
Blocker and Matcher Can Mutually Benefit: A Co-Learning
Framework for Low-Resource Entity Resolution

Shiwen Wu
The Hong Kong University of Science

and Technology
swubs@connect.ust.hk

Qiyu Wu
The University of Tokyo

qiyuw@g.ecc.u-tokyo.ac.jp

Honghua Dong
University of Toronto & Vector

Institute
honghuad@cs.toronto.edu

Wen Hua
The Hong Kong Polytechnic

University
wency.hua@polyu.edu.hk

Xiaofang Zhou
The Hong Kong University of Science

and Technology
zxf@ust.hk

ABSTRACT

Entity resolution (ER) approaches typically consist of a blocker and

amatcher. They share the same goal and cooperate in different roles:

the blocker first quickly removes obvious non-matches, and the

matcher subsequently determines whether the remaining pairs refer

to the same real-world entity. Despite the state-of-the-art perfor-

mance achieved by deep learning methods in ER, these techniques

often rely on a large amount of labeled data for training, which can

be challenging or costly to obtain. Thus, there is a need to develop

effective ER systems under low-resource settings. In this work, we

propose an end-to-end iterative Co-learning framework for ER,

aimed at jointly training the blocker and the matcher by leveraging

their cooperative relationship. In particular, we let the blocker and

the matcher share their learned knowledge with each other via

iteratively updated pseudo labels, which broaden the supervision

signals. To mitigate the impact of noise in pseudo labels, we develop

optimization techniques from three aspects: label generation, label

selection and model training. Through extensive experiments on

benchmark datasets, we demonstrate that our proposed framework

outperforms baselines by an average of 9.13-51.55%. Furthermore,

our analysis confirms that our framework achieves mutual benefits

between the blocker and the matcher.

PVLDB Reference Format:

Shiwen Wu, Qiyu Wu, Honghua Dong, Wen Hua, and Xiaofang Zhou.

Blocker and Matcher Can Mutually Benefit: A Co-Learning Framework for

Low-Resource Entity Resolution. PVLDB, 17(3): 292 - 304, 2023.

doi:10.14778/3632093.3632096

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/wusw14/CLER.

1 INTRODUCTION

Entity Resolution (ER) determines whether two data entries refer to

the same real-world entity. This long-standing problem has received

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:10.14778/3632093.3632096

much attention [2, 18, 22, 24, 25, 33, 42]. Because of the increasing

dataset size in practice, an exhaustive pairwise evaluation of all

pairs of entries is almost unaffordable [42]. As a result, most existing

ER systems follow a two-step process consisting of a blocking step

and a matching step [18, 31]. During the blocking phase, a blocker

quickly prunes the entry pairs that are unlikely to match, thereby

greatly reducing the number of candidate pairs [42]. Subsequently, a

matcher serves as a more accurate binary classifier that determines

whether entries are matched [39].

A successful ER system generally requires both the blocker and

the matcher to be effective. The state-of-the-art (SOTA) results are

achieved by deep learning-based (DL-based) methods. DL-based

blockers map each entry into embedding space, and employ the

vector pairing strategy to retrieve potential matches [31]. DL-based

matchers take a pair of entries as input and predict its probability of

being a match [12, 18]. However, DL-based methods always require

a great amount of labeled data for training [15, 33, 38]. The high

human cost in labeling has become a primary bottleneck in adopting

advanced DL-based approaches in real-world applications [38].

In light of this, recent efforts pay attention to low-resource ER

where the annotation budget is limited. One mainstream direc-

tion is to broaden the limited supervision signals by incorporating

additional information [12, 15, 33]. For example, CollaborEM [12]

utilizes the semantic knowledge from pre-trainedmodels for pseudo

labels. DADER [33] explores transferring the knowledge from well-

labeled source ER datasets to target datasets and figures out that

a łclosež source domain is beneficial. However, the information

utilized by these methods is external, while the external informa-

tion with very similar semantics to the target dataset is not always

available. In fact, besides such external information, there is another

type of easily available intrinsic information within an ER system

that can be utilized, i.e., the blocker and the matcher naturally

provide extra information to each other. As shown in Figure 1(a),

the matcher is a fine-grained classifier for entry pairs, and its pre-

cise classification results could calibrate the blocker’s similarity

judgment to be more accurate. On the other hand, the blocker

searches for potential matches by similarity-based pairing in the

entire dataset, which could provide information about the similarity

ranking from a global perspective to the matcher. Inspired by the

Co-training mechanism [1, 3], a straightforward solution is to allow

the blocker and the matcher to learn from each other beyond the

limited annotated data, which is yet underexplored.

292

https://doi.org/10.14778/3632093.3632096
https://github.com/wusw14/CLER
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632096
https://www.acm.org/publications/policies/artifact-review-and-badging-current

BK

MC

D D’

Global

view

Precise

classification

(a)

BK

MC

Candidates

0.5

Scores

Queries

0

1 𝑆𝐵𝐾
1 𝑆𝑎𝑛𝑛𝑜𝑡

0𝑆𝑃𝑆𝐷4𝑀𝐶 𝑆𝑀𝐶
Training

3

Data Annotation𝑆
annot

Label
Annotated

1

𝐵𝐾𝑀𝐶𝑃𝑆𝐷4𝐵𝐾𝑃𝑆𝐷4𝑀𝐶
Pseudo

Labeling

Blocker’s
Matcher’s
For Blocker
For Matcher

2
1

Select

𝑆𝑃𝑆𝐷4𝐵𝐾
D D’

(b)

Figure 1: (a) Illustration of the Co-learning between the blocker and the matcher in terms of information breadth and prediction

accuracy. The blocker learns from the matcher’s precise classification ability while the matcher learns from the blocker’s

global view of the similarity ranking. The gray arrows represent the data flow. (b) The overview of our CLER framework in

one training iteration, containing three steps (1) Data Annotation: The blocker (BK) first produces a candidate set 𝐶 from all

pairs of entities (𝑒, 𝑒′) where 𝑒 ∈ 𝐷 and 𝑒′ ∈ 𝐷′. The matcher (MC) then generates scores for each candidate, which are used to

select informative examples to be annotated. (2) Pseudo-labeling: The blocker and the matcher generate pseudo labels for

𝐶 separately. The generated ones are further processed into two sets feeding the blocker and the matcher, respectively. (3)

Training: Both the annotated data 𝑆𝑎𝑛𝑛𝑜𝑡 and the pseudo-labeled data are utilized for training the blocker and the matcher.

To this end, we propose an end-to-end iterative Co-Learning

framework for low-resource Entity Resolution (called CLER). Our

framework enables iterative updates of the blocker and the matcher

during the training stage, leveraging both annotated data and the

knowledge distilled from each other to enhance the system’s per-

formance, as illustrated in Figure 1(b). To be specific, we let their

knowledge be distilled in the form of pseudo-labeled data, which is a

commonly adopted approach in weakly supervised learning [3, 45].

This can significantly reduce the model’s reliance on limited anno-

tations. However, pseudo labels are inevitably noisy, which could

affect the performance of our CLER model. In this work, we at-

tempt to mitigate the impact of label noise from three aspects: label

generation, label selection, and model training.

(1) How to generate high-quality pseudo labels? We design pseudo-

labeling strategies with confidence awareness for the blocker and

the matcher, respectively. We further leverage the transitivity con-

straint of data entries to improve the quality of the pseudo labels.

(2) How to select pseudo-labeled data from the generated data

for training? As the quality of the pseudo-labels generated by the

blocker and the matcher can differ, we adopt different label selection

strategies for eachmodel. Specifically, the blocker accepts part of the

high-confidence pseudo-labeled data generated by the matcher and

discards the pseudo-labels generated by itself, while the matcher

integrates pseudo-labeled data from both models. This approach

allows the matcher to learn from the blocker and avoid forgetting

what it has already learned.

(3) How to train the models by incorporating the annotated and

pseudo-labeled data? Annotated data is always considered to be

absolutely reliable, while pseudo-labeled data brings noises along

with information. Thereby, we employ a re-weighting strategy to

balance the contribution of the annotated data and pseudo-labeled

data to the training of the blocker and the matcher.

The key contributions of this work are summarized as follows:

• We investigate the potential advantage of utilizing a cooperative

relationship between the blocker and the matcher in the ER

system. Empirical results confirm that both the blocker and the

matcher can benefit from each other. This observation suggests

that the cooperation between the blocker and the matcher should

be taken into account in ER systems.

• We present CLER, a novel end-to-end ER framework for low-

resource settings, which allows the blocker and the matcher to

iteratively learn from each other, in addition to learning from the

annotated data. In order to realize a Co-learning mechanism, we

let their learned knowledge to be distilled in the form of pseudo-

labeled data. Correspondingly, we propose several designs for

better pseudo-label generation and utilization, thus mitigating

the impact of label noise.

• We conduct extensive experiments on the Magellan datasets [16]

and Alaska benchmark [7]. Experimental results demonstrate

that CLER outperforms the previous SOTA by a 9.13-51.55%

improvement on average in all datasets, which empirically shows

the effectiveness and superiority of our framework.

Outline. Section 2 gives a formal definition of low-resource ER and

overviews the relevant background knowledge. Section 3 describes

the overall CLER framework along with our designs to mitigate the

impact of label noise. Section 4 discusses the inference strategy. Our

experimental results are presented in Section 5. We review related

work in Section 6 and conclude in Section 7.

2 PRELIMINARIES

In this section, we first give a formal definition of the low-resource

ER task, and then describe the pre-trained language models (LMs)

used by our blocker and matcher, how a DL-based blocker works

in the ER system, and how to fine-tune the LM as the matcher.

2.1 Problem Setting

The objective of entity resolution (ER) is to identify pairs of data

entries (𝑒, 𝑒′) that refer to the same real-world entity, where 𝑒 and

𝑒′ belong to two collections of data entries 𝐷 and 𝐷′, respectively.

These pairs are commonly referred to as matches [22]. Follow-

ing [15, 18, 31], we assume that the data entries in both 𝐷 and 𝐷′

have identical schema. Each data entry is represented as a set of

293

attribute-value pairs, i.e., 𝑒 = (attr𝑖 , val𝑖)1≤𝑖≤𝑘 , where val𝑖 repre-

sents the corresponding value of attribute attr𝑖 . Since the number

of all pairs |𝐷 | × |𝐷′ | could be enormous, most ER systems adopt the

blocker-matcher workflow. The blocker generates a small candidate

subset of all pairs with high recall, and the matcher classifies them

as matches or non-matches.

This work considers a more practical low-resource setting for

ER problems, where only limited data annotation is allowed. Specif-

ically, we can only choose 𝐵 pairs of data entries to be labeled (as

matches or non-matches), where 𝐵 is the budget. This significantly

challenges the training of the blocker and matcher [15, 33].

Task Definition: Given two collections of data entries 𝐷 and

𝐷′, the task of low-resource entity resolution is to identify those

true matches (𝑒, 𝑒′) under the constraint of 𝐵 annotations.

2.2 Using Pre-trained Language Models (LMs)

Inspired by the superiority of pre-trained LMs in semantic under-

standing, we apply them in both the blocker and the matcher. In

the following, we introduce pre-trained LMs and describe the entry

encoding and the outputs of LMs.

Language models. Recent advanced LMs are typically a stack

of Transformer [34] layers pre-trained over a large corpus using

self-supervised tasks [8, 19, 29]. After pre-training, they demon-

strate excellent contextual extraction and semantic understanding

capabilities, benefiting various downstream tasks. Some recent at-

tempts have already utilized LMs for the ER task, e.g., DITTO [18]

uses LMs for the matcher.

Entry encoding. Following [18, 23], we encode the data entry

into a sequence of tokens that LMs can process. Specifically, for a

data entry 𝑒 = {(attr𝑖 , val𝑖)}1≤𝑖≤𝑘 , we serialize it as follows:

serialize(𝑒) ::= [COL]attr1[VAL]val1 . . . [COL]attr𝑘 [VAL]val𝑘 ,

where [COL] and [VAL] are special tokens indicating the start of

attribute names and values, respectively. Before being processed

by LMs, a special token [CLS] is added to the beginning of the

serialized sequence, i.e., serialize∗ (𝑒) ::= [CLS]serialize(𝑒).

For a pair of entries (𝑒, 𝑒′), we serialize them separately and add

another special token [SEP] to separate them:

serialize∗ (𝑒, 𝑒′) ::= [CLS]serialize(𝑒) [SEP]serialize(𝑒′).

Then the LMs take the serialized entries as a natural language

sentence, and the tokenizer of the pre-trained LMs is applied to

obtain a sequence of input tokens.

Output of LMs. The raw output of pre-trained LMs is a sequence

of contextualized embeddings of the same length as the input tokens.

Following [8, 18, 30], we take the embedding corresponding to the

[CLS] token as the representation of the whole sentence and define

the LM embedding function as below:

𝑓𝐿𝑀 (𝑒) ::= 𝐿𝑀 (serialize∗ (𝑒))[CLS],

𝑓𝐿𝑀 (𝑒, 𝑒
′) ::= 𝐿𝑀 (serialize∗ (𝑒, 𝑒′))[CLS] .

2.3 Blocker: Entry Embedding Learning and
Similarity-based Pairing

The key idea of the DL-based blocker is to convert each entry into

an embedding vector, then quickly retrieve the entry pairs with a

high similarity score between their vectors [31]. To be specific, the

Algorithm 1: KNN-Blocking(M𝐵𝐾 , 𝐾, 𝐷, 𝐷
′)

Input: a blockerM𝐵𝐾 ; 𝐾 , the number of the most similar

entries; two collections of data entries, 𝐷 and 𝐷′

Output: A set of candidate pairs 𝐶

1 Initialize: 𝐶 ← 𝜙

2 {h𝑖 } ← {𝑓𝐵𝐾 (𝑒𝑖) | 𝑒𝑖 ∈ 𝐷}

3 {h′𝑖 } ← {𝑓𝐵𝐾 (𝑒
′
𝑖) | 𝑒

′
𝑖 ∈ 𝐷

′}

4 for each entry 𝑒 in 𝐷 do

5 𝑁𝑒 ← K-Most-Similar𝑒′∈𝐷 ′ (h𝑒 , {h
′
𝑖 }, 𝐷

′, 𝐾)

6 𝐶 ← 𝐶 ∪ {(𝑒, 𝑒′) | 𝑒′ ∈ 𝑁𝑒 }

7 return 𝐶

blocker takes two sets of entries 𝐷 and 𝐷′ as inputs and maps them

into corresponding sets of entry embeddings:

{h𝑖 } = {𝑓𝐵𝐾 (𝑒𝑖) | 𝑒𝑖 ∈ 𝐷}, {h
′
𝑖 } = {𝑓𝐵𝐾 (𝑒

′
𝑖) | 𝑒

′
𝑖 ∈ 𝐷

′},

where 𝑓𝐵𝐾 (·) is the embedding mapping function of the blocker.

The optimization goal of a DL-based blocker is to learn a good

mapping function 𝑓𝐵𝐾 (·), which is one of the focuses of this work

(refer to Section 3.4.1).

Based on the computed embeddings, a similarity-based pairing

strategy [31, 42] is leveraged to retrieve the candidate pairs of

entries. Following [31], we adopt a cosine function to measure the

similarity between two entries (𝑒, 𝑒′), i.e.,

sim(𝑒, 𝑒′) = cos(𝑓𝐵𝐾 (𝑒), 𝑓𝐵𝐾 (𝑒
′)) = cos(h, h′) =

h𝑇 h′

∥h∥∥h′∥
,

where a larger value means two entries are more similar. One com-

monly adopted approach for candidate pair generation is the 𝐾-

nearest neighboring (KNN) method, i.e., to keep 𝐾 most similar

entries in 𝐷′ for each entry 𝑒 ∈ 𝐷 , as outlined in Algorithm 1.

Consequently, the size of the candidates 𝐶 is |𝐷 | × 𝐾 in total.

2.4 Matcher: Pairwise Binary Classifier by
Fine-tuning LMs

In ER systems, the matcher plays as a pairwise binary classifier.

Specifically, the matcher takes a pair of entries (𝑒, 𝑒′) as the input,

and outputs the probability of the pair of entries being a match:

𝑦 = 𝑔𝑚𝑀𝐶 (𝑒, 𝑒
′),

where𝑔𝑀𝐶 is a binary classifier for a pair of entries, and its predicted

probability of being a match is taken as the score of the entry pair,

denoted as 𝑔𝑚
𝑀𝐶
(·).

In this work, we fine-tune a pre-trained model RoBERTa, to

realize the function 𝑔𝑀𝐶 (·). Please refer to the original work for

implementation details [19]. Following previous works [8, 18], we

append a one-layer MLP head (linear layer) along with softmax

to the embedding of the pairwise entries. During the fine-tuning

stage, all the parameters are updated jointly based on the labeled

data. We define the function for matching as:

𝑔𝑀𝐶 (𝑒, 𝑒
′) ::= softmax(MLP(𝑓𝐿𝑀 (𝑒, 𝑒

′))),

where 𝑒 and 𝑒′ are a pair of entries to be tested, respectively. By

doing so, we are able to implement the matcher by fine-tuning the

pairwise entry embedder and the MLP head over labeled data.

294

Algorithm 2: The CLER Framework

Input: Two collections of data entries, 𝐷 and 𝐷′; training

budget 𝐵; budget for each iteration 𝑏; validation set

𝑆𝑣𝑎𝑙𝑖𝑑 ; 𝐾 , the number of the most similar entries; 𝑝 ,

percentile.

Output: The blockerM𝐵𝐾 , and the matcherM𝑀𝐶 .

1 Initialization: Initialize the blockerM𝐵𝐾 and matcher

M𝑀𝐶 ; annotated data 𝑆𝑎𝑛𝑛𝑜𝑡 ← 𝜙

2 # Prepration

3 𝐶 ← KNN-Blocking(M𝐵𝐾 , 𝐾, 𝐷, 𝐷
′)

4 𝑆𝐵𝐾 ← PseudoLabelByBlocker(M𝐵𝐾 ,𝐶, 𝑆𝑣𝑎𝑙𝑖𝑑 , 𝑝)

5 M𝑀𝐶 ← UpdateMatcher(M𝑀𝐶 , 𝑆𝐵𝐾)

6 while 𝐵 > 0 do

7 # Annotate the samples

8 𝑆𝑎𝑛𝑛𝑜𝑡 ← Annotation(M𝑀𝐶 ,𝐶, 𝑏, 𝑆𝑎𝑛𝑛𝑜𝑡)

9 𝐵 ← 𝐵 − 𝑏

10 # Update the blocker

11 𝑆𝑀𝐶 ← PseudoLabelByMatcher(M𝑀𝐶 ,𝐶, 𝑆𝑣𝑎𝑙𝑖𝑑)

12 𝑆𝑃𝑆𝐷4𝐵𝐾 ← SelectPseudoLabelForBK(𝑆𝑀𝐶)

13 M𝐵𝐾 ← UpdateBlocker(M𝐵𝐾 , 𝑆𝑎𝑛𝑛𝑜𝑡 , 𝑆𝑃𝑆𝐷4𝐵𝐾)

14 𝐶 ← KNN-Blocking(M𝐵𝐾 , 𝐾, 𝐷, 𝐷
′)

15 # Update the matcher

16 𝑆𝐵𝐾 ← PseudoLabelByBlocker(M𝐵𝐾 ,𝐶, 𝑆𝑣𝑎𝑙𝑖𝑑 , 𝑝)

17 𝑆𝑀𝐶 ← PseudoLabelByMatcher(M𝑀𝐶 ,𝐶, 𝑆𝑣𝑎𝑙𝑖𝑑)

18 𝑆𝑃𝑆𝐷4𝑀𝐶 ← SelectPseudoLabelForMC(𝑆𝐵𝐾 , 𝑆𝑀𝐶)

19 M𝑀𝐶 ← UpdateMatcher(M𝑀𝐶 , 𝑆𝑎𝑛𝑛𝑜𝑡 , 𝑆𝑃𝑆𝐷4𝑀𝐶)

3 THE CLER FRAMEWORK

In this section, we first give an overview of our CLER framework. To

realize Co-learning between the twomodels, we let their knowledge

be distilled into pseudo-labeled data and propose corresponding de-

signs to address the impact of label noise. Specifically, we introduce

our pseudo-label generation strategies in Section 3.2, pseudo-label

selection strategies in Section 3.3, and the utilization of the pseudo-

labeled data and annotated data for training in Section 3.4.

3.1 Overview of CLER

Under the constraint of a limited annotation budget, we propose an

end-to-end iterative Co-Learning framework for Entity Resolution

tasks (called CLER, illustrated in Figure 1(b)). Our framework ex-

ploits the cooperative relationship between the blocker and the

matcher to better utilize the annotation budget. In addition to learn-

ing from the annotated data, we devise a Co-learning mechanism

that allows the blocker and the matcher to learn from each other via

iteratively updated pseudo-labeled data. We summarize the over-

all pipeline in Algorithm 2 and introduce the main steps in the

following.

Prepration stage. In this stage, we adopt pre-trained models

to warm up the blocker and the matcher. In terms of the blocker,

we employ the stsb-roberta-base1 version of SBERT [30], as the

initial blocker, whose efficacy has been demonstrated in previous ER

literature [12, 18]. The blocker generates candidate pairs, denoted

1https://huggingface.co/sentence-transformers/stsb-roberta-base

Algorithm 3: PseudoLabelByBlocker(M𝐵𝐾 , 𝐶 , 𝑆𝑣𝑎𝑙𝑖𝑑 , 𝑝)

Input: a blockerM𝐵𝐾 ; the candidates 𝐶; validation set

𝑆𝑣𝑎𝑙𝑖𝑑 ; 𝑝
𝑡ℎ percentile

Output: A set of labeled data 𝑆𝐵𝐾
1 Initialize: 𝑆𝐵𝐾 ← 𝜙 , diff← 𝜙

2 for each entry 𝑒 in 𝐷 do

3 diff← diff ∪ {min𝑒′ {sim(𝑒, 𝑒
′) | (𝑒, 𝑒′, 1) ∈

𝑆𝑣𝑎𝑙𝑖𝑑 } −max𝑒′ {sim(𝑒, 𝑒
′) | (𝑒, 𝑒′, 0) ∈ 𝑆𝑣𝑎𝑙𝑖𝑑 }}

4 𝑡diff ← Percentile({𝑑 | 𝑑 > 0, 𝑑 ∈ diff}, 𝑝)

5 for each candidate pair (𝑒, 𝑒′) in 𝐶 do

6 if 𝑒′ = top(𝑒) ∧ 𝑒 = top(𝑒′) then

7 𝑆𝐵𝐾 ← 𝑆𝐵𝐾 ∪ (𝑒, 𝑒
′, 1)

8 else

9 if sim(𝑒, top(𝑒)) − sim(𝑒, 𝑒′) > 𝑡diff and

𝑒 = top(top(𝑒)) then

10 𝑆𝐵𝐾 ← 𝑆𝐵𝐾 ∪ (𝑒, 𝑒
′, 0)

11 return 𝑆𝐵𝐾

as 𝐶 , via similarity-based pairing, as introduced in Section 2.3. For

the matcher, we fine-tune a pre-trained LM, roberta-base2, using

the method introduced in Section 2.4. We use the pseudo labels

generated by the initial blocker to warm up the matcher. We provide

details about the pseudo-label generation in Section 3.2.

Iteration stage. For the iterative training stage, we have a total

budget of 𝐵 for annotations, and allocate a budget of 𝑏 to each

iteration. In each iteration, the matcher selects 𝑏 pairs of entries

from candidates 𝐶 for annotation. To select informative samples,

we adopt an uncertainty-based active learning strategy [15, 40] that

selects examples from the potential positive and negative samples

with high entropy scores. We update the accumulated annotated

set 𝑆𝑎𝑛𝑛𝑜𝑡 after each round of annotation. Afterwards, we first

train the blocker and then train the matcher. For each model, we

first generate up-to-date pseudo-labeled data (𝑆𝑀𝐶 and 𝑆𝐵𝐾), and

then select data used for training from the generated ones. The

model is trained with the annotated data 𝑆𝑎𝑛𝑛𝑜𝑡 and the selected

pseudo-labeled data 𝑆𝑃𝑆𝐷4𝐵𝐾 or 𝑆𝑃𝑆𝐷4𝑀𝐶 . The candidate set 𝐶 is

renewed if the blocker is updated. We discuss the pseudo-labeled

data selection in Section 3.3 and the training of the models utilizing

both pseudo-labeled data and annotated data in Section 3.4. The

iteration repeats until the total budget of 𝐵 is exhausted.

3.2 Pseudo-label Generation

In the following, we first introduce the pseudo-labeling strategies

used by the blocker (Section 3.2.1) and the matcher models (Sec-

tion 3.2.2). We then describe how we leverage the transitivity prop-

erty of ER to improve the quality of pseudo labels (Section 3.2.3).

3.2.1 Pseudo labeling by the blocker. Following previous works [5,

12], the blocker labels the candidate pairs according to the similarity

scores between the entries. We use the same similarity function as

in Section 2.3 and define most similar entry as:

top(𝑒) = argmax
𝑒∈𝐷 ′

sim(𝑒, 𝑒′), top(𝑒′) = argmax
𝑒∈𝐷

sim(𝑒, 𝑒′). (1)

2https://huggingface.co/roberta-base

295

The labeling process is depicted in Algorithm 3, where each

candidate pair (𝑒, 𝑒′) goes through the following three steps:

(1) If 𝑒′ = top(𝑒) and 𝑒 = top(𝑒′), i.e., they are mutually most

similar to each other, the blocker labels them as matches [5].

(2) Else if 𝑒 can find its mutually most similar entry and the differ-

ence between the similarity of sim(𝑒, 𝑒′) and that of the most

similar pair sim(𝑒, top(𝑒)) is greater than a threshold 𝑡diff, the

blocker labels the pair as a non-match.

(3) In other cases, the blocker would ignore this pair as it is hard

to decide whether they are matched.

We denote the generated pseudo-labeled data as 𝑆𝐵𝐾 . Considering

that the distribution of similarity scores might change as training

progresses, we let 𝑡diff auto-adapt instead of being a static scalar. In

this work, 𝑡diff is the 𝑝𝑡ℎ percentile of the gap between the similarity

scores of matches and non-matches in the validation set. Note that

improving the quality of the blocker’s entry embeddings through

training would benefit the quality of the generated pseudo labels.

3.2.2 Pseudo labeling by thematcher. For each candidate pair (𝑒, 𝑒′),

thematcher first predicts its probability of beingmatches𝑔𝑚
𝑀𝐶
(𝑒, 𝑒′).

Then the most straightforward way is to regard the pairs of entries

whose probabilities are above 0.5 as matches while the remaining

ones as non-matches.

𝑆+ = {(𝑒, 𝑒
′, 1) | (𝑒, 𝑒′) ∈ 𝐶, 0.5 < 𝑔𝑚𝑀𝐶 (𝑒, 𝑒

′) ≤ 1.0},

𝑆− = {(𝑒, 𝑒′, 0) | (𝑒, 𝑒′) ∈ 𝐶, 0.0 ≤ 𝑔𝑚𝑀𝐶 (𝑒, 𝑒
′) ≤ 0.5}.

(2)

However, such a pseudo-labeling strategy will bring too many noisy

labels, especially in the early stages of training. Instead of roughly

using 0.5 as the cut-off point, we differentiate the reliability of the

pseudo labels based on their predicted probabilities by introducing

two thresholds 𝑡+ and 𝑡− that depend on the validation set. Specifi-

cally, we set 𝑡+ as the median predicted score of the matches in the

validation set and 𝑡− similarly:

𝑡+ = max(0.5,median({𝑔𝑚𝑀𝐶 (𝑒, 𝑒
′) | (𝑒, 𝑒′, 1) ∈ 𝐷𝑣𝑎𝑙𝑖𝑑 })),

𝑡− = min(0.5,median({𝑔𝑚𝑀𝐶 (𝑒, 𝑒
′) | (𝑒, 𝑒′, 0) ∈ 𝐷𝑣𝑎𝑙𝑖𝑑 })) .

(3)

In this way, the thresholds auto-adapt as the training progresses.

Then we select the high-confidence (ℎ) pairs according to their

predicted probabilities as follows:

𝑆ℎ+ = {(𝑒, 𝑒
′, 1) | (𝑒, 𝑒′) ∈ 𝐶, 𝑡+ ≤ 𝑔

𝑚
𝑀𝐶 (𝑒, 𝑒

′) ≤ 1.0},

𝑆ℎ− = {(𝑒, 𝑒′, 0) | (𝑒, 𝑒′) ∈ 𝐶, 0.0 ≤ 𝑔𝑚𝑀𝐶 (𝑒, 𝑒
′) ≤ 𝑡−},

(4)

and merge the high-confidence ones as 𝑆ℎ
𝑀𝐶

and all pseudo-labeled

ones as 𝑆𝑀𝐶 . Note that 𝑆
ℎ
𝑀𝐶

is a subset of 𝑆𝑀𝐶 and can be easily

derived from 𝑆𝑀𝐶 with proper implementation.

𝑆ℎ𝑀𝐶 = 𝑆ℎ+ ∪ 𝑆
ℎ
−, 𝑆𝑀𝐶 = 𝑆+ ∪ 𝑆− . (5)

3.2.3 Transitivity property. The transitivity property for ER in a

two-database setting states that if entry 𝑒𝑖 ∈ 𝐷 matches 𝑒′𝑖 ∈ 𝐷
′,

𝑒 𝑗 ∈ 𝐷 matches 𝑒′𝑗 ∈ 𝐷′, and 𝑒𝑖 ∈ 𝐷 matches 𝑒′𝑗 ∈ 𝐷′, we

must conclude that 𝑒 𝑗 also matches 𝑒′𝑖 [38]. A set that represents

matches in ER should satisfy the transitivity property. The pseudo-

labeling strategy of 𝑆𝐵𝐾 only labels mutually most similar pairs to

be matches, ensuring that each entry appears at most once in the

matches, making it naturally satisfying the transitivity property.

Algorithm 4: Transitivity Checking

Input: 𝐷 and 𝐷′; The 𝑆 containing matches to be checked.

Output: The 𝑆∗ containing matches follow the transitivity.

1 Initialize: 𝑆∗ ← 𝜙

2 for each entry 𝑒 in 𝐷 do

3 matches𝑒 ← {𝑒
′ | (𝑒, 𝑒′, 1) ∈ 𝑆}

4 for each entry 𝑒′ in 𝐷′ do

5 matches𝑒′ ← {𝑒 | (𝑒, 𝑒
′, 1) ∈ 𝑆}

6 for each entry 𝑒 in 𝐷 do

7 𝑢𝑒 ←
⋃
𝑒′∈matches𝑒 matches𝑒′

8 𝑣𝑒 ←
⋂
𝑒∈𝑢 matches𝑒

9 𝑆∗ ← 𝑆∗ ∪ {(𝑒, 𝑒′, 1) |𝑒′ ∈ 𝑣𝑒 }

10 return 𝑆∗

For other sets of matches, we devise a transitivity-checking algo-

rithm depicted in Algorithm 4 to ensure that the matches follow

the transitivity property.

Theorem 1. The returned set of matches (𝑆∗) satisfies the transitiv-

ity property if the intermediate value 𝒗 satisfies 𝑣𝑥 = 𝑣𝑦 or 𝑣𝑥∩𝑣𝑦 = 𝜙

for all 𝑥,𝑦 ∈ 𝐷 .

Proof. We build a bipartite graph where edges are the matches

in 𝑆∗. Two nodes 𝑥,𝑦 ∈ 𝐷 are one-step connected if 𝑣𝑥 ∩ 𝑣𝑦 ≠ 𝜙 ,

which means 𝑣𝑥 = 𝑣𝑦 . Therefore, two nodes 𝑥,𝑦 ∈ 𝐷 are connected

if and only if 𝑣𝑥 = 𝑣𝑦 . Then for each connected component, all

𝑥 ∈ 𝐷 in this connected component have the same value of 𝑣 ,

forming a fully connected bipartite sub-graph that trivially satisfies

the transitivity property. □

Theorem 2. The intermediate value 𝒗 in the algorithm satisfies

𝑣𝑥 = 𝑣𝑦 or 𝑣𝑥 ∩ 𝑣𝑦 = 𝜙 for all 𝑥,𝑦 ∈ 𝐷 .

Proof. Let 𝑥,𝑦 ∈ 𝐷 be two entries. (1) First consider the case

matches𝑥 ∩ matches𝑦 = 𝜙 , which indicates 𝑣𝑥 ∩ 𝑣𝑦 = 𝜙 as 𝑣𝑥 ⊆

matches𝑥 and 𝑣𝑦 ⊆ matches𝑦 . (2) Otherwise, the intersection is

not empty, which means 𝑦 ∈ 𝑢𝑥 and 𝑥 ∈ 𝑢𝑦 . (2a) When 𝑢𝑦 = 𝑢𝑥 ,

we can conclude 𝑣𝑦 = 𝑣𝑥 as 𝑣 is computed based on 𝑢. (2b) We

then consider the case 𝑢𝑥 \𝑢𝑦 ≠ 𝜙 , which means ∃𝑒 ∈ 𝑢𝑥 such that

matches𝑒 ∩matches𝑦 = 𝜙 . As 𝑦 ∈ 𝑢𝑥 and 𝑒 ∈ 𝑢𝑥 , we conclude that

𝑣𝑥 = 𝜙 . (2c) The case 𝑢𝑦 \ 𝑢𝑥 ≠ 𝜙 is similar, and we can conclude

that 𝑣𝑦 = 𝜙 . □

We apply this algorithm on the matches of 𝑆ℎ
𝑀𝐶

and get 𝑆ℎ∗
𝑀𝐶

that satisfies the transitivity property, that is

𝑆ℎ∗𝑀𝐶 = 𝑆ℎ∗+ ∪ 𝑆
ℎ
− = TransitivityChecking(𝑆ℎ+) ∪ 𝑆

ℎ
− .

3.3 Pseudo-label Selection

Simply feeding pseudo-labeled data generated by the blocker (𝑆𝐵𝐾)

and the matcher (𝑆𝑀𝐶) to each other might mislead the models due

to the noises. Instead, We introduce additional steps to select their

training data from generated pseudo-labeled data based on the role

and functionality of the blocker and the matcher.

296

Recall that the blocker retrieves potential matches at a coarse

level while the matcher distinguishes the true matches more pre-

cisely in the ER system. Hence, the matcher tends to be more re-

liable than the blocker. In light of this, we let the blocker trust

the high-confidence pseudo-labeled data 𝑆ℎ∗
𝑀𝐶

generated by the

matcher. Since we adopt contrastive learning methods to train the

blocker, where only one positive pair is required for each entry (see

Section 3.4), we select the highest confidence positive pair in 𝑆ℎ∗
𝑀𝐶

when there are multiple positive pairs for one entry. We take entry

𝑒 ∈ 𝐷 as an example and 𝑒′ ∈ 𝐷′ is similar. Let

𝑒′∗ = argmax
𝑒′
{sim(𝑒, 𝑒′) | (𝑒, 𝑒′, 1) ∈ 𝑆ℎ∗𝑀𝐶 }. (6)

We only preserve (𝑒, 𝑒′, 1) when there are multiple matches for 𝑒 .

We denote the selected pseudo-labeled data as 𝑆𝑃𝑆𝐷4𝐵𝐾 .

As for the opposite direction, the matcher utilizes its whole

pseudo-labeled data 𝑆𝑀𝐶 to check the blocker’ pseudo-labeled data

𝑆𝐵𝐾 . That is, if the label of (𝑒, 𝑒′) in 𝑆𝐵𝐾 is consistent with the

label of (𝑒, 𝑒′) in 𝑆𝑀𝐶 , the matcher accepts this pseudo-labeled data.

Consequently, the matcher will increase the confidence (predicted

score) of this pair after training. We define

𝑆𝐵𝐾𝑃𝑆𝐷4𝑀𝐶 = {(𝑒, 𝑒′, 𝑦) | 𝑦 ∈ {0, 1}, (𝑒, 𝑒′, 𝑦) ∈ 𝑆𝐵𝐾 , (𝑒, 𝑒
′, 𝑦) ∈ 𝑆𝑀𝐶 }.

(7)

Note that the transitivity property is satisfied for 𝑆𝐵𝐾
𝑃𝑆𝐷4𝑀𝐶

as each

entry still appears at most once in the matches.

Beyond that, the matcher also adopts part of the self-generated

high-confidence pseudo-labeled data to avoid forgetting what it has

already learned. Specifically, the matcher keeps the high-confidence

pairs that do not exist in the blocker’s pseudo-labeled data,

𝑆self𝑃𝑆𝐷4𝑀𝐶 ={(𝑒, 𝑒′, 𝑦) | 𝑦 ∈ {0, 1}, (𝑒, 𝑒′, 𝑦) ∈ 𝑆ℎ∗𝑀𝐶 ,

(𝑒, 𝑒′, 𝑦) ∉ 𝑆𝐵𝐾 , (𝑒, 𝑒
′, 1 − 𝑦) ∉ 𝑆𝐵𝐾 }.

(8)

Formally, the set of pseudo-labeled data for training the matcher

is 𝑆𝑃𝑆𝐷4𝑀𝐶 = 𝑆𝐵𝐾
𝑃𝑆𝐷4𝑀𝐶

∪ 𝑆self
𝑃𝑆𝐷4𝑀𝐶

. Overall, the matcher learns

from itself and the partial knowledge provided by the blocker.

3.4 Training

Given the annotated and pseudo-labeled data, we then introduce

how our blocker and matcher are updated by learning from these

two sources of labeled data3 in the following.

3.4.1 Training of Blocker. As discussed in Section 2.3, the opti-

mization goal of a DL-based blocker is to learn a good mapping

function 𝑓𝐵𝐾 (·) to convert entries into semantic-preserving vectors.

Recall that a data entry is represented as a set of attribute-value

pair 𝑒 = (attr𝑖 , val𝑖)1≤𝑖≤𝑘 . After serializing the entry into a series

of tokens, learning entry embedding is equivalent to learning sen-

tence embedding. In light of this, we leverage contrastive learning

to train the blocker since recent studies have demonstrated the

advantage of contrastive learning of sentence embeddings [11].

One critical issue is how to construct positive pairs to train the

blocker via contrastive learning. The common approach for positive

pair construction is to apply a data augmentation module to trans-

form the original text into two correlated views. The key point for

3For simplicity, we refer to both the annotated data and the pseudo-labeled data as
labeled data without special illustrations.

data augmentation is to ensure that the augmented views share sim-

ilar semantics. Considering input data characteristics in ER tasks,

we adopt the following three entry transformation operations.

(1) Token shuffle.We randomly choose one attribute attr𝑖 and shuffle

the tokens of the corresponding value val𝑖 . The rationale is that the

semantics in attribute values does not always depend strictly on

the order of the tokens.

(2) Column shuffle. We shuffle the attribute-value pairs: 𝑒aug =

(attr𝑟𝑖 , val𝑟𝑖), where 𝑟 is a random permutation. It is evident that

the permuted sequence has the same semantics as the original one.

(3) Token deletion. In general, the deletion of non-keywords would

not change the semantics. We randomly delete the tokens in {val𝑖 }

while ensuring that the deletion rate is less than 20% to reduce the

likelihood of keyword deletion.

In addition to the augmented views, we utilize the matches in

the labeled data to construct positive pairs. Specifically, if an en-

try 𝑒 can find its matched entry 𝑒match in the labeled data, we take

(𝑒, 𝑒match) as a positive pair. Otherwise, we use augmentation meth-

ods to transform the data entry 𝑒 into a correlated view 𝑒aug and

regard (𝑒, 𝑒aug) as a positive pair. The matches in the labeled data

(𝑒, 𝑒match) can be considered as harder positive samples compared

to the augmented ones (𝑒, 𝑒aug), which facilitates entry represen-

tation learning. For easy illustration, we use pos(𝑒) to denote the

corresponding paired entry of 𝑒 (constructed from labeled data or

augmentation).

It is worth noting that pos(𝑒) comes from three sources, each

with different reliability. Thereby, we use a weighting factor𝑤 to

differentiate their contribution to the gradient updates,

𝑤 =




𝑤𝑎𝑛𝑛𝑜𝑡 , (𝑒, pos(𝑒), 1) ∈ 𝑆𝑎𝑛𝑛𝑜𝑡

𝑤𝑎𝑢𝑔, pos(𝑒) from augmentation

𝑤𝑝𝑠𝑑 , (𝑒, pos(𝑒), 1) ∈ 𝑆𝑃𝑆𝐷4𝐵𝐾

(9)

we set𝑤𝑎𝑛𝑛𝑜𝑡 = 2.0,𝑤𝑎𝑢𝑔 = 𝑤𝑝𝑠𝑑 = 1.0 in the experiments.

Afterward, the blocker converts the two entries of the positive

pair (𝑒, pos(𝑒)) into entry embeddings, i.e.,

h = 𝑓𝐵𝐾 (𝑒), h̃ = 𝑓𝐵𝐾 (𝑝𝑜𝑠 (𝑒)) . (10)

In this work, we use the same network architecture as SBERT [30] to

realize the function 𝑓𝐵𝐾 (·) and initialize it with pre-trained weights.

Then, a small network projection head is leveraged to map the

representations into the space where contrastive loss is applied [6],

z = Proj(h), z̃ = Proj(h̃). (11)

Here, we adopt one-layer MLP to realize the function Proj(·), fol-

lowing [11]. After the training is completed, the projection head is

thrown away.

During the training stage, we sample batches 𝐸 ⊆ 𝐷 ∪ 𝐷′ and

optimize the parameters of the blocker with respect to the following

contrastive loss:

𝐿𝐵𝐾 = −Σ𝑒𝑖 ∈𝐸𝑤𝑖 log
exp(cos(zi, z̃i)/𝜏)

Σ𝑒 𝑗 ∈𝐸 exp(cos(zi, zj)/𝜏)
, (12)

where zi is the projected representation of 𝑒𝑖 ,𝑤𝑖 is the weighting

factor differentiating the contribution of different sources of posi-

tive pairs, the entries in the same batch are regarded as negative

examples, and 𝜏 is the temperature. We set 𝜏 as 0.05 in practice. In

297

this way, contrastive learning enables us to pull semantically close

samples together and push those non-similar ones apart.

3.4.2 Training of Matcher. As discussed in Section 2.4, the matcher

is a pairwise binary classifier by fine-tuning LMs. To update the

parameters of the matcher, we combine both the annotated data

𝑆𝑎𝑛𝑛𝑜𝑡 and pseudo-labeled data 𝑆𝑃𝑆𝐷4𝑀𝐶 . In general, the annotated

data is of higher quality than the pseudo-labeled data since the

latter contains noisy labels. Therefore, it would be beneficial to

distinguish the importance of these two sources of labeled data,

which is a critical research problem in the field of weakly-supervised

learning [45]. Here, we adopt a simple re-weighting strategy that

controls the contribution of the pseudo-labeled data to the gradients

compared to the annotated data. Overall, the parameters of the

matcher are learned via the following cross-entropy loss:

𝐿𝑀𝐶 = − Σ (𝑒,𝑒′,𝑦) ∈𝑆𝑎𝑛𝑛𝑜𝑡 (𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦))

−𝑤𝑀𝐶Σ (𝑒,𝑒′,𝑦) ∈𝑆𝑃𝑆𝐷4𝑀𝐶
(𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦)),

(13)

where 𝑦 = 𝑔𝑚
𝑀𝐶
(𝑒, 𝑒′) is the probability of (𝑒, 𝑒′) being a match

estimated by the matcher,𝑤𝑀𝐶 ∈ [0, 1] is a hyper-parameter con-

trolling the influence of the pseudo-labeled data. When𝑤𝑀𝐶 = 1,

two sources of labeled data are treated equally; when𝑤𝑀𝐶 = 0, the

pseudo-labeled data is ignored. In this work, we set𝑤𝑀𝐶 to be:

𝑤𝑀𝐶 = min

(
|𝑆𝑎𝑛𝑛𝑜𝑡 |

|𝑆𝑃𝑆𝐷4𝑀𝐶 |
, 1

)
. (14)

In this way, we balance the overall contribution of all the annotated

data and the overall contribution of all the pseudo-labeled data. Note

that we treat all the pseudo-labeled data equally. Differentiating the

contribution of each pseudo-labeled data based on its uncertainty

might further boost the performance, which is beyond the scope of

this work.

4 INFERENCE

In this section, we discuss how to conduct inference after the train-

ing is completed.

One typical solution is a two-step process, i.e., using the blocker

to retrieve the potential matches at first, then using the matcher

to predict whether the pair of entries is a match. For instance, the

blocker can either retrieve pairs where the similarity score exceeds

a threshold (e.g., 0.7) or keep 𝐾 nearest neighbors for each entry (as

outlined in Algorithm 1) [31]. However, these blocking strategies

require a pre-defined threshold or 𝐾 , of which the optimal value is

always different for different datasets (as observed in Figure 2).

To this end, we propose a dynamic nearest neighboring blocking

strategy to retrieve candidates with the assistance of the matcher,

as summarized in Algorithm 5. At each step, the blocker retrieves

𝑘 most similar entries for each entry 𝑒 ∈ 𝐷 , and sorts them by

similarity score from highest to lowest. Then, the matcher makes a

prediction on 𝑘 pairs. If at least one of the recent 𝑘 pairs is predicted

as a match or the lowest similarity score is larger than a threshold

𝑡𝐵𝐾 , letting the blocker retrieve the next 𝑘 most similar entries;

otherwise, the process finishes. Here, 𝑡𝐵𝐾 is the determined by the

statistic of validation set, i.e.,

𝑡BK = Mean(𝑠𝑖𝑚𝑝𝑜𝑠) − 𝛼 Std(𝑠𝑖𝑚𝑝𝑜𝑠),

𝑠𝑖𝑚𝑝𝑜𝑠 = {sim(𝑒, 𝑒
′) | (𝑒, 𝑒′, 1) ∈ 𝑆𝑣𝑎𝑙𝑖𝑑 },

(15)

Algorithm 5: Inference(M𝐵𝐾 ,M𝑀𝐶 , 𝐷 , 𝐷
′, 𝑆𝑣𝑎𝑙𝑖𝑑 , 𝑘)

Input: a blockerM𝐵𝐾 ; a matcherM𝑀𝐶 ; two collections of

data entries, 𝐷 and 𝐷′; validation set 𝑆𝑣𝑎𝑙𝑖𝑑 ; 𝑘 ,

number of retrieved entries at each step

Output: A set of predicted matches 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡
1 Initialize: 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← 𝜙

2 {h𝑖 } ← {𝑓𝐵𝐾 (𝑒𝑖) | 𝑒𝑖 ∈ 𝐷}

3 {h′𝑖 } ← {𝑓𝐵𝐾 (𝑒
′
𝑖) | 𝑒

′
𝑖 ∈ 𝐷

′}

4 𝑠𝑖𝑚𝑝𝑜𝑠 ← {sim(𝑒, 𝑒
′) | (𝑒, 𝑒′, 1) ∈ 𝑆𝑣𝑎𝑙𝑖𝑑 }

5 𝑡BK ← Mean(𝑠𝑖𝑚𝑝𝑜𝑠) − Std(𝑠𝑖𝑚𝑝𝑜𝑠)

6 for each entry 𝑒 ∈ 𝐷 do

7 𝐾 ← 0; 𝑁𝑙𝑎𝑠𝑡 ← 𝜙 ; 𝑆𝑒 ← 𝜙

8 while True do

9 𝐾 ← 𝐾 + 𝑘

10 𝑁𝑒 ← K-Most-Similar𝑒′∈𝐷 ′ (h𝑒 , {h
′
𝑖 }, 𝐷

′, 𝐾)

11 𝐶𝑐𝑢𝑟 ← {(𝑒, 𝑒
′) | 𝑒′ ∈ 𝑁𝑒 \ 𝑁𝑙𝑎𝑠𝑡 }

12 𝑆𝑐𝑢𝑟 ← Predict(M𝑀𝐶 ,𝐶𝑐𝑢𝑟)

13 𝑆𝑒 ← 𝑆𝑒 ∪ 𝑆𝑐𝑢𝑟

14 if (matches in 𝑆𝑒 and no matches in 𝑆𝑐𝑢𝑟) or (no matches in

𝑆𝑒 and min𝑒′ {sim(𝑒, 𝑒
′) | 𝑒′ ∈ 𝑁𝑒 } < 𝑡𝐵𝐾) then

15 break

16 else

17 𝑁𝑙𝑎𝑠𝑡 ← 𝑁𝑒

18 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∪ 𝑆𝑒

19 return 𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡

where Mean(·) denotes the average operation, Std(·) denotes the

standard deviation operation, and 𝛼 is a hyperparameter. We select

a value of 𝛼 equal to 1.65, which corresponds to a z-score of 95%

and has been shown to be effective for all datasets. Note that our

method can be considered as an extension of a combination of

threshold-based and KNN-based similarity pairing.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our

CLER framework. Section 5.1 presents the experimental setup. Sec-

tion 5.2 investigates whether the blocker and the matcher in our

framework can mutually benefit. Section 5.3 compares the overall

performance of our framework with baselines under different anno-

tation budgets. Section 5.4 analyzes the impact of several designs.

5.1 Experimental Setup

Datasets. In this study, we conduct experiments on seven widely

adopted public datasets from various domains for ER tasks. These

datasets are obtained from the Magellan data repository [16] and

the Alaska benchmark [7]. A summary of the dataset statistics can

be found in Table 1. The M dataset has 24 tables, and we select two

of them for experiments4. It is worth noting that all experimental

datasets possess complete ground truth, enabling the annotation

process to be simulated. For each dataset, 25% of the entries in𝐷 are

randomly chosen as test entries, denoted as 𝐷𝑡𝑒𝑠𝑡 , such that none

4This is considered as a similarity-join variant in the original work [7].

298

1 2 5 10 20 50
K

40

60

80

100

Re
ca

ll
(%

)

Amazon-Google (AG)

1 2 5 10 20 50
K

60

80

100
DBLP-Scholar (DS)

1 2 5 10 20 50
K

50

60

70

80

90

100
Walmart-Amazon (WA)

1 2 5 10 20 50
K

50

60

70

80

90

100
Abt-Buy (AB)

1 2 5 10 20 50
K

20

40

60

80

100
Monitor (M)

SBERT
BK-Ind-500

BK-Ind-1000
BK-Ind-1500

BK-Ind-2000
BK-CLER-500

BK-CLER-1000
BK-CLER-1500

BK-CLER-2000

Figure 2: C-R curve comparison of blockers on ER datasets. The 𝐾 on the X-axis is the number of most similar entries that the

blocker returns for each input 𝑒 ∈ 𝐷 , which is proportional to CSSR. BK-CLER-𝐵 represents the performance of the blocker in

our framework with an annotation budget being 𝐵, BK-Ind-𝐵 represents the performance of the blocker trained independently

with an annotation budget being 𝐵 using randomly selected annotated data, and SBERT [30] represents the performance of

using the pre-trained SBERT as the blocker. We omit the results on the DA and FZ datasets as the blocker already achieves

nearly perfect recall with 𝐾 = 1.

Table 1: Statistics of benchmark datasets.

Dataset # entries 𝐷 ,𝐷′ # matches (%) matches

Amazon-Google (AG) 1363, 3226 1300 0.0296

DBLP-ACM (DA) 2616, 2294 2224 0.0371

DBLP-Scholar (DS) 2616, 64263 5347 0.0032

Fodors-Zagats (FZ) 533, 331 112 0.0635

Walmart-Amazon (WA) 2554, 22074 1154 0.0020

Abt-Buy (AB) 1081, 1092 1098 0.0930

Monitor (M) 603, 4323 343 0.0132

of the pairs containing test entries are annotated during training.

Additionally, 500 pairs are randomly selected and annotated as

validation data for all compared methods, and do not count toward

the total annotation budget.

Compared methods.We compare CLER with representative ER

approaches, including unsupervised, supervised, and active learning

methods. The following summarizes the compared methods.

• CollaborEM [12] is a recent unsupervised framework, which

constructs rule-based pseudo labels for training and combines

graph features from entity graphs and sentence features from

LMs as entry embeddings. For comparability, we allow it to

additionally use the same amount of annotated data for training.

• DITTO [18] is a representative supervised ER model, which

casts ER as a sentence-pair classification problem and fine-tunes

a pre-trained language model (as the matcher) by labeled data.

• DTAL [15] is an iterative active-learning-based entity matching

method, which allocates half of the budget (i.e., 𝑏/2) to the most

likely false positives and false negatives (i.e., predicted probability

closest to 0.5), respectively. In addition, it adds 𝑏/2 pseudo labels

to the highest confidence positives and negatives, respectively.

Settings.We adopt a low-resource setting for the ER task as defined

in Section 2.1. We vary the total budget 𝐵 within the range of

[500, 1000, 1500, 2000], consistent with the sub-experiment on label

efficiency in DITTO [18]. During the training process, for each

entry 𝑒 ∈ 𝐷 \ 𝐷𝑡𝑒𝑠𝑡 , the blocker retrieves 𝐾 = 10 entries in 𝐷′

whose corresponding embedding vectors have the highest 𝐾 = 10

cosine similarity. For all the methods, we set the max sequence

length to 256 and the batch size to 64, and perform a grid search on

the learning rate in [1e-5, 2e-5, 3e-5]. For non-iterative methods,

the number of epochs is 40. For iterative methods (i.e., DTAL and

1 2 5 10 20 50
K

60

70

80

90

100

Re
ca

ll
(%

)

Amazon-Google (AG)

1 2 5 10 20 50
K

40

60

80

100
Monitor (M)

BK-CLER-500
BK-annot-500

BK-PSD-500
BK-CLER-2000

BK-annot-2000
BK-PSD-2000

Figure 3: C-R curve comparison of blockers on two repre-

sentative datasets. BK-CLER-𝐵, BK-annot-𝐵, and BK-PSD-𝐵

represent the performance of the blocker in our framework

with an annotation budget being 𝐵, the blocker trained with

annotated data, and the blocker trained with pseudo-labeled

data, respectively.

CLER), the number of iterations (#𝑖𝑡𝑒𝑟) is fixed to 10 so that the

budget for each iteration is 𝑏 = 𝐵/10, and the number of epochs is

5 × (#𝑖𝑡𝑒𝑟 − 1) + 40. For each baseline, all other hyperparameters

are based on the original settings in their respective papers. All

methods are implemented on a server with an A100 GPU using

PyTorch [26] and the Transformers library [36]. We perform five

runs with different seeds and report the average values.

5.2 Can Blocker and Matcher Mutually Benefit?

5.2.1 The Gain for Blocker. To evaluate the impact of the matcher

on the training of the blocker, we compare the trained blocker in

our CLER framework (BK-CLER) with a variant (BK-Ind) that is

trained independently using randomly selected annotated data. In

addition, we include the default blocker SBERT as a reference.

The CSSR-Recall (C-R) curves for the evaluated blockers at differ-

ent annotation budgets over five datasets are presented in Figure 2.

We use𝐾 as the X-axis for the plots, where the CSSR is proportional

to 𝐾 in terms of CSSR = 𝐾/|𝐷′ |. The results show that BK-CLER

consistently outperforms BK-Ind and SBERT, with the gap being

more significant when there is less annotation budget (AG, AB,

M). This indicates the essential role of the matcher in training the

blocker within our framework.

Beyond that, we decompose the impact of the matcher on the

blocker’s training into two parts, i.e., the annotated data selected by

the matcher, and the pseudo-labeled data generated by the matcher.

299

Table 2: F1-score (%) of the compared matchers with annota-

tion budget 𝐵 = 2000 on the processed Magellan datasets. We

bold the best result and underline the second-best result for

each dataset. For reference, we also include the performance

of DITTO-full (i.e., DITTO trained with the full training data

of the processedMagellan datasets), and LLaMA-65B [32] and

GPT3-175B [4] with 10-shot in-context learning [23].

Dataset AG DA DS FZ WA AB Avg

CLER 77.65 98.90 93.65 97.54 88.48 95.84 92.01

CLER-non-cross 70.61 98.84 91.86 92.68 86.93 93.56 89.08

CollaborEM 61.84 98.08 72.72 94.92 73.40 90.38 81.89

DITTO 54.63 97.37 90.82 93.55 69.13 83.99 81.58

DTAL 67.39 98.46 92.59 87.66 84.52 90.28 86.82

DITTO-full 74.18 99.04 94.35 94.34 86.06 92.51 90.08

LLaMA-65B 56.50 93.29 74.21 96.30 71.20 72.87 77.39

GPT3-175B 58.97 94.16 83.80 94.34 81.36 66.53 79.86

Figure 3 shows the results of the blocker BK-annot-𝐵 that is trained

with the annotated data, and BK-PSD-𝐵 that is trained with the

pseudo-labeled data, respectively. The significant performance gain

of BK-CLER-500 over BK-annot-500 and BK-PSD-500 suggests that

both the annotated data and pseudo-labeled data contribute to the

performance improvement of the blocker. One impressive result is

the outperformance of BK-annot-𝐵 over BK-Ind-𝐵 (refer to Figure 2),

which indicates the annotated data selected by the matcher is more

informative than random selection, thus facilitating the training of

the blocker.

5.2.2 The Gain for Matcher. To explore whether the matcher ben-

efits from our Co-learning framework, we evaluate the matchers

by the task of classifying the same set of entry pairs. Here, the

test data is a subset of the processed Magellan dataset [16]5, i.e.,

𝑆𝑡𝑒𝑠𝑡 = {(𝑒, 𝑒
′, 𝑦) |𝑒 ∈ 𝐷𝑡𝑒𝑠𝑡 ∧ (𝑒, 𝑒

′, 𝑦) ∈ 𝑆𝑀𝑎𝑔}, where 𝑆𝑀𝑎𝑔 repre-

sents the processed Magellan dataset.

First, we compare the matcher trained in CLER with a non-cross-

trained matcher trained in a variant of CLER, denoted as CLER-non-

cross, where the blocker is removed from the iteration stage and the

pseudo labels are only made by the matcher. As shown in Table 2,

CLER6 consistently outperforms CLER-non-cross, suggesting that

the matcher does benefit from the blocker. The advantage is more

prominent on the AG dataset, where the improvement of the trained

blocker is more significant, and thus the blocker leads to better

candidate sets and pseudo-labeled data.

Moreover, we also compare our matcher with baseline matchers.

Table 2 shows that our matcher exhibits superior performance com-

pared to other methods across all the Magellan datasets. Notably,

in datasets AG, FZ, WA, and AB, our matcher trained with an anno-

tation budget of 𝐵 = 2000 even outperforms DITTO-full, which is

trained with the full data of the processedMagellan dataset. The rea-

son could be that DITTO-full’s capacity is limited by the finite scope

of processed data it can access (e.g.,the size of the processed AG

dataset is 9167). In contrast, our training framework can potentially

assimilate a more expansive range of information, given that our

5The processed Magellan dataset contains the candidate pairs after the blocking step.
6In this subsection, we use CLER to represent the matcher in CLER, the same for the
other methods.

2 4 6 8 10
Iteration

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Amazon-Google (AG)

2 4 6 8 10
Iteration

98.0

98.5

99.0

99.5

100.0
DBLP-Scholar (DS)

2 4 6 8 10
Iteration

20

40

60

80

100
Monitor (M)

positive pseudo-label accuracy negative pseudo-label accuracy

Figure 4: The accuracy of positive and negative pseudo labels

in the pseudo-labeled data used by the matcher (𝐵 = 2000).

The accuracy of positive labels is significantly improved dur-

ing iterations, while the accuracy of negative labels is already

high in the beginning.

blocker has access to the original data sets (e.g., on the AG dataset

at 𝐵 = 2000 the size of the labeled data is 12529, including 2000 an-

notated data and 10529 pseudo-labeled data). Among the baselines,

DTAL achieves the best performance in most cases, indicating that

selecting informative data for annotation is crucial when the budget

is limited. It is also worth noting that CollaborEM’s performance

is not satisfactory on the DS dataset, where all the other methods

achieve over 90% F1-score. The reason for this could be that the

noise in the generated pseudo-labeled data exceeds the amount of

information it can bring. However, this problem does not occur in

CLER, which might be mainly attributed to the improved quality of

the pseudo labels as training proceeds (as shown in Figure 4) and

the re-weighting mechanism.

Furthermore, we include the performance of LLaMA-65B and

GPT3-175Bwith 10-shot learning as reference [23]7. Though LLaMA-

65B and GPT3-175B achieve impressive performance with only ten

randomly selected examples, they are still significantly inferior

to the performance of CLER. The gap is small on relatively easy

datasets DA and FZ, and large on harder datasets AG and AB. More-

over, they require more than 500x inference time, e.g., LLaMA-65B

takes 52.9 minutes while our CLER finishes the inference within

0.1 minutes on the DA dataset.

5.3 Overall Performance with Low Resource

We assess the overall performance of the compared methods by

employing the inference strategy proposed in Section 4. Since the

compared baselines are mainly proposed for the matching step,

we let baselines be combined with three kinds of blockers, i.e.,

DeepBlocker [31], Sudowoodo [35], and the blocker trained with

the same setting in CLER (depicted in Section 3.4.1), and choose

the best F1 scores among the three combinations for each baseline.

Figure 5 presents the results of all comparedmethods on different

datasets across different budgets. Overall, our CLER framework con-

sistently outperforms the baselines on all experimental datasets, in-

dicating the effectiveness and robustness of our framework toward

various types of datasets. On average, our method outperforms

the baselines by 9.13-51.55% when 𝐵 = 500, 10.06-27.46% when

𝐵 = 1000, 12.33-23.71% when 𝐵 = 1500, and 12.09-17.56% when

𝐵 = 2000. Notably, all baselines perform poorly on the M dataset,

7All the other compared methods follow łpre-train, fine-tunež paradigm, and LLaMA-
65B and GPT3-175B with 10-shot learning follow łin-context-learningž paradigm.
Hence, we include their performance as reference.

300

20

40

60

80
F1

-s
co

re
 (%

)
Amazon-Google (AG)

80

85

90

95

100

DBLP-ACM (DA)

70

80

90

DBLP-Scholar (DS)

80

85

90

95

100

Fodors-Zagats (FZ)

500 1000 1500 2000
40

60

80

F1
-s

co
re

 (%
)

Walmart-Amazon (WA)

500 1000 1500 2000
60

70

80

90

Abt-Buy (AB)

500 1000 1500 2000

40

60

80
Monitor (M)

500 1000 1500 2000

60

70

80

90

Average

CollaborEM DITTO DTAL CLER

Figure 5: The overall performance (in terms of F1-score) of compared methods on seven EM datasets and the average over all

datasets under different budgets 𝐵 = [500, 1000, 1500, 2000]. All the settings are repeated five runs with different seeds. CLER

shows consistent improvement over baselines in all datasets. On average, CLER achieves about 10% absolute improvement

compared to the second-best method under four budget settings.

Table 3: F1-score (%) of pseudo-label generation strategies on

the overall performance. łBK-Negž represents the variant

that the blocker takes all the unsure pairs as negative; łMC

w/o confž represents the variant without pseudo-label confi-

dence differentiation; łMC w/o checkž represents the variant

by removing the transitivity checking of the matcher.

Budget 𝐵 = 500 𝐵 = 2000

Dataset AG WA M AG WA M

CLER 71.25 83.62 71.84 76.99 86.20 80.24

BK-Neg 71.14 83.12 70.79 75.89 86.87 78.44

MC w/o conf 71.55 81.40 64.88 75.05 84.67 77.90

MC w/o check 71.62 82.92 70.03 75.54 84.94 79.05

whereas our CLER achieves 71.84% F1-score with only an anno-

tation budget of 500. Additionally, our framework demonstrates

promising results on the AG and WA datasets, which are known to

be relatively challenging among the Magellan datasets, suggesting

the potential superiority of CLER on challenging datasets.

5.4 Further Analysis

In this section, we analyze several design choices in our framework

by evaluating the variants in terms of overall performance.

5.4.1 The effectiveness of pseudo-label generation strategies. To

assess the effectiveness of pseudo-label generation strategies, we

compare CLER with its three variants: (1) łBK-Negž: having the

blocker treat all pairs except the most similar as negatives (equiva-

lent to 𝑡diff = 0) (2) łMCw/o confž: without pseudo-label confidence

differentiation (equivalent to 𝑡+ = 𝑡− = 0.5) and (3) łMCw/o checkž:

disabling the transitivity-checking to the matcher’s pseudo-labeled

data 𝑆ℎ
𝑀𝐶

. As shown in Table 3, the strategy of pseudo-label con-

fidence differentiation greatly benefits the overall performance,

while the advantages of the other two strategies are not significant

except on the M dataset, possibly because subsequent selection and

re-weighting designs dilute the impact of the pseudo label’s qual-

ity. Furthermore, we examine the average percentage of positive

samples eliminated through transitivity checking. The observed

percentages are 7.91% for theM dataset and 2.34% for the AG dataset,

Table 4: F1-score (%) of variants using different selection

strategies. łBK w/o selectionž means not using the selection

strategy of BK (𝑆𝑃𝑆𝐷4𝐵𝐾 = 𝑆ℎ∗
𝑀𝐶

); łMC w/o BKž means MC

does not learn from BK (𝑆𝑃𝑆𝐷4𝑀𝐶 = 𝑆self
𝑃𝑆𝐷4𝑀𝐶

); łMC w/o selfž

means MC does not learn from itself (𝑆𝑃𝑆𝐷4𝑀𝐶 = 𝑆𝐵𝐾
𝑃𝑆𝐷4𝑀𝐶

).

Budget 𝐵 = 500 𝐵 = 2000

Dataset AG WA M AG WA M

CLER 71.25 83.62 71.84 76.99 86.20 80.24

BK w/o selection 71.72 82.57 65.08 75.30 85.59 75.51

MC w/o BK 66.19 77.09 67.02 72.15 84.84 76.77

MC w/o self 72.30 82.77 66.14 76.99 84.97 78.05

which may explain the significant degradation observed in the łMC

w/o checkž on the M dataset. Moreover, we figure out that these

design elements appear to be complementary; for instance, in the

case of łMC w/o confž, the removal percentage surges to 9.31%

(considerably greater than the 2.34%) on the AG dataset.

5.4.2 The impact of pseudo-label selection strategies. We evaluate

the selection strategies by comparing CLER with its three vari-

ants: (1) łBK w/o selectionž: without the selection strategy of BK

(𝑆𝑃𝑆𝐷4𝐵𝐾 = 𝑆ℎ∗
𝑀𝐶

). (2) łMC w/o BKž: MC does not learn from BK (

𝑆𝑃𝑆𝐷4𝑀𝐶 = 𝑆self
𝑃𝑆𝐷4𝑀𝐶

); (3) łMC w/o selfž: MC does not learn from

itself (𝑆𝑃𝑆𝐷4𝑀𝐶 = 𝑆𝐵𝐾
𝑃𝑆𝐷4𝑀𝐶

). As presented in Table 4, łBK w/o se-

lectionž shows significant degradation on the M dataset, where the

quality of the matcher’s pseudo labels is relatively low compared to

other datasets. This suggests the effectiveness of the blocker’s selec-

tion strategy when dealing with low-quality pseudo-labeled data.

Additionally, the advantage of CLER over łMC w/o BKž indicates

that the pseudo-labeled data generated by the blocker greatly bene-

fits the matcher’s training, supporting our motivation of employing

Co-learning between the blocker and the matcher. Furthermore, the

benefit of CLER over łMC w/o selfž demonstrates the advantage of

allowing the matcher to learn what it already knows.

5.4.3 The impact of re-weighting mechanism. We assess the effec-

tiveness of the re-weighting mechanism by comparing our frame-

work with two variants: (1) łMC w/o Re-weightingž: the matcher

301

Table 5: F1-score (%) of variants using different re-weighting

strategies (without re-weighting of BK and without re-

weighting of MC).

Budget 𝐵 = 500 𝐵 = 2000

Dataset AG WA M AG WA M

CLER 71.25 83.62 71.84 76.99 86.20 80.24

BK w/o Re-weighting 71.06 83.33 66.76 75.79 85.45 78.66

MC w/o Re-weighting 66.54 78.08 56.45 74.01 82.12 70.66

Table 6: Recall (%) and the average number of retrieved entries

of the blocking results when total budget 𝐵 = 2000.

Dataset AG WA M

Recall AvgK Recall AvgK Recall AvgK

CLER 98.12 14.32 98.45 34.90 96.43 11.28

Fixed K
97.93 15.00 99.07 35.00 94.52 12.00

98.12 23.00 98.21 19.00 96.43 26.00

Fixed Threshold
98.43 15.00 98.36 35.00 95.48 12.00

98.12 10.80 98.21 28.00 96.43 25.30

Table 7: The total (and breakdown) inference time of ER with

and without the blocker on different datasets.

w/o BK with BK BK Emb. BK Sim. MC Pred.

Dataset Total Time(s) Total Time(s) Time(s) Time(s) Time(s)

AG 1451.70 5.07 2.77 0.06 2.25

WA 7107.83 10.35 8.43 0.31 1.61

M 302.61 2.38 1.97 0.06 0.35

treats pseudo-labeled and annotated data equally. (2) łBK w/o

Re-weightingž: the blocker treats all three types of positive pairs

equally. The results presented in Table 5 demonstrate that the re-

weighting strategy significantly improves the matcher’s training,

while it only brings a noteworthy improvement to the blocker’s

training on the M dataset. These outcomes suggest that (1) the

matcher, being a more precise classifier, is more sensitive to noisy

data, and (2) the blocker can always learn from the pseudo labels

generated by the matcher unless the quality is particularly low.

5.4.4 The impact of inference strategies. We evaluate our inference

strategy by comparing it to KNN-Blocking with a fixed 𝐾 , and a

threshold-based blocking with a fixed threshold. In this part, we

compare the recall rate under the same K value, and the K value

under the same (similar) recall rate. As shown in Table 6, different

datasets require different 𝐾 or thresholds (this phenomenon can

also be observed in Figure 2), which are difficult to determine in

advance without prior knowledge. However, our method achieves

an acceptable recall rate and greatly reduces the candidate size

simultaneously, without requiring specific hyperparameters for the

dataset. Note that the advantage of our method is significant on

the M dataset, where the number of matched entries for each test

entry varies considerably. And our method achieves comparable

performance on the other two datasets. These results imply that

our approach is applicable to datasets with varying characteristics.

5.4.5 Running time at inference stage. We analyze the running

time of three operations at the inference stage: mapping entries

0.5 1.0 1.5 2.0 2.5
Time ratio: base time = 5931s

60

70

F1
-s

co
re

 (%
)

2 5
10 20 #iter 40

Amazon-Google (AG)

0.5 1.0 1.5 2.0 2.5
Time ratio: base time = 10652s

65

70

75

80

85

2 5 10 20 #iter 40

Walmart-Amazon (WA)

0.5 1.0 1.5 2.0 2.5
Time ratio: base time = 2430s

50

60

70

80

2 5
10 20 #iter 40

Monitor (M)
CollaborEM DITTO DTAL CLER CLER-sample

Figure 6: The training time and F1-score (%) of compared

methods when 𝐵 = 2000. The time is shown in the ratio w.r.t

CLER #𝑖𝑡𝑒𝑟 = 10. łCLER-samplež represents the variant of

CLER that employs the sampling strategies in the training

of the blocker and the matcher.

into embeddings by the blocker (denoted as łBK Emb.ž), calculating

the pairwise similarity score to find the nearest neighbors (denoted

as łBK Sim.ž), and predicting the probability by the matcher (de-

noted as łMC Pred.ž). As shown in Table 7, the running time is

primarily dominated by the blocker’s mapping operation and the

matcher’s prediction operation, which emphasizes the necessity of

the blocking step. Note that, in this work, we exhaustively calculate

all the pairwise similarity scores via Pytorch. When the size of two

collections is large, pairwise similarity calculation is not affordable,

i.e.,𝑂 (|𝐷 | × |𝐷′ |). There are some works on optimizing the nearest

neighbor search [10, 20, 44], which is out of the scope of this work.

5.4.6 Running time at training stage. In this part, we first analyze

the overall running time of compared methods. For our CLER,

we vary the number of iterations (#𝑖𝑡𝑒𝑟) to study the trade-off

between the training time and the test performance. As shown

in Figure 6, investing more training time improves the accuracy

while becomes very marginal when #𝑖𝑡𝑒𝑟 > 10. Meanwhile, our

CLER 2-iteration variant significantly outperforms the baselines

at a similar or slightly larger time cost (except on the WA dataset,

the variant is only slightly better than DTAL), which indicates the

superiority of CLER even with same time cost. Furthermore, we

investigate the breakdown of the running time for three operations

of the blocker and matcher in our CLER at the iteration stage. As

shown in Table 8, the training of the blocker and matcher takes a

major part of the running time. Moreover, the training time varies

significantly across datasets under the same annotation budget,

which is mainly related to the size of the two data collections and the

amount of pseudo-labeled data. These results give us some insights

into optimizing time: (1) We can randomly sample 𝑆𝑃𝑆𝐷4𝑀𝐶 , and

adjust the weighting factor 𝑤𝑀𝐶 for each training epoch, thus

reducing the training time for the matcher. (2) We can randomly

sample entries that cannot find their matched entries in the labeled

data for each training epoch, thus reducing the training time for

the blocker. We leverage these two sampling strategies over CLER

with 10 iterations, denoted as łCLER-samplež, which greatly saves

the training time but results in minor degradation in some cases

(as shown in Figure 6).

5.4.7 Robustness analysis. To analyze the robustness of our CLER

model to data with noisy attribute values, we compare its perfor-

mance on the original structured datasets (denoted as Clean) and

their dirty versions (denoted as Dirty)8, which are released by [22].

8https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

302

Table 8: The breakdown of the running time of the six opera-

tions at the iteration stage when 𝐵 = 2000.

AG WA M

operation BK MC BK MC BK MC

pseudo-label generation 21.33 233.25 31.76 185.30 14.82 71.48

pseudo-label selection 4.07 2.13 3.41 4.26 1.77 1.68

training 1499.38 3941.35 6002.04 3871.44 1337.98 858.92

Table 9: Robustness analysis of CLER (in terms of F1-score

(%)) on the Clean and Dirty versions of structured datasets.

Budget 𝐵 = 500 𝐵 = 2000

Dataset DA DS WA DA DS WA

Clean 98.72 91.88 83.62 98.73 93.74 86.20

Dirty 98.72 91.90 81.18 98.90 93.86 84.55

As shown in Table 9, CLER achieves comparable performance on

the clean and dirty versions of the DA and DS datasets; while on

the WA dataset, CLER faces a slight degradation. In general, our

model is robust to data with noisy attribute values.

6 RELATED WORK

6.1 Entity Blocking

Blocking plays a crucial role in enhancing efficiency and scalabil-

ity by reducing the number of entry pairs considered for match-

ing [24, 25]. Two mainstreams of traditional methods are key-based

blocking (a.k.a, hash-based blocking) and rule-based blocking [16],

both of which require considerable domain expert efforts [42].

With the widespread of deep learning, there emerge several at-

tempts in DL-based blocking, where the key point is to learn entry

embeddings [14, 31]. For instance, DeepER represents each entry

with an average of word embeddings and adopts locality-sensitive

hashing to retrieve most similar candidates [9]. DeepBlock [31]

further explores a large space of DL solutions for blocking, and

figures out that Autoencoder appears to be highly promising. Based

on labeled data, AutoBlock [42] differentiates the importance of

words by leveraging the attention mechanism, but labeled data is

not always available in practice. Recently, some studies utilize pre-

trained LMs to generate the entry embedding [12, 18]. However,

there might exist a semantic gap between the pre-training corpus

and the data of ER task. In light of this, one recent work [35] lever-

ages a classical contrastive learning framework to fine-tune LMs

for a better blocker. In addition to contrastive learning, our work

aims to bridge this gap via an iterative Co-learning framework with

the assistance of the matcher and the annotated data.

6.2 Entity Matching

Recent studies on entity matching (EM) mainly leverage deep learn-

ing (DL) methods [2, 41]. To the best of our knowledge, DeepER is

the first attempt that employs LSTM to encode structural data into a

dense vector [9]. Later on, DeepMatcher [22] explores the effective-

ness of many DL modules and demonstrates its superiority for tex-

tual and dirty EM problems. Since pre-trained models have shown

remarkable advances in various NLP tasks, there emerge several

studies fine-tuning Transformer-based pre-trained LMs [17, 18, 27].

Despite the effectiveness, a satisfying performance always require

a large number of annotated samples [12]. To reduce the labeling

cost, some efforts focus on learning a matcher with limited or even

zero labeled data [5, 15, 21, 33, 43]. For instance, CollaborEM [12]

creates pseudo labels based on the embeddings generated by SBERT

and then trains the matcher, which heavily relies on the rules and

the generalization of SBERT to the target dataset. With the rapid im-

provement of LMs’ capabilities [32], the advanced LMs have shown

impressive in-context learning performance in EM [23], but still

could not achieve comparable performance to the fine-tuned model.

Besides, the inference of these models is quite time-consuming

due to their extremely large model sizes. Our work follows the

fine-tuning paradigm and utilizes the advantages of blocker and

matcher to generate more reliable pseudo labels to broaden the

supervised signals.

6.3 Co-training and Co-teaching

Co-training has been a particularly effective technique when the

training data is only partially labeled [1, 3, 28]. The basic idea of

Co-training is that two or more models can learn from different

views of the datasets, and the pseudo labels predicted by the models

can enlarge the training set of the others’. Recent studies extend this

concept to include different models as different views [28, 37]. Mo-

tivated by Co-training, Co-teaching maintains two models with the

same network architecture and optimization goals simultaneously,

and allows the two models to teach each other by recommending

relatively clean data for training, which has shown robustness even

with extremely noisy labels [13]. Different from Co-training that

requires two views of the datasets, Co-teaching needs a single view

of the dataset. In this work, we leverage the Co-learning mech-

anism to let the blocker and the matcher learn from each other

under low-resource settings. Our Co-learning is stemmed from

Co-training and Co-teaching, where the blocker and the matcher

extract different information from input data, and they teach each

other via pseudo-labeled data with potential noises.

7 CONCLUSION

In this work, we present CLER for low-resource ER, which exploits

the cooperative relationship between the blocker and the matcher,

allowing them to learn from each other to broaden the limited

supervised signal. Empirical results on seven benchmark datasets

demonstrate that they can mutually benefit in our framework. And

the performance gain is more prominent in the cases of a very

low annotation budget. Furthermore, the superiority of the blocker

and the matcher makes our CLER framework better than baselines

in terms of overall performance. A promising future direction is

to explore how to improve training efficiency for an iterative Co-

learning framework. Additionally, we are interested in investigating

whether the blocker and the matcher can still benefit from each

other’s learning without any annotated data.

ACKNOWLEDGMENTS

The research work described in this paper was partially conducted

in the JC STEM Lab of Data Science Foundations funded by The

Hong Kong Jockey Club Charities Trust.

303

REFERENCES
[1] Maria-Florina Balcan, AvrimBlum, and Ke Yang. 2004. Co-training and expansion:

Towards bridging theory and practice. In Proceedings of the 17th International
Conference on Neural Information Processing Systems, Vol. 17. 89ś96.

[2] Nils Barlaug and Jon Atle Gulla. 2021. Neural networks for entity matching:
A survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 3
(2021), 1ś37.

[3] Avrim Blum and TomMitchell. 1998. Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on Computational
learning theory. 92ś100.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877ś1901.

[5] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating embeddings of heterogeneous relational datasets for data integration
tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. 1335ś1349.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597ś1607.

[7] Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei, Paolo
Merialdo, Federico Piai, and Divesh Srivastava. 2021. Alaska: A flexible bench-
mark for data integration tasks. arXiv preprint arXiv:2101.11259 (2021).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). 4171ś4186.

[9] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity
resolution. Proceedings of the VLDB Endowment 11, 11 (2018), 1454ś1467.

[10] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proceedings of
the VLDB Endowment 12, 5 (2019), 461ś474.

[11] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive
Learning of Sentence Embeddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. 6894ś6910.

[12] Congcong Ge, Pengfei Wang, Lu Chen, Xiaoze Liu, Baihua Zheng, and Yunjun
Gao. 2021. CollaborEM: a self-supervised entity matching framework usingmulti-
features collaboration. IEEE Transactions on Knowledge and Data Engineering
(2021).

[13] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. Advances in neural information processing
systems 31 (2018).

[14] Delaram Javdani, Hossein Rahmani, Milad Allahgholi, and Fatemeh Karimkhani.
2019. Deepblock: A novel blocking approach for entity resolution using deep
learning. In 2019 5th International Conference on Web Research (ICWR). IEEE,
41ś44.

[15] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.
Low-resource Deep Entity Resolution with Transfer and Active Learning. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 5851ś5861.

[16] Pradap Konda, Sanjib Das, AnHai Doan, Adel Ardalan, Jeffrey R Ballard, Han
Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir Prasad, et al. 2016.
Magellan: toward building entity matching management systems over data
science stacks. Proceedings of the VLDB Endowment 9, 13 (2016), 1581ś1584.

[17] Bing Li, Yukai Miao, Yaoshu Wang, Yifang Sun, and Wei Wang. 2021. Improving
the efficiency and effectiveness for BERT-based entity resolution. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 13226ś13233.

[18] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. Proceedings of
the VLDB Endowment 14, 1 (2020), 50ś60.

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[20] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824ś836.

[21] Zhengjie Miao, Yuliang Li, and Xiaolan Wang. 2021. Rotom: A meta-learned data
augmentation framework for entity matching, data cleaning, text classification,
and beyond. In Proceedings of the 2021 International Conference on Management
of Data. 1303ś1316.

[22] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. 19ś34.

[23] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can Foun-
dation Models Wrangle Your Data? arXiv preprint arXiv:2205.09911 (2022).

[24] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1ś42.

[25] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. 2016.
Comparative analysis of approximate blocking techniques for entity resolution.
Proceedings of the VLDB Endowment 9, 9 (2016), 684ś695.

[26] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[27] Ralph Peeters and Christian Bizer. 2021. Dual-objective fine-tuning of BERT for
entity matching. Proceedings of the VLDB Endowment 14 (2021), 1913ś1921.

[28] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. 2018. Deep
co-training for semi-supervised image recognition. In Proceedings of the european
conference on computer vision (eccv). 135ś152.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[30] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 3982ś3992.

[31] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash
Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep learning
for blocking in entity matching: a design space exploration. Proceedings of the
VLDB Endowment 14, 11 (2021), 2459ś2472.

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[33] Jianhong Tu, Ju Fan, Nan Tang, PengWang, Chengliang Chai, Guoliang Li, Ruixue
Fan, and Xiaoyong Du. 2022. Domain adaptation for deep entity resolution. In
Proceedings of the 2022 International Conference on Management of Data. 443ś457.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[35] Runhui Wang, Yuliang Li, and Jin Wang. 2023. Sudowoodo: Contrastive self-
supervised learning for multi-purpose data integration and preparation. In 2023
IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 1502ś1515.

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019).

[37] QiyuWu, Chongyang Tao, Tao Shen, Can Xu, Xiubo Geng, and Daxin Jiang. 2022.
PCL: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised
Sentence Embeddings. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing. 12052ś12066.

[38] Renzhi Wu, Alexander Bendeck, Xu Chu, and Yeye He. 2023. Ground Truth
Inference for Weakly Supervised Entity Matching. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1ś28.

[39] Dezhong Yao, Yuhong Gu, Gao Cong, Hai Jin, and Xinqiao Lv. 2022. Entity
Resolution with Hierarchical Graph Attention Networks. In Proceedings of the
2022 International Conference on Management of Data. 429ś442.

[40] Xueying Zhan, Qingzhong Wang, Kuan-hao Huang, Haoyi Xiong, Dejing Dou,
and Antoni B Chan. 2022. A comparative survey of deep active learning. arXiv
preprint arXiv:2203.13450 (2022).

[41] Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, and Kian-Lee Tan. 2020.
Multi-context attention for entity matching. In Proceedings of TheWeb Conference
2020. 2634ś2640.

[42] Wei Zhang, Hao Wei, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos,
and Davd Page. 2020. AutoBlock: A Hands-off Blocking Framework for Entity
Matching. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 744ś752.

[43] Chen Zhao and Yeye He. 2019. Auto-em: End-to-end fuzzy entity-matching
using pre-trained deep models and transfer learning. In The World Wide Web
Conference. 2413ś2424.

[44] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
Efficient Index Construction and Approximate Nearest Neighbor Search in High-
Dimensional Spaces. Proceedings of the VLDB Endowment 16, 8 (2023), 1979ś1991.

[45] Zhi-Hua Zhou. 2018. A brief introduction to weakly supervised learning. National
science review 5, 1 (2018), 44ś53.

304

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Setting
	2.2 Using Pre-trained Language Models (LMs)
	2.3 Blocker: Entry Embedding Learning and Similarity-based Pairing
	2.4 Matcher: Pairwise Binary Classifier by Fine-tuning LMs

	3 The CLER Framework
	3.1 Overview of CLER
	3.2 Pseudo-label Generation
	3.3 Pseudo-label Selection
	3.4 Training

	4 Inference
	5 Experiments
	5.1 Experimental Setup
	5.2 Can Blocker and Matcher Mutually Benefit?
	5.3 Overall Performance with Low Resource
	5.4 Further Analysis

	6 Related Work
	6.1 Entity Blocking
	6.2 Entity Matching
	6.3 Co-training and Co-teaching

	7 Conclusion
	Acknowledgments
	References

