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ABSTRACT
Many IoT applications require the use of multiple deep neural net-
works (DNNs) to perform various tasks on low-cost edge devices
with limited computation resources. However, existing DNN model
serving platforms, such as TensorFlow Serving and TorchServe, are
resource-intensive and require high-performance GPUs that are
often not available on low-cost edge devices. In this paper, we pro-
pose SmartLite, a lightweight DBMS that addresses these challenges
by storing the parameters and structural information of neural net-
works as database tables and implementing neural network opera-
tors inside the DBMS engine. SmartLite quantizes model parameters
as binarized values, applies neural pruning techniques to compress
the models, and transforms tensor manipulations into value lookup
operations of the DBMS to reduce computation overhead. Experi-
mental results show that SmartLite requires 98% less memory while
achieving about a 134% performance speedup compared to Torch-
Serve. Our proposed solution addresses the challenges of running
multiple DNN models on low-cost edge devices and provides a
significant contribution to the field of IoT applications.
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1 INTRODUCTION
Most edge devices host an embedding database system to sup-
port basic data management and analytical tasks. For such de-
vices, in-database machine/deep learning (in-DB ML/DL) inference
[39, 40, 47, 59] enables timely and in-place predictive analysis, and
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eliminates the cost of data migration between database systems
and DL platforms [15, 41, 46, 54]. Databases that can support multi-
modal tasks, such as video databases [38] and text databases [63],
are attracting the interest of researchers. An illustrative analytical
SQL query, such as Q1, can be provided to demonstrate the scenario
in which multiple in-DB DL models serve in the video database.
Q1: SELECT COUNT(*) FROM key_frame K

WHERE M1(K.imageID)=‘rainy’
AND K.date>’2023-01-01’ AND K.date<’2023-05-01’
GROUP BY M2(M3(K.imageID));

In Q1,𝑀1 denotes a weather classification model,𝑀2 is a vehicle
classification model used to classify the types of vehicles in the im-
age and𝑀3 is a vehicle detection model to determine whether there
are any vehicles present in the image. It can greatly facilitate data
management if the in-DB DL model can perform inference without
the need to transfer data to a separate DL platform. However, im-
plementing in-DB DL systems on terminal units with constrained
resources, such as low-end CPUs and limited memory, presents
challenges in terms of computation and storage.

To support such multi-modal queries, loosely-coupled solutions,
such asMADlib [32], Microsoft MLS [4], MindsDB [5], and SQLFlow
[8], only require minor changes to the DBMS and are suitable for
devices with sufficient resources. However, unlike personal comput-
ers or servers, edge devices or embedding units often have limited
resources, making it hard to support conventional full-fledged plat-
forms (e.g., TensorFlow Serving [55] and TorchServe [9]). Despite
these challenges, in-DB DL systems remain an attractive option for
many applications.

Another recent approach is the tightly-coupled solution, where
theDLmodels are stored as relational tables, the computations of DL
operations are converted into relational algebra operations, and the
analytical queries are fully processed inside the database [39, 47, 58].
However, the relational data model and relational algebra opera-
tions are not well-suited to handle large tensors. Empirical results
reported in [47] suggest that the tightly-coupled solution may re-
sult in sub-optimal performance compared to the loosely-coupled
approach, especially when computation overhead dominates the
total cost. In fact, typical neural operators such as convolution, max
pooling, average pooling, and full connection are reported to be
30% to 70% slower than their corresponding implementations in
PyTorch (more details in Section 5.4).
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Our aim is to optimize the tightly-coupled solution’s benefits, en-
abling DBMS to support individual model inferences without GPUs
or powerful hardware while closing the performance gap with DL
platforms. To achieve it, we present the SmartLite, which extends
existing DBMSs to support DL inference tasks under resource-
constrained settings. We demonstrate how to model neural oper-
ators in a more concise and database-friendly way, and how to
perform neural network computations inside a relational database
in an efficient and resource-saving manner. We propose three major
designs in SmartLite.

The first design we propose is DBMS-oriented parameter-
driven model simplification. We observe that slow computation
(i.e., model inference) and high resource consumption primarily re-
sult from floating-point calculations, which CPUs are not optimized
for. A trained neural network typically contains millions to billions
of floating-point parameters that represent pre-trained weights.
The computation involving these large float tensors is generally
very slow in a relational database [25, 26, 53]. To reduce the cost of
computation and storage, we propose to simplify the floating-point
parameters using the neural network quantization technique. Specif-
ically, SmartLite applies the quantization to convert floating-point
numbers to binary numbers. Meanwhile, SmartLite transforms the
model operations on the floating-point numbers into bit-level op-
erations such as BitCount or XOR. Finally, SmartLite establishes
lookup tables to accelerate the combination of bit-level operators.

The second design we propose ismodel structure optimiza-
tion. After reducing the cost of floating-point computations, we
find that the performance bottleneck has shifted to a large number
of bit-level computations when performing inferences on binarized
networks [23, 44, 45, 60]. In practice, a model gradually converges
in the last few epochs, during which most parameter values re-
main unchanged, while some frequently flip between 0 and 1. This
suggests that, under the current neural network structure, those
parameters may not contribute to the inference performance of
the model. Therefore, we define a probabilistic model to describe
the effectiveness of parameters in a given bit-length and prune the
corresponding bit-level computation. It allows SmartLite to discard
many lookup operations when they have a negligible effect on the
inference accuracy, thus optimizing the neural network structure.

The third design is in-DB model sharing and scheduling.
As many IoT applications deploy multiple DL models on a single
edge device, we explore organizing multiple in-DB models within
a running SmartLite instance. Notably, many models follow a pre-
training and fine-tuning paradigm. Consequently, we can map a re-
lational table with pre-trained parameter values into logical blocks,
allowing reuse of these blocks for various fine-tunedmodels derived
from the same pre-trainedmodel, thereby reducing data redundancy.
In resource-constrained settings lacking sufficient physical memory
to hold all in-DB models, we introduce a scheduling algorithm to
determine which parts of the used models to load into memory.
The primary goal of the scheduling algorithm is to minimize the
swapping cost incurred during in-DB model serving.

In summary, wemake the following contributions: (1)We present
a lightweight system, SmartLite, that reduces the computational
complexity of neural network operators inside the DBMS. SmartLite
supports servingmultiplemodels simultaneously under the resource-
constrained setting. (2) SmartLite applies binarized quantization
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Figure 1: Main modules of SmartLite.

to reduce the parameter size of a trained neural network and com-
presses the parameters at the bit-level. (3) SmartLite maps the com-
putation of matrix multiplication into table lookup, a more friendly
operation for the database, discards the redundant data while train-
ing, and reuses the pre-trained parameter blocks in its memory.
(4) We experimentally demonstrate that SmartLite achieves 134%
speedup compared to the mainstream ML framework PyTorch for
serving multiple neural models. The size of the model storage is
98% smaller than PyTorch.

This paper is organized as follows. We present the architecture
of SmartLite in Section 2 and introduce our approaches in Section
3. We discuss how SmartLite serves inferences of multiple models
in Section 4. The experimental performance of different implemen-
tations is evaluated in Section 5. We review the related work in
Section 6 and conclude the paper in Section 7.

2 SMARTLITE: OVERVIEW
In this section, we give an overview of SmartLite and briefly in-
troduce the workflow of our in-DB model inference process. Note
that SmartLite is not designed to support in-DB model training
due to the limited computational resources of the edge devices. We
leave the resource-intensive training process to DL frameworks
on the cloud server. SmartLite does not rely on any assumption of
the underlying DBMSs. However, tensor manipulations involved
in DL inference require column-wise processing, and hence, for
performance considerations, current SmartLite is implemented on
top of ClickHouse [2], a columnar DBMS.

As shown in Figure 1, the processing is split into the offline stage
and the online stage. In the offline stage, we export the trained
model from Tensorflow/PyTorch into SmartLite and then apply the
quantization to transform the float parameters into 0-1 bit parame-
ters, significantly reducing the size of the neural model. Both the
model structure information and model parameters are maintained
as tables of SmartLite. Correspondingly, the tensor operators, such
as tensor multiplication, can be implemented as bitwise operators,
which are well supported by modern DBMS. To further improve
the inference performance, we combine bottleneck operators, such
as BitCount and XOR, into a specific lookup operation (see Section
3 for details), dramatically reducing the computation complexity.
Note that in our experiments, the quantization may cause a perfor-
mance drop in accuracy of less than 6%. However, it can effectively
reduce the computation overhead and enable real-time inference
for devices with limited computation capability.1

1The evaluation results are presented in Section 5.6.
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Figure 2: Tensors as tables: a simple solution.

In the offline process, we also inherit the idea of network pruning
[14, 44, 45] to discard unnecessary parameters. Namely, if parame-
ters do not show a strong correlation with the final prediction result,
we can avoid the computation involving them. In this way, we sac-
rifice 1%-3% (tunable) accuracy to achieve a runtime improvement
of over 200%. 2 In the online process, SmartLite receives real-time
prediction requests for multiple models. However, due to a limited
buffer, only a few of them can be fully maintained in memory. We
observe that many neural models share similar neural structures
and only refine the last few layers. Therefore, SmartLite identifies
the shared parts of models and creates a mapping table to avoid
buffer redundancy of neural parameters. To avoid repetitively shuf-
fling data in/out of memory, a scheduling algorithm is employed
to maximize the likelihood that requests can be fully processed in
memory. Figure 1 illustrates our key three optimization techniques
that are applied to the offline and online stages. In what follows, we
delve into the details of the two stages and explain how we support
in-DB real-time inference with constrained resources.

3 OFFLINE PROCESSING STAGE
In the offline stage, we import the trained neural models (parameters
and neural structures) into SmartLite. A straightforward storage
approach is introduced to maintain tensors as tables and corre-
spondingly, we transform tensor computations into SQL queries.
To reduce the computation and storage overhead, we apply two
optimization techniques: DBMS-oriented parameter-driven model
simplification and model structure optimization.

3.1 Tensors as Tables
Tensors are the main citizens of neural network computations. In
SmartLite, both input requests and neural models are represented
as tensors. Therefore, we first discuss how to maintain tensors in a
relational database.

3.1.1 Storage. In a typical convolutional neural network (CNN),
both the input tensor and the weight tensor (or kernel tensor in the
convolution layer) usually have four dimensions: 𝑁 × 𝐻 ×𝑊 ×𝐶 ,
representing batch size, height, width, and channels, respectively.
A straightforward idea is to transform these tensors into multiple
2The tuning knob for accuracy/runtime is presented in Section 5.5.5.

one-dimensional arrays and maintain them as one-column tables.
Tensor multiplication, also known as MatMul, is considered the
most fundamental and costly operation in CNN [11, 62]. It is com-
posed of dot product operations between multiple sub-tensors. To
represent the MatMul in the database, we transform the sub-tensors
that perform the dot product operations, rather than the entire ten-
sors, into multiple one-dimensional arrays and store them as tables.

Figure 2a shows a specific case of MatMul, where it is repetitively
invoked to compute the convolution. Each convolution operation
can be seen as a dot product operation between sub-tensors. We
divide the tensors into multiple sub-tensors based on how we cal-
culate the dot product calculation. In Figure 2a, a sub-tensor is a
tensor of dimensions 1 × 3 × 3 × 3 that satisfies the compatibility
condition for MatMul with the kernel tensor. To denote the struc-
ture of sub-tensors, auxiliary indices can be added to the tables as
indicators. For instance, as demonstrated in Figure 2b, the input
has 𝑛 sub-tensors and there are𝑚 kernel tensors. To preserve this
structure of the neural network and locate the relevant elements
involved in a MatMul computation, we generate MatrixID and Or-
derID in the table. MatrixID is used to mark the sub-tensor IDs and
OrderID is used to mark the order of the elements in the sub-tensors.
This results in an input table with 𝑛 ∗ 3 ∗ 3 ∗ 3 tuples and a kernel
with 3 ∗ 3 ∗ 3 ∗𝑚 tuples.

3.1.2 Computation. After we maintain tensors as tables, we can
leverage the DBMS to manipulate them. In fact, SQL is a very
powerful coding language and most tensor manipulations, such as
MatMul, SUM, MIN/MAX, and Count, can be directly processed via
SQL queries. We use MatMul as an example to illustrate how SQL
can be applied to process tensors and hence, perform the model
inference. As mentioned in the previous storage, in the calculation
process of MatMul, the value of each position in the result matrix
is actually the dot product between sub-tensors. Essentially, the
MatMul operation of the 𝑗th sub-tensors can be denoted as follow:

𝑀𝑎𝑡𝑀𝑢𝑙 (𝐹 𝑗 , 𝐾𝑗 ) =
𝑠𝑖𝑧𝑒 (𝐹 )∑︂
𝑖=0

(𝐹 𝑗 [𝑖] ∗ 𝐾𝑗 [𝑖]) (1)

where 𝐹 𝑗 [𝑖] and 𝐾𝑗 [𝑖] are the 𝑖th element of the sub-tensor 𝐹 𝑗 and
the sub-tensor 𝐾𝑗 , respectively.

The storage of 𝐹 𝑗 and𝐾𝑗 in the database is illustrated in Figure 2b.
To achieve MatMul by the SQL, we establish connections between
elements sharing the same OrderID through INNER JOIN. The
associated sub-tensors 𝐹 𝑗 and𝐾𝑗 are then aggregated using GROUP
BYwithmatchingMatrixIDs and subjected to theMatMul operation.
The SQL statement can be described as follows:

SELECT SUM(F.value * K.value)
FROM F INNER JOIN K
ON F.OrderID = K.OrderID
GROUP BY F.MatrixID, K.MatrixID;

Other popular neural network operators based on tensor manip-
ulations can be translated into SQL queries as well and we illustrate
the idea in the following sections. The straightforward approach,
although simple and intuitive, is not efficient for the DBMS, which
is designed to support relational data, not arrays. Therefore, we
propose two optimizations to make it more compatible with DBMS.
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3.2 Parameter-driven Model Simplification
3.2.1 Parameters Quantization And Collective Bit-Storage. Default
neural models are trained with float weights, incurring high com-
putation and storage overheads. To address the issue, we apply
neural network quantization[19, 69] to simplify neural models in
the offline stage. We apply XNOR-Net [26, 53, 56, 66] to binarize a
neural model with only 0 and 1 as parameter values. Figure 3 shows
a binary storage table of the input table in Figure 2. We use one
bit-array as a tuple to represent all binary values of a sub-tensor
because of its compact representation. Auxiliary indices are not
needed in this case, since we can perform 1-to-1 mapping. Thus,
tensor manipulations over the binary tables can be implemented as
bitwise operators of the DBMS on corresponding bit-arrays.

We propose a new bit-oriented storage format for neural model
layers, which overcomes the limitation of DBMS in supporting bit-
arrays of varying lengths. The proposed format is depicted in Figure
4, where a bit-oriented table file is created for each layer. Data in
each storage file is partitioned into equal-sized (4KB) data blocks,
each comprising a 32-bit header and a set of 256-bit data chunks.
The header comprises 16 bits for the width/height of the tensor
and 16 bits for the number of data chunks. In the data blocks cor-
responding to each neural model layer, the data chunks constitute
all the tensors required for computations. The data of the tensor is
stored in data chunks sequentially. Furthermore, these data chunks
are organized as the columns of binary tables within the DBMS.
During the computational process, SmartLite executes queries for
different neural model layers by parsing and locating the positions
of the relevant data blocks in the storage files and subsequently
retrieving the contents of the headers and data chunks. The tensor
format is explained below:

Typical Weight Tensor Let 𝑀𝑤 = 𝑤 × ℎ × 𝑐 denote the
weight tensor.𝑀𝑤 can be split into ⌈𝑤ℎ𝑐256 ⌉ chunks. A large
tensor may span several data blocks and if there is extra
space left, SmartLite uses “0” as the padding bit.

Kernel Tensor Unlike other weight tensors, the kernel ten-
sor is usually compact and has equal width and height. Let
𝜅 and 𝑐 denote the kernel width and the number of chan-
nels, respectively. The kernel tensor has 𝜅 × 𝜅 × 𝑐 bits and
SmartLite splits it into 𝜅×𝜅 bit-arrays. A 256-bit data chunk
can store up to ⌊ 256
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Figure 3: Binary storage table.

The proposed SmartLite maintains two types of tables for a
neural model. A meta table records all layers of the model and how
they are connected, while the pure data table represents the weight
tensors of a layer. Since tensors need to be executed in a certain
order during the calculation process, we have strict requirements
for the data layout and order in the storage data table. With the
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Figure 4: : Binary storage file for neural models.

help of header information, SmartLite can locate all bit-arrays of
either a typical weight tensor or a kernel tensor quickly. The binary
table structure allows for bitwise operations on any tensor, such
as bitwise XOR and AND, without any parsing or transforming
overhead, as demonstrated in Section 3.2.2.

3.2.2 Computation over Binary Table. By transforming a tensor
into a binary table, we can perform operations on the tensors as
bitwise operations on the tables. We have:

𝑀𝑎𝑡𝑀𝑢𝑙 (𝐹, 𝐾) ≈ 𝛽𝛼𝑀𝑎𝑡𝑀𝑢𝑙 (𝑓 , 𝑘)
𝑠 .𝑡 . 𝐹 , 𝐾 ∈ R𝑛 , 𝑓 , 𝑘 ∈ {0, 1}𝑛 (2)

where 𝑓 and 𝑘 are the binarized versions of 𝐹 and 𝐾 generated by
the XNOR-Net, respectively. 𝛽 and 𝛼 are the scale factors and are
determined during the training from XNOR-Net. The theoretical
analysis of Equation 2 on binarization is discussed in [56]. Note that
the error difference between before and after binary quantization is
very large, so the scaling factors need to be introduced for the cor-
responding correction. We can use the offline trained scaling factor
as the known parameters. So we discard them from our discussion.
Putting the bitwise operations into Equation 2,𝑀𝑎𝑡𝑀𝑢𝑙 (𝑓 , 𝑘) can
be rewritten by the following equation [21]:

𝑀𝑎𝑡𝑀𝑢𝑙 (𝑓 , 𝑘) = −2 ∗ 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(𝑓 , 𝑘)) + 𝑠𝑖𝑧𝑒 (𝑓 ) (3)

where BitCount returns the number of 1s in a bit-array. XOR is
the function of exclusive bitwise OR and size(f) returns the tensor
size. Using tensor mathematical operations, SmartLite can support
various neural network modules (such as Max Pooling, Average
Pooling, Batch Normalization, ReLU, Sign, tanh, etc.) in a binarized
manner via bitwise operations such as BitCount and XOR. For ex-
ample, Convolution, Full Connection, and MLP are implemented as
MatMul while Max Pooling, Average Pooling, tanh, and Sign are
single-tensor transformations. ReLU is a value filter. We have pro-
vided the SQL statements for implementing these neural modules
in Table 1, omitting details for the sake of brevity. The Basic Block
of ResNet is the most complex module we demonstrate, requiring a
combination of Convolution, ReLU, and module connections.

3.2.3 Performance Optimization. After profiling, it has been discov-
ered that the BitCount function is the most expensive and frequently
used operation. This function counts the number of 1s in a bit-array,
and scanning the whole data incurs a cost of 𝑂 (𝑙𝑒𝑛) (where 𝑙𝑒𝑛
is the length of the bit-array), which can make it the most time-
consuming part in model inference. To address this issue, SmartLite
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Table 1: The SQL statement of neural network operators.

Operators SQL Statement Description 3

MatMul SELECT -2*BitCount(XOR(f.value,k.value))
+size(XOR(f.value,k.value))
FROM Input f INNER JOIN Kernel k;

Refer to Section 3.1.
Convolution(Conv) Refer to Section 3.1.
Full Connection(FC) 𝑦 = 𝑓 𝑘𝑇

MLP {𝐹𝐶1, 𝐹𝐶1, ..., 𝐹𝐶𝑛}
Max Pooling SELECT BitCount(f.value)>0?1:0

FROM Input f; 𝑚𝑎𝑥 (𝑓 )

Average Pooling SELECT BitCount(f.value)/size(f.value)
FROM Input f; 𝑎𝑣𝑔(𝑓 )

Batch Normalization
SELECT (f.value-(SELECT AVG(f.value)
FROM Input f)) /
(SELECT sqrt(varPop(f.value)+0.00001)
FROM Input f) FROM Input f;

𝑓 −𝑎𝑣𝑔(𝑓 )√
𝑣𝑎𝑟 (𝑓 )+0.00001

ReLU SELECT f.value>0?f.value:0
FROM Input f; 𝑚𝑎𝑥 (0, 𝑓 )

Sign SELECT sign(f.value)
FROM Input f; 𝑠𝑔𝑛(𝑓 )

tanh
SELECT (exp(f.value)-exp(-f.value))
/ (exp(f.value)+exp(-f.value))
FROM Input f;

𝑒𝑥𝑝 (𝑓 )−𝑒𝑥𝑝 (−𝑓 )
𝑒𝑥𝑝 (𝑓 )+𝑒𝑥𝑝 (−𝑓 )

Basic Block
in ResNet [31]

SELECT f’.value+f.value FROM(
SELECT (-2*BitCount(XOR(f.value,k.value))
+size(XOR(f.value,k.value))) AS value
FROM (SELECT value>0?value:0 AS value
FROM (
SELECT (-2*BitCount(XOR(f.value,k.value))
+ size(XOR(f.value,k.value))) AS value
FROM Input f INNER JOIN Kernel1 K))
AS f INNER JOIN Kernel2 k) as f’, Input f;

{𝐶𝑜𝑛𝑣1,𝐶𝑜𝑛𝑣2, 𝑅𝑒𝐿𝑈 , 𝐹𝐶}

accelerates the BitCount computation using lookup tables, which is
explained in this subsection.

A possible way to speed up the processing of enumerable input
combinations is to compute and store the corresponding results in
a lookup table offline and search the lookup table during online
processing, reducing the cost from 𝑂 (𝑙𝑒𝑛) to 𝑂 (1) [52]. We notice
that SmartLite applies BitCount normally after multiplying two bit-
arrays 𝑓 and 𝑘 in Table 1. So we extend the lookup scheme. For two
bit-arrays of equal-size 𝑙𝑒𝑛, SmartLite maintains a lookup table 𝐿𝑃
with 22∗𝑙𝑒𝑛 elements. For example, let “10110000” and “11100111” be
the binary representations of 𝑓 and 𝑘 , respectively. Then, 𝑓 ×𝑘 pro-
duces a bit-array “10100000”, and the concatenation of “10110000”
and “11100111” (i.e., 10110000⊕11100111) gives “1011000011100111”
which is 45287 (decimal value of 1011000011100111). Therefore,
SmartLite has an entry 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 [45287] = 2 (number of 1s in
“10100000”) in its lookup table 𝐿𝑃 . We maintain all possible results
in 𝐿𝑃 for future calculation of the bitwise operations. If SmartLite
receives the query 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (10110000, 11100111) again, it returns
2 directly by checking the 𝐿𝑃 table.

The approach can be further extended to support more com-
plex combinations of multiple bitwise operations. For example,
SmartLite can merge the BitCount lookup entry with the XOR op-
erator to create a new lookup entry, denoting the result of Bit-
Count(XOR()). For the same two bit-arrays as our previous example,
their XOR result is “01010111”, and SmartLite makes a new entry
𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅 [45287]) = 5 corresponding to the result of BitCount
of “01010111”. In this way, one lookup completes the operation
𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(𝑓 , 𝑘)), which reduces the processing overhead. For-
mally, the lookup table of 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅 [𝑏 (𝑓 ), 𝑏 (𝑘)]) returns the
𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 results for 𝑋𝑂𝑅(𝑏 (𝑓 ), 𝑏 (𝑘)), where 𝑏 (𝑓 ) and 𝑏 (𝑘) are the
binary representation of the bit-array 𝑓 and 𝑘 , respectively.

However, the above lookup table is not scalable for some cases
that involve two extremely large tensors. For example, the last full
connection layer of VGG16 [61] has 𝑙𝑒𝑛 = 4096. It is impossible to

3The more specific definitions of neural operators and the implementations of PyTorch
functions can be obtained from: https://pytorch.org/docs/stable/nn.html

maintain a lookup table of size 28192 in SmartLite. To solve this issue,
SmartLite splits 𝑏 (𝑓 ) into 𝑥 =

⌈︂
𝑙𝑒𝑛
𝑚

⌉︂
equal-size bit-arrays: 𝑏1 (𝑓 ), . . . ,

𝑏𝑥 (𝑓 ), where 𝑏𝑖 (𝑓 ) has a length of𝑚. For any two bit-arrays 𝑓 and
𝑘 , both the computed results of BitCount and XOR over the whole
bit-arrays are equal to the sum of computed results of BitCount
and XOR over the sub-bit-arrays. That is, SmartLite can get the
results of 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑏 (𝑓 ) × 𝑏 (𝑘)) and 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(𝑏 (𝑓 ), 𝑏 (𝑘)))
from the split bit-arrays. Formally, we have:

𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑏 (𝑓 ) × 𝑏 (𝑘)) =
𝑥=

⌈︁
𝑙𝑒𝑛
𝑚

⌉︁∑︂
𝑖=1

𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑏𝑖 (𝑓 ) × 𝑏𝑖 (𝑘)) (4)

𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(𝑏 (𝑓 ), 𝑏 (𝑘))) =
𝑥=

⌈︁
𝑙𝑒𝑛
𝑚

⌉︁∑︂
𝑖=1

𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(𝑏𝑖 (𝑓 ), 𝑏𝑖 (𝑘))

(5)
In this way, SmartLite can perform one large table lookup op-

eration as 𝑥 small ones. Moreover, SmartLite only needs to keep a
lookup table of size 22𝑚 for all bit-arrays because they share the
same table if they have the same length.

One special case is the convolution layer, where input tensors
are multiplied with some fixed kernels iteratively. Since only a
limited number of kernels are involved, SmartLite does not need to
maintain all possible combinations. Instead, we adopt an “inverted”
lookup approach. For each kernel 𝑘𝑖 , SmartLite creates a lookup
table 𝐿𝑃𝑖 . Given an input with the binary representation “1011000”,
𝐿𝑃𝑖 [176] returns the result of 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(10110000, 𝑏 (𝑘𝑖 )))).
Formally, we can initialize 𝐿𝑃 for a convolution layer as follows:

𝐿𝑃𝑖 [ 𝑗] = 𝐵𝑖𝑡𝐶𝑜𝑢𝑛𝑡 (𝑋𝑂𝑅(𝑏 ( 𝑗), 𝑏 (𝑘𝑖 ))) (6)

where 𝑏 ( 𝑗) represents the binary array of integer 𝑗 . Then, we can
convert all computations involving 𝑘𝑖 into a lookup of 𝐿𝑃𝑖 . Suppose
a convolution layer has𝑛𝑘 kernels. SmartLite only needs tomaintain
𝑛𝑘 lookup tables. In this way, SmartLite dramatically reduces the
sizes of the lookup tables from 22∗𝑙𝑒𝑛 to 𝑛𝑘 ×2𝑙𝑒𝑛 . For example, for a
convolution layer in VGG16 with 128 kernels of size 3×3, SmartLite
only needs to keep 128 lookup tables of size 29, which costs about
64KB in total storage. Different from one big lookup table for all
layers, the inverted kernel lookup tables are associated with each
convolution layer. In other words, we can maintain multiple sets of
the lookup tables, one for each convolution layer.

3.3 Model Structure Optimization
After transforming the BitCount and BitCount(XOR()) operations
into efficient memory lookups, the performance of SmartLite during
neural inference is mainly determined by the number of lookups.
Existing works [14, 50, 57, 60] show that some neural structures
are redundant and do not contribute to the inference performance.
Hence, network pruning is applied to compress neural models,
effectively reducing the processing overhead. During the training
process, we find that some weights frequently flip from 0 to 1 and
vice versa in the last few epochs, indicating that the model cannot
generate a consistent value for those weights [44]. In these epochs,
the accuracy of the model improves gradually (if not over-fitting).
This observation suggests that the values of those weights do not
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contribute to the performance of the model. As such, SmartLite
may remove those weights without hurting the accuracy during
the neural model inference.
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Figure 5: Workflow of neural network pruning.

Figure 5 illustrates the method employed by SmartLite, which in-
volves dividing input and kernel tensors into𝑚-bit splits and utiliz-
ing a lookup table to replace costly BitCount operations. SmartLite
maintains a frequency histogram of each bit in the kernel, indicat-
ing the number of times the bit flips during training. This histogram,
which is a by-product of the training process, can be obtained by
analyzing the training log.We define the threshold 𝜃 as the trade-off
between the computation overhead and accuracy. If the bit flips for
more than 𝜃 number of epochs, we mark it as “invalid”. Existing
works [27, 45, 65] demonstrate the locality property of neural net-
work weights. Effective weights are grouped together and can be
partitioned into a finite number of clusters. Similarly, weights that
do not contribute to the model inference are also clustered, i.e., the
whole bit-array. This observation suggests that if all bits in the split
bit-array are invalid, we can mark the whole bit-array as invalid.

In Figure 5, we ignore any splits that are marked as “invalid”
and omit any intermediate results involving invalid splits during
MatMul computation. By doing so, we effectively decrease the num-
ber of lookups required during MatMul. The resulting tensors are
then forwarded to the next layer as input to continue the cascading
pruning, further reducing the overhead.

Pruning performance analysis. The neural network pruning
is determined by two parameters,𝑚 and 𝜃 .𝑚 is the length of the
split bit-array. The pruning threshold 𝜃 is used as the tuning knob
to adjust the model’s runtime and accuracy. We demonstrate the
effect of 𝜃 on the pruning ratio and accuracy in Section 5.5.5.
Here, we briefly discuss the effect of𝑚. A larger𝑚 results in fewer
lookup operations, but leads to a lower probability of detecting an
invalid split. We use CNN and fully connected network (FCN) as
our examples to illustrate the effect. Other neural structures follow
a similar analysis.

Let 𝑃 denote the probability of a bit being invalid. We apply
the beta-binomial distribution (BBD) to model the distribution of
𝑃 and the correlations between bits. Therefore, we estimate the
probability of all𝑚 bits being invalid as:

𝑃 (𝑥 =𝑚,𝛼, 𝛽) = Γ(𝑚 + 𝛼)Γ(𝛼 + 𝛽)
Γ(𝑚 + 𝛼 + 𝛽)Γ(𝛼) (7)

where 𝛼 and 𝛽 are parameters of the beta distribution. Γ denotes
the gamma function.

Let 𝑓𝑖𝑛 , 𝑓𝑜𝑢𝑡 , and 𝑛𝑤 denote the sizes of the input tensor, the
output tensor, and the kernel tensor, respectively. The number of
invalid splits is estimated as 𝑛𝑤

𝑚 𝑃 (𝑥 =𝑚,𝛼, 𝛽). For FCN, we have:

𝑓𝑜𝑢𝑡 = ⌈ 𝑓𝑖𝑛
𝑚

⌉ ⌈𝑛𝑤
𝑚

⌉𝑃 (𝑥 =𝑚,𝛼, 𝛽) ×𝑚2 (8)

For CNN, the size of the kernel is 𝜅 × 𝜅. Suppose we have 𝑓𝑖𝑛 =

ℎ × ℎ × 𝑐 and 𝑓𝑜𝑢𝑡 = ℎ′ × ℎ′ × 𝑐′. The number of expected channels
can be denoted as follows [44]:

𝑐′ = ⌈𝑛𝑤
𝜅2 ⌉𝑃 (𝑥 =𝑚,𝛼, 𝛽) (9)

The width/height of 𝑓𝑜𝑢𝑡 is estimated as:

ℎ′ = ⌊ℎ − 𝜅 + 2𝑝
𝑠

⌋ + 1 (10)

where 𝑝 and 𝑠 represent the padding and stride of the CNN [51].
𝑃 (𝑥 =𝑚,𝛼, 𝛽) can be estimated using the sampling approach and

is monotonically decreasing in terms of𝑚. To achieve the optimal
pruning effect, we can obtain the𝑚 to minimize 𝑓𝑜𝑢𝑡 :

𝑓 ′𝑜𝑢𝑡 = 0 (11)

In a real-world scenario, a neural network normally consists
of various types of neural layers (e.g., Convolution+ReLU+BN),
making it difficult to estimate a global optimal𝑚. Instead, we choose
to generate an optimal𝑚 for each individual layer according to the
sampling results during the model training, although it may result
in a sub-optimal solution for the whole network.

4 ONLINE INFERENCE STAGE
One advantage of SmartLite is that it can simultaneously support
multiple models in a lightweight manner, compared to conventional
ML/DL frameworks such as TensorFlow Serving and TorchServe.
Tensors of the pre-trained models are maintained as database tables
in SmartLite, which uses the memory mapping strategy to reduce
the I/O overhead. This allows SmartLite to serve multiple neural
models and provides the capability of real-time inferences on edge
devices. There are two main optimizations applied: model sharing
and model scheduling.

4.1 In-DB Model Mapping and Sharing
We observe that a widely adopted strategy for building neural
models is “transfer and refine”. A basic model pre-trained with
large datasets is reused as shared blocks by keeping all weights
except the last few layers unchanged. We only re-train the last
2-3 layers for predictions as private blocks. For instance, VGG is
a common basic model that can be refined to support tasks such
as classification [48], object detection [30], and style transfer [64].
This approach motivates our model-sharing strategy.

Figure 6 illustrates the model sharing in SmartLite, where all
data blocks are mapped to a memory buffer and the LRU strategy is
applied to select a victim block if the buffer is full. SmartLite main-
tains a meta table for each model, recording how its parameters
are stored. When serving a model, we first check the meta table
to retrieve the weights of the next layer. If the corresponding data
blocks are buffered in memory, we initiate the computation directly.
Otherwise, the lazy loading process similar to the demand-paging
mechanism is invoked, which only loads data blocks if necessary.
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Figure 6: Model sharing with mapped memory.

To keep track of how blocks are buffered, we maintain a mapping
table for logical blocks to physical blocks. The request of accessing a
data block from the serving process is translated into operations on
a physical block. There are three possible access patterns. First, we
have already set up the mapping relation and the request is trans-
formed into memory access. Second, if we find that the mapped
physical blocks are identical (e.g., block 1 and block 6 in Figure 6)
because the corresponding models share the same basic structure,
we modify the mapping and refer to the same physical block, re-
ducing the redundancy. Finally, if the mapping is not established,
we load a data block from the disk into the buffer. If the buffer
is already full, the LRU algorithm is applied to pick a victim and
replace it with a new block. Last but not least, the related records
in the mapping table are updated as well.

4.2 Model Scheduling
In a heavily loaded scenario, the process of adaptive loading can
result in frequent migration of data blocks between memory and
disk. This problem can be formally defined as follows.

Let 𝑁 denote the maximum number of buffered blocks and 𝑀
denote the number of pre-trained neural networkmodels. We define
the set of models as 𝑆𝜒 = 𝜒𝑖 = (𝑏1, . . . , 𝑏𝑔 (𝑖 ) ) | 0 ≤ 𝑖 < 𝑀 , where
model 𝜒𝑖 is comprised of blocks 𝑏1 to 𝑏𝑔 (𝑖 ) . Let 𝑇 𝑖 represent the
buffer status at time 𝑖 , such that𝑇 0 (𝑏 𝑗 ) = 1 if block 𝑏 𝑗 is present in
memory at time 𝑖 , and 0 otherwise. The buffer imposes a limit on
the number of the buffered blocks, such that

∑︁
∀ 𝑗 𝑇

𝑖 (𝑏 𝑗 ) ≤ 𝑁 . At
time 𝑖 + 1, if the buffer has been updated, the cost is estimated as:

𝐶𝑖→𝑖+1 =
∑︂
∀ 𝑗

|𝑇 𝑖+1 (𝑏 𝑗 ) −𝑇 𝑖 (𝑏 𝑗 ) | (12)

Our target is to generate an inference sequence that achieves
the least loading costs:

argmin
∀𝜋

(
𝑀−1∑︂
𝑖=0

𝐶𝜋 (𝑖 )→𝜋 (𝑖+1) ) (13)

𝜋 represents a permutation of the model order, indicating the
sequential buffering of model blocks. As there are exponential pos-
sibilities, this problem can be considered a special case of the online
knapsack problem with removable cost [28, 34, 35], particularly
in the real scenario where requests are received in a streaming
manner. 𝑁 represents the budget, and each model 𝜒𝑖 is considered
an item with weight 𝑔(𝑖) and benefit 𝑟𝑖 , where 𝑟𝑖 is the number of
requests for model 𝜒𝑖 . If the buffer is full and new requests come
in, we must remove some models from the buffer to accommodate

Algorithm 1: Online scheduling strategy.
Input: requests 𝑅 = {(𝜒𝑖 , 𝑟𝑖 ) |0 ≤ 𝑖 < 𝑀} at time 𝑡
𝑟𝑖 is the number of the requests for model 𝜒𝑖

1 Let Hashmap 𝐻 (𝐺𝑥 ) return all requests of models in 𝐺𝑥

2 for 𝑥 = 0 to 𝐿 − 1 do
3 𝐻 (𝐺𝑥 )+ =

∑︁
𝜒𝑖 ∈𝐺𝑥

𝑅 [𝜒𝑖 ] .𝑟𝑖
4 𝑣𝑥 =

𝐻 (𝐺𝑥 )
𝐸𝑡 (𝐺𝑥 )

5 end
6 Let 𝐺𝑚𝑎𝑥 be the group with max 𝑣𝑥
7 if 𝐺𝑚𝑎𝑥 is not maintained in memory then
8 Remove groups with minimal 𝑣𝑥 from memory until all

models in 𝐺𝑚𝑎𝑥 can be held in memory
9 update the corresponding mapping table 𝑇

10 end
11 Process requests of models in 𝐺𝑚𝑎𝑥

12 𝐻 (𝐺𝑥 ) = 0

the new ones, incurring a removable cost 𝐶𝑖→𝑖+1. The problem is
further complicated by the fact that some models share the same
data blocks, resulting in dynamically changing model weights. It
is worth noting that there exists no deterministic online algorithm
with a constant competitive ratio for the general removable online
knapsack problem.

We extend the greedy algorithm of [29]. The main idea is to
process requests for a group of models sharing the same basic
structure simultaneously. Suppose we have 𝐿 basic neural struc-
tures, all models are grouped based on their neural structures :
{𝐺0, ...,𝐺𝐿−1}. For each model 𝜒 , we split its data blocks into two
categories: 𝐵𝜒

𝑏𝑎𝑠𝑖𝑐
= {𝑏1, ..., 𝑏𝑥 } and 𝐵𝜒𝑡𝑢𝑛𝑒 = {𝑏′1, ..., 𝑏

′
𝑦}. The set

𝐵
𝜒

𝑏𝑎𝑠𝑖𝑐
is shared between all models with the same basic structure,

while 𝐵𝜒𝑡𝑢𝑛𝑒 denotes 𝜒 ’s private blocks. We define 𝑇 𝑖 (𝐺 𝑗 ) to return
whether any model of 𝐺 𝑗 is maintained in the buffer at time 𝑖 . We
further define the cost of group 𝐺 𝑗 at time 𝑖 as follows:

𝐸𝑖 (𝐺 𝑗 ) =
{︄
𝐵
𝜒0
𝑏𝑎𝑠𝑖𝑐

+∑︁
∀𝜒∈𝐺 𝑗

(𝐵𝜒𝑡𝑢𝑛𝑒 ) if 𝑇 𝑖−1 (𝐺 𝑗 ) == 0∑︁
∀𝜒∈𝐺 𝑗

(𝐵𝜒𝑡𝑢𝑛𝑒 ) otherwise
(14)

where 𝜒0 is a random model in 𝐺 𝑗 . Then, our idea is presented in
Algorithm 1. The algorithm first counts the number of requests for
all basic neural structures at time 𝑡 and then evaluates the benefit
by dividing the number of requests by the cost. For the neural
group𝐺 𝑗 with the maximal benefit, SmartLite schedules it with the
highest priority and serves all requests for models in the group.

5 EVALUATIONS
5.1 Experimental Setup
Hardware. To evaluate the performance of SmartLite, we conduct
experiments on an edge device equipped with an ARMv8 CPU
(AArch84, 8 cores @ 1.8GHz) and 16GB of memory. This type of
CPU is commonly used in embedded systems due to its low energy
consumption and compact size.

Metrics. We measure the performance of SmartLite using six
metrics: the maximum number of models that can be loaded into
memory, total inference runtime of a batch (in seconds), prediction
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Table 2: Overall evaluation of different models on edge devices.

Devices Models Metrics PyTorch MADlib DL2SQL Default SmartLite SmartLite(lookup) SmartLite(prune) Maximum Improvement

AArch64

VGG16
Time(s) 12.573 21.326 45.296 22.412 15.291 10.888 4.16×

Memory Usage(MiB) 1197.751 1045.802 3177.058 950.441 953.328 655.984 4.84×
Accuracy(%) 90.37% 90.37% 90.37% 90.37% 90.37% 89.67% -0.70%

ResNet18
Time(s) 4.827 10.274 15.785 12.544 10.324 4.471 3.53×

Memory Usage(MiB) 236.587 378.304 987.461 167.029 170.453 136.558 7.23×
Accuracy(%) 87.22% 87.22% 87.22% 87.22% 87.22% 84.61% -2.61%

AlexNet
Time(s) 6.053 20.796 21.146 13.373 9.836 5.205 4.06×

Memory Usage(MiB) 302.935 807.856 1321.375 287.103 289.605 215.855 6.12×
Accuracy(%) 88.84% 88.84% 88.84% 88.84% 88.84% 86.73% -2.11%

TextCNN
Time(s) 0.528 12.939 3.008 0.551 0.363 0.302 42.84×

Memory Usage(MiB) 62.648 199.128 744.894 44.864 45.082 30.628 24.32×
Accuracy(%) 74.86% 74.86% 74.86% 74.86% 74.86% 72.14% -2.72%

X86_64

VGG16 Time(s) 9.865 34.793 41.316 17.644 11.559 7.352 5.62×
Memory Usage(MiB) 1142.921 1146.011 2509.782 541.449 544.566 322.523 7.78×

ResNet18 Time(s) 5.441 17.884 24.719 11.908 6.801 4.781 5.17×
Memory Usage(MiB) 571.622 611.352 934.367 91.316 92.488 64.269 14.54×

AlexNet Time(s) 8.596 27.241 29.599 19.875 10.341 5.802 5.10×
Memory Usage(MiB) 697.276 772.032 1078.144 165.075 166.539 92.961 11.60×

TextCNN Time(s) 1.206 24.411 2.382 0.323 0.295 0.165 147.95×
Memory Usage(MiB) 34.148 270.683 506.757 25.898 27.546 11.402 44.44×

accuracy (as a percentage), memory usage (in MiB), read/write rate
(in MiB/s), and throughput (in rows/s). The default batch size used
in our experiments is 64.

Threads. By default, we use the maximum number of threads
(10) for metric measurements in all experiments except for the one
that compares the effect of varied numbers of threads.

Compared Methods. For comparison purposes, we use Py-
Torch (including TorchServe), a popular DL framework, as a base-
line implementation. We also compare our approach to a loosely-
coupled solution called MADlib, which supports in-DB inference
with the support of TensorFlow. Additionally, we utilize DL2SQL
[47] as a direct comparison to the tightly-coupled approach. DL2SQL
translates the neural operators into SQL queries and relies on the
DBMS to optimize the queries. To maintain tensors in relational
tables, DL2SQL adopts two strategies: Column-oriented Matrix Mul-
tiplication (CoMM) and Multi-Column based Matrix Multiplication
(MCMM). CoMM follows the same storage and computation strat-
egy as shown in Figure 2b. MCMM is similar to CoMM, except that
it aligns all values of different channels in one row.

Data andQuery Sets. We train and evaluate the performance of
SmartLite by training 200 models using VGG16, ResNet18, AlexNet,
and TextCNN as the basic neural structures and four widely adopted
datasets: Mnist [6], CIFAR10 [1], ImageNet [3], and MR [7], respec-
tively. Of these, Mnist, CIFAR10, and ImageNet are image datasets
and MR is a text dataset. We target four tasks: image classification,
object detection, text classification, and text sentiment analysis.
And for each task, we randomly slice a portion of the correspond-
ing dataset, train a model offline, and export it into SmartLite for
online inference. We repeat the process and train 50 models for
each structure. Inference queries, normally denoted as (𝑑,𝑚𝑖 , 𝑡 𝑗 ),
are randomly generated. Here, 𝑑 represents a piece of data from the
test sets of the four datasets, while𝑚𝑖 and 𝑡 𝑗 represent the labels
of base models and task types. Given𝑚𝑖 and 𝑡 𝑗 , we can obtain the
candidate model to process the request. It is worth noting that for
inference, 𝑑 is translated into a tensor based on its pixel values and
maintained as the table in SmartLite.

5.2 Overall Performance
In these experiments, we aim to demonstrate the general perfor-
mance of all different approaches. To show the effectiveness of
different optimization approaches of SmartLite, we create three
versions. The default SmartLite does not employ the lookup and
pruning optimizations. SmartLite(lookup) only adopts the lookup
transformation optimization, and SmartLite(prune) applies both
techniques. To ensure a fair comparison, all approaches, including
PyTorch, MADlib, and DL2SQL, report their results after applying
binarized quantization on neural networks. The effect of binarized
quantization will be shown individually in Table 3.

In addition to the results on the AArch64-based device, we in-
clude results on an X86_64 server (10 cores @ 2.2GHz, 20GB mem-
ory) for comparison purposes. In the last column of Table 2, we add
the maximum improvement of SmartLite (prune) compared to the
worst performances to facilitate intuitive analysis.

Table 2 shows that during the inference process for all models,
SmartLite (prune) exhibits significant advantages for model infer-
ence compared with other all implementations, at the cost of a
small decrease in accuracy. As shown in the last column of Table 2,
SmartLite (prune) achieves a 4× to 100× improvement in prediction
latency and memory consumption compared to existing solutions,
while resulting in an accuracy degradation of only 0.7%, 2.61%,
2.11%, and 2.72% for VGG16, ResNet18, AlexNet, and TextCNN,
respectively. The result trends on the AArch64 and X86_64 are con-
sistent, demonstrating the stability of our approach across different
hardware settings. We also observe that SmartLite (lookup) sig-
nificantly reduces inference time compared to SmartLite (default),
albeit with a small increase in memory consumption due to the
lookup tables. Moreover, our model pruning strategy in SmartLite
(prune) effectively reduces memory consumption and inference
time compared to SmartLite (lookup).

5.3 Performance of Multi-model Serving
One advantage of SmartLite is its capability of hostingmultiple mod-
els with constrained resources. We evaluate the performances of
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multi-model serving in different hardware settings using AArch64
andX86_64 and present the results in Figure 7a-d. Results of DL2SQL
are not included because of its long inference time, which makes it
not feasible for real-time predictions.

Figure 7a displays the memory usage difference among the three
methods on the AArch64-based device. We observe that MADlib’s
memory usage is more than 43 times that of SmartLite, making
it a highly resource-intensive approach. Due to the limitation of
thread quantity, the growth trend of MADlib’s memory usage slows
down after reaching a certain upper limit, but the running time
increases significantly. PyTorch exhibits a similar situation. The
memory usage of PyTorch is more than 50 times that of SmartLite.
For the corresponding number of models, on average, SmartLite’s
execution speed is 1.21 times and 1.34 times that of MADlib and
PyTorch, respectively, as shown in Figure 7b.

Figure 7c and 7d illustrate the performance on the X86_64-based
device. Figure 7c shows thememory usage of three implementations
for serving the same number of models. MADlib and PyTorch use
37 times and 25 times more memory than SmartLite, respectively.
The difference in memory usage increases as the number of loaded
models increases until the thread quantity reaches the limit. Our
model scheduling and sharing strategy saves memory significantly.
Figure 7d compares the inference performance of MADlib, PyTorch,
and SmartLite for multi-model serving. SmartLite is faster than
MADlib and PyTorch in inference speed, with up to 3.21× and
3.17× speedup for the same number of loaded models. The speed
gap increases as the number of models increases.

Figure 7e illustrates themaximumnumber ofmodels thatMADlib,
PyTorch, and SmartLite can load with different memory sizes. We
can see that MADlib and PyTorch consume larger memory. In con-
trast, SmartLite can load more models into memory, scaling up to
28 times more than MADlib and PyTorch for the 8G memory size.
Meanwhile, SmartLite can control the number of buffered models
by utilizing memory size as a tuning knob.

5.4 Effect of Binarized Quantization
We compare the performance of the floating-point models and the
quantized models using PyTorch and the database. We compare the
running time of SmartLite with other implementations and use the
speed-up ratio as a measure. We evaluate four operators: convolu-
tion, maximum pooling, average pooling, and full connection used
by the ResNet18. We fix the batch size of input data to 16. Due to the
extremely low overhead of pooling one batch, we cannot measure
its performance accurately enough with our database. Therefore,
for Mnist and ImageNet, we measure the time for 500 batches of
data to pass through the pooling layer and the full connection layer.
For CIFAR10, the number of batches for the pooling operator is 500,
and for the full connection operator, it is 10,000.

Table 3 presents the results of the performance of various pro-
cessing methods. The findings indicate that SmartLite outperforms
other implementations by achieving a 9.25× speedup for the con-
volutional operator. Moreover, SmartLite accelerates the maximum
pooling operator up to 20.27× and achieves a 13.47× faster perfor-
mance on average-pooling than other implementations. For the full
connection, SmartLite demonstrates a remarkable 26× performance
improvement. As expected, binarized operations are generally faster

Figure 7: Performance comparisons of multi-model serving.

than floating-point operations. However, the analysis reveals that
the database provides better support for binarized operations than
floating-point ones. Hence, the advantage of binarized computing is
more suitable for the database. Notably, the migration from floating-
point to binarized computing results in a much larger performance
improvement for the database than PyTorch.

5.5 Detailed Analysis of Different Modules
5.5.1 Different Neural Operators. We evaluate the performance of
SmartLite regarding both the entire neural network and frequently-
used neural network operators. Specifically, we evaluate the con-
volutional operator, the fully connected operator, the max-pooling
operator, and the average-pooling operator of ResNet18 on the CI-
FAR10 dataset. To evaluate the convolutional operator, we set the
output channel to 80 and the kernel size to 3 × 3 × 3.

Figure 8 demonstrates the impact of different quantized infer-
ence implementations on query processing time. The horizontal
axis represents the batch size, and the different curves represent
various implementations. The vertical axis represents the query
processing time. The results indicate that SmartLite, optimized by
the lookup operation, achieves a performance improvement of up
to 34× on the convolutional operator. Specifically, compared to
PyTorch, SmartLite runs, on average, 303% faster. These findings
suggest that our proposed implementation of bitwise operation
has an advantage in terms of data computation parallelism. De-
spite the complexity of the full connection computation, SmartLite
still outperforms other methods in terms of runtime. In particular,
SmartLite is up to 63× faster than CoMM. Moreover, SmartLite is
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Table 3: Comparison of different processing: PyTorch-float is the floating-point inference on PyTorch; DL2SQL is the floating-
point inference in database; PyTorch-binary is the quantized inference on PyTorch.

Datasets Implements Convolution Max Pooling Average Pooling Full Connection
Time(s) Acceleration Time(s) Acceleration Time(s) Acceleration Time(s) Acceleration

Mnist

PyTorch-float 0.021 1.75× 0.063 7.00× 0.041 1.58× 0.015 3.00×
DL2SQL 0.065 5.42× 0.057 6.33× 0.231 8.88× 0.031 6.20×

PyTorch-binary 0.016 1.33× 0.054 6.00× 0.035 1.35× 0.012 2.40×
SmartLite 0.012 1.00× 0.009 1.00× 0.026 1.00× 0.005 1.00×

CIFAR10

PyTorch-float 0.037 9.25× 0.027 13.5× 0.017 2.83× 0.155 25.83×
DL2SQL 0.032 8.00× 0.018 9.00× 0.043 7.17× 0.081 13.50×

PyTorch-binary 0.009 2.25× 0.019 9.50× 0.015 2.50× 0.009 1.50×
SmartLite 0.004 1.00× 0.002 1.00× 0.006 1.00× 0.006 1.00×

ImageNet

PyTorch-float 0.015 3.75× 0.136 12.36× 0.121 3.18× 0.021 3.00×
DL2SQL 0.018 4.50× 0.223 20.27× 0.512 13.47× 0.036 5.14×

PyTorch-binary 0.009 2.25× 0.124 11.27× 0.096 2.53× 0.018 2.57×
SmartLite 0.004 1.00× 0.011 1.00× 0.038 1.00× 0.007 1.00×

Figure 8: Running time of different implementations.

16× faster than PyTorch in max-pooling and 353% faster in average-
pooling. These results demonstrate the effectiveness and efficiency
of SmartLite in various neural network operators.

5.5.2 Thread Scalability. To assess the stability of various quan-
tized inference methods in the database, we vary the number of
threads and measure the runtime and throughput of the convolu-
tional operator implemented by different methods. PyTorch is used
as the baseline for runtime comparison. Throughput is defined as
the number of rows written to the table per second. Figure 9a de-
picts the thread scalability of various quantized inference methods
on CIFAR10. Among the different methods, SmartLite performs the
best under various thread settings, demonstrating the effectiveness
of bitwise operation optimization. Specifically, when the number
of threads increases from 1 to 10, SmartLite reduces its runtime
by 625% compared to PyTorch, indicating its efficient utilization of

Figure 9: Effect of the number of threads.

Figure 10: Model size comparison.

thread resources. Throughput is one of the criteria for measuring
database performance. Figure 9b demonstrates that the throughput
of different methods increases as the number of threads increases.
Notably, the throughput of SmartLite is 1609× higher than that of
CoMM, the simplest implementation, when the number of threads
is 10. The results indicate that SQL statements of SmartLite are more
conducive to leveraging the vectorized execution of the database.

5.5.3 Model Size. As shown in Figure 10, SmartLite achieves a
significantly lower model size than the other methods. For VGG16,
SmartLite reduces the model size by 38×, 17×, and 31× compared to
CoMM, MCMM, and PyTorch, respectively. Similarly, for ResNet18,
SmartLite compresses themodel size by about 17×, 8×, and 32× com-
pared to CoMM, MCMM, and PyTorch, respectively. The model size
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Figure 11: Effect of lookups.

Figure 12: Read performance of convolution operator.

Figure 13: Write performance of convolution operator.

of AlexNet in SmartLite is 33× smaller than that in PyTorch. Com-
pared to CoMM and MCMM, SmartLite shrinks the size of AlexNet
by 47× and 19×, respectively. Furthermore, TextCNN stored in
SmartLite is 47×, 30×, and 174× smaller than those stored in CoMM,
MCMM, and PyTorch, respectively. These results demonstrate that
SmartLite is efficient in utilizing limited storage resources.

5.5.4 Lookup Table for Bitwise Count. We use SmartLite with the
default bitwise operation (Default SmartLite) as the baseline method
and compare it with SmartLite based on the lookup operation
(SmartLite(lookup)). Our implementation of SmartLite is conducted
on the CIFAR10, using the VGG16, ResNet18, and AlexNet networks.
We select one kernel from each of these three networks to ensure
a fair comparison. The input size is fixed at 3 × 32 × 32, while
the kernel size of VGG16, ResNet18, and AlexNet are 3 × 3 × 3,
3 × 5 × 5, and 3 × 7 × 7, respectively. We denote these kernels as
𝑐𝑜𝑛𝑣 − 𝑣𝑔𝑔16−𝑘3, 𝑐𝑜𝑛𝑣 −𝑅𝑒𝑠𝑁𝑒𝑡18−𝑘5, and 𝑐𝑜𝑛𝑣 −𝐴𝑙𝑒𝑥𝑁𝑒𝑡 −𝑘7,
where 𝑐𝑜𝑛𝑣 indicates the operator type, 𝑣𝑔𝑔16 indicates the network
type and 𝑘3 indicates the convolutional kernel size.

As depicted in Figure 11, our experiments demonstrate that
SmartLite with the lookup operation achieves a significant speedup
compared to the default bitwise operation. Specifically, with a 3 × 3

convolutional kernel, SmartLite with the lookup operation achieves
a speedup of up to 2.17×. For a 5×5 convolutional kernel, the lookup
operation reduces the running time by 50% compared to the original
bitwise operation. Moreover, with a 7 × 7 convolutional kernel, the
lookup operation achieves a maximum 176% acceleration in the
query speed than that of the original SmartLite. Our experimental
results also indicate that a larger batch size of the input results in
a greater advantage of the optimization, which demonstrates the
stability of the lookup operation. Next, we compare the read rates
and the write rates between different convolutional kernel sizes and
batch sizes. Figures 12 and 13 present the results, where the number
at the end of each horizontal label denotes the batch size, e.g., 32 in
VGG16-32. Across all scenarios, SmartLite(lookup) outperforms all
other methods in terms of speed. Specifically, for the read rate, the
advantage of SmartLite(lookup) becomes more pronounced as the
batch size increases, reaching a maximum of 212% of the Default
SmartLite method. Regarding the write rate, SmartLite(lookup) also
demonstrates a significant performance improvement, reaching
211% of Default SmartLite when the batch size is 256.

5.5.5 Network Pruning in SmartLite. We study the effects of two
tuning parameters: pruning threshold 𝜃 and bit-array length 𝑚.
Specifically, we utilize the CIFAR10 dataset and ResNet18 in our
experiments. In addition, users can control the pruning ratio by
adjusting the pruning threshold while keeping the bit-array length
𝑚 fixed, thus adjusting the trade-off between running time and
accuracy. As illustrated in Figure 14, the accuracy exhibits a similar
trend across different𝑚 as the pruning ratio increases. Moreover,
An increase in the pruning threshold 𝜃 leads to a decrease in the
pruning ratio. The impact of pruning threshold 𝜃 on the pruning
ratio is more pronounced for smaller bit-array length𝑚.

Figure 14: Effect of the tunable parameters.

5.6 Effect on Accuracy
We also design experiments to evaluate the accuracy of in-DB
quantized models. We select four neural networks, namely VGG16,
ResNet18, AlexNet, and TextCNN, and compute their Top-1 clas-
sification accuracy in each epoch. Specifically, we test VGG16 on
Mnist, ResNet18 on CIFAR10, AlexNet on ImageNet, and TextCNN
on MR, respectively. Figure 15 shows the evaluation results of the
floating-point models and the quantizedmodels on the four datasets.
The results indicate that for VGG16, the quantized model reduces
the training accuracy by 1.65% and lowers the testing accuracy by
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Figure 15: Accuracy comparison between the floating-point neural network and the quantized neural network.

1.87%. For ResNet18, the training accuracy drops by 2.97%, and the
testing accuracy decreases by 3.11%. For TextCNN, neural network
quantization brings about a 3.98% drop in training accuracy and a
3.03% drop in test accuracy. Even for AlexNet, which has the largest
dataset, the training accuracy difference is 5.03%, while the testing
accuracy difference is 3.76%. As shown in Figure 15, quantization
leads to some loss of accuracy. This is an inevitable consequence
since quantization reduces the precision of computation. However,
given the memory saving and speedup in inference, this trade-off
can be acceptable for resource-constrained devices.

6 RELATEDWORK
In this section, we briefly introduce related research lines.
Neural Network Quantization: Neural network quantization
is to reduce the memory and computation consumption of neu-
ral networks while keeping their accuracy as much as possible.
Courbariaux et al. [20] find that very low precision multipliers are
sufficient to train neural networks. Courbariaux et al. [21] intro-
duce a method to train binarized neural networks by computing
the gradients of parameters with binarized weights and activations.
Rastegari et al. [56] propose Binary-Weight-Networks and XNOR-
Net. The multiplication of XNOR-Net is implemented by XNOR
operation with a scaling factor. Banner et al. [12] quantize model
parameters, activations, and layer gradients to 8-bit and propose
Range Batch-Normalization to tolerate higher noise. They also
propose a 4-bit post-training quantization approach [13] to avoid
retraining CNN models. ZeroQ [16] proposes a zero-shot quantiza-
tion framework that uses mixed-precision quantization. ZAQ [49]
takes a novel two-level discrepancy modeling and optimizes the
quantized model with adversarial learning. Considering different
statistical properties of neural gradients, Chmiel et al. [18] optimize
the floating-point format and scale of the gradients and set sparsity
thresholds for gradient pruning.
Optimization for database and models: Directly supporting DL
in a database normally does not result in satisfactory performance.
BitWeaving [43] utilizes bit-level parallelism in modern processors
to speed up scanning in main memory. ROVEC [42] avoids unnec-
essary datatype casting and utilizes block-wise statistics to improve
SIMD-based evaluation parallelism. Jiang et al. [37] speed up query
execution by filtering unnecessary encoded data and vectorizing ex-
ecution based on SIMD. These methods are not designed to optimize
the computation of in-DB model inference. As for neural network

implementation, BNN Pruning [44] prunes the binarized neural
network by using weight flipping frequency to judge whether the
weight is important for accuracy. Jiang et al. [45] prunes weights by
randomly assigning values to high-dimensional bit-sliced data and
comparing accuracy differences. But these studies cannot reduce
bit-array computation in a database. SLIDE [17, 22] enables neural
networks to be trained on CPUs efficiently through parallelism and
LSH based sparsification. Unlike SLIDE, which uses hash lookups to
obtain active neurons for training, SmartLite obtains computation
results for inference directly through one lookup table.
In-DB ML/DL: In-DB ML training and inference becomes a hot
topic in recent years. MadLib [32], Vertica-ML [24], CORE [67],
Zebra [68], and DB4ML [36] combine the deployment of neural
networks and ML in a database through UDFs. These approaches
are easy to deploy. Different from these approaches, DL2SQL [47],
AC/DC [39], and LMFAO [58] implement ML/DL by aggregation
queries. For specific unstructured datasets queries, tspDB [10] is a
real-time time series prediction system integratingwith PostgreSQL.
Focus [33] indexes video by using a specialized neural network to de-
tect objects and clusters similar objects to avoid redundant queries.
CORE [67] packages proxy models into UDFs and accelerates in-
ference by exploiting predicate correlation. These in-DB ML/DL
approaches do not actually reduce the computational complexity
of the model. Differently, SmartLite considers both the storage cost
and computational complexity of the model itself, which greatly
reduces the overhead of model inference.

7 CONCLUSION
In this paper, we introduce SmartLite, a lightweight DBMS designed
to efficiently process tasks associated with neural network mod-
els. SmartLite turns complex neural networks into binary-valued
relational tables and converts the computation over neural net-
works to relational operations. As such, SmartLite reduces memory
usage and maintains accurate results over limited resources. Sev-
eral optimization techniques are devised to speed up the in-DB
model computation, including lookup tables, block-sharing, and
multi-model scheduling based on shared costs. Our experiments
demonstrate that SmartLite performs well on various metrics.
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