negatives

and true positives are the opposite of them, respectively. We use the

following metrics to evaluate the accuracy performance throughout

the evaluation. Precision: 𝑇𝑃
𝑇𝑃+𝐹𝑃 , indicating the likelihood that a

reported super spreader is indeed a super spreader. Recall: 𝑇𝑃
𝐹𝑁+𝑇𝑃 ,

reflecting the probability of correctly reporting a real super spreader.

F1 Score: 2

𝑟𝑒𝑐𝑎𝑙𝑙−1+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 . It is the harmonic mean of precision

and recall. The second is recording overhead, assessed by through-

put, measured as the number of items processed per second during

online encoding (Mdps). The third is restoring time, defined as the

time to restore super spreaders after item recording. The unit is

second.

Parameter settings. The HLL for measuring single-flow spread

used in GMF contains 128 HLL registers, each of 5 bits, which are

the same setting as the original papers. Each bucket in SpreadSketch

contains an MRB with 438 bits for measuring single flow’s spread,

a register of 4 bits, and a label field of 32 bits for storing flow labels,

which is the same as the original paper. In the implementation

of AROMA, each flow label field is 32 bits, adequate for storing a

flow label and each hash value part is 32 bits. Both are the same as

the original paper. Each HLL sampler in our solution contains 128

registers. 𝑑=4, which is the classical setting [14, 28].

5.2 Accuracy Comparison under Two Data Sets
Accuracy under the CAIDA data set: We first show the experi-

mental results of F1 score, precision, and recall with respect to the

super spreader threshold 𝑇 under the CAIDA data set in Figure 4.

We want to stress that varying 𝑇 is equivalent to varying the num-

ber of real super spreaders. Their relation can be found in Tables 3

and 4 for the CAIDA and e-commerce data set, respectively. The

memory allocation for each sketch is 2Mb. The threshold varies

from 100 to 800 with a step length of 100. As shown in Table 3, this

threshold range yield to the number of true super spreaders from

309 to 32, which is a common setting [60, 67].The first plot in Figure

4 shows that the proposed solution (the red line) can improve the

F1 score visually. Existing state of the art has similar performance

with a slight better performance from AROMA. In numbers, the

proposed solution improves the F1 score by 1.7%, 13.0%, 11.4%, 8.3%,

13.2%, 8.09%, 6.7% and 7.3%, 21.2%, 19.8%, 13.6%, 11.7%, 18.1%, 15.1%,

13.1% and 9.3%, and 5.5%, 14.2%, 10.3%, 9.7%, 14.8%, 10.5%, 9.1%
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Figure 4: Accuracy comparison vs. threshold in super spreader identification under 2Mb memory and the CAIDA data set.
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Figure 5: Accuracy comparison vs. memory allocation in super spreader identification under 𝑇 = 200 and the CAIDA data set.
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Figure 6: Accuracy comparison vs. threshold in super spreader identification under 2Mb memory and the e-commerce data set.
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Figure 7: Accuracy comparison vs. memory allocation in super spreader identification under 𝑇 = 400 and e-commerce data set.

and 7.2%, compared to AROMA, SpreadSketch and GMF, under the

threshold from 100 to 800, respectively. Next we go to the perfor-

mance in precision and recall. In the second plot of Figure 4, we find

SpreadSketch suffers from a low precision, meaning that there are

many false positives. The reason is that SpreadSketch usually over

estimate the spread of a flow — there are hash collisions among

flows in a single MRB and SpreadSketch uses the estimate produced

by MRB as the spread of the super spreaders, which carries noise

from other flows. This is consistent with the recall results in the

third plot of Figure 4, where the recall of SpreadSketch is almost 1

and there is hardly false negatives. AROMA is based on sampling.

Its spread estimate is unbiased, so its precision and recall are pretty

balanced. AROMA is not as accurate as the proposed solution due

to its low sampling probability. GMF uses vSketch(HLL) [85] to pro-

duce the spread estimate for candidate super spreaders. Although its

estimation is unbiased, it is not as accurate as it subtracts identical

noise for each flow, which is not true in real noise distributions.

The second set of experiments evaluate the performance by vary-

ing the memory allocations to each sketch, from 256Kb to 10Mb,

presented in Figure 5. The threshold𝑇 is set as 200, where there are

146 true super spreaders. All sketches benefit from large memory

but the proposed solution maintains the highest F1 score. Under
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Figure 8: Accuracy performance of SpreadSketch under large
memory allocations.The threshold is set as 400 andweuse the
e-commerce data set. This explains SpreadSketch performs
poorly under 2Mb memory and need more memory.

small memory allocations, e.g., 256 kbits, the proposed solution

still manage to identify super spreaders with 0.8 of F1 score. While

other sketches suffer. For example, SpreadSketch has n F1 score of

below 0.4 and a precision of 0.2, meaning that 4 out of 5 reported

super spreaders by SpreadSketch are non super spreaders.

Accuracy under the e-commerce data set: Now we use a

more challenging data set, which has a denser distribution of flows

in the spread range [200, 800] than the CAIDA data set, as shown

in Tables 3 and 4. This means the solutions are expected to estimate

the spread of super spreaders and non super spreaders (especially

those with close spread to the threshold) accurately in order to

differentiate them. The memory is set as 2Mb. We first present the

accuracy under different threshold 𝑇 , presented in Figure 6, where

we find existing sketch, i.e., AROMA, SpreadSketch and GMF, has a

significant accuracy drop compared to the results under the CAIDA

data set in Figure 4. The proposed solution still achieves a satisfying

performance, ranging from 0.65 to 0.93 under different values of

threshold. In numbers, the proposed solution increases the F1 score

by 43.4%, 35.5%, 42.7%, 36.4%, 39.4%, 28.1% and 37.9%, 40.4%, 188.8%,

440.2%, 971.2%, 1185.0%, 2117.5% and 3134.4%, and 50.2%, 60.5%,

66.3%, 59.4%, 37.8%, 28.0%, 35.8%, compared to AROMA, SpreadS-

ketch and GMF, under the threshold from 200 to 800, respectively.

One may doubt the correctness of implementation of SpreadS-

ketch as its identification accuracy is so low despite that the e-

commerce data set is more challenging: The F1 score is always

below 0.5 and below 0.2 if the threshold 𝑇 ≥ 400. We explain this

counter-intuitive performance by extending the memory range

from [1Mb, 10Mb] to [1Mb, 50Mb]. The results are shown in Figure

8. The threshold is set as 400. Figure 8 shows that the F1 score of

SpreadSketch decreases at first, bottoms at memory allocation of

8Mb and increases afterwards. This is because of two-way factors.

One is the number of buckets to store candidate super spreaders,

and the other is the estimation error. Recall that SpreadSketch has

over-estimation issue: flows may collide in one bucket and deposit

noise to the bucket. SpreadSketh returns the minimum to reduce

the noise. However, the noise level is too large that if the memory

is less than 10Mb, many flows (including all real super spreaders

and many non super spreaders) will reach the threshold and be

reported as super spreaders. Smaller memory will result in fewer

number of buckets, fewer number of candidate super spreaders

and consequently fewer false positives. This can be verified by the

Recall results of always being 1 and increasing precision results

as the memory decreases. When the memory is larger than 10Mb,

noise level is smaller and flows are more accurately measured. As a
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result, the precision results and F1 score keep increasing as memory

increases.

The second set of experiments are conducted by varying the

memory allocations. The threshold is set as 400 for a adequate

number of true super spreaders.We start from 1Mb, a largermemory

than that under the CAIDA data set, to 10Mb.The results are plotted

in Figure 7. The results are consistent with those under the CAIDA

data set and we omit the description here.

5.3 Accuracy under Two Extreme Cases
Case 1: A dominant flow in the data stream. The practical data

set is usually skewed, and will become even more skewed when

there are abnormals. To simulate this case, we insert an artificial

flow with a large spread to the CAIDA data set. Let 𝑥 be the spread

of the inserted flow. We define the ratio as the rate of 𝑥 over the

total number of spread in the data set. We vary the value of the

ratio from 0.1 to 0.9, feed the new data set to all sketches separately

and evaluate their accuracy performance. The metric adopted is the

normalized memory usage to the case of the raw CAIDA data set in

order to get the same accuracy performance. The results are shown

in Figure 9. As the large flow dominates the whole data set more

and more severely, the memory usage needed for keep the accuracy

level unchanged grows faster. The reason is that AROMA is based

on sampling. The large flow’s items will overwhelm the whole data

structure, making the sampling probability for other flows’ item

very small. To maintain the same probability, AROMA needs a lot of

additional memory. SpreadSketch, GMF and the proposed solution

are not affected by the inserted large flow, as any flow, no matter
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Table 5: Recording throughput (million items per second)
comparison, under 2Mb memory and CAIDA data set.

Sketches Ours AROMA SpreadSketch GMF

Throughput 10.6 38.8 14.2 20.5

Table 6: Restoring time (second) for reporting super spread-
ers. The data set used is CAIDA and the memory is 2Mb.

Sketches Ours AROMA SpreadSketch GMF

Time (s) 0.001 0.002 0.026 0.503

small or large can only be hashed to one or 𝑑 (which is usually 4)

plug-ins, rather the whole data structure.

Case 2: Long key for flow label. In some cases, such as finding

hot topics in social networks or keywords on search engine, the

flow label (which is the topic or the keywords) may be a long string,

which needs more bits to be stored. In the section, we vary the flow

label from 16 bits to 192 bits where 32 bits per flow label is the

default setting. We still use the metric of memory usage needed

for maintaning the same accuracy level, normalized to that under

the default setting of 32 bits. The results are shown in Figure 10,

where we find AROMA needs an increasing memroy with a large

slope as the the length of the flow label increases. The reason is that

AROMA’s data structure is an array of slots, where most of the bits

go to the flow label field in each slot. In comparison, SpreadSketch,

GMF, and the proposed solution is scalable for the key length.

5.4 Recording Throughput Comparison
This section evaluates the online item-recording speed, which is

also the maximum streaming speed that the solution can support.

We use the recording throughput as performance metric, defined

as the number of items processed per second. We use the CAIDA

data set and allocate 2Mb memory for each sketch. We want to

stress that the type of data set and memory allocation will not

affect the recording throughput. The results in Table 5 show that

all sketches can process more than 10 million items per second,

which is a very high throughput. Relatively AROAM has the high-

est recording throughput as it only records each item once while

the proposed solution and SpreadSketch records 𝑑 times, and GMF

records twice (once in the filter and once in the vSketch). We ar-

gue that all solutions that are specially design for high-speed data

streams can meet the requirement of practical applications. For the

CAIDA packet stream, a recording throughput of 1 million packets

per second is equivalent to 1Gbps of bandwidth, assuming that the

average packet size is 1Kbits [27]. A >10 Gbps of throughput can

match the line rate of current commodity high-speed networks

[4, 10, 52]. For the e-commerce data stream, a recording throughput

of >10 millions items per second (which is true for the proposed

solution, AROMA, SpreadSketch and GMF) can safely support the

main-stream e-commerce platform— Taobao, one of the biggest

e-commerce platforms in China, receives 0.1 million click logs per

seconds [37].

Table 7: Memory transmitted for remote super spreader
restoring, under 2Mb memory and CAIDA data set.

Sketches Ours AROMA SpreadSketch GMF

Memory 0.11Mb 2Mb 2Mb 2Mb

5.5 Restoring Time Comparison
After item recording, all sketches need to report the super spread-

ers by restoring the super spreaders in the recorded sketches. We

want this restoring process to be as fast as possible and adopt the

restoring time as metric. The results are shown in Table 6, where

the memory is 2Mb, 𝑇=200, and the data set used is CAIDA. Our

solution needs 0.001 second to restore all super spreaders while

the slowest one, i.e., GMF, needs 0.5 second. Longer restoring time

means more computational overhead, which is not desirable when

the computing resource is limited.

5.6 Transmission Bandwidth Consumption
In some networking scenarios, due to limited resources on online

processors, we may expect to restore or store the super spread-

ers remotely on a powerful server, so that 1) the server can store

measurements across multiple measurement windows or among

multiple measurement points and 2) release the computation re-

sources on online processors. In this case, we need to transmit the

measurements through networks. One issue is the bandwidth usage.

We want to minimize that. In Table 7, we list the size of memory

that should be transmitted. The memory allocation is 2Mb. As we

can see, AROMA, SpreadSketch and GMF all need to send the whole

sketch while the proposed solution only needs to send array 𝐾 and

𝑉 , which only take 0.11Mb. In other words, the proposed solution

can reduce 94.5% of the bandwidth usage compared to AROMA,

SpreadSketch and GMF.

5.7 Impact of Number of Flows
We use the CAIDA data set to evaluate the impact of the number

of flows to accuracy, where the number of flows ranges from 50k

to 300k, and the memory is 2Mb. The results in Figure 11 show

that the proposed solution increases the F1 score by [12.5%, 18.1%],

[17.9%, 36.1% ] , [9.5%, 23.1%] compared to AROMA, SpreadSketch,

and GMF, respectively, under different numbers of flows.

6 CONCLUSION
This paper proposes a new sketch design for super spreader iden-

tification. We turn the existing single-flow spread estimators into

non-duplicate samplers, enabling accurate counting of flow spread

with just counters. By employing the effectively exponential-

weakening delay technique, large flows stand out among all flows

with their spread being accurately measured. Trace-driven experi-

ments demonstrate that the proposed solution statistically improv-

ing the super spreader identification accuracy compared to the

existing state-of-the-art. The proposed solution also has the low-

est super spreader restoring time and one order of magnitude less

bandwidth usage if the offline restoring is performed remotely.
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