
Evolution Forest Index: Towards Optimal Temporal 𝑘-Core
Component Search via Time-Topology Isomorphic Computation

Junyong Yang

School of Computer Science

Wuhan University

Wuhan, China

thomasyang@whu.edu.cn

Ming Zhong
∗

School of Computer Science

Wuhan University

Wuhan, China

clock@whu.edu.cn

Yuanyuan Zhu

School of Computer Science

Wuhan University

Wuhan, China

yyzhu@whu.edu.cn

Tieyun Qian

Wuhan University

Wuhan, China

qty@whu.edu.cn

Mengchi Liu

South China Normal University

Guangzhou, China

liumengchi@scnu.edu.cn

Jeffrey Xu Yu

The Chinese University of Hong Kong

Hong Kong, China

yu@se.cuhk.edu.hk

ABSTRACT
For a temporal graph like transaction network, finding a densely

connected subgraph that contains a vertex like a suspicious account

during a period is valuable. Thus, we study the Temporal 𝑘-Core

Component Search (TCCS) problem, which aims to find a connected

component of temporal 𝑘-core for any given vertex and time inter-

val. Towards this goal, we propose a novel Evolution Forest Index

(EF-Index) that can address TCCS in optimal time. Essentially, EF-

Index leverages the evolutionary order on temporal 𝑘-cores to both

compress the connectivity between vertices in temporal 𝑘-cores

of all time intervals into a minimum set of compactest Minimum

Temporal Spanning Forests (MTSFs) and retrieve MTSF for a given

time interval rapidly. Here, a crucial innovation is that, we extend

the temporal 𝑘-core evolution theory by introducing a pair of time-

topology isomorphic relations, on top of which the evolutionary

order in topology domain can be simply computed by a “kernel func-

tion” in time domain. Moreover, we design an efficient mechanism

to update EF-Index incrementally for dynamic edge streams. The

experimental results on a variety of real-world temporal graphs

demonstrate that, EF-Index outperforms the state-of-the-art ap-

proach by 1-3 orders of magnitude on processing TCCS, and its

space overhead is reduced by 4-5 orders of magnitude compared

with preserving connectivity uncompressedly.

PVLDB Reference Format:
Junyong Yang, Ming Zhong, Yuanyuan Zhu, Tieyun Qian, Mengchi Liu,

and Jeffrey Xu Yu. Evolution Forest Index: Towards Optimal Temporal

𝑘-Core Component Search via Time-Topology Isomorphic Computation.

PVLDB, 17(11): 2840 - 2853, 2024.

doi:10.14778/3681954.3681967

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/graphlab-whu/tccs.

∗
The corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681967

1 INTRODUCTION
Plenty of evidence suggests that real-world graphs observed in a va-

riety of applications are far from static, as indicated by [26]. For ex-

ample, SNAP [20] and KONECT [18] projects have collected dozens

of temporal graphs, such as social networks, transaction networks

and user-item bipartite graphs, with diverse scales, time densities

and time granularities (see our empirical study in Section 5.1). The

temporality in graphs matters for revealing the correlation of edge

activation, the order in which vertices join evolving communities,

the rhythm of subgraph pattern appearance, etc. Meanwhile, due

to the meet of complexities of time and topology, new research

challenges arise from a wide range of traditional graph analysis ob-

jects, such as reachability [39], path [40], triangle [30], butterfly [2],

centrality [29], motif [13], kernel [28], embedding [34], cohesive

subgraph [44], community [22], subgraph isomorphism [33], etc.

Recently, querying 𝑘-cores that exist during a given time interval

on temporal graphs becomes an emerging research topic. Wu et

al [41] firstly propose the concept of temporal 𝑘-core, and design a

particular core decomposition algorithm to deal with the frequency-

constrained temporal𝑘-core query. Galimberti et al [12] propose the

concept of span-core, the most frequent temporal 𝑘-core in which

two vertices have interaction at all time. Yu et al [45] propose the

concept of historical 𝑘-core that can be seen as the de-temporal

version of temporal 𝑘-core, and design a PHC-Index to address the

historical 𝑘-core query or search by exploiting a threshold moment

called core time insightfully. Yang et al [44] address the range query

of temporal 𝑘-core (called TCQ) with an online OTCD algorithm,

which is dramatically scalable for discovering a threshold period

called tightest time interval beyond the core time. Zhong et al [47]

extend TCQ to TXCQ that can filter temporal𝑘-cores by an arbitrary

user-defined metric, and address TXCQ with an improved OTCD*

algorithm, which exploits another important threshold period called

loosest time interval. In summary, the latest studies have built a

solid theoretical foundation for temporal 𝑘-core query optimization.

However, the real-world 𝑘-cores are usually comprised of many

separate components, especially when only considering a historical

period because small components are usually merging into large

ones gradually over time (namely, densification law [19]). Thus,

querying the whole temporal 𝑘-core could return lots of irrelevant

vertices. For that, many recent works [3, 9, 24, 38] focus on finding

2840

https://doi.org/10.14778/3681954.3681967
https://github.com/graphlab-whu/tccs
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681967
https://www.acm.org/publications/policies/artifact-review-and-badging-current


k = 3

 [ts,te] = [15,29]

k = 3

user id = 624991

temporal 3-core 

over [15,29]

3-core component 

containing the user  

temporal 3-core 

component 

containing the user  

user id = 624991

[ts,te] = [15,29]

TCCS

frauds / suspects:

temporal k-core = 2 / 66

k-core component = 1 / 52

temporal k-core component = 1 / 7

Figure 1: A case study of fraud detection on DGraph [16].

connected components of 𝑘-core. It motivates us to study Temporal

𝑘-Core Component Search (TCCS), which directly finds the con-

nected component containing a given vertex in the temporal 𝑘-core

over a given time interval. As shown in Table 1, TCCS is the first

work of this category.

TCCS can facilitate a variety of real-world applications. For ex-

ample, a typical financial anti-fraud pipeline is as follows: 1) detect

user communities like 𝑘-cores that emerge during a specific period,

2) derive the candidate components containing blacklisted users

from detected communities, and 3) investigate the other users in

candidate components manually. Obviously, we can accelerate this

pipeline with TCCS. As illustrated in Figure 1, the temporal 𝑘-core

of a given time interval has a number of components, most of which

actually contain none unknown fraud (small red vertex). While, if

we find the 𝑘-core component that contains a known fraud (big

red vertex) without specifying time interval, it still has too many

suspects for investigation. In contrast, we can use TCCS to directly

get the final temporal 𝑘-core component, in which only 7 suspects

need to be investigated in order to detect the unknown fraud.

Although the querying of temporal 𝑘-core has been studied

by [44, 45], the searching of temporal 𝑘-core component based

on that will still rely on brute force. Either we use the TCD algo-

rithm [44] to online compute the temporal 𝑘-core and then find a

connected component from it, or we directly traverse the graph

from the given vertex by BFS and meanwhile use the PHC-Index

as a filter to prune vertices not in the temporal 𝑘-core, a possibly

large number of vertices/edges not in the result will be inevitably

traversed.

In this paper, we aim to propose a time-optimal solution for the

valuable TCCS. For that, we try to preserve, maintain and retrieve

the minimum spanning forests of all temporal 𝑘-cores in a temporal

graph, which is a great challenge since the number of temporal 𝑘-

cores is quadratic with that of distinct timestamps. To overcome the

challenge, we leverage the evolutionary order of temporal 𝑘-core

to index the forests with near minimum space. Moreover, to obtain

the evolutionary order efficiently, we present a novel time-topology

isomorphic computation paradigm.

Our contributions are summarized as follows.

• Theory. We extend the existing theory of temporal 𝑘-core

evolution by introducing a pair of time-topology isomor-

phic lineage relations on distinct cores and time zones re-

spectively. Thus, the transitive reduction of evolutionary

Table 1: Classification of 𝑘-core query works.

Core Type Component Whole

Temporal TCCS (This Work) [12, 41, 44, 45, 47]

Static [3, 9, 24, 38] Well Studied

order on distinct cores can be simply computed by a “kernel

function” on time zones. Then, we propose an instance of

Hasse diagram named lineage graph to model the global

non-linear temporal 𝑘-core evolution for temporal graphs.

• Index. We design a sophisticated Evolution Forest Index

(EF-Index) that compresses the minimum spanning forests

of temporal 𝑘-cores losslessly into a set of compactest Min-

imum Temporal Spanning Forests (MTSFs), which preserve

the evolving connectivity for each lineage chain in the min-

imum chain cover of lineage graph. Moreover, EF-Index

leverages the lineage graph to retrieve MTSF in at most

linear time to the layer number of lineage graph.

• Search. We develop a time-optimal algorithm to address

TCCS. It neither decompresses the retrieved MTSF nor tra-

verses any vertex not in the result, relying on the temporal

labels of edges in MTSFs.

• Maintenance. We reveal the patterns of time zone appear-

ance and expansion caused by dynamical graph updating,

and present an incremental EF-Index maintaining mecha-

nism. It follows the patterns to update the lineage graph

without redundant core decomposition and then uses a

heuristic strategy to update the lineage chain cover rapidly.

• Experiment. We study a set of temporal graphs from SNAP

and KONECT projects empirically, and compose reasonable

test graphs with respect to observations. We conduct exper-

iments including index construction, index maintenance,

and query processing on test graphs. The results demon-

strate that, our approach both outperforms the state-of-the-

art approach by a remarkable margin and reduces indexing

and maintaining costs dramatically.

2 THEORETICAL FOUNDATION
2.1 Problem Formulation
We consider a temporal graph G = (V, E), where each edge

(𝑢, 𝑣, 𝑡) ∈ E is a triplet denoting 𝑢, 𝑣 ∈ V have an interaction at

time 𝑡 . Without loss of generality, we use consecutive integers 1, 2,

· · · , 𝑛 to denote all timestamps in G. Figure 2a illustrates a temporal

graph as our running example.

Given a time interval [𝑡𝑠, 𝑡𝑒] with 1 ⩽ 𝑡𝑠 ⩽ 𝑡𝑒 ⩽ 𝑛, we can

induce a projected graph G[𝑡𝑠,𝑡𝑒 ] from G by removing all edges

that fall out of [𝑡𝑠, 𝑡𝑒], and a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] (G) is defined

as the maximal subgraph of G[𝑡𝑠,𝑡𝑒 ] such that each vertex has at

least 𝑘 neighbor vertices in the recent literatures [41, 44], where

𝑘 ⩾ 2 is an integer. We denote by [𝑡𝑠, 𝑡𝑒] ⊑ [𝑡𝑠′, 𝑡𝑒′] that [𝑡𝑠, 𝑡𝑒] is
a subinterval of [𝑡𝑠′, 𝑡𝑒′], namely, 𝑡𝑠 ⩾ 𝑡𝑠′ and 𝑡𝑒 ⩽ 𝑡𝑒′.

Note that, a temporal 𝑘-core is not guaranteed to be connected.

Thus, we propose a novel community search problem for temporal

graphs, namely, Temporal 𝑘-Core Component Search (TCCS).

2841



v1

v2

v3

v4

v5

v6
v7

v8 v9

v10

3

2

1
16

6

4

4

4

4

4

3

3

3

4
4

2 5

3
3

(a) Temporal graph and 𝑘-core T2

[3,4] .
ts

te

1

2

3

4

5

2346 5

[3,6]

[2,6]

[1,6]

[2,5]

[1,5] [1,4] [1,3]

[3,3]

[3,3]

[4,4] [4,4]

[3,4]

[3,4][3,4]

[4,4]

(b) TTIs, Time zones and lineage.

[1,6]

[1,5]

[1,4]

[1,3]

[2,5] [3,6]

[2,6]

[3,4]

[3,3] [4,4]

10

10

9

3

10 7

10

7

3 4

Lineage chain 1

Lineage chain 2

Lineage chain 3

5th

4th

3rd

2nd

1st

Generation (layer)

(c) Lineage graph and chain cover.

Figure 2: The illustrative examples of fundamental concepts in temporal 𝑘-core evolution (𝑘 = 2).

Problem 1 (Temporal 𝑘-Core Component Search). Given
G, 𝑘 , [𝑡𝑠, 𝑡𝑒] and a vertex 𝑢, retrieve the connected component of
T𝑘
[𝑡𝑠,𝑡𝑒 ] (G) that contains 𝑢.

Example 1. As illustrated in Figure 2a, for the time interval [3, 4],
the projected graph G[3,4] contains the bold vertices and edges, and
the temporal 2-core (the shaded subgraph) induced from G[3,4] has
two connected components {𝑣1, 𝑣2, 𝑣3, 𝑣4} and {𝑣5, 𝑣6, 𝑣7}. TCCS aims
to find a community like {𝑣5, 𝑣6, 𝑣7} that satisfies cohesiveness, time
interval, and connectivity constraints for a given vertex like 𝑣6.

For brevity, we denote T𝑘
[𝑡𝑠,𝑡𝑒 ] (G) by T

𝑘
[𝑡𝑠,𝑡𝑒 ] and the component

of T𝑘
[𝑡𝑠,𝑡𝑒 ] that contains 𝑢 by C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢) from here.

2.2 Review of Temporal 𝑘-Core Evolution
The previous researches [44, 47] have revealed the important con-

cepts, properties and theorems that facilitate the scalable online

processing of temporal 𝑘-core/(𝑘,X)-core queries. Our index and
search algorithm for TCCS also rely on these theoretical findings to

achieve the space and time optimality. Thus, we review the existing

theory, but from a new systematic and insightful perspective called

temporal 𝑘-core evolution, in this subsection.

A temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] will evolve, namely, change its topo-

logical structure with the variation of 𝑡𝑠 or 𝑡𝑒 , following the varied

projected graph G[𝑡𝑠,𝑡𝑒 ] . Intuitively, we say [𝑡𝑠, 𝑡𝑒] is expanded to

[𝑡𝑠′, 𝑡𝑒′] if [𝑡𝑠, 𝑡𝑒] ⊏ [𝑡𝑠′, 𝑡𝑒′], or shrunk to [𝑡𝑠′, 𝑡𝑒′] if [𝑡𝑠, 𝑡𝑒] ⊐
[𝑡𝑠′, 𝑡𝑒′]. From the procedure of evolution, there is the following

fundamental observation.

Theorem 1 (Monotonic and Discrete Evolution). A tem-
poral 𝑘-core T𝑘

[𝑡𝑠,𝑡𝑒 ] can only but may not always have vertices and
edges added (or deleted) with the expanding (or shrinking) of [𝑡𝑠, 𝑡𝑒].

Example 2. Consider the temporal 2-coreT 2

[3,4] in Figure 2a. Firstly,
we expand the time interval to [3, 5], and the topological structure
of T 2

[3,5] is unchanged with respect to T 2

[3,4] , so that T
2

[3,4] and T
2

[3,5]
are actually identical subgraphs. Then, we expand the time interval
to [3, 6], and T 2

[3,6] has a new edge (𝑣4, 𝑣6, 6) added monotonically.

Theorem 1 implies that, there will be threshold time intervals dur-

ing the evolution of temporal 𝑘-core. We call them Loosest Time
Interval (LTI) and Tightest Time Interval (TTI) respectively.

Definition 1 (Loosest/Tightest Time Interval). For a tem-
poral 𝑘-core T𝑘

[𝑡𝑠,𝑡𝑒 ] , a time interval [𝑡𝑠′, 𝑡𝑒′] is the loosest/tightest, if
and only if T𝑘

[𝑡𝑠′,𝑡𝑒′ ] is topologically identical to T
𝑘
[𝑡𝑠,𝑡𝑒 ] and there does

not exist an expanded/shrank time interval [𝑡𝑠′′, 𝑡𝑒′′] ⊐/⊏ [𝑡𝑠′, 𝑡𝑒′]
such that T𝑘

[𝑡𝑠′′,𝑡𝑒′′ ] is also topologically identical to T𝑘
[𝑡𝑠,𝑡𝑒 ] .

Intuitively, expanding an LTI or shrinking a TTI will make the

corresponding temporal 𝑘-core evolve to a different subgraph. For a

temporal 𝑘-core, its TTI is proved to be simply [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ], where
𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are the minimum and maximum timestamps of its

edges respectively, which means the obtain of TTI is simple.

Example 3. For ease of understanding, Figure 2b illustrates a time
coordinate system in which the two axes represent start time 𝑡𝑠 and end
time 𝑡𝑒 respectively. Each grid cell coordinated by (𝑡𝑠, 𝑡𝑒) represents
the time interval [𝑡𝑠, 𝑡𝑒] that can induce a temporal 𝑘-core, and the
TTI of T𝑘

[𝑡𝑠,𝑡𝑒 ] is recorded in the cell. We can see both TTIs in the

cells [2, 4] and [3, 5] are [3, 4], which means T 2

[2,4] and T
2

[3,5] will not
evolve when shrinking their time interval to [3, 4]. On the contrary,
both [2, 4] and [3, 5] are the LTIs of T 2

[3,4] .

The significance of TTI is that, due to its three important prop-

erties [44], it connects the temporal and topological worlds, and

makes two temporal 𝑘-cores topologically comparable with respect

to their TTIs. Note that, different from TTI, a temporal 𝑘-core may

have multiple LTIs. The LTIs of a temporal 𝑘-core surely contain

its TTI as a subinterval, and meanwhile are partially overlapped

with each other.

Theorem 1 also implies that, there are a number of “species”

(namely, distinct temporal 𝑘-core structures) distributed in different

sets of time intervals during the global procedure of temporal𝑘-core

evolution. Thus, we have the following definitions.

Definition 2 (Distinct Core). Given G and 𝑘 , a distinct core T𝑘

is a distinct structure of temporal 𝑘-cores, whose vertex set and edge
set are denoted by V𝑘 and E𝑘 respectively. The TTI and LTIs of T𝑘

are the TTI and all LTIs of its identical temporal 𝑘-cores respectively.

Definition 3 (Time Zone). Given G and 𝑘 , a time zone Z𝑘 is
a set of time intervals from which we can induce a complete set of
identical temporal 𝑘-cores (represented by a distinct core T𝑘 ). The TTI
and LTIs of T𝑘 are also called the TTI and LTIs of Z𝑘 respectively.

2842



ts

te

ts1
’

ts2
’

ts p-1
’

tsp
’

te1
’ te2

’ te p-1
’ tep

’

TTI

Time Zone

LTI1

LTI2

LTIp-1

LTIp

CTI1

CTI2

CTIp

CTIp+1

Time zone

Adjacent intervals

TTI

CTI

LTI

Figure 3: The adjacent and corner time intervals of time zone.

An important observation on time zone is that, the distribution

of intervals in a time zone can be determined only by its TTI and

LTIs, as described by the following property.

Property 1 (Boundness). For a time zone Z𝑘 , a time interval
[𝑡𝑠, 𝑡𝑒] ∈ Z𝑘 if and only if [𝑡𝑠′, 𝑡𝑒′] ⊑ [𝑡𝑠, 𝑡𝑒] ⊑ [𝑡𝑠′′, 𝑡𝑒′′], where
[𝑡𝑠′, 𝑡𝑒′] and [𝑡𝑠′′, 𝑡𝑒′′] are the TTI and an LTI of Z𝑘 respectively.

Example 4. As illustrated in Figure 2b, the time intervals with
a same TTI are merged into a time zone. If we view the coordinate
system from a spatial perspective, each time zone is composed of a set
of rectangles that have an overlapped bottom-right cell coordinated
by its TTI. Moreover, the top-left cells of each rectangle are its LTIs.
The time zone marked by bold border has two rectangles, in which
the cell [3, 4] is its TTI and the cells [2, 4] and [3, 5] are its LTIs.

In a global view, the temporal 𝑘-core evolution for a temporal

graph is decomposed to a set of non-linear stages, which can be

seen as distinct cores T𝑘 = {T𝑘
1
,T𝑘

2
, · · · ,T𝑘𝑚} from the perspec-

tive of topology, or time zones Z𝑘 = {Z𝑘
1
,Z𝑘

2
, · · · ,Z𝑘𝑚} from the

perspective of time, and there is a bijection between T𝑘 and Z𝑘 .
Note that, the number𝑚 of distinct cores (time zones) is sub-

quadratic to the number 𝑛 of timestamps, and the exponent varies

for different temporal graphs. The higher degree of discretization

of evolution, the smaller value of𝑚.

2.3 New Lineage Relation and Lineage Graph
The current temporal 𝑘-core evolution theory only considers the

distinct cores (or bijective time zones) separately, and leaves the

relations on them unexplored. Although the theory is sufficient

for the optimization of processing TCQ [44] and TXCQ [47], there

are inevitably algorithmic problems like TCCS concern particular

relations on them like the evolutionary order. Therefore, we extend

the existing theory by introducing a pair of isomorphic lineage
relations on distinct cores and time zones respectively.

Firstly, let us consider an intuitive core lineage on distinct cores.

Definition 4 (Core Lineage). Given the set of distinct cores
T𝑘 = {T𝑘

1
,T𝑘

2
, · · · ,T𝑘𝑚} with respect to G and 𝑘 , the core lineage

L𝑘𝑡 is a relation on T𝑘 , and (T𝑘
𝑖
,T𝑘

𝑗
) ∈ L𝑘𝑡 if and only if T𝑘

𝑖
directly

evolves to T𝑘
𝑗
with the expanding of time interval, which means there

does not exists T𝑘
𝑙
such that both (T𝑘

𝑖
,T𝑘

𝑙
) ∈ L𝑘𝑡 and (T𝑘

𝑙
,T𝑘

𝑗
) ∈ L𝑘𝑡

hold, for 1 ⩽ 𝑖, 𝑗, 𝑙 ⩽ 𝑚.

Algorithm 1: Lineage graph construction.

Input: A temporal graph G and an integer 𝑘

Output: The lineage graph G𝑘

1 Generate all distinct cores {T𝑘
1
,T𝑘

2
, · · · ,T𝑘𝑚} and time zones

{Z𝑘
1
,Z𝑘

2
, · · · ,Z𝑘𝑚} for G by OTCD* algorithm [47]

2 Add a node to G𝑘
for each of T𝑘

1
,T𝑘

2
, · · · ,T𝑘𝑚 with its TTI

3 for 𝑖 ← 1 to𝑚 do
4 Compute the lineages to Z𝑘

𝑖
by Equation (1)

5 Add an edge to G𝑘
for each lineage

Property 2 (Transitive Reduction of Containment). The
core lineage is a transitive reduction of a partial order “containment”
on distinct cores T𝑘 , in which each ordered pair (T𝑘

𝑖
,T𝑘

𝑗
) means T𝑘

𝑖

is contained by T𝑘
𝑗
as a subgraph.

The core lineage brings an inherent evolutionary order to the

separate distinct cores, so that they are interconnected by lineage.

Thus, the global view of temporal 𝑘-core evolution can be extended

as follows. Each minimal distinct core (1st generation) is evolving

with the expanding of time interval. Its topological structure will

remain unchanged as long as the expanded time interval is still

in the same time zone. Otherwise, it will grow to a new larger

distinct core with lineage to it, until it becomes the maximal distinct

core T𝑘
[1,𝑛] . Note that, a distinct core may grow to multiple other

distinct cores, and multiple distinct cores may grow to another

same distinct core. We propose a Hasse diagram named lineage
graph to represent the evolution procedure.

Definition 5 (Lineage Graph). Given G and 𝑘 , a lineage graph
is a directed acyclic graph G𝑘 = (T𝑘 , L𝑘𝑡 ), where each node T𝑘

𝑖
∈ T𝑘

represents a distinct core and each relation (T𝑘
𝑖
,T𝑘

𝑗
) ∈ L𝑘𝑡 represents

the lineage from T𝑘
𝑗
to T𝑘

𝑖
, namely, T𝑘

𝑖
directly evolves to T𝑘

𝑗
.

Example 5. The lineage graph of our example temporal graph is
illustrated in Figure 2c. Since there are ten distinct cores (time zones)
during the evolution for 𝑘 = 2 (see Figure 2b), the lineage graph also
have ten nodes labeled by the their TTIs, which can be seen as the
unique ids of both distinct cores and time zones. Moreover, the arrow
lines between nodes denote their lineage relations.

Consequently, a crucial question is raised: how to infer the lin-

eage between two specific distinct cores? To reveal the answer, let

us consider the temporal relation between their time zones. As

illustrated in Figure 3, for a time zone Z𝑘
𝑖
, its time intervals can

be expanded to the adjacent time intervals marked by grey color

to trigger the evolution of T𝑘
𝑖
, so that only the distinct cores of

time zones containing the adjacent intervals could have lineage

to T𝑘
𝑖
due to Definition 4. Moreover, for a time zone containing

adjacent intervals but not any one in the corner marked by slashes

additionally, its distinct core is surely not evolved directly from T𝑘
𝑖
,

because it can be evolved from the temporal 𝑘-core of the corner

time interval in the same row or column. Thus, a distinct core has

lineage to T𝑘
𝑖
, if and only if its time zones contains a corner time

interval of Z𝑘
𝑖
. The formal definition of Corner Time Interval

(CTI) is as follows.

2843



Algorithm 3Algorithm 2

Algorithm 1

temporal graph

lineage graph(k1)

lineage graph(kl)

lineage chain cover MTSFs

lookup structure

EF-Index(k1)

Algorithm 4

TCCS

(k=k1)

[ts,te]

input

input

Algorithm 5

vertex

temporal edge

distinct core

lineage relation

index entry

offline process
online process

u, [ts,te]

u u u

Figure 4: The pipeline of offline EF-Index construction and online TCCS processing.

Definition 6 (Corner Time Interval). For a time zone with TTI
[𝑡𝑠, 𝑡𝑒] and LTIs [𝑡𝑠′

1
, 𝑡𝑒′

1
], [𝑡𝑠′

2
, 𝑡𝑒′

2
], · · · , [𝑡𝑠′𝑝 , 𝑡𝑒′𝑝 ], the 𝑝 + 1 corner

time intervals are [𝑡𝑠, 𝑡𝑒′
1
+ 1], [𝑡𝑠′

1
− 1, 𝑡𝑒′

2
+ 1], · · · , [𝑡𝑠′𝑝 − 1, 𝑡𝑒],

where 𝑝 denotes the number of LTIs.

Property 3 (Tightest). A CTI of a time zone is a TTI of another
time zone, and vice versa, if both time zones exist.

Interestingly, a CTI identifies the time zone containing it uniquely

with respect to Property 3. It means, given a distinct core, we can

find the distinct cores with lineage to it only through the CTIs of

its time zone. Thus, we can define the following zone lineage on
time zones as the isomorphic relation of core lineage.

Definition 7 (Zone Lineage). Given the set of time zones Z𝑘 =

{Z𝑘
1
,Z𝑘

2
, · · · ,Z𝑘𝑚} with respect to G and 𝑘 , the zone lineage L𝑘𝑧 is a

relation on Z𝑘 , and (Z𝑘
𝑖
,Z𝑘

𝑗
) ∈ L𝑘𝑧 if and only if the TTI of Z𝑘

𝑗
is a

CTI of Z𝑘
𝑖
.

Theorem 2 (Time-Topology Isomorphism). For the bijective sets
T𝑘 and Z𝑘 , (T𝑘

𝑖
,T𝑘

𝑗
) ∈ L𝑘𝑡 if and only if (Z𝑘

𝑖
,Z𝑘

𝑗
) ∈ L𝑘𝑧 .

The time-topology isomorphism of two lineage relations enables

a “kernel function” that infers the lineage relation on distinct cores

in a ( |V| + |E|)-dimensional space by inferring the lineage relation

on their time zones in a (2 + 2𝑝)-dimensional space as

I((T𝑘𝑖 ,T
𝑘
𝑗 ) ∈ L

𝑘
𝑡 ) = I((Z𝑘𝑖 ,Z

𝑘
𝑗 ) ∈ L

𝑘
𝑧 )

= I(∃[𝑡𝑠, 𝑡𝑒] ∈ Z𝑘𝑖 .CTI s.t.[𝑡𝑠, 𝑡𝑒] = Z
𝑘
𝑗 .TTI)

(1)

where I() is an indicator function. Note that, 𝑝 is only a little higher

than 1 on average in our empirical experiments, so the kernel func-

tion is in a domain with extremely less dimensions. Moreover, the

kernel function also reduces the computational complexity signifi-

cantly, since L𝑘𝑡 that represents transitively reduced containment

cannot be trivially obtained like L𝑘𝑧 .

Example 6. Compare the zone lineage and core lineage illustrated
in Figure 2b and 2c respectively. We can see the one-to-one correspon-
dence between the red and black arrow lines. Obviously, the obtain of
zone lineage is simple and straightforward.

Lastly, Algorithm 1 presents the pseudo code of building a lineage

graph, which is the foundation of optimal TCCS processing. By

using the OTCD* algorithm [47], we can compute all distinct cores

Algorithm 2:Minimum lineage chain cover generation.

Input: A lineage graph G𝑘
(layered as in Figure 2c)

Output: The minimum lineage chain cover of G𝑘

1 Build a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), where𝑈 ,𝑉 = T𝑘 and

𝐸 = {(𝑢, 𝑣) |𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ L𝑘𝑡 }
2 Get the maximum match of 𝐺 as𝑀 by Hopcroft-Karp [14]

3 while there exists untraversed node in G𝑘 do
4 T𝑘

𝑖
← next untraversed node in descending layer order

5 Generate a chain inversely from T𝑘
𝑖
with respect to𝑀

and time zones for a given temporal graph efficiently. Then, the

computational complexity of generating edges for a lineage graph

is 𝑂 (∑︁𝑚
𝑖=1 |Z𝑘𝑖 .CTI|), which is approximately 𝑂 (𝑚) in practice.

3 INDEX CONSTRUCTION AND USAGE
3.1 Overview
To retrieve a specific temporal 𝑘-core component from an index in

the optimal time, the index needs to 1) preserve the sets of vertices

for temporal 𝑘-cores of each legal time interval, 2) preserve the

connectivity between those vertices in each temporal 𝑘-core, and

3) map a TCCS instance (namely, specific 𝑘 , [𝑡𝑠, 𝑡𝑒] and 𝑢) to an

index entry, so that the result connected component can be derived

directly without traversing vertices not belong to it.

A straightforward design of such an index is to store a Minimum

Spanning Forest (MSF, the union of minimum spanning trees of

each component) for each temporal 𝑘-core. However, its space com-

plexity is dramatically high. For each reasonable value of 𝑘 , it can

be estimated as 𝑂 (𝑛2 |V𝑘 |), where 𝑛 is the number of timestamps

in G, and |V𝑘 | is the average number of vertices for all temporal

𝑘-cores, which is bounded by |V| in the worst case.

Therefore, we propose a sophisticated Evolution Forest Index
(EF-Index) that guarantees the same size of search space as index-

ing all MSFs while being many orders of magnitude smaller. The

pipeline of constructing EF-Index is illustrated in Figure 4. Firstly,

we leverage the lineage graph to compute a lineage chain cover
and only preserve the largest distinct cores on tails of each chain,

thereby compressing the space of preserving vertex sets signifi-

cantly. Secondly, for each chain, we generate a novelMinimum

2844



(v4, v6, 6) (v4, v8, 6)(v8, v10, 2) (v8, v10, 3) (v9 ,v10, 5)  (v6, v8, 1) (v7, v9, 1) (v8, v9, 2)(v5, v6, 3) (v5, v7, 3) (v6, v7, 3)

(v1, v2, 3) (v1, v2, 4) (v1, v4, 4)

(v2, v3, 4) (v2, v4, 4) (v3, v4, 3)

(v3, v4, 4) (v5, v6, 4) (v5, v7, 4)

[1,6]

v1

v2

v3

v4

v5

v6
v7

v8 v9

v10

[3,3] [3,3]
[3,3]

[3,3]

[3,3]

[1,3]
[1,3]

[1,5]

[1,6]

[1,5]

v1

v2

v3

v4

v5

v6
v7

v8 v9

v10

[3,3] [3,3]
[1,4]

[1,4]

[1,4]

[1,3]
[1,3]

[1,5]

[1,4]

v1

v2

v3

v4

v5

v6
v7

v8 v9

v10

[3,3] [3,3]
[1,4]

[1,4]

[1,4]

[1,3]
[1,3]

[1,3]

v1

v2

v3

v4

v5

v6
v7

v8 v9

v10

[3,3] [3,3]

[1,3]
[1,3]

[3,3]

v1

v2

v3

v4

v5

v6
v7

v8 v9

v10

[3,3] [3,3]

Figure 5: A step-by-step demonstration of building an MTSF for a lineage chain with five distinct cores.

Temporal Spanning Forest (MTSF) to preserve the evolving con-
nectivity in all temporal 𝑘-cores on the chain within the minimum

space. Lastly, an efficient lookup structure is designed to retrieve

the MTSF for a given time interval. As a result, to find the result

temporal 𝑘-core component, we only need to search the retrieved

MTSF from the given vertex with a particular time constraint.

3.2 Vertex Set Compression via Lineage Chain
In this subsection, we propose a storage scheme of preserving

vertex sets for temporal 𝑘-cores, which compresses them losslessly

by two steps. Firstly, we only preserve the distinct cores but not

all temporal 𝑘-cores, since each temporal 𝑘-core is identical to a

distinct core. Secondly, we further compress the distinct cores by

differential encoding. If a distinct core contains another that has

been preserved, only the differential vertices need to be stored.

However, computing the containment relation on distinct cores

is time-consuming. The brute force method needs to compare each

pair of distinct cores. Although TTI can help to fulfill each com-

parison in constant time, the complexity is still quadratic to the

number of distinct cores. Thus, we consider the lineage relation

on distinct cores, which not only is a transitive reduction of con-

tainment (Property 2), and also can be computed in linear time to

the number of distinct cores (Algorithm 1) for the isomorphism to

zone lineage (Theorem 2). Specifically, we partition the non-linear

lineage graph into a set of lineage chains first.

Definition 8 (Lineage Chain). A lineage chain C𝑘 = [T𝑘
1
, T𝑘

2
,

· · · , T𝑘
𝑙
] is a linearly ordered list of distinct cores by the core lineage

L𝑘𝑡 , where (T𝑘𝑖 ,T
𝑘
𝑖+1) ∈ L

𝑘
𝑡 for 1 ⩽ 𝑖 < 𝑙 .

Definition 9 (Lineage Chain Cover). Given a lineage graph
G𝑘 with respect to G and 𝑘 , a lineage chain cover is a set of disjoint
lineage chains C𝑘 = {C𝑘

1
,C𝑘

2
, · · · ,C𝑘

ℎ
} such that each distinct core in

G𝑘 appears exactly once in one of them.

Then, the total space cost of preserving vertex sets is the sum

of costs of preserving lineage chains in the cover, which are de-

termined only by the number of vertices of the last and certainly

the largest distinct cores on each chain with differential encoding.

Moreover, the speed of compressing all chains depends on the total

number of edges of their last distinct cores (see Section 3.3).

Thus, for a lineage graph, we obtain a lineage chain cover with

the objective tominimize the number of chains. The rationale is two-

fold. Firstly, this objective is consistent with minimizing the total

number of vertices or edges of tail distinct cores, thereby achieving

Algorithm 3:MTSF construction.

Input: A temporal graph G, an integer 𝑘 , and the lineage

chain cover C𝑘

Output: The MTSFs of each chain in C𝑘

1 Start the OTCD* algorithm for G and 𝑘

2 while OTCD* does not stop do
3 T𝑘 ← the next distinct core returned by OTCD*

4 C𝑘 ← the lineage chain in C𝑘
with T𝑘 on tail

5 Traverse C𝑘 from T𝑘 , and use TCD operation [44] to get

the differential edge sets between each pair of adjacent

distinct cores on C𝑘

6 Call SingleChain(C𝑘) and collect the returned MTSF

7 Function SingleChain(C𝑘 = [T𝑘
1
,T𝑘

2
, · · · ,T𝑘

𝑙
]):

8 Initialize an MTSFM with respect to T𝑘
1

9 for 𝑖 ← 2 to 𝑙 do
10 for each (𝑢, 𝑣, 𝑡) in the differential edge set between

T𝑘
𝑖−1 and T

𝑘
𝑖
do

11 if 𝑢 and 𝑣 is not connected inM then
12 Add an edge between 𝑢 and 𝑣 with the TTI

of T𝑘
𝑖
as a label inM

13 returnM

high compression ratio and fast compression speed. Secondly, the

computational complexity of finding theminimum-size set of chains

is lower than the minimum-weight set (approximately 𝑂 (𝑚1.5) vs.
𝑂 (𝑚3)) that will achieve the compactest index space. Note that,

although the parameterized linear time algorithm [5] is proposed,

the parameter is too large in our experiments. The pseudo code of

generating minimum chain cover is presented in Algorithm 2.

Example 7. As illustrated in Figure 2c, the lineage graph can be
partitioned to a minimum set of three chains marked by stripes in
different colors. The red number asides each node is its vertex number.
Thus, the total cost of this example cover is 10+10+7=27. There could
be different minimum chain covers with different total costs (e.g., 29
or 30). Thus, we claim our storage scheme is near compactest.

Lastly, each preserved vertex is supposed to have a particular

label to hint which temporal 𝑘-cores it belongs to. While, the label is

actually unnecessary because we preserve the temporal information

within MTSF and lookup structure in the next subsections.

2845



[3,3] [4,4]

[1,3] [3,4][3,3] [3,4][4,4]

[1,4][3,4] [2,5] [3,6][1,4][1,3]

[1,4][1,4]

[1,6][1,5]

[1,6]

[1,5][2,5] [2,6] [2,6][3,6]

[1,6][2,6]

[2,6]

[x1, y1]

An ordered list of TTIs of child nodes

[x, y]

TTI as node id Pointer to MTSF

Lineage relation

[x2, y2] ...

A lookup entry that represents a node in the lineage graph

An ordered list of TTIs of minimal distinct cores

Figure 6: Example of MTSF retrieval by lookup structure.

3.3 Edge Set Compression via MTSF
After compressing the vertex sets of distinct cores via lineage chain,

the next challenge becomes how to preserve the connectivity be-

tween vertices of distinct cores on each lineage chain. A straightfor-

ward solution is to preserve a minimal set of edges for each distinct

core, namely, Minimum Spanning Forest (MSF). However, such a

solution is not elegant due to the large number of duplicated edges

in MSFs of different distinct cores. Inspired by [42], we propose a

novel space-optimal structure called Minimum Temporal Spanning

Forest (MTSF) that merges and compresses the MSFs of distinct

cores on a lineage chain with respect to the following observation.

Theorem 3 (Lasting Connectivity). Given a lineage chain [T𝑘
1
,

T𝑘
2
, · · · , T𝑘

𝑙
], for any two connected vertices in T𝑘

𝑖
(1 ⩽ 𝑖 < 𝑙), they

are still connected in the subsequent distinct cores T𝑘
𝑖+1, · · · , T

𝑘
𝑙
.

Based on Theorem 3, MTSF incrementally maintains the con-

nectivity between vertices in evolutionary order. Specifically, an

MTSF considers the edges of each distinct core on a lineage chain

gradually from T𝑘
1
until T𝑘

𝑙
. Each edge will be added into the MTSF

only if it can connect two vertices that have not been connected.

Obviously, there is only one single path between each pair of con-

nected vertices in the final MTSF, so that the space cost of MTSF is

𝑂 ( |V𝑘
𝑙
|), which is the minimum because only preserving the MSF

of T𝑘
𝑙
requires the same space.

Moreover, to determine in which distinct cores two vertices are

connected, MTSF assigns a temporal label to each edge, which is

the TTI of the distinct core from which the edge is added. Thus, we

can decompress an MTSF to the MSF of a specific distinct core T𝑘
𝑖

by removing the edges whose labels are TTIs of T𝑘
𝑖+1, · · · , T

𝑘
𝑙
.

Example 8. Figure 5 demonstrates building an MTSF step-by-step
for the lineage chain 1 marked by blue color in Figure 2c. For each
distinct core on the chain, a box with its TTI shows the intermediate
MTSF that has merged its edges above the box. The newly added edges
in each box are highlighted by red color. Initially, we build an MSF
of T2

1
and assign a label [3, 3] to the edges. Then, for each edge in T2

2

Algorithm 4: EF-Index lookup.
Input: The query time interval [𝑡𝑠, 𝑡𝑒]
Output: The MTSF of lineage chain that contains the

distinct core whose time zone contains [𝑡𝑠, 𝑡𝑒]
1 [𝑡𝑠′, 𝑡𝑒′] ← a minimal TTI contained by [𝑡𝑠, 𝑡𝑒] in entrance

2 while [𝑡𝑠′, 𝑡𝑒′] is not null do
3 Jump to the index entry whose id is [𝑡𝑠′, 𝑡𝑒′]
4 M ← the link to MTSF

5 [𝑡𝑠′, 𝑡𝑒′] ← a TTI contained by [𝑡𝑠, 𝑡𝑒] in entry’s list

6 returnM

but not in T2
1
like (𝑣6, 𝑣8, 1), we check whether the two vertices 𝑣6 and

𝑣8 have been connected, and add an edge with a label [1, 3] between
them into the MTSF if not. In contrast, the edge (𝑣8, 𝑣9, 2) will not be
added because there is already a path between 𝑣8 and 𝑣9.

The pseudo code of building MTSF is presented in Algorithm 3.

The result MTSF could be different with respect to the order of

input edges, while not hindering the space-optimality of MTSF and

the time-optimality of searching MTSF.

When the differential edge sets between distinct cores are avail-

able, the computational complexity of SingleChain() function is

𝑂 ( |E𝑘
𝑙
| · log∗ |V𝑘

𝑙
|) by using an optimized Union-Find structure [11]

to maintain MTSF. Note that, a tricky part of building MTSF is the

computation of differential edge sets, whose trivial implementation

is inefficient. Algorithm 3 exploits the TCD algorithm [44], which

deletes the differential edges between distinct cores decrementally,

to address it with limited resource. When the resource is unlimited,

a simple parallel execution of SingleChain() function also works.

3.4 Lookup Structure
Since the vertices and the connectivity between them in all temporal

𝑘-cores can be compressed into a set of MTSFs, the design of EF-

Index comes to the last mile. That is, for a TCCS instance with a

query time interval [𝑡𝑠, 𝑡𝑒], mapping it to the distinct core whose

time zone contains [𝑡𝑠, 𝑡𝑒] and then to the MTSF of the lineage

chain that contains the distinct core, so that the result component

can be obtained from the MTSF.

However, the efficient implementation of mapping is non-trivial.

Although determining whether the query time interval belongs to

a time zone is not complex due to Property 1, the number of time

zones is normally sub-quadratic to the number of timestamps for a

temporal graph. Thus, it is inefficient to consider each time zone

individually for long-standing temporal graphs.

In this subsection, we propose a structure that leverages the lin-

eage graph to lookup the MTSF for a given time interval efficiently

with respect to the following observation on lineage graph.

Theorem 4 (All Roads Lead to Rome). In a lineage graph, there
exists at least one directed path from one node with TTI [𝑡𝑠, 𝑡𝑒] to
another node with TTI [𝑡𝑠′, 𝑡𝑒′] as long as [𝑡𝑠′, 𝑡𝑒′] ⊐ [𝑡𝑠, 𝑡𝑒], and
meanwhile the TTIs of other nodes on each path are subintervals of
[𝑡𝑠′, 𝑡𝑒′].

Based on Theorem 4, we can choose an arbitrary minimal distinct

core whose TTI is a subinterval of [𝑡𝑠, 𝑡𝑒], traverse the distinct

2846



Algorithm 5: Temporal 𝑘-core component search in MTSF.

Input: An MTSFM, a vertex 𝑢, and a time interval [𝑡𝑠, 𝑡𝑒]
Output: A temporal 𝑘-core component C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢)

1 C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢) ← {𝑢}
2 Initialize the search frontier with the edges of 𝑢 inM
3 while the search frontier is not empty do
4 (𝑣, 𝑣 ′, [𝑡𝑠′, 𝑡𝑒′]) ← the next edge in the search frontier

5 if [𝑡𝑠′, 𝑡𝑒′] ⊑ [𝑡𝑠, 𝑡𝑒] then
6 Add 𝑣 ′ to C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢)
7 Update the search frontier with the edges of 𝑣 ′ inM

8 return C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢)

cores whose TTIs are also subintervals of [𝑡𝑠, 𝑡𝑒] along the lineage

relation until such a distinct core does not exist, and the time zone

of the last distinct core certainly contains [𝑡𝑠, 𝑡𝑒].
As illustrated in Figure 6, the lookup structure is logically equiv-

alent to the lineage graph. Each node is an index entry comprised

of 1) the TTI of the corresponding distinct core as id, 2) a pointer

to the MTSF of the lineage chain that contains the distinct core,

and 3) an ordered list of TTIs of distinct cores with lineage to the

distinct core, each of which is linked to another node has the same

id. Moreover, for the minimal distinct cores without incoming edge

in the lineage graph, we use an additional node that only has the

ordered TTI list to link them, so that this special node is actually

an entrance of the lookup structure. The pseudo code of lookup

operation is presented in Algorithm 4.

Example 9. As illustrated in Figure 6, the lookup path for a given
time interval [2, 6] is highlighted by bold lines. It starts at the entrance,
which contains two minimal TTIs [3, 3] and [4, 4] in its ordered list.
By a binary search, the TTI [3, 3] ⊏ [2, 6] is chosen. Note that, the
TTI [4, 4] ⊏ [2, 6] is also qualified, and the lookup paths from [4, 4]
will reach the same destination with respect to Theorem 4. Then, in
the entry with the id [3, 3], the TTI [3, 4] ⊏ [2, 6] is chosen. Such
a process stops when the entry with the id [2, 6] is reached, because
none of the TTIs in its ordered list is a subinterval of [2, 6]. Lastly, the
MTSF pointer (marked by green color) in the last entry is returned.

Algorithm 4 converges within at most 𝑑 iterations, where 𝑑

denotes the depth (namely, number of layers) of lineage graph.

In each iteration, the binary search takes 𝑂 (log 𝑝) time, where 𝑝

denotes the number of LTIs in a time zone (so that the length of TTI

list in an entry is 𝑝 + 1). Thus, the time complexity of Algorithm 4

is upper bounded by 𝑂 (𝑑 logmax𝑝). Since 𝑝 tends to be small

with respect to the size of lineage graph, Algorithm 4 retrieves the

matched MTSF in at most linear time to 𝑑 .

3.5 Time-Optimal TCCS Processing
For a specific 𝑘 , the complete EF-Index is composed of a lookup

structure pointing to a set of MTSFs. Accordingly, the online pro-

cessing of TCCS mainly has two steps, namely, retrieving an MTSF

from the index and searching for the component in the MTSF, as

illustrated in Figure 4. In this subsection, we present the concrete

principle and algorithm for searching MTSF.

Different from a static MTF, the connected vertices of an MTSF

are not connected for all time, and some vertices in an MTSF may

even not exist in a number of distinct cores from the head of chain.

For example, as illustrated in Figure 5, although all vertices are

connected in the finalMTSF, 𝑣10 does not exist and the other vertices

are divided into two connected components in the distinct core

with the TTI [1, 4]. Thus, returning the connected component that

contains the given vertex in a retrieved MTSF could be incorrect.

Instead, we can find the result component from a retrieved MTSF

with respect to the following observation on MTSF.

Theorem 5 (Constrained Connectivity). For a distinct coreT𝑘

with the TTI [𝑡𝑠, 𝑡𝑒] on a lineage chain C𝑘 , two vertices are connected
in T𝑘 , if and only if there exists a path between them in the MTSF of
C𝑘 and each edge label on the path is a subinterval of [𝑡𝑠, 𝑡𝑒].

Theorem 5 implies that, the connectivity between two vertices in

any T𝑘 can still be determined directly by the MTSF of lineage chain

containing T𝑘 , without spending extra time on decompressing the

MTSF to the MSF of T𝑘 . Specifically, we conduct a label-constrained
depth-first search from the given vertex in the retrieved MTSF.

The pseudo code is given in Algorithm 5. The time complexity is

𝑂 (∑︁
𝑣∈C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢 )

degM (𝑣)), where degM (𝑣) is the degree of vertex
𝑣 in the MTSFM. Obviously, the search is guaranteed to be optimal,

since the size of search space is the same as MSF.

Example 10. To find the component containing the vertex 𝑣8 in
a distinct core with the TTI [1, 3], we search the MTSF illustrated
in Figure 5. For the two neighbors of 𝑣8, 𝑣10 is excluded because
[1, 5] ⋢ [1, 3], and 𝑣6 is included because [1, 3] ⊑ [1, 3]. Then,
for the two neighbors of 𝑣6, 𝑣4 is excluded because [1, 6] ⋢ [1, 3],
and 𝑣5 is included because [3, 3] ⊑ [1, 3]. Lastly, the component
{𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9} will be found, which can be verified in Figure 2a.

4 INDEX MAINTENANCE
4.1 Dynamic Graph and Maintenance Task
In real-world applications, a temporal graph tends to be updated

dynamically over time. A basic assumption of dynamic graph is that,

a set of edges with an incremental timestamp (which represents the

current time) are added into the graph for each update. We do not

consider deleting edges or inserting edges with elapsed timestamps

because the history should not be changed.

Therefore, for a temporal graph G, we represent an update to it

as a finite set of new edges with the timestamp 𝑛 + 1, where 𝑛 is the

latest timestamp in G and the edges could connect the vertices in

V or new vertices. The updated temporal graph is denoted by G′
= (V′, E′), whereV′ is the union ofV and new vertices and E′
is the union of E and new edges. Then, for an EF-Index of G with

respect to a specific 𝑘 and a given update, we address the problem

of maintaining the up-to-date EF-Index of G′ incrementally.

As illustrated in Figure 4, the pipeline of EF-Index construction

mainly involves the generation of four objects, namely, lineage

graph, lineage chain cover, MTSF and lookup structure. In particular,

the lookup structure can be trivially maintained with respect to the

updated lineage graph and MTSF. Thus, we present the methods of

updating lineage graph, lineage chain cover and MTSF in the rest

subsections respectively. Note that, this maintenance mechanism

2847



ts

te

1

2

3

4

5

2346 5

[2,6]

[1,6]

[2,5]

[1,5] [1,4] [1,3]

[3,3]

[3,3]

[4,4] [4,4]

[3,4]

[3,4][3,4]

[4,4]

[2,7]

[1,7]

7

[3,6][3,6]

[4,4]

Expanded time zone

New time zone

Old interval

New interval

(a) Updated time zones.

[1,6]

[1,5]

[1,4]

[1,3]

[2,5] [3,6]

[2,6]

[3,4]

[3,3] [4,4]

10

10

9

3

10 7

10

7

3 4

Lineage chain 1

Lineage chain 2

Lineage chain 3

[1,7]

[2,7]

10

10

(b) Updated lineage chain cover.

Figure 7: An example of updating the lineage graph of G for
adding edges {(𝑣9, 𝑣10, 7), (𝑣10, 𝑣11, 7)} to G.

can be easily extended to handle a batch of new edges with multiple

timestamps like 𝑛 + 1, 𝑛 + 2, · · · together.

4.2 Maintaining Lineage Graph
From the perspective of topology, a set of new edges may lead to

the evolution of some distinct cores in G, which further changes the
lineage graph composed of distinct cores and their lineage relation.

However, it is complicated to trace which distinct cores will evolve

and how they will evolve. Thus, we still address the maintenance

of lineage graph from the perspective of time.

The new edges added at time 𝑛 + 1 give birth to 𝑛 + 1 new time

intervals like [𝑡𝑠, 𝑛 + 1] (1 ⩽ 𝑡𝑠 ⩽ 𝑛 + 1). For example, as illustrated

in Figure 7a, the new time intervals marked by grey color will

appear, if new edges like (𝑣9, 𝑣10, 7) and (𝑣10, 𝑣11, 7) are added to

the graph in Figure 2a. Note that, not each new time interval can

induce a temporal 𝑘-core, such as [5, 7], [6, 7] and [7, 7], thereby
being omitted. Thus, the problem turns to identifying new time

zones and getting their distinct cores, and then capturing the new

lineage relation.

4.2.1 Time Zone Re-identification. Running the OTCD* algorithm

(line 1 in Algorithm 1) on the updated temporal graph is a straight-

forward but not efficient way of re-identifying time zones. To ac-

celerate the re-identification, we propose an incremental algorithm

with respect to the following observation.

Theorem 6 (Zone Isolation). For an existing time zone of G, it
can only be expanded for updating G to G′ if it is adjacent to new
time intervals, which means the maximum end time of its LTIs is 𝑛.
The time zones isolated from new time intervals will never change.

Intuitively, Theorem 6 implies that, the new time interval [𝑡𝑠, 𝑛+
1] is either in a new time zone or merged into an existing adjacent

time zone. Specifically, if the end time of its TTI is 𝑛 + 1, it belongs
to a new time zone, which means adding new edges results in the

evolution of distinct cores of adjacent time zones. Otherwise, the

distinct core of adjacent time zone cannot evolve, and thereby it is

merged into the adjacent time zone.

Example 11. As illustrated in Figure 7a, there are four valid new
time intervals [1, 7], [2, 7], [3, 7] and [4, 7] marked by grey color. The
first two with TTIs [1, 7] and [2, 7] induce new temporal 𝑘-cores, since
none TTI of old temporal 𝑘-cores can have the end time 7. Thus, they
form new time zones marked by red frame. The last two with TTIs

Algorithm 6: Lineage graph maintenance.

Input: The updated graph G′ and the lineage graph G𝑘

Output: The updated lineage graph of G′
1 𝑡𝑠 ← 1

2 T𝑘 ← TCD ( [𝑡𝑠, 𝑛 + 1], 𝑘,G′)
3 while 𝑡𝑠 ⩽ 𝑛 + 1 do // Identify new time zones

4 [𝑡𝑠′, 𝑡𝑒′] ← TTI of T𝑘

5 if 𝑡𝑒′ < 𝑛 + 1 then // Global Pruning
6 merge rest new intervals to adjacent time zones

7 break

8 if 𝑡𝑠 < 𝑡𝑠′ then // Local Pruning
9 𝑡𝑠 ← 𝑡𝑠′

10 Add a distinct core T𝑘 to G𝑘

11 if T′ is not empty then
12 Add a lineage (T𝑘 ,T′) in G𝑘

13 [𝑡𝑠′′, 𝑡𝑒′′] ← TTI of T𝑘
[𝑡𝑠,𝑛] got from lookup structure

14 Add a lineage from the distinct core whose TTI is

[𝑡𝑠′′, 𝑡𝑒′′] to T𝑘 in G𝑘

15 𝑡𝑠 ← 𝑡𝑠 + 1, T′ ← T𝑘

16 T𝑘
[𝑡𝑠,𝑛+1] ← TCD( [𝑡𝑠, 𝑛 + 1], 𝑘,T𝑘 )

17 return G𝑘

[3, 6] and [4, 4] definitely induce the identical temporal 𝑘-cores to that
of old time interval, and thus are merged into the adjacent old time
zones marked by black frame according to Theorem 6, respectively. As
a result, there are two new nodes marked by red color in the updated
lineage graph illustrated in Figure 7b.

Thus, we can run a revised OTCD* algorithm only for the new

time intervals. Specifically, we enumerate the new time intervals

in ascending order of 𝑡𝑠 , and induce their temporal 𝑘-cores by TCD

operation decrementally. Moreover, two pruning rules are proposed

to optimize the algorithm. The first one called local pruning is

essentially equivalent to the “rectangle pruning” of OTCD*, and

the second one called global pruning is even more aggressive for

stopping the algorithm immediately with respect to Theorem 6.

Local pruning. During the enumeration, if the TTI [𝑡𝑠′, 𝑡𝑒′]
of the current interval [𝑡𝑠, 𝑛 + 1] satisfies 𝑡𝑠 < 𝑡𝑠′ and 𝑡𝑒′ = 𝑛 + 1,
the following intervals [𝑡𝑠 + 1, 𝑛 + 1], · · · , [𝑡𝑠′, 𝑛 + 1] are skipped,
because they all have the same TTI [𝑡𝑠′, 𝑡𝑒′].

Global pruning. During the enumeration, if the TTI [𝑡𝑠′, 𝑡𝑒′]
of the current interval [𝑡𝑠, 𝑛 + 1] satisfies 𝑡𝑒′ < 𝑛 + 1, all following
intervals are skipped, since each of them can either be merged into

the adjacent old time zone or induce none temporal 𝑘-core.

The above pruning rules guarantee that each new distinct core is

induced exactly once and the existing distinct cores are not needed

to be induced again except the one that triggers global pruning.

4.2.2 Lineage Regeneration. According to Definition 7, the lineage

to a time zone is determined by its CTIs. Thus, we categorize the

new lineage into the following three types, and derive the CTIs for

each type respectively. 1) The new lineage to new time zones. A

new time zone has at most one LTI [𝑡𝑠, 𝑛 + 1], and thus can have

2848



one valid CTI, namely, [𝑡𝑠 − 1, 𝑛 + 1] if 𝑡𝑠 > 1 or none if 𝑡𝑠 = 1. 2)

The new lineage to expanded time zones. Interestingly, this kind

of lineage does not exist at all, because the expanded time zones

have no valid new CTI. 3) The new lineage to other time zones.

Obviously, only the distinct cores of time zones that have adjacent

new time zones will evolve to new distinct cores. Thereby, for each

new time zone Z𝑘
𝑗
with a TTI [𝑡𝑠′, 𝑡𝑒′], we only need to figure out

which time zone Z𝑘
𝑖
the adjacent interval [𝑡𝑠′, 𝑡𝑒′ − 1] belongs to

due to Property 3, and generate a new lineage (Z𝑘
𝑖
,Z𝑘

𝑗
). In summary,

we have the following formal inference.

Theorem 7 (Lineage Backtracking). For each new distinct core
T𝑘
𝑖
with the TTI [𝑡𝑠, 𝑛 + 1] and LTI [𝑡𝑠′, 𝑛 + 1], there exists the new

lineage (T𝑘
𝑙
,T𝑘

𝑖
) always and (T𝑘

𝑖
,T𝑘

𝑗
) if 𝑡𝑠′ > 1, where the TTI of T𝑘

𝑙

is the same as T𝑘
[𝑡𝑠,𝑛] and the TTI of T

𝑘
𝑗
is [𝑡𝑠′ − 1, 𝑛 + 1].

Example 12. As illustrated in Figure 7a, the new time zone with
the TTI [1, 7] has two new lineage to the adjacent old time zone with
the TTI [1, 6] and the adjacent new time zone with the TTI [2, 7]
respectively. While, the new time zone with the TTI [2, 7] have only
one new lineage to the adjacent old time zone with the TTI [2, 6].
Moreover, the CTIs of the expanded time zones with the TTIs [3, 6]
and [4, 4] do not change ([2, 6] and [3, 4] respectively), so that there
is no new lineage to them. Finally, there are three new edges marked
by red color in the updated lineage graph illustrated in Figure 7b.

Lastly, the complete procedure of updating the lineage graph

is presented in Algorithm 6. In fact, we combine the time zone

re-identification and the lineage regeneration in one pass according

to Theorem 7, thereby reducing redundant computation mostly.

4.3 Maintaining Lineage Chain Cover and MTSF
After updating the lineage graph, we propose a heuristic method to

update the lineage chain cover incrementally. It not only incurs few

computation, and also can reuse the intermediate results (namely,

differential edge sets) of Algorithm 6 to facilitate the construction

of new MTSF. Although the updated cover is not guaranteed to

be the minimum, we can use a daemon process to re-partition the

chains when there is few search request in practice.

Specifically, we create a new chain with all new distinct cores,

since they are naturally chained according to Theorem 7. Moreover,

since the head of new chain certainly has lineage to an old distinct

core, we check whether the old one is the tail of a chain in the cover,

and if so merge these two chains to reduce the size of updated chain

cover.

Example 13. As illustrated in Figure 7b, the new distinct cores
marked by red color can form a new chain through the new lineage
also marked by red color between them. The cost of new chain is 10.
Moreover, since the new distinct core with the TTI [2, 7] has lineage to
the old distinct core with the TTI [2, 6], which is the tail of old chain
marked by green stripe, we merge the new chain to the old chain. As
a result, the final increased cost is reduced to 10 − 10 = 0.

Then, we only need to create or update one MTSF, since the

updated lineage chain cover only contains one new or updated

chain. Thus, we build a newMTSF of the new chain or incrementally

extend the MTSF of an old chain by only using the SingleChain()

103 104 105 106 107

Unique edge number

102

103

104

105

106

107

108

T
im

e
s
ta

m
p
 n

u
m

b
e
r

MathOverflow

Wiktionary edits (tn)

Youtube

Wiki-talk temporal

Figure 8: The distribution of temporal graphs from SNAP
and KONECT projects. The dashed lines remark medians.

Table 2: The statistics of test temporal graphs.

G |V| |E | 𝑛 days |E |/𝑛 days/𝑛

Wiktionary 882 2.7K 2.5K 4.9K 1 2

Math-day 24.7K 390.0K 2.4K 2.4K 166 1

Wikitalk-day 1.1M 6.1M 2.2K 2.3K 2.7K 1

Youtube 3.2M 9.4M 203 225 46.2K 1

Math-day-2K 21.4K 343.3K 2.0K 2.0K 172 1

Math-5K 612 5.0K 5.0K 36 1 0.007

function but not the full Algorithm 3. As mentioned above, the

computation of differential edge sets (line 5 in Algorithm 3) between

adjacent distinct cores in the new chain can be obtained by line 16

in Algorithm 6 without notable extra cost. Thus, the time cost of

maintaining MTSF is only bounded by the number of edges of the

largest new distinct core.

Lastly, to update the lookup structure, we simply add entries

pointing to the new or updated MTSF for the new distinct cores,

and then add links between entries with respect to the new lineage.

5 EXPERIMENT
In this section, we conduct experiments to evaluate EF-Index on a

Windows machine with 2.20GHz CPU and 64GB RAM. The algo-

rithms are implemented with C++ Standard Template Library.

5.1 Dataset
Firstly, we conduct an empirical study on 52 temporal graph datasets

from the widely-used SNAP [20] and KONECT [18] projects, and

show the distribution with respect to both unique edge number and

timestamp number in Figure 8. Most temporal graphs in the red

area have time densities almost equal to 1, namely, the average

number of unique edges for each timestamp. However, due to the

coarser time granularity (day or year but not second), a few of

temporal graphs in the green area have extraordinary time densities.

Based on the observations, we choose representative datasets (red

cycles) from each quadrant, and compose diverse temporal graphs

for experiments, the statistics of which are given in Table 2.

Note that, the temporal graphs like Math and Wikitalk have

millions of timestamps in seconds, and thus building EF-Index

or PHC-Index on the original graphs is not only too costly and

also unreasonable in practice. If the user expects communities that

emerge during several months, the time granularity would better

2849



Table 3: The space cost (in MByte) and statistics of EF-Index.

G, 𝑘𝑚𝑎𝑥
EF- 𝑘 = ⌈% of 𝑘𝑚𝑎𝑥 ⌉
Index 90% 80% 70% 60% 50%

Wiktionary

|T𝑘 | 3.3K 29.3K 83.9K 183.6K 410.4K

|C𝑘 | 48 173 289 455 714

8 space 0.4 2.9 8.1 17.5 39

Math-day

|T𝑘 | 115.7K 357.9K 616.1K 975.6K 1.38M

|C𝑘 | 252 399 699 1017 1306

78 space 13.5 38.3 66.7 106.8 154.2

Wikitalk-day

|T𝑘 | 0.2M 0.4M 0.6M 0.9M 1.1M

|C𝑘 | 192 372 545 676 800

124 space 27.1 62.7 105.2 154.5 216.1

Youtube

|T𝑘 | 0.2K 1.6K 3.7K 6.3K 9.2K

|C𝑘 | 9 29 47 66 93

88 space 0.3 1.7 5.5 14.5 33.4

be day, week or month, since the indexing overhead increases

sub-quadratically to the number of timestamps. For example, we

compose Math-day and Wikitalk-day by grouping timestamps by

day. In contrast, if the user expects communities that emerge during

a few of seconds or minutes, we can divide the history of temporal

graphs into a sequence of short periods with hundreds or thousands

of original timestamps in seconds, so that the index of each period

can be built efficiently. For example, Math-5K is a projected graph

of Math containing only the first five thousands timestamps.

5.2 Evaluation of Index Construction
We report the space and time costs of building EF-Index in this

subsection. Since each graph has a different maximum value of 𝑘

(denoted by 𝑘𝑚𝑎𝑥 ), we choose the ceilings of 90%, 80%, 70%, 60%

and 50% of 𝑘𝑚𝑎𝑥 as the values of 𝑘 to build indexes for each graph

(the first four) respectively.

Firstly, the space costs and related statistics are shown in Table 3.

We have the followingmajor observations. 1) The compression ratio

of EF-Index, which can be roughly evaluated by 2|C𝑘 |/𝑛(𝑛 + 1),
is mostly on the order of 10

−4
or 10

−5
for vertex and even better

for edge. Especially for the graphs with thousands of timestamps,

there are millions of temporal 𝑘-cores that are finally compressed

to hundreds of MTSFs. Even the the compression ratio of distinct

cores, namely, |C𝑘 |/|T𝑘 | is averagely on the order of 10
−3
. 2) Due

to the significant semantic compression, the raw space costs we

report are between 0.3MB and 216.1MB for the index of a specific 𝑘 .

The fewer chains and the smaller graphs, the less space. Moreover,

the existing syntactic compression algorithms can still be applied to

further reduce the space cost. 3)With the decrease of cohesiveness𝑘 ,

the degree of discretization of temporal 𝑘-core evolution described

by Theorem 1 decreases, and thus the number of distinct cores |T𝑘 |
increases without exceeding 𝑛(𝑛 + 1)/2, which further results in

the increase of lineage chain cover size and index space.

Moreover, the time costs are shown in Figure 9. In particular, we

compare two strategies of MTSF construction named All-in-One

(Algorithm 3) and One-by-One (which computes the differential

edge sets for each chain independently). We have the following

observations. 1) Due to time-topology isomorphic computation,

building the lineage graph (Algorithm 1) is feasible even for large-

scale graphs like Youtube, though it is still the most time-consuming

Table 4: Basic information of forty test instances of TCCS.

G, 𝑢, 𝑡𝑠 Varied cohesiveness 𝑘 Varied time span 𝑡𝑒 − 𝑡𝑠
𝑡𝑒 𝑘 |C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢) | id 𝑘 𝑡𝑒 |C𝑘[𝑡𝑠,𝑡𝑒 ] (𝑢) | id

2000

2 245 1

2

500 60 6

Wiktionary 3 116 2 1000 148 7

1 4 81 3 1500 192 8

1 5 65 4 2000 245 9

6 39 5 2500 291 10

500

27 653 11

25

100 76 16

Math-day 32 534 12 200 261 17

1 37 439 13 300 456 18

1 42 359 14 400 584 19

47 220 15 500 715 20

500

10 162 21

5

100 23 26

Wikitalk-day 12 140 22 200 45 27

45 14 112 23 300 138 28

1 16 96 24 400 235 29

18 77 25 500 369 30

20

30 8045 31

30

10 7783 36

Youtube 35 5442 32 15 7873 37

4 40 3295 33 20 8045 38

1 45 2183 34 25 8245 39

50 855 35 30 8437 40

part of indexing. 2) Computing the minimum lineage chain cover

(Algorithm 2) takes only a little indexing time. 3) Like space cost,

the time cost of Algorithm 3 is correlated to the size of chain cover

and the scale of graph. Wiktionary is the smallest graph and costs

only 10
0
-10

2
secs. Math-day is larger, and Youtube is even larger

but has less chains, so that they cost 10
2
-10

3
secs. Wikitalk-day is

large and also has a lot of chains, so that it costs 10
3
-10

4
secs. 4) As

expected, All-in-One outperforms One-by-One remarkably.

5.3 Evaluation of Index Maintenance
To simulate the real-world graph updates, we set up experiments on

Math-5K andMath-day-2K with different graph scales and time den-

sities respectively. Specifically, for each of the next 100 timestamps

in the original Math (or Math-day), we derive the set of edges with

this timestamp as an update of Math-5K (or Math-day-2K). Then,

we keep maintaining the EF-Index incrementally for the updates.

The time cost of each index maintenance and the total number

of time zones in each updated graph are shown in Figure 11. We

have the following observations. 1) The maximum time cost of

maintaining the EF-Index is less than 0.4 sec for tiny Math-5K and

13 sec for large Math-day-2K, while their updating frequencies are 1

sec and 1 day respectively. Thus, EF-Index can indeed be maintained

in real-time if a balance between the graph scale and the update

frequency is achieved. 2) Each index maintenance has a basic cost

of updating lineage graph (Algorithm 6). For Math-5K, the cost is

about 0.05 sec. 3) There is no new time zone after most updates of

Math-5K and thereby nomore time cost other than updating lineage

graph, because the time density is nearly one edge per timestamp

in Math. In contrast, since the time granularity is day but not sec

in Math-day-2K, the high time density leads to constant changes of

time zone, so that the deviation of maintenance time costs is small.

5.4 Evaluation of Search Efficiency
We compose the forty TCCS instances shown in Table 4 for testing

search efficiency, which combines different graphs, cohesiveness

2850



90 80 70 60 50

100

101

102

103

10-1

T
im

e 
(s

)

k / kmax (%)

 Alg3 (All-in-One)  Alg3 (One-by-One) 

 Alg2  Alg1

(a) Wiktionary

90 80 70 60 50

102

103

101

T
im

e 
(s

)

k / kmax (%)

 Alg3 (All-in-One)  Alg3 (One-by-One) 

 Alg2  Alg1

(b) Math-day

90 80 70 60 50

104

103

T
im

e 
(s

)

k / kmax (%)

 Alg3 (All-in-One)  Alg3 (One-by-One) 

 Alg2  Alg1

(c) Wikitalk-day

90 80 70 60 50

103

104

102

T
im

e 
(s

)

k / kmax (%)

 Alg3 (All-in-One)   Alg3 (One-by-One)

 Alg2  Alg1

(d) Youtube

Figure 9: Time costs of building EF-Index.

1

(2)

2

(3)

3

(4)

4

(5)

5

(6)

10- 5

10- 4

10- 3

10- 2

T
im

e 
(s

)

Query id / k

 EF  PHC  OL

(a) Wiktionary, varied 𝑘 .

11

(27)

12

(32)

13

(37)

14

(42)

15

(47)

10- 5

10- 4

10- 3

10- 2

10- 1

100

T
im

e 
(s

)

Query id / k

 EF  PHC  OL

(b) Math-day, varied 𝑘 .

21

(10)

22

(12)

23

(14)

24

(16)

25

(18)

10- 5

10- 4

10- 3

10- 2

10- 1

T
im

e 
(s

)

Query id / k

 EF  PHC  OL

(c) Wikitalk-day, varied 𝑘 .

31

(30)

32

(35)

33

(40)

34

(45)

35

(50)

10- 4

10- 3

10- 2

10- 1

100

101

102

T
im

e 
(s

)

Query id / k

 EF  PHC  OL

(d) Youtube, varied 𝑘 .

6

(500)

7

(1000)

8

(1500)

9

(2000)

10

(2500)

10- 5

10- 4

10- 3

10- 2

T
im

e 
(s

)

Queryid / te

 EF  PHC  OL

(e) Wiktionary, varied 𝑡𝑒 .

16

(100)

17

(200)

18

(300)

19

(400)

20

(500)

10- 5

10- 4

10- 3

10- 2

10- 1

100

T
im

e 
(s

)

Queryid / te

 EF  PHC  OL

(f) Math-day, varied 𝑡𝑒 .

26

(100)

27

(200)

28

(300)

29

(400)

30

(500)

10- 5

10- 4

10- 3

10- 2

10- 1

T
im

e 
(s

)

Queryid / te

 EF  PHC  OL

(g)Wikitalk-day, varied 𝑡𝑒 .

36

(10)

37

(15)

38

(20)

39

(25)

40

(30)

10- 3

10- 2

10- 1

100

101

102

T
im

e 
(s

)

Queryid / te

 EF  PHC  OL

(h) Youtube, varied 𝑡𝑒 .

Figure 10: The response time of TCCS algorithms on forty test instances.

5000 5020 5040 5060 5080 5100
0.0

0.1

0.2

0.3

0.4
 Updating time

 Number of time zone

New timestamp

U
p
d
at

in
g
 t

im
e 

(s
)

5.7E+4

5.8E+4

5.9E+4

6.0E+4

6.1E+4

6.2E+4

5.6E+4

6.3E+4

N
u
m

b
er

 o
f 

ti
m

e 
zo

n
e

(a) Math-5K.

2000 2020 2040 2060 2080 2100

2

4

6

8

10

12

0

14
 Updating time

 Number of time zone

New timestamp

U
p
d
at

in
g
 t

im
e 

(s
)

1.00E+6

1.02E+6

1.04E+6

1.06E+6

1.08E+6

1.10E+6

1.12E+6

9.80E+5

1.14E+6

 N
u
m

b
er

 o
f 

ti
m

e 
zo

n
e

(b) Math-day-2K.

Figure 11: Time costs of maintaining EF-Index.

and time spans. The sizes of their result communities are also pro-

vided. For each query, we use three algorithms to process it respec-

tively, including our EF-Index based search (Algorithms 4 and 5),

PHC-Index based search (the latest indexing method [45]), and

Online search implemented by using TCD operation (the latest

online querying method [44]) to get the temporal 𝑘-core for search.

Figure 10 shows the response time of three algorithms on the

forty TCCS instances. We have the following observations. 1) EF-

Index is at least 10
1
-10

3
times faster than the state-of-the-art PHC-

Index on all instances, and PHC-Index is generally faster than On-

line. Because PHC-Index can only assist to filter the vertices not

in results, and EF-Index directly provides the minimum set of ver-

tices needed to be traversed. Even for the large-scale datasets like

Youtube, EF-Index can still process each query only in less than

10
−3

sec. 2) The response time of EF-Index decreases monotonically

with increasing 𝑘 , since the time cost of MTSF search (Algorithm 5)

is mainly determined by the size of results, which correlates to 𝑘 in-

versely. 3) The response time of EF-Index increases monotonically

with increasing 𝑡𝑒 , since the result component grows gradually

with expanding time interval. Note that, the lookup time (Algo-

rithms 4) that varies with respect to the size of lineage graph has

been included in the response time of EF-Index.

6 RELATEDWORK
There are typically two categories of 𝑘-core studies on temporal

graphs, with respect to the direct or indirect temporal condition.

The direct condition is normally a specific time interval, and thus

the related studies focus on efficiency or scalability of general query

processing, such as those [12, 41, 44, 45, 47] mentioned in Section 1.

The indirect condition involves a variety of time-relevant metrics,

such as interaction frequency [1, 41], persistence [21], burstiness [4,

31], periodicity [32], continuity [23] and reliability [37], and thus

the related studies focus on devising dedicated solutions.

To the best knowledge we have, our work is the first study to

address component search in the first category (while [27] belongs

to the other). In addition, many other works [3, 6–8, 10, 15, 17, 25,

35, 36, 43, 46] on non-temporal 𝑘-core or other kinds of community

also provide valuable insights.

7 CONCLUSION
To address the TCCS problem, we design a novel EF-Index based

on the lineage relation in temporal 𝑘-core evolution, and propose a

time-topology isomorphic computation paradigm to obtain lineage

relation efficiently. EF-Index guarantees the same size of search

space as directly searching an MSF for a given TCCS intance and

thereby is time-optimal. Meanwhile, EF-Index only stores a min-

imum set of compactest MTSFs and thereby is near compactest.

Moreover, EF-Index can be maintained incrementally in real time

following dynamical graph updates.

ACKNOWLEDGMENTS
This work was supported by the Research Fund of the National

Natural Science Foundation of China (No. 61202036, 62272353, and

62276193), the Guangzhou Key Laboratory of Big Data and In-

telligent Education (No. 201905010009), and the Research Grants

Council of Hong Kong, China (No. 14205520).

2851



REFERENCES
[1] Wen Bai, Yadi Chen, and Di Wu. 2020. Efficient temporal core maintenance of

massive graphs. Information Sciences 513 (2020), 324–340. https://doi.org/10.

1016/j.ins.2019.11.003

[2] Xinwei Cai, Xiangyu Ke, Kai Wang, Lu Chen, Tianming Zhang, Qing Liu, and

Yunjun Gao. 2023. Efficient Temporal Butterfly Counting and Enumeration on

Temporal Bipartite Graphs. arXiv:2306.00893 [cs.DS]

[3] Yankai Chen, Jie Zhang, Yixiang Fang, Xin Cao, and Irwin King. 2021. Effi-

cient community search over large directed graphs: An augmented index-based

approach. In Proceedings of the Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence. International Joint Conferences
on Artificial Intelligence Organization, 3544–3550. https://doi.org/10.24963/ijcai.

2020/490

[4] Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online

density bursting subgraph detection from temporal graphs. Proceedings of the
VLDB Endowment 12, 13 (2019), 2353–2365. https://doi.org/10.14778/3358701.

3358704

[5] Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I.

Tomescu. 2022. Sparsifying, Shrinking and Splicing for Minimum Path Cover

in Parameterized Linear Time. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 359–376. https://doi.org/10.

1137/1.9781611977073.18

[6] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu. 2017.

Effective and efficient attributed community search. The VLDB Journal 26, 6
(2017), 803–828. https://doi.org/10.1007/s00778-017-0482-5

[7] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.

Effective community search over large spatial graphs. Proceedings of the VLDB
Endowment 10, 6 (2017), 709–720. https://doi.org/10.14778/3055330.3055337

[8] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29, 1 (2020), 353–392. https://doi.org/10.1007/s00778-019-00556-x

[9] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng Hu.

2018. Effective and efficient community search over large directed graphs. IEEE
Transactions on Knowledge and Data Engineering 31, 11 (2018), 2093–2107.

[10] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and efficient community search over large heterogeneous information

networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854–867. https:

//doi.org/10.14778/3380750.3380756

[11] Michael Fredman and Michael Saks. 1989. The cell probe complexity of dynamic

data structures. In Proceedings of the twenty-first annual ACM symposium on
Theory of computing. Association for Computing Machinery, 345–354. https:

//doi.org/10.1145/73007.73040

[12] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco

Gullo. 2018. Mining (maximal) span-cores from temporal networks. In Pro-
ceedings of the 27th ACM international Conference on Information and Knowl-
edge Management. Association for Computing Machinery, 107–116. https:

//doi.org/10.1145/3269206.3271767

[13] Zhongqiang Gao, Chuanqi Cheng, Yanwei Yu, Lei Cao, Chao Huang, and Junyu

Dong. 2022. Scalable Motif Counting for Large-scale Temporal Graphs. In Pro-
ceedings of the 38th IEEE International Conference on Data Engineering (ICDE).
IEEE, 2656–2668. https://doi.org/10.1109/ICDE53745.2022.00244

[14] John E. Hopcroft and Richard M. Karp. 1973. An 𝑛5/2
Algorithm for Maximum

Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231. https:

//doi.org/10.1137/0202019

[15] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. Association for

Computing Machinery, 1311–1322. https://doi.org/10.1145/2588555.2610495

[16] Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang,

Jiarong Xu, Lei Chen, and Michalis Vazirgiannis. 2022. Dgraph: A large-scale

financial dataset for graph anomaly detection. Advances in Neural Information
Processing Systems 35 (2022), 22765–22777.

[17] Md Saiful Islam, Mohammed Eunus Ali, Yong-Bin Kang, Timos Sellis, Farhana M

Choudhury, and Shamik Roy. 2022. Keyword aware influential community

search in large attributed graphs. Information Systems 104 (2022), 101914. https:

//doi.org/10.1016/j.is.2021.101914

[18] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd international conference on world wide web. Association for Computing

Machinery, 1343–1350. https://doi.org/10.1145/2487788.2488173

[19] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over Time:

Densification Laws, Shrinking Diameters and Possible Explanations. In Pro-
ceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining. Association for Computing Machinery, New York, NY,

USA, 177–187. https://doi.org/10.1145/1081870.1081893

[20] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[21] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persis-

tent community search in temporal networks. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, 797–808. https://doi.org/10.1109/

ICDE.2018.00077

[22] Tianpeng Li, Wenjun Wang, Pengfei Jiao, Yinghui Wang, Ruomeng Ding, Huam-

ing Wu, Lin Pan, and Di Jin. 2022. Exploring Temporal Community Struc-

ture via Network Embedding. IEEE Transactions on Cybernetics (2022), 1–13.
https://doi.org/10.1109/TCYB.2022.3168343

[23] Yuan Li, Jinsheng Liu, Huiqun Zhao, Jing Sun, Yuhai Zhao, and Guoren Wang.

2021. Efficient continual cohesive subgraph search in large temporal graphs.

World Wide Web 24, 5 (2021), 1483–1509. https://doi.org/10.1007/s11280-021-

00917-z

[24] Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian. 2021. Hier-

archical core maintenance on large dynamic graphs. Proceedings of the VLDB
Endowment 14, 5 (2021), 757–770. https://doi.org/10.14778/3446095.3446099

[25] ChenhaoMa, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan,Wenjie Zhang,

and Xuemin Lin. 2020. Efficient algorithms for densest subgraph discovery on

large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. Association for Computing Machinery, 1051–

1066. https://doi.org/10.1145/3318464.3389697

[26] Naoki Masuda and Renaud Lambiotte. 2020. A Guide to Temporal Networks.
World Scientific Publishing Europe Ltd.

[27] Lutz Oettershagen, Athanasios L. Konstantinidis, and Giuseppe F. Italiano.

2023. Temporal Network Core Decomposition and Community Search.

arXiv:2309.11843 [cs.SI]

[28] Lutz Oettershagen, Nils M. Kriege, Claude Jordan, and Petra Mutze. 2023. A

Temporal Graphlet Kernel For Classifying Dissemination in Evolving Networks.

In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM).
Society for Industrial and Applied Mathematics, 19–27. https://doi.org/10.1137/

1.9781611977653.ch3

[29] Lutz Oettershagen, Petra Mutzel, and Nils M. Kriege. 2022. Temporal Walk

Centrality: Ranking Nodes in Evolving Networks. In Proceedings of the ACM
Web Conference 2022. Association for Computing Machinery, 1640–1650. https:

//doi.org/10.1145/3485447.3512210

[30] Noujan Pashanasangi and C. Seshadhri. 2021. Faster and Generalized Temporal

Triangle Counting, via Degeneracy Ordering. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. Association for

Computing Machinery, 1319–1328. https://doi.org/10.1145/3447548.3467374

[31] Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Lu Qin, and Zhiwei Zhang.

2022. Mining Bursting Core in Large Temporal Graphs. Proceedings of the VLDB
Endowment 15, 13 (2022), 3911–3923. https://doi.org/10.14778/3565838.3565845

[32] Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Weihua Yang, and Lu

Qin. 2020. Periodic communities mining in temporal networks: Concepts and

algorithms. IEEE Transactions on Knowledge and Data Engineering 34, 8 (2020),

3927–3945. https://doi.org/10.1007/978-3-031-25158-0_38

[33] Ursula Redmond and Pádraig Cunningham. 2013. Temporal Subgraph Iso-

morphism. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. IEEE, 1451–1452. https:

//doi.org/10.1145/2492517.2492586

[34] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal

Graphs. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI). AAAI Press, 4605–4612. https://doi.org/10.24963/ijcai.2019/

640

[35] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. Association for

Computing Machinery, 939–948. https://doi.org/10.1145/1835804.1835923

[36] Renjie Sun, Chen Chen, Xiaoyang Wang, Ying Zhang, and Xun Wang. 2020.

Stable community detection in signed social networks. IEEE Transactions on
Knowledge and Data Engineering 34, 10 (2020), 5051–5055. https://doi.org/10.

1109/TKDE.2020.3047224

[37] Yifu Tang, Jianxin Li, Nur AlHasanHaldar, ZiyuGuan, Jiajie Xu, and Chengfei Liu.

2022. Reliable Community Search in Dynamic Networks. Proceedings of the VLDB
Endowment 15, 11 (2022), 2826–2838. https://doi.org/10.14778/3551793.3551834

[38] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Shunyang Li. 2022.

Discovering hierarchy of bipartite graphs with cohesive subgraphs. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 2291–2305.

[39] Dong Wen, Bohua Yang, Ying Zhang, Lu Qin, Dawei Cheng, and Wenjie Zhang.

2021. Span-Reachability Querying in Large Temporal Graphs. The VLDB Journal
31, 4 (nov 2021), 629–647. https://doi.org/10.1007/s00778-021-00715-z

[40] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.

Path Problems in Temporal Graphs. Proceedings of the VLDB Endowment 7, 9
(may 2014), 721–732. https://doi.org/10.14778/2732939.2732945

[41] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and

Hejun Wu. 2015. Core decomposition in large temporal graphs. In 2015 IEEE
International Conference on Big Data (Big Data). IEEE, 649–658. https://doi.org/

10.1109/BigData.2015.7363809

2852

https://doi.org/10.1016/j.ins.2019.11.003
https://doi.org/10.1016/j.ins.2019.11.003
https://arxiv.org/abs/2306.00893
https://doi.org/10.24963/ijcai.2020/490
https://doi.org/10.24963/ijcai.2020/490
https://doi.org/10.14778/3358701.3358704
https://doi.org/10.14778/3358701.3358704
https://doi.org/10.1137/1.9781611977073.18
https://doi.org/10.1137/1.9781611977073.18
https://doi.org/10.1007/s00778-017-0482-5
https://doi.org/10.14778/3055330.3055337
https://doi.org/10.1007/s00778-019-00556-x
https://doi.org/10.14778/3380750.3380756
https://doi.org/10.14778/3380750.3380756
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/3269206.3271767
https://doi.org/10.1145/3269206.3271767
https://doi.org/10.1109/ICDE53745.2022.00244
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1016/j.is.2021.101914
https://doi.org/10.1016/j.is.2021.101914
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/1081870.1081893
http://snap.stanford.edu/data
https://doi.org/10.1109/ICDE.2018.00077
https://doi.org/10.1109/ICDE.2018.00077
https://doi.org/10.1109/TCYB.2022.3168343
https://doi.org/10.1007/s11280-021-00917-z
https://doi.org/10.1007/s11280-021-00917-z
https://doi.org/10.14778/3446095.3446099
https://doi.org/10.1145/3318464.3389697
https://arxiv.org/abs/2309.11843
https://doi.org/10.1137/1.9781611977653.ch3
https://doi.org/10.1137/1.9781611977653.ch3
https://doi.org/10.1145/3485447.3512210
https://doi.org/10.1145/3485447.3512210
https://doi.org/10.1145/3447548.3467374
https://doi.org/10.14778/3565838.3565845
https://doi.org/10.1007/978-3-031-25158-0_38
https://doi.org/10.1145/2492517.2492586
https://doi.org/10.1145/2492517.2492586
https://doi.org/10.24963/ijcai.2019/640
https://doi.org/10.24963/ijcai.2019/640
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1109/TKDE.2020.3047224
https://doi.org/10.1109/TKDE.2020.3047224
https://doi.org/10.14778/3551793.3551834
https://doi.org/10.1007/s00778-021-00715-z
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.1109/BigData.2015.7363809
https://doi.org/10.1109/BigData.2015.7363809


[42] Haoxuan Xie, Yixiang Fang, Yuyang Xia, Wensheng Luo, and Chenhao Ma. 2023.

On Querying Connected Components in Large Temporal Graphs. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–27.

[43] Guotong Xue, Ming Zhong, Tieyun Qian, and Jianxin Li. 2024. PSA-GNN: An

augmented GNN framework with priori subgraph knowledge. Neural Networks
173 (2024), 106155. https://doi.org/10.1016/j.neunet.2024.106155

[44] Junyong Yang, Ming Zhong, Yuanyuan Zhu, Tieyun Qian, Mengchi Liu, and

Jeffrey Xu Yu. 2023. Scalable Time-Range 𝑘-Core Query on Temporal Graphs.

Proceedings of the VLDB Endowment 16, 5 (2023), 1168–1180. https://doi.org/10.

14778/3579075.3579089

[45] Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin.

2021. On querying historical k-cores. Proceedings of the VLDB Endowment 14, 11
(2021), 2033–2045. https://doi.org/10.14778/3476249.3476260

[46] Chen Zhang, Fan Zhang, Wenjie Zhang, Boge Liu, Ying Zhang, Lu Qin, and

Xuemin Lin. 2020. Exploring finer granularity within the cores: Efficient (k, p)-

core computation. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE). IEEE, 181–192. https://doi.org/10.1109/ICDE48307.2020.00023

[47] Ming Zhong, Junyong Yang, Yuanyuan Zhu, Tieyun Qian, Mengchi Liu, and Jef-

frey Xu Yu. 2023. A Unified and Scalable Algorithm Framework of User-Defined

Temporal (𝑘, X)-Core Query. To appear in IEEE Transactions on Knowledge

and Data Engineering. arXiv:2309.00361 [cs.DB]

2853

https://doi.org/10.1016/j.neunet.2024.106155
https://doi.org/10.14778/3579075.3579089
https://doi.org/10.14778/3579075.3579089
https://doi.org/10.14778/3476249.3476260
https://doi.org/10.1109/ICDE48307.2020.00023
https://arxiv.org/abs/2309.00361

	Abstract
	1 Introduction
	2 Theoretical Foundation
	2.1 Problem Formulation
	2.2 Review of Temporal k-Core Evolution
	2.3 New Lineage Relation and Lineage Graph

	3 Index Construction and Usage
	3.1 Overview
	3.2 Vertex Set Compression via Lineage Chain
	3.3 Edge Set Compression via MTSF
	3.4 Lookup Structure
	3.5 Time-Optimal TCCS Processing

	4 Index Maintenance
	4.1 Dynamic Graph and Maintenance Task
	4.2 Maintaining Lineage Graph
	4.3 Maintaining Lineage Chain Cover and MTSF

	5 Experiment
	5.1 Dataset
	5.2 Evaluation of Index Construction
	5.3 Evaluation of Index Maintenance
	5.4 Evaluation of Search Efficiency

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

