
Uldp-FL: Federated Learning with Across-Silo User-Level
Differential Privacy

Fumiyuki Kato*
Kyoto University

fumilemon79@gmail.com

Li Xiong
Emory University
lxiong@emory.edu

Shun Takagi
Kyoto University

shun021677@gmail.com

Yang Cao
Tokyo Institute of Technology

cao@c.titech.ac.jp

Masatoshi Yoshikawa
Osaka Seikei University

yoshikawa-mas@osaka-seikei.ac.jp

ABSTRACT

Differentially Private Federated Learning (DP-FL) has garnered at-
tention as a collaborative machine learning approach that ensures
formal privacy. Most DP-FL approaches ensure DP at the record-
level within each silo for cross-silo FL. However, a single user’s
data may extend across multiple silos, and the desired user-level
DP guarantee for such a setting remains unknown. In this study,
we present Uldp-FL, a novel FL framework designed to guaran-
tee user-level DP in cross-silo FL where a single user’s data may
belong to multiple silos. Our proposed algorithm directly ensures
user-level DP through per-user weighted clipping, departing from
group-privacy approaches. We provide a theoretical analysis of
the algorithm’s privacy and utility. Additionally, we improve the
utility of the proposed algorithm with an enhanced weighting strat-
egy based on user record distribution and design a novel private
protocol that ensures no additional information is revealed to the
silos and the server. Experiments on real-world datasets show sub-
stantial improvements in our methods in privacy-utility trade-offs
under user-level DP compared to baseline methods. To the best of
our knowledge, our work is the first FL framework that effectively
provides user-level DP in the general cross-silo FL setting.

PVLDB Reference Format:

Fumiyuki Kato, Li Xiong, Shun Takagi, Yang Cao, and Masatoshi
Yoshikawa. Uldp-FL: Federated Learning with Across-Silo User-Level
Differential Privacy. PVLDB, 17(11): 2826 - 2839, 2024.
doi:10.14778/3681954.3681966

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/Emory-AIMS/uldp-fl.

1 INTRODUCTION

Federated Learning (FL) [35] is a collaborative machine learning
(ML) scheme in which multiple parties train a single global model
without sharing training data. FL has attracted industry attention
[43, 44] as concerns about the privacy of training data have become

*Work partially done while visiting Emory University.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681966

Figure 1: In cross-silo FL, records belonging to the same user

can exist across silos, e.g., a user can use several credit card

companies. In this study, we investigate how to train models

satisfying user-level DP in this setting.

more serious, as exemplified by GDPR [19]. It should be noted
that FL itself does not provide rigorous privacy protection for the
trained model [41, 53]. Differentially Private FL (DP-FL) [16, 22]
further guarantees a formal privacy for trained models based on
differential privacy (DP) [12].

Although DP is the de facto standard in the field of statistical
privacy protection, it has a theoretical limitation. The standard
DP definition takes a single record as a unit of privacy. This can
easily break down in realistic settings where one user may pro-
vide multiple records, theoretically deteriorating the privacy loss
bound of DP. This can be intuitively understood from the following
example. User-level DP effectively protects privacy by restricting
the influence of multiple records from a single user (e.g., multi-
ple transactions in credit card history or one patient is diagnosed
with the same disease at multiple hospitals), preventing the dis-
closure of his/her distinctive patterns, i.e., features and/or trends.
This contrasts with record-level DP, which falls short in address-
ing the cumulative privacy risks associated with aggregating these
records. To address this, the notion of user-level DP has been studied
[4, 28, 31, 49]. In user-level DP, all records belonging to a single user
are considered as a unit of privacy, which is a stricter definition
than standard DP. We distinguish user-level DP from group-privacy
[13], which considers any 𝑘 records as privacy units. User-level DP
has also been studied in the FL context [15, 16, 22, 34, 36]. However,
these studies focus on the cross-device FL setting, where one user’s
data belongs to a single device only.

2826

https://doi.org/10.14778/3681954.3681966
https://github.com/Emory-AIMS/uldp-fl
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681966
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Cross-silo FL [30, 32, 33, 42] is a practical variant of FL in which
a relatively small number of silos (e.g., hospitals or credit card
companies) participate in training rounds. In cross-silo FL, unlike
in cross-device FL, a single user can have multiple records across
silos, as shown in Figure 1. Existing cross-silo DP-FL studies [30,
32, 33] have focused on record-level DP for each silo; user-level DP
across silos has not been studied. Therefore, an important research
question arises: How do we design an FL framework that guarantees
user-level DP across silos in cross-silo FL?

A baseline solution for guaranteeing user-level DP is to bound
user contributions (number of records per user) as in [4, 49] and then
utilize group-privacy property of DP [13]. Group-privacy simply
extends the indistinguishability of the record-level DP to multiple
records. We can convert any DP algorithm to group-privacy version
of DP (see Lemma 5, 6 later), which we formally define as Group DP
(GDP). However, this approach can be impractical due to the super-
linear privacy bound degradation of conversion to GDP and the
need to appropriately limit the maximum number of user records
(group size) in a distributed environment. In particular, the former
issue is a fundamental limitation for DP and highlights the need
to develop algorithms that directly satisfy user-level DP without
requiring conversion to GDP.

In this study, we present Uldp-FL, a novel cross-silo FL frame-
work, designed to directly ensure user-level DP through per-user
weighted clipping and an effective weighting strategy. Addition-
ally, we propose a novel private weighted aggregation protocol for
implementing the weighting algorithm. This protocol ensures the
private information of each silo is protected from both the server
and other silos. The limitation of previous methods that relied solely
on the Paillier cryptosystem for private weighted summation [3]
is that the raw data is visible to the party with the secret key. We
overcome this limitation by using a combination of several cryp-
tographic techniques such as Paillier, Secure Aggregation [7], and
Multiplicative blinding [9]. To the best of our knowledge, our work
is the first FL framework that effectively provides user-level DP
across silos in the general cross-silo FL setting (as in Figure 1).

The contributions of this work are summarized as follows:

• We propose the Uldp-FL framework and design baseline
algorithms capable of achieving user-level DP across silos.
The baseline algorithms limit the maximum number of
records per user and use group-privacy property of DP.

• We then propose ULDP-AVG/SGD algorithms that directly
satisfy user-level DP by implementing user-level weighted
clipping within each silo, effectively bounding user-level
sensitivity even when a single user may have unbounded
number of records across silos. We provide theoretical anal-
ysis, including privacy bound and convergence analysis.

• We evaluate our proposed method and baseline approaches
through comprehensive experiments on various real-world
datasets. The results underscore that our proposed method
yields superior trade-offs between privacy and utility com-
pared to the baseline approaches.

• We further design an effectivemethod by refining theweight-
ing strategy for individual user-level clipping bounds. Since

this approach may lead to additional privacy leaks, we de-
velop a novel private weighted aggregation protocol em-
ploying several cryptographic techniques. We evaluate the
extra computational overhead of the proposed private pro-
tocol using real-world benchmark scenarios.

2 BACKGROUND & PRELIMINARIES

2.1 Cross-silo Federated learning

In this work, we consider the following cross-silo FL scenario. We
have a central aggregation server and a set of silos 𝑆 participating
in all rounds. In each round, the server aggregates models from
all silos and then redistributes the aggregated models. Each silo
𝑠 ∈ 𝑆 optimizes a local model 𝑓𝑠 , which is the expectation of a loss
function 𝐹 (𝑥 ; 𝜉) that may be non-convex, where 𝑥 ∈ R𝑑 denotes
the model parameters and 𝜉 denotes the data sample, and the expec-
tation is taken over local data distribution D𝑠 . In cross-silo FL, we
optimize this global model parameter cooperatively across all silos.
Formally, the overarching goal in FL can be formulated as follows:

min
𝑥

{
𝑓 (𝑥) := 1

|𝑆 |
∑︁
𝑠∈𝑆

𝑓𝑠 (𝑥)
}
, 𝑓𝑠 (𝑥) := E𝜉∼D𝑠 𝐹 (𝑥 ; 𝜉) . (1)

Additionally, in our work, we have user set 𝑈 across all datasets
across silos, where each record belongs to one user 𝑢 ∈ 𝑈 , and
each user may have multiple records in one silo and across mul-
tiple silos. Each silo 𝑠 has local objectives for each user 𝑢, 𝑓𝑠,𝑢 :=
E𝜉∼D𝑠,𝑢

𝐹 (𝑥 ; 𝜉), where D𝑠,𝑢 is the data distribution of 𝑠 and 𝑢. In
round 𝑡 ∈ [𝑇] in FL, the global model parameter is denoted as 𝑥𝑡 .

Note that this modeling is clearly different from cross-device
FL in that there is no constraint that one user should belong to
one device. Records from one user can belong to multiple silos. For
example, the same customer may use several credit card compa-
nies, etc. Additionally, all silos participate in all training rounds,
unlike the probabilistic participation in cross-device FL [36], and
the number of silos |𝑆 | is small, around 2 to 100 [23].

2.2 Differential Privacy

Differential privacy. DP [12] is a rigorous mathematical privacy
definition that quantitatively evaluates the degree of privacy pro-
tection for outputs.

Definition 1 ((𝜖, 𝛿)-DP). A randomized mechanismM : D →
Z satisfies (𝜖, 𝛿)-DP if, for any two input databases 𝐷,𝐷′ ∈ D s.t.
𝐷′ differs from 𝐷 in at most one record and any subset of outputs
𝑍 ⊆ Z, it holds that

Pr[M(𝐷) ∈ 𝑍] ≤ exp(𝜖) Pr[M(𝐷′) ∈ 𝑍] + 𝛿. (2)

We call databases𝐷 and𝐷′ as neighboring databases. The maximum
difference of the output for any neighboring database is referred
to as sensitivity. We label the original definition as record-level DP
because the neighboring databases differ in only one record.
Rényi differential privacy. Rényi DP (RDP) [38] is a variant of
approximate DP based on Rényi divergence. RDP is preferable be-
cause it is easy to use for Gaussian mechanism [38] and has a tighter
bound than the standard composition theorems. The following lem-
mas give the bounds of the RDP for a typical mechanism and are
used to further convert it to an original DP bound.

2827

Definition 2 ((𝛼, 𝜌)-RDP [38]). Given a real number 𝛼 ∈ (1,∞)
and privacy parameter 𝜌 ≥ 0, a randomized mechanismM satisfies
(𝛼, 𝜌)-RDP if for any two neighboring datasets 𝐷,𝐷′ ∈ D s.t. 𝐷′ dif-
fers from𝐷 in atmost one record, we have that𝐷𝛼 (M(𝐷) | |M(𝐷′)) ≤
𝜌 where𝐷𝛼 (M(𝐷) | |M(𝐷′)) is the Rényi divergence betweenM(𝐷)
andM(𝐷′) and is given by

𝐷𝛼 (M(𝐷) | |M(𝐷 ′)) :=
1

𝛼 − 1
logE

[(
M(𝐷)
M(𝐷 ′)

)𝛼]
≤ 𝜌,

where the expectation is taken over the output ofM(𝐷).
Lemma 1 (RDP composition [38]). IfM1 satisfies (𝛼, 𝜌1)-RDP

andM2 satisfies (𝛼, 𝜌2), then their compositionM1 ◦M2 satisfies
(𝛼, 𝜌1 + 𝜌2)-RDP.

Lemma 2 (RDP to DP conversion [5]). IfM satisfies (𝛼, 𝜌)-RDP,
then it also satisfies (𝜌′, 𝛿)-DP for any 0 < 𝛿 < 1 such that

𝜌 ′ = 𝜌 + log 𝛼 − 1
𝛼
− log𝛿 + log𝛼

𝛼 − 1
.

Lemma 3 (RDP Gaussian mechanism [38]). If 𝑓 : 𝐷 → R𝑑 has
ℓ2-sensitivity Δ𝑓 , then the Gaussian mechanism 𝐺 𝑓 (·) := 𝑓 (·) +
N (0, 𝐼𝜎2Δ2

𝑓
) is (𝛼, 𝛼/2𝜎2)-RDP for any 𝛼 > 1.

Lemma 4 (RDP for sub-sampled Gaussian mechanism [48]).
Let 𝛼 ∈ N with 𝛼 ≥ 2 and 0 < 𝑞 < 1 be a ratio of sub-sampling
operation 𝑆𝑎𝑚𝑝𝑞 . Let 𝐺 ′𝑓 (·) := 𝐺 𝑓 ◦ 𝑆𝑎𝑚𝑝𝑞 (·) be a sub-sampled
Gaussian mechanism. Then, 𝐺 ′

𝑓
is (𝛼, 𝜌′ (𝛼, 𝜎))-RDP where

𝜌 ′ (𝛼, 𝜎) ≤ 1
𝛼 − 1

log
(
1 + 2𝑞2

(
𝛼

2

)
min {2(𝑒1/𝜎2 − 1), 𝑒1/𝜎2 }

+
𝛼∑︁
𝑗=3

2𝑞 𝑗
(
𝛼

𝑗

)
𝑒 𝑗 (𝑗−1)/2𝜎

2
)
.

In general, we can compute tighter numerical bounds alongwith the
closed-form upper bounds described above [39, 48]. In particular,
RDP computation frameworks such as Opacus [52] use analysis in
[39] with Poisson sampling on records.
Group differential privacy. To extend privacy guarantees to
multiple records, group-privacy [13] has been explored as a solution.
We refer to the group-privacy version of DP as Group DP (GDP).

Definition 3 ((𝑘, 𝜖, 𝛿)-GDP). A randomized mechanism M :
D → Z satisfies (𝑘, 𝜖, 𝛿)-GDP if, for any two input databases𝐷, 𝐷′ ∈
D, s.t.𝐷′ differs from𝐷 in at most 𝑘 records and any subset of outputs
𝑍 ⊆ Z, Eq. (2) holds.

GDP is a versatile privacy definition, as it can be applied to existing
DP mechanisms without modification.

To convert DP to GDP, it is known that any (𝜖, 0)-DP mechanism
satisfies (𝑘, 𝑘𝜖, 0)-GDP [13]. However, in the case of any 𝛿 > 0, 𝛿
increases super-linearly [24], leading to a much larger 𝜖 .

Lemma 5 (Group privacy conversion (record-level DP to
GDP) [24]). If 𝑓 is (𝜖, 𝛿)-DP, for any two input databases 𝐷, 𝐷′ ∈ D
s.t. 𝐷′ differs from 𝐷 in at most 𝑘 records and any subset of outputs
𝑍 ⊆ Z, it holds that

Pr[𝑓 (𝐷) ∈ 𝑍] ≤ exp(𝑘𝜖) Pr[𝑓 (𝐷′) ∈ 𝑍] + 𝑘𝑒 (𝑘−1)𝜖𝛿.
It means when 𝑓 is (𝜖, 𝛿)-DP, 𝑓 satisfies (𝑘, 𝑘𝜖, 𝑘 exp(𝑘−1)𝜖 𝛿)-GDP.

Also, we can compute GDP using group-privacy property of
Rényi DP [38]. First, we calculate the RDP of the algorithm, then
convert it to group version of RDP, and subsequently to GDP.

Figure 2: Group-privacy conversion results.

Lemma 6 (Group-privacy of RDP (record-level DP to GDP)
[38]). If 𝑓 : 𝐷 → R𝑑 is (𝛼, 𝜌)-RDP, 𝑔 : 𝐷′ → 𝐷 is 𝑘-stable and
𝛼 ≥ 2𝑘+1, then 𝑓 ◦ 𝑔 is (𝛼/2𝑘 , 3𝑘𝜌)-RDP.

Here, group-privacy property is defined using a notion of 𝑘-stable
transformation [37]. 𝑔 : 𝐷′ → 𝐷 is 𝑘-stable if 𝑔(𝐴) and 𝑔(𝐵) are
neighboring in 𝐷 implies that there exists a sequence of length 𝑐 + 1
so that 𝐷0 = 𝐴, ..., 𝐷𝑐 = 𝐵 and all (𝐷𝑖 , 𝐷𝑖+1) are neighboring in 𝐷′.
This privacy notion corresponds to (𝑘, ·, ·)-GDP in Definition 3.

Here, to highlight the significant privacy degradation of GDP, we
conduct a pre-experiment and show the converted privacy bounds
for increasing group sizes. Figure 2 illustrates a numerical com-
parison of the group-privacy conversion from DP to GDP with
normal DP (Lemma 5) and RDP (Lemma 6). To compute the final
GDP privacy bounds, we repeatedly run the Gaussian mechanism
with 𝜎 = 5.0 and a sampling rate of 0.01 for 105 iterations, em-
ulating a typical DP-SGD [1] (which is the common mechanism
for DP ML) setup. We use a fixed 𝛿 = 10−5 and vary the group
size 𝑘 = 1, 2, 4, 8, 16, 32, 64. To compute GDP, RDP for sub-sampled
Gaussian mechanisms is calculated according to [48]. We then com-
pute GDP using group-privacy of RDP by Lemma 6. For normal
DP, the computed RDP is converted to normal DP by Lemma 2, and
then to GDP by Lemma 5.

When converting from normal DP to GDP, computing the final 𝜖
at a fixed 𝛿 is challenging. In Lemma 2, the output 𝜖 (denoted as 𝜖𝑙2)
depends on the input 𝛿 (denoted as 𝛿𝑙2), and the final 𝛿 (denoted as
𝛿𝑙5) output by Lemma 5 depends on both 𝜖𝑙2 and 𝛿𝑙2. Therefore, we
repeatedly select 𝛿𝑙2 in a binary search manner, compute 𝜖𝑙2 and
𝛿𝑙2, and finally report the 𝜖 when the difference between 𝛿𝑙2 and
𝛿 = 10−5 is sufficiently small (accuracy by 10−8) as the 𝜖 of GDP1.
Note that this method does not guarantee achieving the optimal 𝜖
for the given 𝛿 , but it finds a reasonable 𝜖 .

In the figure, we plot various group sizes, 𝑘 , on the x-axis and 𝜖
of GDP at a fixed 𝛿 = 10−5 on the y-axis. Significantly, the results
indicate that as the group size 𝑘 increases, 𝜖 grows rapidly, high-
lighting a considerable degradation in the privacy bound of GDP.
For instance, with 𝜖 = 2.85 at record-level (𝑘 = 1), the value reaches
2100 for only 𝑘 = 32, and 11400 at 𝑘 = 64. While there might be
some looseness in the group-privacy conversion of RDP compared
to normal DP for some small group sizes, the difference is relatively

1The implementation is in the function get_normal_group_privacy_spent() in
https://github.com/Emory-AIMS/uldp-fl/blob/main/src/noise_utils.py

2828

https://github.com/Emory-AIMS/uldp-fl/blob/main/src/noise_utils.py

minor (roughly three times at most). The drastic change in normal
DP with large group size is due to the numerical instability in our
conversion procedure1. RDP’s conversion is easier to compute with
a fixed 𝛿 . Hence, we utilize RDP’s conversion in the experiments.

2.3 Differentially Private FL

DP has been applied to the FL paradigm, with the goal of ensuring
that the trained model satisfies DP. A popular DP variant in the con-
text of cross-device FL is user-level DP (also known as client-level
DP) [2, 16, 22]. Informally, this definition ensures indistinguisha-
bility for device participation and has demonstrated a favorable
privacy-utility trade-off if the number of clients are sufficient, even
with large-scale models [36]. These studies often employ secure
aggregation [6, 7] to mitigate the need for trust in other parties
during FL model training. This is achieved by allowing the server
and other silos to only access appropriately perturbed models after
aggregation, often referred to as Distributed DP [8, 22]. In particular,
shuffling-based variants have recently gained attention [8, 29, 46]
and are being deployed in FL [18], which also provides user-level
DP. All of these studies assume that a single device holds all records
for a single user, i.e., cross-device FL. However, in a cross-silo set-
ting, this definition does not extend meaningful privacy protection
to individual users when they possess multiple records across silos.

Another DP definition in cross-silo FL offers record-level DP
within each silo [30, 32, 33], referred to as Silo-specific sample-level
or Inter-silo record-level DP. These studies suggest that record-level
DP can guarantee user-level DP through group-privacy. However,
they cannot account for settings where a single user can have
records across multiple silos. As far as we know, no method exists
for training models that satisfy user-level DP in cross-silo FL where
a single user’s records can extend across multiple silos. More fine-
grained comparison between DP variants in FL can be seen in the
Appendix of our full paper [27].

3 ULDP-FL FRAMEWORK

3.1 Trust model and Assumptions

We assume that all (two or more) silos and an aggregation server
are semi-honest (or honest-but-curious). This is a typical assumption
in prior works [7, 45]. In our study, aggregation is performed using
secure aggregation to ensure that the server only gains access to
the model after aggregation [22]. All communications between the
server and silos are encrypted with SSL/TLS, and third parties with
the ability to snoop on communications cannot access any informa-
tion except for the final trained model. We assume that there is no
collusion, which is reasonable given that silos are socially separate
institutions (such as different hospitals or companies). Additionally,
in our scenario, we assume that record linkage [47] across silos has
already been completed, resulting in shared common user IDs. Both
the server and the silos are aware of the total number of users |𝑈 |
and the number of silos |𝑆 |. When user (device)-level sub-sampling
is employed for DP amplification, only the server is permitted to
know the sub-sampling results for each round [2, 22]. Note that all
these assumptions do not affect the privacy guarantees of the final
model released to external users.

3.2 Privacy definition

In contrast to GDP, which offers indistinguishability for any 𝑘

records, user-level DP [16, 28] provides a more reasonable user-level
indistinguishability regardless of the number of the records. While
[16] focuses solely on a cross-device FL context, we re-establish
user-level DP (ULDP) in the cross-silo setting as follows:

Definition 4 ((𝜖, 𝛿)-User-Level DP (ULDP)). A randomized
mechanismM : D → Z satisfies (𝜖, 𝛿)-ULDP if, for any two input
databases across silos 𝐷, 𝐷′ ∈ D, s.t. 𝐷′ differs from 𝐷 in at most one
user’s records, and any 𝑍 ⊆ Z, Eq. (2) holds.

The fundamental difference of user-level DP from record-level DP
lies in the definition of the neighboring databases. The user-level
neighboring database inherently defines user-level sensitivity. Ad-
ditionally, it is important to emphasize that the input database 𝐷
represents the comprehensive database spanning across silos.

If the number of records per user in the database is less than or
equal to 𝑘 , it is clear that GDP is a generalization of ULDP, and the
following proposition holds.

Proposition 1. If a randomized mechanismM is (𝑘, 𝜖, 𝛿)-GDP
with input database 𝐷 in which any user has at most 𝑘 records, the
mechanismM with input database 𝐷 also satisfies (𝜖, 𝛿)-ULDP.
One drawback of GDP is the challenge of determining the appro-
priate value for 𝑘 . Setting 𝑘 to the maximum number of records
associated with any individual user could lead to introducing ex-
cessive noise to achieve the desired privacy protection level. On
the other hand, if a smaller 𝑘 is chosen, the data of users with more
than 𝑘 records must be excluded from the dataset, potentially intro-
ducing bias and compromising model utility. In this context, while
several studies have analyzed the theoretical utility for a given
𝑘 [28, 31] and theoretical considerations for determining 𝑘 have
been partially explored in [4], it still remains an open problem. In
contrast, ULDP does not necessitate the determination of 𝑘 . Instead,
it requires designing a specific ULDP algorithm.

3.3 Baseline methods: ULDP-NAIVE/GROUP

Table 1 summarizes symbols used in later algorithms in the paper.
Please note that all omitted proofs for the following theorems can
be found in the Appendix of the full paper [27].
ULDP-NAIVE.We begin by describing two baseline methods. The
first method is ULDP-NAIVE (described in Algorithm 1), a straight-
forward approach using substantial noise. It works similarly to
DP-FedAVG [36], where each silo locally optimizes with multiple
epochs, computes the model update (delta), clips by 𝐶 , and adds
Gaussian noise. The original DP-FedAVG adds Gaussian noise with
variance 𝜎2𝐶2. In ULDP-NAIVE, since a single user may contribute
to the model delta of all silos, the sensitivity across silos is 𝐶 |𝑆 | for
the aggregated model delta, hence it needs to scale up the noise
as 𝜎2𝐶2 |𝑆 | (Line 14) such that the aggregated result from |𝑆 | silos
satisfies required DP. Compared to DP-FedAVG, which focuses on
cross-device FL, the number of model delta samples (number of
silos as opposed to the number of devices) in our setting is very
small, resulting in larger variance. Thus, ULDP-NAIVE satisfies
ULDP but at a significant sacrifice in utility. The aggregation is
performed using secure aggregation and is assumed to be so in the
following algorithms.

2829

Table 1: Notation Table for Algorithms.

Symbol Description

𝜂𝑙 Local learning rate.
𝜂𝑔 Global learning rate.
𝜎 Noise parameter. (Noise multiplier.)
𝐶 Clipping bound.
𝑇 Total number of rounds.
𝑄 Number of local epochs.

𝑤𝑠,𝑢 Weight for user 𝑢 in silo 𝑠 .
W Matrix of weights for users and silos.

W = (w1, ...,w |𝑆 |): matrix with weight for user 𝑢
and silo 𝑠 , and ∀𝑢 ∈ 𝑈 ,𝑤𝑠,𝑢 ∈ w𝑠 and

∑
𝑠∈𝑆 𝑤𝑠,𝑢 = 1

𝑥0 Initial model.
𝑥𝑡 Model at round 𝑡 .
Δ𝑠𝑡 Model update from silo 𝑠 at round 𝑡 .
𝑔
𝑠,𝑢
𝑡,𝑞 Stochastic gradient for user 𝑢 in silo 𝑠 at round 𝑡 and

epoch 𝑞.
Δ𝑠,𝑢𝑡 Model update for user 𝑢 in silo 𝑠 at round 𝑡 .
Δ̃𝑠,𝑢𝑡 Clipped and weighted model update for user 𝑢 in

silo 𝑠 at round 𝑡 .
𝑔
𝑠,𝑢
𝑡 Stochastic gradient for user 𝑢 in silo 𝑠 at round 𝑡 .
𝑔
𝑠,𝑢
𝑡 Clipped and weighted gradient for user 𝑢 in silo 𝑠 at

round 𝑡 .
N(0, 𝑏) Gaussian noise vector with mean 0 and variance 𝑏.

𝑞 User-level sub-sampling probability.

Algorithm 1 ULDP-NAIVE
Input: 𝜂𝑙 , 𝜂𝑔: local and global learning rates, 𝜎 : noise parameter,

𝐶: clipping bound, 𝑇 : #rounds, 𝑄 : #local epochs
1: procedure Server
2: Initialize model 𝑥0
3: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
4: for each silo 𝑠 ∈ 𝑆 do

5: Δ𝑠𝑡 ← Client(𝑥𝑡 ,𝐶, 𝜎, 𝜂𝑙)
6: 𝑥𝑡+1 ← 𝑥𝑡 + 𝜂𝑔 1

|𝑆 |
∑
𝑠∈𝑆 Δ

𝑠
𝑡

7: procedure Client(𝑥𝑡 ,𝐶, 𝜎, 𝜂𝑙)
8: 𝑥𝑠 ← 𝑥𝑡
9: for epoch 𝑞 = 0, 1, . . . , 𝑄 − 1 do
10: Compute stochastic gradients 𝑔 (𝑠)𝑡,𝑞 ⊲ E[𝑔 (𝑠)𝑡,𝑞] = ∇𝑓𝑠 (𝑥𝑠)
11: 𝑥𝑠 ← 𝑥𝑠 − 𝜂𝑙𝑔

(𝑠)
𝑡,𝑞

12: Δ𝑡 ← 𝑥𝑡 − 𝑥𝑠
13: Δ̃𝑡 ← Δ𝑡 ·min

(
1, 𝐶
∥Δ𝑡 ∥2

)
⊲ clipping with 𝐶

14: Δ′𝑡 ← Δ̃𝑡 +N(0, 𝐼𝜎2𝐶2 |𝑆 |) ⊲ based on user-level sensitivity
15: return Δ′𝑡

Theorem 1. For any 0 < 𝛿 < 1 and 𝛼 > 1, given noise multi-
plier 𝜎 , ULDP-NAIVE satisfies (𝜖 = 𝑇𝛼

2𝜎2 + log ((𝛼 − 1)/𝛼) − (log𝛿 +
log𝛼)/(𝛼 − 1), 𝛿)-ULDP after𝑇 rounds. (The actual 𝜖 is numerically
calculated by selecting the optimal 𝛼 so that 𝜖 is minimized.)

ULDP-GROUP-𝑘 . We introduce a second baseline, ULDP-GROUP-
𝑘 , utilizing group DP (described in Algorithm 2), which limits each

Algorithm 2 ULDP-GROUP-𝑘
Input: 𝜂𝑙 , 𝜂𝑔: local and global learning rates, 𝜎 : noise parameter,

𝐷𝑠 : training dataset of silo 𝑠 , 𝐶 : clipping bound, 𝑇 : #rounds, 𝑄 :
#local epochs, 𝑘 : group size, 𝛾 : sampling rate, B: flags for limit
contribution s.t. for each matrix b𝑠 ∈ B if 𝑏𝑠

𝑢,𝑖
= 1 the user 𝑢’s

𝑖-th record in silo 𝑠 is used, otherwise the record is excluded
1: procedure Server
2: Initialize model 𝑥0
3: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
4: for each silo 𝑠 ∈ 𝑆 do

5: Δ𝑠𝑡 ← Client(𝑥𝑡 ,𝐶, 𝜎, 𝜂𝑙 , 𝛾, b𝑠)
6: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜂𝑔 1

|𝑆 |
∑
𝑠∈𝑆 Δ

𝑠
𝑡

7: procedure Client(𝑥𝑡 ,𝐶, 𝜎, 𝜂𝑙 , 𝛾, b𝑠)
8: 𝐷′𝑠 ← filter 𝐷𝑠 by b𝑠

9: 𝑥
𝑄
𝑡 ←DP-SGD(𝜃𝑡 , 𝐷′𝑠 ,𝐶, 𝜎, 𝜂𝑙 , 𝛾,𝑄) ⊲ Algorithm 1 in [1]

10: Δ𝑡+1 ← 𝑥
𝑄
𝑡 − 𝑥𝑡

11: return Δ𝑡+1

user’s records to a given 𝑘 while satisfying (𝑘, 𝜖, 𝛿)-GDP. As Propo-
sition 1 implies, this ensures (𝜖, 𝛿)-ULDP. The algorithm achieves
GDP by firstly performing DP-SGD [1] (Line 9) and converting from
record-level DP within each silo. The core principle of the algorithm
is similar to that of [30]. Before executing DP-SGD, it is essential
to constrain the number of records per user to 𝑘 (Line 8). This is
accomplished by employing flags, denoted as B, which indicate the
records to be used for training (i.e., 𝑏𝑠𝑢, 𝑖 = 1), with a total of 𝑘
records for each user across all silos (i.e., ∀𝑢,∑𝑠,𝑖 𝑏𝑠𝑢,𝑖 ≤ 𝑘). These
flags must be consistent across all rounds. We disregard the privacy
concerns in generating these flags as this is a baseline method.

Theorem 2. If flags B is given privately, for any 0 < 𝛿 < 1, any
integer 𝑘 to the power of 2 and 𝛼 > 2𝑘+1, ULDP-GROUP-𝑘 satisfies
(3𝑘𝜌 + log ((𝛼2𝑘 − 1)/

𝛼
2𝑘) − (log𝛿 + log

𝛼
2𝑘)/(

𝛼
2𝑘 −1), 𝛿)-ULDP where

𝜌 = max𝑠∈𝑆 𝜌𝑠 s.t. for each silo 𝑠 ∈ 𝑆 , DP-SGD of local subroutine
satisfies (𝛼, 𝜌𝑠)-RDP.

While ULDP-GROUP shares algorithmic similarities with ex-
isting record-level DP cross-silo FL frameworks [30], it presents
weaknesses from several perspectives: (1) Significant degradation of
privacy bounds due to the group-privacy conversion (DP to GDP).
(2) The challenge of determining an appropriate group size 𝑘 [4],
which requires substantial insights into data distribution across
silos and might breach the trust model. The determination of the
flags B can also be problematic. (3) The use of group-privacy to
guarantee ULDP necessitates removing records from the training
dataset, potentially introducing bias and causing utility degradation
[4, 14]. Our next proposed method aims to address these challenges.

3.4 Advanced methods: ULDP-AVG/SGD

To directly satisfy ULDP without using group-privacy, we design
ULDP-AVG and ULDP-SGD (described in Algorithm 3) . These
are the same as the relationship between (DP-)FedAVG and (DP-
)FedSGD [36]. In most cases, FedAVG is better in communication-
cost and privacy-utility trade-offs. FedSGDmight be preferable only
when we have fast networks. In the following analysis, we focus

2830

Algorithm 3 ULDP-AVG / ULDP-SGD
Input: 𝜂𝑙 , 𝜂𝑔: local and global learning rates, 𝜎 : noise parame-

ter, 𝐶: clipping bound, 𝑇 : total round, 𝑄 : #local epochs, W =

(w1, ...,w |𝑆 |): matrix with weight for user 𝑢 and silo 𝑠 , and
∀𝑢 ∈ 𝑈 ,𝑤𝑠,𝑢 ∈ w𝑠 and

∑
𝑠∈𝑆 𝑤𝑠,𝑢 = 1

1: procedure Server
2: Initialize model 𝑥0
3: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
4: for each silo 𝑠 ∈ 𝑆 do

5: Δ𝑠𝑡 ← Client(𝑥𝑡 ,w𝑠 ,𝐶, 𝜎, 𝜂𝑙)
6: 𝑥𝑡+1 ← 𝑥𝑡 + 𝜂𝑔 1

|𝑈 | |𝑆 |
∑
𝑠∈𝑆 Δ

𝑠
𝑡

7: /* Client algorithm for ULDP-AVG */

8: procedure Client(𝑥𝑡 ,w𝑠 ,𝐶, 𝜎, 𝜂𝑙) ⊲ For ULDP-AVG
9: for user 𝑢 ∈ 𝑈 do ⊲ per-user training with D𝑠,𝑢
10: 𝑥

𝑠,𝑢
𝑡 ← 𝑥𝑡

11: for epoch 𝑞 = 0, 1, . . . , 𝑄 − 1 do
12: Compute stochastic gradients 𝑔𝑠,𝑢𝑡,𝑞
13: ⊲ E[𝑔𝑠,𝑢𝑡,𝑞] = ∇𝑓𝑠,𝑢 (𝑥

𝑠,𝑢
𝑡)

14: 𝑥
𝑠,𝑢
𝑡 ← 𝑥

𝑠,𝑢
𝑡 − 𝜂𝑙𝑔

𝑠,𝑢
𝑡,𝑞

15: Δ𝑠,𝑢𝑡 ← 𝑥
𝑠,𝑢
𝑡 − 𝑥𝑡

16: Δ̃𝑠,𝑢𝑡 ← 𝑤𝑠,𝑢 · Δ𝑠,𝑢𝑡 ·min
(
1, 𝐶
∥Δ𝑠,𝑢

𝑡 ∥2

)
17: Δ𝑠𝑡 ←

∑
𝑢∈𝑈 Δ̃𝑠,𝑢𝑡 + N(0, 𝐼𝜎2𝐶2/|𝑆 |)

18: return Δ𝑠𝑡
19: /* Client algorithm for ULDP-SGD */

20: procedure Client(𝑥𝑡 ,w𝑠 ,𝐶, 𝜎) ⊲ For ULDP-SGD
21: for user 𝑢 ∈ 𝑈 do

22: Compute stochastic gradients 𝑔𝑠,𝑢𝑡
23: 𝑔

𝑠,𝑢
𝑡 ← 𝑤𝑠,𝑢 · 𝑔𝑠,𝑢𝑡 ·min

(
1, 𝐶
∥𝑔𝑠,𝑢𝑡 ∥2

)
24: 𝑔𝑠𝑡 ←

∑
𝑢∈𝑈 𝑔

𝑠,𝑢
𝑡 + N(0, 𝐼𝜎2𝐶2/|𝑆 |)

25: return 𝑔𝑠𝑡

on ULDP-AVG since it essentially generalizes ULDP-SGD which
has only a single SGD step and shares the gradients.

Intuitively, ULDP-AVG limits each user’s contribution to the
global model by training the model for each user in each silo and
performing per-user per-silo clipping across all silos with globally
prepared clipping weights. In each round, ULDP-AVG computes
model delta using a per-user dataset in each silo to achieve ULDP:
selecting a user (Line 9), training local model with 𝑄 epochs using
only the selected user’s data (Lines 11-14), calculating model delta
(Line 15) and clipping the delta (Line 16). These clipped deltas
Δ𝑠,𝑢𝑡 are then weighted by𝑤𝑠,𝑢 (Line 16) and summed for all users
(Line 16). As long as the weights 𝑤𝑠,𝑢 satisfy constraints ∀𝑢 ∈ 𝑈 ,
𝑤𝑠,𝑢 > 0 and

∑
𝑠∈𝑆 𝑤𝑠,𝑢 = 1, each user’s contribution, or sensitivity,

to the delta aggregation
∑
𝑠∈𝑆 Δ

𝑠
𝑡 is limited to𝐶 at most. This allows

ULDP-AVG to provide user-level privacy. We will discuss better
ways to determineW later, but a simple way is to set𝑤𝑠,𝑢 = 1/|𝑆 |.
Compared to DP-FedAVG, ULDP-AVG increases computational cost
due to per-user local training iteration but keeps communication
costs the same, which is likely acceptable in the cross-silo FL setting.

Algorithm 4 ULDP-AVG with user-level sub-sampling
Input: 𝜂𝑙 , 𝜂𝑔 , 𝜎 ,𝐶 ,𝑇 ,𝑄 ,W, 𝑞: user-level sub-sampling probability
1: procedure Server
2: Initialize model 𝑥0
3: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
4: 𝑈𝑡 ← Poisson sampling from𝑈 with probability 𝑞
5: for each silo 𝑢 ∈ 𝑈𝑡 do

6: for each silo 𝑠 ∈ 𝑆 do

7: 𝑤𝑠,𝑢 ← 0 ⊲ set 0 if user is not sampled.
8: for each silo 𝑠 ∈ 𝑆 do

9: Δ𝑠
𝑡 ← Client(𝑥𝑡 ,w𝑠 ,𝐶, 𝜎, 𝜂𝑙) ⊲ same as ULDP-AVG

10: 𝑥𝑡+1 ← 𝑥𝑡 + 𝜂𝑔 1
𝑞 |𝑈 | |𝑆 |

∑
𝑠∈𝑆 Δ𝑠

𝑡

Figure 3: An intuitive illustration of the difference between

ULDP-NAIVE and ULDP-AVG. In ULDP-NAIVE, every user

can contribute to whole model deltas. In ULDP-AVG, one

user’s contribution is limited to a small portion, i.e., 1/|𝑈 | of
the whole model delta, which reduces user-level sensitivity.

Theorem 3. For any 0 < 𝛿 < 1 and𝛼 > 1, given noise multiplier𝜎 ,
ULDP-AVG satisfies (𝜖 = 𝑇𝛼

2𝜎2 + log ((𝛼 − 1)/𝛼) − (log𝛿 + log𝛼)/(𝛼−
1), 𝛿)-ULDP after 𝑇 rounds.

Remark 1. For further privacy amplification, we introduce user-
level sub-sampling, which can make RDP smaller according to
sub-sampled amplification theorem (Lemma 4) [48]. User-level sub-
sampling must be done globally across silos. This sub-sampling
can be implemented in the central server by controlling the weight
W for each round, i.e., all users not sub-sampled are set to 0 as
shown in Algorithm 4. This may violate privacy against the server
but does not affect the DP when the final model is provided exter-
nally as discussed in C.3 of [2]. Our following experimental results
demonstrate the effectiveness of user-level sub-sampling.

Comparison to baselines. Compared to ULDP-GROUP, ULDP-
AVG satisfies ULDP without group-privacy, thus avoiding the large
privacy bound caused by group-privacy conversion, the need to
choose a group size 𝑘 , and removing records. ULDP-AVG can be
used for an arbitrary number of records per user. Also, we illus-
trate the intuitive difference between ULDP-NAIVE and ULDP-
AVG in Figure 3. Fundamentally, per-user clipping can be viewed
as cross-user FL (instead of cross-silo FL), ensuring that each user
contributes only to their user-specific portion of the aggregated
model updates (i.e.,

∑
𝑠∈𝑆 Δ̃

𝑠,𝑢
𝑡) instead of the entire aggregated up-

date (i.e.,
∑
𝑠∈𝑆 Δ

𝑠
𝑡), thereby reducing sensitivity (as illustrated in

2831

Figure 3). The user contributes only 1/|𝑈 | of the entire aggregated
model update, which is especially effective when |𝑈 | is large, as in
cross-silo FL (i.e., |𝑆 | ≪ |𝑈 |). Moreover, computing the model delta
at the user level leads to lower Gaussian noise variances due to large
|𝑈 |, while it also introduces new biases. The overhead due to such
biases can also be seen in the convergence analysis, motivating a
better weighting strategy to reduce this overhead.
Convergence analysis (sketch)

2
. Here, we present a high-level

and intuitive summary of the convergence characteristics of ULDP-
AVG, compared to existingmethods. ULDP-AVGpartially recaptures
the standard convergence bounds of FedAVG by considering user-
silo pairs as participants and by setting the global and local learning
rates under specific conditions. However, compared to FedAVG, an
additional noise term for DP and a bias due to user-silo granularity
are introduced, which hinder convergence. The former, a noise
term, is also present in DP-FedAVG and can diminish as the number
of users increases. The latter bias term can be minimized through
the strategic weighting of weights in ULDP-AVG. Thus, a more
creative use of weights, as will be explained in the next section,
could result in improved convergence.

4 ENHANCEDWEIGHTING AND PRIVATE

WEIGHTING PROTOCOL

4.1 The weighting protocol

The bias we observed in the convergence analysis on ULDP-AVG
(described in detail in Remark in Appendix of the full paper [27]) is
due to the fact that we employed uniform clipping weights in the
ULDP-AVG algorithm (Algorithm 3 Line 16), i.e., for any 𝑠 ∈ 𝑆 and
𝑢 ∈ 𝑈 , we set 𝑤𝑠,𝑢 = 1/|𝑆 |, as a simple solution without privacy
violation. Now we propose an enhanced weighting strategy that
aims to reduce the bias. We set a weight𝑤𝑜𝑝𝑡𝑠,𝑢 for 𝐶𝑠,𝑢 according to
the number of records for user 𝑢 in silo 𝑠 , following the heuristic
that a gradient computed from a large number of records yields
a better estimation that is closely aligned with the average. This
results in smaller bias. That is, let 𝑛𝑠,𝑢 be the number of records for
user 𝑢 in silo 𝑠 , we set the weight as follows:

𝑤
𝑜𝑝𝑡
𝑠,𝑢 :=

𝑛𝑠,𝑢∑
𝑠∈ |𝑆 | 𝑛𝑠,𝑢

. (3)

We empirically demonstrate the effectiveness of this strategy later.
Private weighting protocol. Given the above weighting strategy
that relies on number of user records per user per silo, the crucial
question arises: how can this be implemented without violating pri-
vacy? A central server could aggregate histograms encompassing
the user population (number of records per user) within each silo’s
dataset. Subsequently, the server could compute the appropriate
weights for each silo and distribute these weights back to the re-
spective silos. However, it raises significant privacy concerns, since
the histograms are directly shared with the server. Moreover, when
the server broadcasts the weights back to the silos, it enables an es-
timation of the entire histogram of users across all the silos, posing
a similar privacy risk against other silos. In essence, the privacy
protection is necessary in both directions. This is challenging. Ad-
ditive homomorphic encryption, such as Paillier cryptosystem, is
2Please refer to the Appendix of the full paper [27] for a rigorous result where we
theoretically analyze the convergence of ULDP-AVG to compare with existing methods.

Algorithm 5 Encode and Decode

1: procedure Encode(𝑥, 𝑃, 𝑛) ⊲ e.g., 𝑃 = 10−10
2: /* to turn floating point into fixed point */
3: 𝑥 ← 𝑥/𝑃 ⊲ compute as floating point
4: 𝑥 ← 𝑥 as integer
5: 𝑥 ← 𝑥 (mod𝑛) ⊲ to map integer Z into finite field F𝑛
6: return 𝑥

7: procedure Decode(𝑥, 𝑃,𝐶LCM, 𝑛)
8: /* to map finite field F𝑛 number into integer Z */
9: if 𝑥 > 𝑛//2 then ⊲ // means integer division
10: 𝑥 ← 𝑥 − 𝑛
11: else

12: 𝑥 ← 𝑥

13: /* compute as floating point */
14: 𝑥 ← 𝑥/𝐶LCM ⊲ to remove 𝐶LCM factor
15: 𝑥 ← 𝑥𝑃 ⊲ to recover original magnitude
16: return 𝑥

often used for this situation [3], but it is impossible to securely com-
pute inverse values (for the weight in Eq. (3)). Note that unlimited
records per user make DP impractical for protection.

To address this privacy issue, we design a novel private weight-
ing protocol to securely aggregate the user histograms and also
to securely perform local training and model aggregation. The
protocol leverages well-established cryptographic techniques, in-
cluding secure aggregation [7, 45], the Paillier cryptosystem [3],
and multiplicative blinding [9]. Intuitively, the protocol employs
multiplicative blinding to hide user histograms against the server
while allowing the server to compute inverses of blinded histograms
to compute the weights (Eq. (3)). Subsequently, the server employs
the Paillier encryption to conceal the inverses of blinded histograms
because the silo knows the blinded masks. This enables the server
and silos to compute private weighted sum aggregation with its
additive homomorphic property.

The details of the private weighting protocol are explained in
Protocol 1 (with encode and decode schemes in Algorihtm 5). The
protocol consists of a setup phase, which is executed only once
during the entire training process, and a weighting phase, which is
executed in each round of training. In the setup phase, as depicted
in (a-c) of Protocol 1, the server generates a key-pair for Paillier
encryption, while the silos establish shared random seeds through
a Diffie–Hellman (DH) key exchange via the server. Subsequently,
in steps of (d-f), the blinded inverses of the user histogram are com-
puted. In the weighting phase, (a) the server prepares the encrypted
weights, (b) the silos compute user-level weighted model deltas in
the encrypted world, and (c) the server recovers the aggregated
value. It is important to note that in the Paillier cryptosystem, the
plaintext 𝑥 exists within the additive group modulo 𝑛, while en-
crypted data (denoted as 𝐸𝑛𝑐p (𝑥)) belongs to the multiplicative
group modulo 𝑛2 with an order of 𝑛. The system allows for opera-
tions such as addition of ciphertexts and scalar multiplication and
addition on ciphertexts.
Private user-level sub-sampling.Note that our assumption so far
is that the results of user-level sub-sampling (i.e., whether a user is
sampled) are open to the aggregation server. This is also the case in

2832

Protocol 1 Private Weighting Protocol
Inputs: Silo 𝑠 ∈ 𝑆 that holds an dataset with𝑛𝑠,𝑢 records for each user𝑢 ∈ 𝑈 .
A is central aggregation server. 𝑁max is upper bound on the number of
records per user, e.g., 2000. 𝑃 is precision parameter, e.g, 10−10. 𝜆 is security
parameter, e.g., 3072-bit security.

(1) Setup.

(a) A generates Paillier keypairs (𝑃𝐾 , 𝑆𝐾) with the given se-
curity parameter 𝜆 and sends the public key 𝑃𝐾 to all silos.
All silos 𝑠 generate DH keypairs (𝑝𝑘𝑠 , 𝑠𝑘𝑠) with the same
parameter 𝜆 and transmit their respective public key 𝑝𝑘𝑠 to
A. Both A and all silos compute 𝐶LCM, which is the least
common multiple of all integers up to 𝑁max. The modulus 𝑛
included in 𝑃𝐾 is used for the finite field F𝑛 by A and all
silos.

(b) After receiving all 𝑝𝑘𝑠 , A broadcasts all DH public keys
𝑝𝑘𝑠 to all 𝑠 . All 𝑠 compute shared keys 𝑠𝑘𝑠,𝑠′ from 𝑠𝑘𝑠 and
received public keys 𝑝𝑘𝑠′ for all 𝑠′ ∈ 𝑆 .

(c) Silo 0 (∈ 𝑆) generates a random seed 𝑅 and encrypts 𝑅 using
𝑠𝑘0,𝑠′ to obtain 𝐸𝑛𝑐 (𝑅) and sends 𝐸𝑛𝑐 (𝑅) to 𝑠′ via A for all
𝑠′. All 𝑠 ∈ 𝑆 \ 0 receive and decrypt 𝐸𝑛𝑐 (𝑅) with 𝑠𝑘𝑠,0 and
get 𝑅 as a shared random seed.

(d) All 𝑠 generate multiplicative blind masks 𝑟𝑢 ∈ F𝑛 with
the same 𝑅 and compute blinded histogram as 𝐵 (𝑛𝑠,𝑢) ≡
𝑟𝑢𝑛𝑠,𝑢 (mod𝑛) for all 𝑢 ∈ 𝑈 .

(e) All 𝑠 generate pair-wise additive masks 𝑟𝑢
𝑠,𝑠′ ∈ F𝑛 em-

ploying 𝑠𝑘𝑠,𝑠′ for all 𝑠′ and 𝑢, with 𝑟𝑢
𝑠,𝑠′ = 𝑟𝑢

𝑠′,𝑠 . Subse-
quently, they calculate the doubly blinded histogram as
𝐵′ (𝑛𝑠,𝑢) ≡ 𝐵 (𝑛𝑠,𝑢) +

∑
𝑠<𝑠′ 𝑟

𝑢
𝑠,𝑠′ −

∑
𝑠>𝑠′ 𝑟

𝑢
𝑠,𝑠′ (mod𝑛) . All

𝑠 send 𝐵′ (𝑛𝑠,𝑢) to A. A aggregates these contributions to
compute 𝐵 (𝑁𝑢) ≡

∑
𝑠∈𝑆 𝐵

′ (𝑛𝑠,𝑢) (mod𝑛) for each 𝑢, de-
noting 𝑁𝑢 =

∑
𝑠∈𝑆 𝑛𝑠,𝑢 .

(f) A computes the inverse of 𝐵 (𝑁𝑢) as 𝐵inv (𝑁𝑢) = 𝐵 (𝑁𝑢)−1
for each 𝑢. This is the multiplicative inverse on F𝑛 , which is
efficiently computed by the Extended Euclidean algorithm.

(2) Weighting for each training round 𝑡 .

(a) A encrypts 𝐵inv (𝑁𝑢) using Paillier’s public key 𝑃𝐾 , result-
ing in 𝐸𝑛𝑐p (𝐵inv (𝑁𝑢)) for all 𝑢. If user-level sub-sampling
is required, the server performs Poisson sampling with a
given probability 𝑞 for each user before the encryption. For
non-selected users, 𝐵inv (𝑁𝑢) is set to 0. If we require user-
level sub-sampling, we perform Poisson sampling with given
probability 𝑞 on the server for each user before the Paillier’s
encryption and set 𝐵inv (𝑁𝑢) = 0 for all users not selected.
Subsequently, A broadcasts all 𝐸𝑛𝑐p (𝐵inv (𝑁𝑢)) to all silos.

(b) In each 𝑠 , following the approach of ULDP-AVG, the clipped
model delta Δ̃𝑠,𝑢

𝑡 is computed for each user 𝑢. The weighted
clipped model delta is then calculated as

𝐸𝑛𝑐p (Δ̃𝑠,𝑢
𝑡) =

Encode(Δ̃𝑠,𝑢
𝑡 , 𝑃, 𝑛)𝑛𝑠,𝑢𝑟𝑢𝐶LCM𝐸𝑛𝑐p (𝐵inv (𝑁𝑢)) .

Let the Gaussian noise be 𝑧𝑠𝑡 , we then compute 𝑧′𝑠 =

Encode(𝑧𝑠𝑡 , 𝑃, 𝑛)𝐶LCM. Note that we need to approximate
real number Δ̃𝑠,𝑢

𝑡 and 𝑧𝑠𝑡 on a finite field using Encode (de-
scribed in Algorithm 5). Lastly, we compute the summation
𝐸𝑛𝑐p (Δ𝑠

𝑡) =
∑
𝑢∈𝑈 𝐸𝑛𝑐p (Δ̃𝑠,𝑢

𝑡) + 𝑧′𝑠 .
(c) In each 𝑠 , random pair-wise additive masks are generated,

and secure aggregation is performed on 𝐸𝑛𝑐p (Δ𝑠
𝑡) mirror-

ing the steps in 1.(f). Then, A gets
∑

𝑠∈𝑆 𝐸𝑛𝑐p (Δ𝑠
𝑡) . A de-

crypts it with Paillier’s secret key 𝑆𝐾 and decodes it by
Decode(∑𝑠∈𝑆 Δ𝑠

𝑡 , 𝑃,𝐶LCM, 𝑛) and recovers the aggregated
value.

(d) Steps 2.(a) through 2.(c) are repeated for each training round.

Protocol 1. However, it could be hidden by combining the two-party
verifiable sampling scheme with 1-out-of-P Oblivious Transfer (OT)
as described in [25]. As an overview, for each user 𝑢, the server
creates 𝑃 − 1 dummy data 𝐸𝑛𝑐p (0) for 𝐸𝑛𝑐p (𝐵inv (𝑁𝑢)) described
in the step 2.(a) of Protocol 1. When the client performs OT on this
data, the selection probability of 𝐸𝑛𝑐p (𝐵inv (𝑁𝑢)) is 1

𝑃
and that of

𝐸𝑛𝑐p (0) is 𝑃−1𝑃 . The selection of 𝐸𝑛𝑐p (𝐵inv (𝑁𝑢)) means that the
user is not sampled by the user-level sub-sampling. In this way,
the server does not know which data was retrieved by the client
from the OT, and the client cannot know the sampling result due to
the Paillier encryption. However, the expressed probability is likely
to be less strict because it can only represent discrete probability
distributions. This process requires extra computational costs for
both the server and the silo, proportional to the number of users,
and should not be included if it is not necessary.

4.2 Theoretical analysis

We provide a theoretical analysis of this private weighting protocol
(Protocol 1) in terms of correctness and privacy.
Correctness. The protocol must compute the correct result that
is the same as non-secure method. To this end, we consider the
correctness of the aggregated data obtained in each round.

Theorem 4 (Correctness of Protocol 1). Let
∑
𝑠∈𝑆 Δ

𝑠
𝑡 with

non-secure method be Δ and the one with the Protocol 1 be Δsec, our
goal is formally stated as Pr[|Δ − Δsec |∞ > 𝑃] < 𝑛𝑒𝑔𝑙 , where 𝑃 is a
precision parameter and 𝑛𝑒𝑔𝑙 signifies a negligible value.

Privacy. In the protocol, both the central server and the silos do
not get more information than what is available in the original
ULDP-AVG while we perform the enhanced weighting strategy.

Theorem 5 (Privacy of Protocol 1). None of the parties learns
𝑛𝑠,𝑢 other than their own users from the protocol.

5 EXPERIMENTS

In this section, we report the results of the experimental evaluation
of our proposed methods. We design experiments to answer the
following questions:

• How much does our proposed method improve the privacy-
utility trade-offs from baselines in terms of ULDP?

• How effective are enhanced weighting strategies and user-
level sub-sampling in enhancing ULDP-AVG?

• How efficient is the proposed private weight protocol? Can
it work for real-world data?

All of our experimental source code and settings are available3.

5.1 Settings

We evaluate the privacy-utility trade-offs of the proposed methods
(ULDP-AVG/ULDP-AVG-w/SGD), along with the baselines (ULDP-
NAIVE/GROUP-𝑘) and a non-private baseline (FedAVG with two-
sided learning rates [50], denoted byDEFAULT). In ULDP-AVG/SGD,
we set the weights as 𝑤𝑠,𝑢 = 1/|𝑆 | for all 𝑠 and 𝑢, the one using
𝑤
𝑜𝑝𝑡
𝑠,𝑢 is referred to as ULDP-AVG-w. Regarding ULDP-GROUP-𝑘 ,

flags B are generated for existing records to minimize waste on

3https://github.com/Emory-AIMS/uldp-fl

2833

https://github.com/Emory-AIMS/uldp-fl

filtered out records, despite the potential privacy concerns. Various
values, including the maximum number of user records (ULDP-
GROUP-max), the median (ULDP-GROUP-median), 2, and 8, are
tested as group size 𝑘 and we report GDP using group-privacy con-
version of RDP. In particular, ULDP-GROUP-max would represent
an upper bound on the utility achieved by record-level DP in each
silo (such as [33] and [30]), since there are no deleted records. In
cases where 𝑘 is not a power of 2, the computed 𝜖 is reported for
the largest power of 2 below 𝑘 , showcasing the lower bound of
GDP to underscore that 𝜖 is large. The hyperparameters, including
global and local learning rates 𝜂𝑔 , 𝜂𝑙 , clipping bound 𝐶 , and local
epoch 𝑄 , are set individually for each method. Execution times are
measured on macOS Monterey v12.1, Apple M1 Max Chip with
64GB memory with Python 3.9 and 3072-bit security. Most of the
results are averaged over 5 runs and the colored area in the graph
represents the standard deviation.

5.1.1 Datasets. Datasets used in the evaluation comprise real-
world open datasets, including Credicard [21], well-known image
dataset MNIST [11], and two benchmark medical datasets for cross-
silo FL [42], HeartDisease and TcgaBrca. Creditcard is a tabular
dataset for credit card fraud detection from Kaggle. We undersam-
ple the dataset and use about 25K training data and a neural network
with about 4K parameters. For MNIST, we use a convolutional neu-
ral network (CNN) with about 20K parameters, 60K training data
and 10K evaluation data, and assigned silos and users to all of the
training data. For HeartDisease and TcgaBrca, we use the same
setting such as number of silos (4 and 6), data assignments to the
silos, models, etc. as shown in [42]. These two datasets are small
and the model has less than 100 parameters.

For all datasets, we need to link all records to each user and silo.
We allocate the records to users and silos as follows.
Record allocation for MNIST and Creditcard.We designed two
different record distribution patterns, uniform and zipf, to model
how user records are scattered across silos in the MNIST and Cred-
itcard datasets. Both distributions take the number of users |𝑈 | and
the number of silos |𝑆 |. It associates each record with a user and a
silo. (1) In uniform, every record is assigned to a user with equal
probability, and likewise, each record is assigned to a silo with equal
probability. (2) zipf combines two types of Zipf distributions. First,
the distribution of the number of records per user follows a Zipf
distribution. Then, for each user, the numbers of records are as-
signed to different silos based on another Zipf distribution. Each of
the two Zipf distributions takes a parameter 𝛼 that determines the
concentration of the numbers. In the experiments, we used 𝛼 = 0.5
for the first distribution and 𝛼 = 2.0 for the second distribution.
This choice is rooted in the observation that the concentration of
user records is not as high as the concentration in the silos selected
by each user. For Creditcard and MNIST, the number of silos |𝑆 | is
fixed at 5. We used 100, 1000 for Creditcard as |𝑈 | and 100, 10000
for MNIST. For MNIST, we can require each user to have only 2
labels at most for non-i.i.d.
Record allocation for HeartDisease and TcgaBrca. For the
HeartDisease and TcgaBrca datasets, we adopted the same two
distributions uniform and zipf as mentioned above. In the bench-
mark datasets HeartDisease and TcgaBrca, all records are already
allocated to silos and the number of records of each silo is fixed.

(a) 𝑛 ≈ 246 (|𝑈 | = 100), uniform.

(b) 𝑛 ≈ 246 (|𝑈 | = 100), zipf.

(c) 𝑛 ≈ 25 (|𝑈 | = 1000), uniform.

(d) 𝑛 ≈ 25 (|𝑈 | = 1000), zipf.

Figure 4: Privacy-utility trade-offs on Creditcard dataset: Test

Accuracy (Left), Privacy (Right).

Therefore, the design of the user-record allocation is slightly differ-
ent. (1) In uniform, all records belong to one of the users with equal
probability without allocation to silos. (2) In zipf, the number of
records for a user is first generated according to a Zipf distribution,
and 80% of the records are assigned to one silo, and the rest to the
other silos with equal probability. The priority of the silo is chosen
randomly for each user. We used 𝛼 = 0.5 for the parameter of the
Zipf. In TcgaBrca, Cox-Loss is used for loss function [42], which
needs more than two records for calculating valid loss and we set
more than two records for each silo and user for per-user clipping
of ULDP-AVG.

5.2 Results

Privacy-utility trade-offs underULDP. Figures 4 show the utility
and privacy evaluation results on Creditcard. The average number
of records per user (denoted as 𝑛) in entire silos and the distribution

2834

(a) 𝑛 ≈ 600 (|𝑈 | = 100), uniform.

(b) 𝑛 ≈ 600 (|𝑈 | = 100), zipf, iid.

(c) 𝑛 ≈ 600 (|𝑈 | = 100), zipf, non-iid.

(d) 𝑛 ≈ 6 (|𝑈 | = 10000), uniform, iid.

(e) 𝑛 ≈ 6 (|𝑈 | = 10000), zipf, iid.

(f) 𝑛 ≈ 6 (|𝑈 | = 10000), zipf, non-iid.

Figure 5: Privacy-utility trade-offs on MNIST dataset: Test

Loss (Left), Accuracy (Middle), Privacy (Right).

changes for each figure. All experiments used a fixed noise parame-
ter 𝜎 = 5.0 and 𝛿 = 10−5, utility metrics (Accuracy for Creditcard)
are displayed on the left side and accumulated privacy consumption
𝜖 for ULDP are depicted on the right side. Note that the privacy
bounds for ULDP-GROUP-𝑘 are derived from the local DP-SGD
and depend on not only the group size 𝑘 but also the size of the
local training dataset.

(a) 𝑛 ≈ 10 (|𝑈 | = 50), uniform.

(b) 𝑛 ≈ 10 (|𝑈 | = 50), zipf.

(c) 𝑛 ≈ 2.5 (|𝑈 | = 200), uniform.

(d) 𝑛 ≈ 2.5 (|𝑈 | = 200), zipf.

Figure 6: HeartDisease.

Overall, the proposed method ULDP-AVG/SGD achieves compet-
itive utility with fast convergence and high accuracy, while achiev-
ing considerably small privacy bounds, which means the signifi-
cantly better privacy-utility trade-offs compared to baselines. We
observe that the baseline method, ULDP-NAIVE, has low accuracy
and that ULDP-GROUP-𝑘 requires much larger privacy budgets,
which is consistent with the analysis on the conversion of group
privacy described earlier. The convergence speed of ULDP-AVG
is faster than that of ULDP-SGD, which is the same as that of DP-
FedAVG/SGD. Nevertheless, there is still a gap between ULDP-AVG
and the non-private method (DEFAULT) in terms of convergence
speed and ultimately achievable accuracy, as a price for privacy.
Also, as shown in Figure 4c, for small𝑛 (i.e., a large number of users),
ULDP-GROUP-max/median show higher accuracy than ULDP-AVG.
This is likely due to the overhead from finer datasets at user-level,
which increases the bias compared to DP-FedAVG, as seen in the
theoretical convergence analysis for ULDP-AVG.

2835

(a) 𝑛 ≈ 17 (|𝑈 | = 50) uniform.

(b) 𝑛 ≈ 17 (|𝑈 | = 50), zipf.

(c) 𝑛 ≈ 4 (|𝑈 | = 200), uniform.

(d) 𝑛 ≈ 4 (|𝑈 | = 200), zipf.

Figure 7: TcgaBrca.

Figure 5, 6, and 7 show privacy-utility trade-offs on MNIST,
HeartDisease, and TcgaBrca respectively. All experiments used a
fixed noise parameter (noise multiplier) 𝜎 = 5.0 and 𝛿 = 10−5,
utility metrics (Accuracy for HeartDisease and MNIST, C-index for
TcgaBrca) are plotted on the left side, and accumulated privacy
consumption 𝜖 for ULDP are plotted on the right side. For clarity,
the test loss is shown on the left-hand side for MNIST. The average
number of records per user (denoted as 𝑛) in entire silos and the
distribution (uniform/zipf) changes for each figure.

In all datasets, consistently, ULDP-AVG is competitive in terms
of utility, ULDP-AVG-w shows much faster convergence, and ULDP-
SGD shows slower convergence. ULDP-NAIVE achieves a low pri-
vacy bound; however, its utility is much lower than other methods.
ULDP-GROUP-𝑘 show reasonably high utility, especially in settings
where 𝑛 is small. This is because the records to be removed due to
the number of records per user being over group size 𝑘 is small.
However, the privacy bound of ULDP-GROUP-𝑘 is very large. Note

Figure 8: Test loss of Creditcard: Weighting method is effec-

tive, especially in skewed distribution in many silos.

that the privacy bounds for ULDP-GROUP-𝑘 are derived from the
local DP-SGD and depend on not only the group size 𝑘 but also the
size of the local training dataset. The exceptions are cases where the
local data set size is large and the number of records per user is very
small as in Figures 5d, 5e, and 5f. In these cases, ULDP-GROUP-
2 achieves a reasonably small privacy bound. In other words, if
the number of user records is fixed at one or two in the scenario,
and the number of training records is large (it is advantageous
for ULDP-GROUP because the record-level sub-sampling rate in
DP-SGD becomes small), it could be better to use ULDP-GROUP.
Effect of non-IID data. The results for MNIST non-i.i.d and |𝑈 | =
100 case highlight a weak point of ULDP-AVG. Note that non-i.i.d
here is at user-level and DEFAULT and ULDP-GROUP are less af-
fected by non-i.i.d because they train per silo rather than per user.
As Figure 5c shows, the convergence of ULDP-AVG is worse com-
pared to other results. It suggests that ULDP-AVG may emphasize
the bad effects of user-level non-i.i.d. distribution, which was not
an issue with normal cross-silo FL because the gradient is not com-
puted at the user level as in ULDP-AVG. This is less problematic
when the number of users is large as shown in Figure 5f. This is
due to the relatively smaller effect of individual user overfitting
caused by non-i.i.d. distribution as the number of users increases.
A potential way to address it could be to adapt existing non-iid
cross-device FL methods [17] to the user-level in the silo (e.g., turn-
ing client-level clustering into user-level clustering). However, it
should be non-trivial, since it should not violate ULDP.
Effectiveness of enhanced weighting strategy. To highlight the
effectiveness of the enhancedweighting strategy, Figure 8 shows the
test losses of the Creditcard dataset on different record distributions
with ULDP-AVG and ULDP-AVG-w. We present the results with
various numbers of silos: 5, 20, and 50. The need for the better
weighting strategy is emphasized by the distribution of the records
and the number of silos |𝑆 |. When there are large skews in the
user records, as in the Zipf distribution, giving equal weights (i.e.,
ULDP-AVG) results in inefficiency and opens up a large gap from
ULDP-AVG-w. This trend becomes even more significant as |𝑆 |
increases because all weights become smaller in ULDP-AVG.
Effect of user-level sub-sampling. We evaluate the effect of
user-level sub-sampling. Figure 9a illustrates how user-level sub-
sampling affects the privacy-utility trade-offs on the Creditcard
dataset with 1000 users. We report the test accuracy and ULDP
privacy bounds for various sampling rates 𝑞 = 0.1, 0.3, 0.5, 0.7, 1.0.
Basically, a tighter privacy bound is obtained at the expense of
utility. As the results show, the degradation of utility due to sub-
sampling could be acceptable to some extent (e.g., 𝑞 = 0.7) and there
could be an optimal point for each setting. Figure 9b illustrates how

2836

(a) Creditcard.

(b) MNIST.

Figure 9: User-level sub-sampling achieves a more competi-

tive privacy-utility trade-off.

Figure 10:With a smallmodel, the private weighting protocol

has a practical execution time.

Figure 11: The dominant execution time grows linearly with

parameter size (Top) and/or the number of users (Bottom).

user-level sub-sampling affects the privacy-utility trade-offs on
MNIST with 10000 users, with sampling rates 𝑞 = 0.1, 0.3, 0.5, 1.0.
The results show that while privacy is greatly improved, there is
less degradation in utility. This is due to the fact that there are a
sufficient number of users, i.e., 10000. In the case of a larger user
base, the effect of sub-sampling is greater and more important.
Overhead of private weighting protocol.We evaluate execution
time with the private weighting protocol (Protocol 1). Figure 10
shows the execution times on HeartDisease and TcgaBrca with the

number of users 10 and 100, respectively, and a skewed (zipf) distri-
bution. These two benchmark scenarios of cross-silo FL from [42]
use small models. The left figure shows the time required for local
training in each silo, and the right figure shows the execution time
for key exchange, preparation of blinded histograms, and aggrega-
tion. As shown, the execution time of local training is dominant
and it increases with a larger number of users. Overall, it shows
realistic execution times under these benchmark scenarios.

Figure 11 shows the execution times of the private weighting
protocol with an artificial dataset with 10000 samples and a model
with 16 parameters, 20 users, and 3 silos as default, in order to show
the impact of parameter size and number of users. These are on a
considerably small scale. The major time-consuming parts of the
protocol are key exchange, training in each silo, and aggregation
on the server. The top and bottom three figures show the execution
times on each part of the protocol with varying parameter sizes
from 16 to 107 and number of users from 10 to 40, respectively. The
execution time of local training is averaged by silos. The dominant
part is the local training, which is considered to be an overhead due
to the computation with the Paillier encryption, growing linearly
with parameter size and the number of users. The larger parameter
size increases the aggregation time on the server as well. Our im-
plementation is based on the Python library [10], which itself could
be made faster by software implementation or hardware accelera-
tors [51]. However, it can be challenging to apply to larger models,
such as DNNs, because the execution time increases linearly with
parameter size. Therefore, extending the proposed method to deep
models with millions of parameters is a future challenge. It may
be possible to replace such software-based encryption methods by
using hardware-assisted Trusted Execution Environments, which
have recently attracted attention in the FL field [26, 40].

6 CONCLUSION

This study aimed to integrate user-level DP into FL, providing prac-
tical privacy guarantees for the trained model in general cross-silo
scenarios. We proposed the first cross-silo ULDP FL framework
where a user can have multiple records across silos. We designed
an algorithm using per-user weighted clipping to directly satisfy
ULDP instead of group-privacy. In addition, we developed an en-
hanced weighting strategy that improves the utility of our proposed
method and a novel protocol that performs it privately. Finally, we
demonstrated the effectiveness of the proposed method on several
real-world datasets and showed that it performs significantly better
than existing methods. We also verified that our proposed private
protocol works in realistic time in existing cross-silo FL benchmark
scenarios. For future work, research into the more scalable private
protocols would be considered. Also, it would be an independent
and interesting direction to empirically compare the privacy pro-
tection of user/record-level DP in FL in terms of particular attack
aspects such as user/record-level membership inference [20].

ACKNOWLEDGMENTS

This work was supported by NIH R01LM013712, R01ES033241, NSF
CNS-2124104, CNS-2125530, IIS-2302968, JST SICORP JPMJSC2107,
JST CREST JPMJCR21M2, JST PRESTO JPMJPR23P5, JSPS KAK-
ENHI JP22H03595, JP23K24851, JP21K19767.

2837

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The skellam mechanism
for differentially private federated learning. Advances in Neural Information
Processing Systems 34 (2021), 5052–5064.

[3] Andreea B. Alexandru and George J. Pappas. 2022. Private Weighted Sum
Aggregation. IEEE Transactions on Control of Network Systems 9, 1 (2022), 219–
230. https://doi.org/10.1109/TCNS.2021.3094788

[4] KareemAmin, Alex Kulesza, AndresMunoz, and Sergei Vassilvtiskii. 2019. Bound-
ing user contributions: A bias-variance trade-off in differential privacy. In Inter-
national Conference on Machine Learning. PMLR, 263–271.

[5] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. 2020.
Hypothesis testing interpretations and renyi differential privacy. In International
Conference on Artificial Intelligence and Statistics. PMLR, 2496–2506.

[6] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and
Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic
overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1253–1269.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[8] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.
2019. Distributed differential privacy via shuffling. In Advances in Cryptology–
EUROCRYPT 2019: 38th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part I 38. Springer, 375–403.

[9] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. 2007. Efficient and secure
comparison for on-line auctions. In Information Security and Privacy: 12th Aus-
tralasian Conference, ACISP 2007, Townsville, Australia, July 2-4, 2007. Proceedings
12. Springer, 416–430.

[10] data61. [n.d.]. https://github.com/data61/python-paillier.
[11] Li Deng. 2012. The mnist database of handwritten digit images for machine

learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.
[12] Cynthia Dwork. 2006. Differential privacy. In Proceedings of the 33rd international

conference on Automata, Languages and Programming-Volume Part II. Springer-
Verlag, 1–12.

[13] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[14] Alessandro Epasto, Mohammad Mahdian, Jieming Mao, Vahab Mirrokni, and
Lijie Ren. 2020. Smoothly bounding user contributions in differential privacy.
Advances in Neural Information Processing Systems 33 (2020), 13999–14010.

[15] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang
Song, Kunal Talwar, and Abhradeep Thakurta. 2020. Encode, shuffle, ana-
lyze privacy revisited: Formalizations and empirical evaluation. arXiv preprint
arXiv:2001.03618 (2020).

[16] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private feder-
ated learning: A client level perspective. NIPS 2017 Workshop: Machine Learning
on the Phone and other Consumer Devices (2017).

[17] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An
efficient framework for clustered federated learning. Advances in Neural Infor-
mation Processing Systems 33 (2020), 19586–19597.

[18] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and
Ananda Theertha Suresh. 2021. Shuffled model of differential privacy in feder-
ated learning. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2521–2529.

[19] Michelle Goddard. 2017. The EU General Data Protection Regulation (GDPR):
European regulation that has a global impact. International Journal of Market
Research 59, 6 (2017), 703–705.

[20] Bargav Jayaraman and David Evans. 2019. Evaluating differentially private
machine learning in practice. In Proceedings of the 28th USENIX Conference on
Security Symposium (Santa Clara, CA, USA) (SEC’19). USENIX Association, USA,
1895–1912.

[21] Kaggle. 2018. Credit Card Fraud Detection dataset. https://www.kaggle.com/
datasets/mlg-ulb/creditcardfraud. Accessed: 2023-08-03.

[22] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete gauss-
ian mechanism for federated learning with secure aggregation. In International
Conference on Machine Learning. PMLR, 5201–5212.

[23] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[24] Gautam Kamath. 2020. CS 860 : Algorithms for Private Data Analysis Fall 2020
Lecture 5 — Approximate Differential Privacy. http://www.gautamkamath.com/
CS860notes/lec5.pdf. [Online; accessed 23-June-2023].

[25] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2021. Preventing ma-
nipulation attack in local differential privacy using verifiable randomization
mechanism. In Data and Applications Security and Privacy XXXV: 35th Annual
IFIP WG 11.3 Conference, DBSec 2021, Calgary, Canada, July 19–20, 2021, Proceed-
ings 35. Springer, 43–60.

[26] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2023. Olive: Oblivi-
ous Federated Learning on Trusted Execution Environment against the Risk
of Sparsification. Proc. VLDB Endow. 16, 10 (aug 2023), 2404–2417. https:
//doi.org/10.14778/3603581.3603583

[27] Fumiyuki Kato, Li Xiong, Shun Takagi, Yang Cao, and Masatoshi Yoshikawa.
2023. ULDP-FL: Federated Learning with Across Silo User-Level Differential
Privacy. arXiv preprint arXiv:2308.12210 (2023).

[28] Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar
Mohri, and Ananda Theertha Suresh. 2021. Learning with user-level privacy.
Advances in Neural Information Processing Systems 34 (2021), 12466–12479.

[29] Seng Pei Liew, Tsubasa Takahashi, Shun Takagi, Fumiyuki Kato, Yang Cao, and
Masatoshi Yoshikawa. 2022. Network shuffling: Privacy amplification via random
walks. In Proceedings of the 2022 International Conference on Management of Data.
773–787.

[30] Ken Liu, Shengyuan Hu, Steven Z Wu, and Virginia Smith. 2022. On privacy and
personalization in cross-silo federated learning. Advances in Neural Information
Processing Systems 35 (2022), 5925–5940.

[31] Yuhan Liu, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and
Michael Riley. 2020. Learning discrete distributions: user vs item-level privacy.
Advances in Neural Information Processing Systems 33 (2020), 20965–20976.

[32] Andrew Lowy, Ali Ghafelebashi, and Meisam Razaviyayn. 2023. Private non-
convex federated learning without a trusted server. In International Conference
on Artificial Intelligence and Statistics. PMLR, 5749–5786.

[33] Andrew Lowy and Meisam Razaviyayn. 2023. Private Federated Learning With-
out a Trusted Server: Optimal Algorithms for Convex Losses. In The Eleventh
International Conference on Learning Representations. https://openreview.net/
forum?id=TVY6GoURrw

[34] H BrendanMcMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, IlyaMironov,
Nicolas Papernot, and Peter Kairouz. 2018. A general approach to adding differ-
ential privacy to iterative training procedures. arXiv preprint arXiv:1812.06210
(2018).

[35] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.
2016. Federated learning of deep networks using model averaging. arXiv preprint
arXiv:1602.05629 (2016).

[36] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017.
Learning differentially private recurrent language models. arXiv preprint
arXiv:1710.06963 (2017).

[37] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 19–30.

[38] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th computer security
foundations symposium (CSF). IEEE, 263–275.

[39] Ilya Mironov, Kunal Talwar, and Li Zhang. 2019. R\’enyi differential privacy of
the sampled gaussian mechanism. arXiv preprint arXiv:1908.10530 (2019).

[40] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with
trusted execution environments. In Proceedings of the 19th annual international
conference on mobile systems, applications, and services. 94–108.

[41] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and
privacy (SP). IEEE, 739–753.

[42] Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg,
Chaoyang He, Regis Loeb, Paul Mangold, Tanguy Marchand, Othmane Mar-
foq, Erum Mushtaq, Boris Muzellec, Constantin Philippenko, Santiago Silva,
Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr, Aurélien Bellet, Aymeric
Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi, Giovanni
Neglia, Marc Tommasi, and Mathieu Andreux. 2022. FLamby: Datasets and
Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings.
In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 5315–5334.

[43] Matthias Paulik, Matt Seigel, HenryMason, Dominic Telaar, Joris Kluivers, Rogier
van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al.
2021. Federated Evaluation and Tuning for On-Device Personalization: System
Design & Applications. arXiv preprint arXiv:2102.08503 (2021).

[44] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays.
2019. Federated learning for emoji prediction in a mobile keyboard. arXiv
preprint arXiv:1906.04329 (2019).

[45] Jinhyun So, Ramy E Ali, Başak Güler, Jiantao Jiao, and A Salman Avestimehr.
2023. Securing secure aggregation: Mitigating multi-round privacy leakage in

2838

https://doi.org/10.1109/TCNS.2021.3094788
https://github.com/data61/python-paillier
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
http://www.gautamkamath.com/CS860notes/lec5.pdf
http://www.gautamkamath.com/CS860notes/lec5.pdf
https://doi.org/10.14778/3603581.3603583
https://doi.org/10.14778/3603581.3603583
https://openreview.net/forum?id=TVY6GoURrw
https://openreview.net/forum?id=TVY6GoURrw

federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 9864–9873.

[46] Shun Takagi, Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2023. From
Bounded to Unbounded: Privacy Amplification via Shuffling with Dummies. In
2023 IEEE 36th Computer Security Foundations Symposium (CSF). IEEE, 457–472.

[47] Dinusha Vatsalan, Ziad Sehili, Peter Christen, and Erhard Rahm. 2017. Privacy-
preserving record linkage for big data: Current approaches and research chal-
lenges. Handbook of big data technologies (2017), 851–895.

[48] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. 2019. Subsam-
pled rényi differential privacy and analytical moments accountant. In The 22nd
International Conference on Artificial Intelligence and Statistics. PMLR, 1226–1235.

[49] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
Simmons-Marengo, and Bryant Gipson. 2020. Differentially private SQL with
bounded user contribution. Proceedings on privacy enhancing technologies 2020,

2 (2020), 230–250.
[50] Haibo Yang, Minghong Fang, and Jia Liu. 2021. Achieving Linear Speedup with

Partial Worker Participation in Non-IID Federated Learning. Proceedings of ICLR
(2021).

[51] Zhaoxiong Yang, Shuihai Hu, and Kai Chen. 2020. FPGA-based hardware acceler-
ator of homomorphic encryption for efficient federated learning. arXiv preprint
arXiv:2007.10560 (2020).

[52] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine,
Karthik Prasad, Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj,
Jessica Zhao, et al. 2021. Opacus: User-friendly differential privacy library in
PyTorch. arXiv preprint arXiv:2109.12298 (2021).

[53] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

2839

	Abstract
	1 Introduction
	2 Background & Preliminaries
	2.1 Cross-silo Federated learning
	2.2 Differential Privacy
	2.3 Differentially Private FL

	3 Uldp-FL Framework
	3.1 Trust model and Assumptions
	3.2 Privacy definition
	3.3 Baseline methods: ULDP-NAIVE/GROUP
	3.4 Advanced methods: ULDP-AVG/SGD

	4 Enhanced Weighting and Private weighting protocol
	4.1 The weighting protocol
	4.2 Theoretical analysis

	5 Experiments
	5.1 Settings
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

