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ABSTRACT

While outlier detection has been widely studied over streaming

data, the query of outliers in time series databases was largely over-

looked. Apache IoTDB, an open-source time series database, em-

ploys LSM-tree based storage to support intensive writing work-

loads, yet this storage structure unfortunately encumbers the out-

lier query performing. In the system, data points of a time series

may be stored in multiple files with overlapping time ranges, ow-

ing to the far delayed data arrivals, which are simply discarded

in streaming outlier detection. Given the overlapping time ranges,

it is not able to detect outliers in each file and merge them as

the results. In this paper, we focus on optimizing the efficiency

of distance-based outlier query in Apache IoTDB, with the consid-

eration of overlapping files for delayed data. We propose to uti-

lize bucket statistics of the values stored in files. Upper and lower

bounds on the neighbor counts of data points are derived in buck-

ets and overlapping files for efficient pruning. Extensive experi-

ments demonstrate the efficiency of our proposal in the LSM-tree

based time series database, Apache IoTDB, compared to the exist-

ing outlier detection methods designed for data streams.
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1 INTRODUCTION

Owing to the simple yet intuitive definition, distance-based out-

liers [16, 19, 20] are frequently queried in time series, e.g., filter-

ing spikes of stock prices, detecting deviations in GPS trajectories,

and identifying sudden change points of temperature when cold

air rushes in. It filters out data points that do not have sufficient

neighbors on values in a period of time.
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By distinct requirements of “sufficient neighbors” in applica-

tions, distance-based outliers are often queried with different pa-

rameter settings for various interests. (1) By varying the neighbor

distance threshold r , it alters how distant a neighbor could be. For

instance, over the same GPS data, the destination prediction appli-

cation concerns outliers in miles, while trajectory analysis is often

in feet. (2) Different neighbor count threshold k means distinct re-

quirements on the least number of neighbors. For example, point-

of-interest analysis is more sensitive to outliers with less neighbors

than trajectory clustering. (3) The window size w specifies vari-

ous time range of points under consideration in neighbor count.

For instance, over the same temperature data, the climate change

analysis concerns outliers in years, while the ice forecast of wind

turbines in wind farms worries about outliers in hours. (4) The

slide size s indicates how often the outliers are queried. It is not

necessary to detect outliers and forecast atmospheric temperature

in every minute, but meaningful in hours for ice forecast and in

days for climate change analysis. Unfortunately, while detecting

outliers over streaming data has been widely studied [16, 19, 20],

the query of outliers with various parameter settings for different

applications in time series databases was largely overlooked.

1.1 Challenge

One of the major differences between streaming outlier detection

and in-database outlier detection is on handling the delayed data.

Once the timestamps of the delayed points exceed the currently

processing window in data streams, the existing outlier detection

methods for streaming data, e.g., CPOD [20], NETS [23] andMCOD

[19], neglect them. In contrast, all these delayed data are stored in a

time series database and processed in the consequent outlier query.

To efficiently handle the out-of-order arrivals, we employ Log-

Structured Merge-Tree (LSM-tree) [18] in the design of Apache

IoTDB [22], a time series database management system. In short,

the data points that arrive within a period are batched and stored

in a file. The delayed points are then processed in the subsequent

batches and stored in another file with a higher version number,

leading to files with possibly overlapping time ranges.

The separation of delayed data is efficient in handling intensive

writes, a must in IoT scenarios, but unfortunately encumbers query

processing [15], including distance-based outlier queries. Owing to

the overlapping time ranges of files, we cannot simply detect out-

liers in each file and merge the results (see Example 1.1). Existing

outlier detection methods for streaming data [16, 19, 20] obviously

do not consider such a scenario of time-overlapping files, but sim-

ply assume that they can be processed in chronological order.
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Figure 1: Querying outliers of a time series stored in two

files, F1 & F2, with neighbor distance threshold r = 5, neigh-

bor count threshold k = 4, window sizew = 10, slide size s = 5

Example 1.1. Figure 1 presents a time series (denoted by the yel-

low thick line), monitoring the water temperature of a vehicle en-

gine. Owing to abnormal operations or sensor failures, two points

at 00:00:03 and 00:00:08 have values deviating from others, i.e., less

than k = 4 points (including itself) whose value distance is no

greater than r = 5 in the current window. They should be returned

as outliers referring to distance-based outlier definition [19].

In practice, data points may arrive in the database out-of-order

due to the transmission issues, and thus one time series may be

stored in multiple files with overlapping time ranges. For instance,

the time series in yellow is stored in two files, F1 and F2. When the

delayed point at 00:00:05 arrives, the previously received points (in

dark blue) including those with larger timestamps such as 00:00:06

have been written to file F1 on disk. Thereby, the point is batched

with other recently received points (in red) and stored in another

file F2 with a higher version number 2. Even worse, some points

may be overwritten by later arrivals, stored in different files. For

example, the timestamp of point p0 is occasionally reset to 00:00:00

and stored in F1. The actual point p
′
0 at 00:00:00 is received later and

stored in F2. Hence, the point p
′
0 at 00:00:00 in F2 overwrites p0 in

F1, which should also be considered in querying outliers.

Note that detecting outliers separately in each file may lead to

mistaken outliers. Consider the point p6 at 00:00:06. It has only

1 other point at 00:00:01 stored in F1, whose value distance to p6
is less than r = 5 in the current window, making p6 an outlier

in F1. However, by considering the points in F2, there are 4 other

points at 00:00:00, 00:00:05, 00:00:07, 00:00:09 stored in F2, whose

value distances are also less than r = 5. Thereby, p6 is mistakenly

detected as an outlier if only considering the points in F1, while p6
is indeed an inlier given the points stored in both F1 and F2.

On the other hand, true outliers could be missed by detecting

in an individual file. Though the point p3 at 00:00:03 has 3 other

points within distance r = 5 in F1, i.e., 00:00:00, 00:00:02, 00:00:04,

the point at 00:00:00 is overwritten by F2 due to the aforesaid rea-

son. It is no longer within distance r = 5 of p3 after overwriting.

In other words, p3 is an inlier if only considering the points in F1,

while it is indeed an outlier given the points in both F1 and F2.

1.2 Contribution

Our main contributions are as follows.

Table 1: Notations

Symbol Description

T a time series with data points p

r neighbor distance threshold

k neighbor count threshold

w window size

s slide size

N (p, r) the r-neighbor set of point ?

Wt a window starting from time t with l segments

Ot the outlier set in the windowWt

Fh a file of segments with version number h

Sg the g-th segment with range X on time

B[u] the u-th bucket with width W on value

|B̌[u] |, |B̂[u] | lower and upper bounds of bucket size |B[u] |

(1) We formalize the problem of querying outliers in the LSM-

tree based time series database in Section 2, including the storage

structure, and the corresponding SQL statement in Apache IoTDB.

(2) We start from query processing on single file in Section 3.

The values are organized in buckets with pre-computed statistics,

which can be further aggregated for querying outliers. Proposi-

tions 3.5-3.7 establish the upper and lower bounds of neighbor

count using bucket statistics, to facilitate efficient pruning.

(3) We extend the query processing to multiple files in Section

4. Given the files with overlapping time ranges, though the bucket

statistics cannot be directly aggregated, we derive bounds w.r.t. the

bucket statistics in Proposition 4.1. It leads to the upper and lower

bounds on neighbor count for multiple files in Propositions 4.3-4.6.

The bounds enable efficient pruning for multiple files.

(4) We conduct extensive experimental evaluation in Section 5.

Under various data loads, the proposed LSMOD with pruning by

bucket statistics is always more efficient than the existing stream-

ing outlier detection methods.

The outlier query has been deployed as a function in Apache

IoTDB [1]. The document is included in the product website [2].

The code is committed in the GitHub repository of IoTDB [3]. The

experiment code and data are available in [4] for reproducibility.

All proofs can be found in [5].

2 PRELIMINARY

In this section, we first introduce the distance-based outliers in

time series in Section 2.1. The elements of LSM-tree storage for

time series are presented in Section 2.2. It leads to the query of

outliers in the LSM-tree based time series database in Section 2.3.

Table 1 lists the frequently used notations in this paper.

2.1 Distance-Based Outliers

A point p(t, v) is a pair of time t and value v in a univariate time

series T of columnar store. Given a distance metric dist (p, p′) =

|p.v − p′ .v | of two points, the neighbors and outliers in a window

W ⊆ T are defined as follows [19].
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Definition 2.1 (Neighbor). Given distance threshold r (r > 0), a

point p is a r-neighbor of point p′ in a windowW , if

dist (p, p′) ≤ r .

Note that p is the neighbor of itself. Let N (p, r) = {p′ ∈ W |

dist (p, p′) ≤ A } denote the set of r-neighbors of ? inW . An outlier

is a point without sufficient neighbors.

Definition 2.2 (Distance-based outlier). Given distance threshold

r , and count threshold k, a point ? is a distance-based outlier in

windowW , if

|N (p, r) | < k.

The problem of Distance-based Outlier Detection [19] is to de-

tect outliers in each sliding window over the time series T .

Definition 2.3 (Distance-based outlier detection). Given distance

threshold r , count threshold k, window size w and slide size s of

a time series T , the problem is to detect the distance-based out-

liers in every sliding window . . . ,Wt−s,Wt ,Wt+s, . . . , whereWt is

a window starting from timestamp t and ending at timestamp t+w,

i.e., Wt = {? ∈ T | C ≤ ?.C < C +F}.

Example 2.4 (Example 1.1 continued). Consider again the query

in Figure 1 with neighbor distance threshold r = 5, neighbor count

threshold k = 4, window size w = 10 and slide size s = 5. For

simplicity, we use p8 to denote the point at time 00:00:8 , e.g., p3
with timestamp 00:00:03. As aforesaid, p2 is a r-neighbor of p3 with

value distance dist (p3, p2) = 4.5 < r . It leads to a set of r-neighbors

N (p3, r) = {p2, p3, p4}. Since the r-neighbor count is less than k =

4, point p3 is detected as an outlier. For the window starting from

00:00:00 and ending at 00:00:09, denoted by W00:00:00, its outliers

are O00:00:00 = {p3, p8}. Likewise, for the next window with slide

s, the outliers inW00:00:05 are O00:00:05 = {p8}.

2.2 LSM-tree Storage

We consider the storage structure of Log-Structured Merge-Tree

(LSM-tree) [18], for handling intensive writes in Apache IoTDB

[22]. The data points in a time series T are stored in multiple files,

written to the database at different time.

Definition 2.5 (Segment). A time series T is represented by a

number of segments, T = S1 ∪ · · · ∪ Sg , where each segment has

Sg = {p ∈ T | tmin + (g − 1)X ≤ p.t < tmin + gX},

g = 1, . . . , g and g = ⌊
tmax−tmin

X
⌋ + 1.

That is, segments are with non-overlapping time range X . To

support query processing in sliding windows, the window size w

and slide s are usually the integral multiples of X . Figure 2(a) shows

a series of segments (
(3)
1 , . . . , (

(3)
g stored in a filewith ordered times-

tamps. The values in each segment are furthered divided into buck-

ets for statistics, which will be introduced later in Section 3.1.

If all the points p come in the order of their timestamps t, the seg-

ments can be written one by one in the time order. Unfortunately,

it is not the case in practice, where points may be delayed. Insert-

ing the delayed points in the segments that have been written to

disk is costly. LSM-tree based storage chooses to store the delayed

points in other files, leading to multiple versions of a segment.
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Figure 2: A time series T stored in segments Sg and files Fh

Definition 2.6 (File). A file Fh = S
(h)
1 ∪ · · · ∪ S

(h)
g consists of

segments written with version number ℎ.

Figure 2(b) shows multiple files with different version numbers,

i.e., �1, �2 and �3, written at different time. One segment may also

have multiple versions, for example, 3 versions for segment S1, i.e.,

S
(1)
1 , S

(2)
1 , S

(3)
1 , written at different time. To obtain the time series

T , we need to merge the segments S
(h)
g stored in different files Fh.

Definition 2.7 (Merge). Segments of a time series from two files

Fi and Fj , 8 > 9 , can be merged by

S
(i)
g ⊎ S

(j)
g = S

(i)
g ∪ {p ∈ S

(j)
g | p.t ≠ p′ .t, p′ ∈ S

(i)
g }.

That is, a point p ∈ S
(j)
g with lower version number j is overwrit-

ten by another point p′ ∈ S
(i)
g with higher version number i and

the same timestamp p′ .t = p.t, if exists. Though such updates are

not very prevalent in IoT scenarios, it occasionally occurs by filling

a default value of a delayed point for data analysis and updating it

on arrival later, or simply data correction [24].

Proposition 2.8. A time series T stored in multiple files and seg-

ments can be obtained by

T =

⋃

g

Sg =

⋃

g

(

⊎

h

S
(h)
g

)

.

Example 2.9. Figure 2 shows a time series T stored in three files,

{F1, F2, F3}. Each file has at most g segments, with non-overlapping

time range X , e.g., F1 = S
(1)
1 ∪ · · · ∪ S

(1)
g . By merging the segments

in different files with the same time range, e.g., S
(1)
1 in file F1, S

(2)
1

in file F2, and S
(3)
1 in file F3, referring to the merge operator in Defi-

nition 2.7, we obtain segment S1 of time series T in the correspond-

ing time range, i.e., S1 = S
(1)
1 ⊎ S

(2)
1 ⊎ S

(3)
1 in Figure 2(c). Finally,

the time series T is obtained by concatenating all the segments,

T = S1 ∪ · · · ∪ Sg = (S
(1)
1 ⊎ S

(2)
1 ⊎ S

(3)
1 ) ∪ · · · ∪ (S

(1)
g ⊎ S

(2)
g ⊎ S

(3)
g ).

2.3 Outlier Query on LSM-tree Storage

We are now ready to introduce the outlier query in LSM-tree based

time series databases.

Definition 2.10 (LSMOD). Given distance threshold r , count thresh-

old k, window sizew and slide size s, the problem is to efficiently de-

tect the distance-based outliers in every sliding window . . . ,Wt−s,
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Figure 3: Buckets with W = 5 of two segments with X = 10

Wt ,Wt+s, . . . , of a time series T =
⋃

g

(

⊎

h S
(h)
g

)

stored in multiple

segments and files.

We follow the convention of Apache IoTDB to specify the slid-

ing windows. The SQL statement of LSMOD is given below.

s e l e c t o u t l i e r ( s0 , ' r '= ' 5 ' , ' k '= ' 3 ' ,

'w '= ' 1d ' , ' s '= ' 3h ' )

from r oo t . d0

where time >= 2017 −11 −01 T00 : 0 0 : 0 0

and time <= 2017 −11 −07 T23 : 0 0 : 0 0

It queries outliers in the time range of [2017-11-01T00:00:00,

2017-11-07T23:00:00] of the time series T = root.d0.s0. The win-

dow has size w = 1d (1 day) and slide s = 3h (3 hours). The neigh-

bor distance threshold is r = 5, and the neighbor count threshold

is k = 3. The query output is the set of outlier points Ot for each

sliding window.

3 QUERY PROCESSING IN SINGLE FILE

In this section, we first present the outlier query processing in sin-

gle files, and extend it to multiple files in Section 4. Intuitively, we

may utilize the statistics in files to prune data points with sufficien-

t/insufficient neighbors for sure. Section 3.1 introduces the statis-

tics in segments, and Section 3.2 aggregates them for the query.

Without loading all the data, we derive the bounds of neighbor

counts for points in Section 3.3 and enable pruning in Section 4.3.

3.1 Statistics on Buckets of Values in a Segment

In order to efficiently identify neighbors, we propose to further

divide the points in a segment into multiple buckets, referring to

their values. For instance, each segment is divided into three buck-

ets as shown in Figure 2(a). Since only one file is considered in this

section, we omit the default file version number h for simplicity.

Definition 3.1 (Bucket). For a time series segment Sg , we con-

sider a number of buckets Bg = {Bg [1], ..., Bg [V]}, where each

bucket has a width W on value range,

Bg [u] = {p ∈ Sg | vmin + (u − 1)W ≤ p.v < vmin + uW},

u = 1, . . . , V and V = ⌊
vmax−vmin

W ⌋ + 1.

That is, all the buckets have non-overlapping value rangeW . Any

two points in a bucket must have distance less thanW . Such bounds
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Figure 4: Aggregating bucket statistics and pruning point p

in a windowW

on distances can be utilized below to find neighbors, and the bucket

sizes |B[u] |may further contribute to the bounds of neighbor count.

Thus, we can identify outliers and inliers without loading data.

Example 3.2. Consider a window containing two segments, S1
and S2, with time range X = 10 in Figure 3. Each segment is divided

into a set of buckets with non-overlapping value range W = 5, e.g.,

S1 = B1 [1] ∪ B1 [2] ∪ · · · ∪ B1 [6]. For instance, we have B1 [5] =

{p8}. For simplicity, we omit the empty buckets without any point.

In addition to the raw data points stored in buckets in a file, we

also record the bucket sizes as the statistics for pruning below, i.e.,

|B1 [2] | = 5, |B1 [3] | = 4, |B1 [5] | = 1.

3.2 Aggregating Bucket Statistics in a Window

As introduced in Section 2.3, the query considers outliers in each

window. The multiple segments in the window need to be merged

for the query. Likewise, the bucket statistics of multiple segments

should also be aggregated for the window.

Proposition 3.3 (Window statistics). For a window with seg-

ments,W = S1∪· · ·∪Sl , its statistics on buckets can be aggregated as

|B[u] | =

l
∑

g=1

|Bg [u] |,

where |Bg [u] | is the size of the u-th bucket in segment Sg .

In other words, each windowW also has V buckets, with width

W on value range as introduced in Definition 3.1. Each bucket B[u]

of the window is the merge of the corresponding buckets Bg [u] in

each segment Sg . Since the segments are non-overlapping in time

range, i.e., no point overwriting, their bucket sizes can be directly

aggregated. Figure 4 presents the buckets by merging/aggregating

the two segments in Figure 3.

Example 3.4 (Example 3.2 continued). Consider again the win-

dowwith two segments in Figure 3. Thewindow buckets can be ob-

tained bymerging the corresponding segment buckets, e.g., B[5] =

B1 [5] ∪ B2 [5] = {p8, p12, p13, p14}. Note that p8 denotes the point

with timestamp 11:00:8 . The corresponding window bucket statis-

tics can thereby be directly aggregated without loading the data,

|B[5] | = |B1 [5] | + |B2 [5] | = 4. Figure 4 illustrates the aggregated
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Figure 5: Possible r-neighbor scenarios of point p, for 8 ex-

ample relationships with r ranging from 0 to 2W

bucket statistics |B[u] | for the window W in Figure 3, where the

lengths of bars represent the bucket sizes.

3.3 Bounds of Neighbor Count

To identify an outlier, as introduced in Definition 2.2, it is essential

to determine its r-neighbor count, |N (p, r) |. Intuitively, referring

to the bucket width W and size |B[u] |, we may derive the bounds of

neighbor counts for the points in a bucket. In short, we have two

cases for the upper bounds of the r-neighbor count, and another

case for the lower bound as follows.

3.3.1 Upper Bound. Note that the query-specified neighbor dis-

tance threshold r may exhibit various relationships to the fixed

bucket width W . We present 8 examples on the relationships be-

tween A and W to give an intuitive comprehension, which could

further be inducted to cases (i) and (ii) for upper bounds below.

Intuitively, consider a threshold r smaller than half of the bucket

width W , as shown in Figure 5(1). The r-neighbors of a point p can

only appear in its bucket or one of the adjacent buckets, where the

two points above and below p denote its most distant r-neighbors.

In contrast, given a threshold r larger than half of the bucket

width W , as shown in Figure 5(3), the r-neighbors of a point p may

appear in its bucket and both of the adjacent buckets. In this sense,

the upper bounds of r-neighbors are different regarding the rela-

tionships between r and 1
2W as follows.

Case (i): ⌈r/W⌉ − r/W <
1
2 . It is the case of (_ − 1

2 )W < r ≤ _W ,

for _ = 1, 2, . . . , in general. For instance, for _ = 1, 1
2W < r ≤ W

corresponds to the aforesaid intuition of threshold r larger than

half of the bucket width W , i.e., the examples in Figures 5(3) and

5(7). In this case, the points in the buckets B[u − _], . . . , B[u + _]

could be potential r-neighbors of a point p ∈ B[u].

Proposition 3.5. For a point ? in bucket B[u], if ⌈r/W⌉−r/W <
1
2 ,

then the count of its r-neighbors has an upper bound

|N (p, r) | ≤

u+_
∑

8=u−_

|B[8] |,

where _ = ⌈r/W⌉.

Case (ii): ⌈r/W⌉−r/W ≥ 1
2 . It is the case of (_−1)W < r ≤ (_− 1

2 )W ,

for _ = 1, 2, . . . . Likewise, the aforesaid intuition of threshold r

smaller than half of the bucket width W corresponds to 0 < r ≤
1
2W , for _ = 1, i.e., the examples in Figures 5(1) and 5(5). In this

case, the potential r-neighbors of a point p ∈ B[u] can be further

restricted to less buckets, i.e., either the points in the buckets B[u−

_], . . . , B[u + _ − 1] or in B[u − _ + 1], . . . , B[u + _].

Proposition 3.6. For a point p in bucket B[u], if ⌈r/W⌉−r/W ≥ 1
2 ,

then the count of its r-neighbors has an upper bound

|N (p, r) | ≤ max

(

u+_−1
∑

8=u−_

|� [8] |,

u+_
∑

8=u−_+1

|� [8] |

)

,

where _ = ⌈r/W⌉.

3.3.2 Lower Bound. Intuitively, if the neighbor distance threshold

r is less than the bucket width W , i.e., r < W , it is possible that the r-

neighbor count is less than |B[u] |, and thus could not be bounded

by the bucket statistics. For instance, there is no lower bound for

the examples in Figure 5(1)(2)(3). On the other hand, for r ≥ W , the

points in the bucket B[u] are at least the r-neighbors of any point

p ∈ B[u]. Referring to the intuition, a tighter lower bound could

be derived for general cases as follows.

Proposition 3.7. For a point ? in bucket B[u], if r ≥ W , then the

count of its r-neighbors has a lower bound

|N (p, r) | ≥

u+ℓ−1
∑

8=u−ℓ+1

|B[8] |,

where ℓ = ⌊r/W⌋.

4 QUERY PROCESSING IN MULTIPLE FILES

In this section, we consider multiple files written at various time

with different version numbers. Unfortunately, some bucket sta-

tistics in a file introduced in Section 3.1 may no longer be valid,

since the points may be overwritten by other delayed data with

higher file version numbers. Nevertheless, we study the bounds of

bucket statistics considering multiple files in Section 4.1. Likewise,

the lower and upper bounds of neighbor count can still be derived

in Section 4.2, enabling the pruning in multiple files in Section 4.3.

Finally, Section 4.4 presents the algorithm for outlier query pro-

cessing in multiple files.

4.1 Bound of Bucket Statistics in Multiple Files

Though the bucket statistics of a window in single file can be ag-

gregated by Proposition 3.3, they cannot be further aggregated in

multiple files, due to the merge operation in Definition 2.7 with the

consideration of overwritten points. Nevertheless, the file with the

highest version number would not be overwritten by others, and

its bucket size can thus serve as a lower bound. Moreover, the sum

of the bucket sizes in each file can serve as an upper bound, i.e., for

the case without overwriting.

Proposition 4.1 (File Statistics). Given a number of files, {F1,

. . . , Fd }, with time ranges overlapping with windowW, the statistics

of window W on buckets can be bounded by

|B̌[u] | = |B(d ) [u] | ≤ |B[u] | ≤ |B̂[u] | =

d
∑

ℎ=1

|B(h) [u] |,
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Figure 6: Buckets of a window in two files F1 and F2

where |B(h) [u] | is the size of the u-th bucket for windowW in file Fℎ ,

|B̌[u] | and |B̂[u] | denote the lower and upper bounds of bucket size

|B[u] | for window W, respectively.

When there is only one file, i.e., d = 1, we have |B̌[u] | = |B[u] | =

|B̂[u] |, exactly the case in Section 3.

Example 4.2. Figure 6 presents a time series stored in two files

F1 and F2, denoted by blue and red points, respectively. For each

file, as in Example 3.2, we can aggregate its bucket statistics on

segments in the window, denoted by blue and red bars, respec-

tively. For instance, we have the aggregated sizes of the 2nd buck-

ets, |B(1) [2] | = 7 in F1 and |B
(2) [2] | = 2 in F2. Unfortunately, these

two bucket sizes in two files cannot be further aggregated. The rea-

son is that points p10, p11 at time 11:00:10, 11:00:11 in B(1) [2] in F1
are overwritten by the points in F2. Consequently, the bucket of

the time series merging two files (yellow bar) has size |B[2] | = 7 <

|B̂[2] | = |B(1) [2] | + |B(2) [2] | = 9. In this sense, the aggregated

bucket size |B(1) [2] | + |B(2) [2] | serves as an upper bound of the

merged bucket. Moreover, the file F2 with the largest version num-

ber is written lastly and should not be overwritten by any other.

Therefore, its bucket size is the lower bound of the merged bucket,

e.g., having |B[2] | = 7 > |B̌[2] | = |B(2) [2] | = 2.

4.2 Bounds of Neighbor Count in Multiple Files

Combining the aforesaid bounds of bucket sizes in Proposition 4.1

and the bounds of neighbor count w.r.t. bucket sizes in Section 3.3,

we can derive upper bounds and lower bounds for multiple files.

4.2.1 Pruning by Upper Bound. Analogous to Proposition 3.5, for

(_− 1
2 )W < r ≤ _W, _ = 1, 2, . . . , the upper bound of neighbor count

is obtained as follows, referring to the bucket statistics |B
(h)
g [8] | in

segment Sg of file Fh.

Proposition 4.3. For a point ? in the bucket B[u], if ⌈r/W⌉ −

r/W <
1
2 , then the count of its r-neighbors has an upper bound

|N (p, r) | ≤

u+_
∑

8=u−_

|B[8] | ≤

u+_
∑

8=u−_

d
∑

ℎ=1

|B(h) [8] |

where _ = ⌈r/W⌉ and |B(h) [8] | =
∑

g |B
(h)
g [8] |.

Likewise, similar to Proposition 3.6, for (_ − 1)W < r ≤ (_ −
1
2 )W, _ = 1, 2, . . . , we can further obtain a strict upper bound for

multiple files.

Proposition 4.4. For a point ? in the bucket B[u], if ⌈r/W⌉ −

r/W ≥ 1
2 , then the count of its r-neighbors has an upper bound

|N (p, r) | ≤ max

(

u+_−1
∑

8=u−_

d
∑

ℎ=1

|B(h) [8] |,

u+_
∑

8=u−_+1

d
∑

ℎ=1

|B(h) [8] |

)

,

where _ = ⌈r/W⌉ and |B(h) [8] | =
∑

g |B
(h)
g [8] |.

Example 4.5 (Example 4.2 continued). Consider a querywithF =

20, B = 10, : = 5, A = 5 on the time series in Figure 6. Since ⌈r/W⌉ −

r/W = 0 <
1
2 , Proposition 4.3 can be applied with _ = ⌈r/W⌉ = 1.

For a point ? in bucket � [5], its upper bound, w.r.t. files �1 and

�2, is |N (p, r) | ≤
∑5+1
8=5−1

∑2
ℎ=1

|B(h) [8] | = |� (1) [4] | + |� (2) [4] | +

|� (1) [5] | + |� (2) [5] | + |� (1) [6] | + |� (2) [6] | = 2 < : = 5.

4.2.2 Pruning by Lower Bound. Again, based on Proposition 3.7

for r ≥ W , we extend the lower bound for multiple files as follows.

Proposition 4.6. For a point ? in the bucket B[u], if r ≥ W , then

the count of its r-neighbors has a lower bound

|N (p, r) | ≥

u+ℓ−1
∑

8=u−ℓ+1

|B[8] | ≥

u+ℓ−1
∑

8=u−ℓ+1

|B(d ) [8] |,

where ℓ = ⌊r/W⌋ and |B(d ) [8] | =
∑

g |B
(d )
g [8] |.

Example 4.7 (Example 4.2 continued). Consider another query

with F = 20, B = 10, : = 5, A = 10 on the time series in Figure 6.

Note that A = 10 ≥ W = 5, and thus Proposition 4.6 can be applied

with ℓ = ⌊r/W⌋ = 2. For a point ? in bucket � [3], its lower bound,

w.r.t. files �1 and �2, is |N (p, r) | ≥
∑3+1
8=3−1 |B

(2) [8] | = |B(2) [2] | +

|B(2) [3] | + |B(2) [4] | = 9 > : = 5.

4.3 Pruning by Bucket Statistics

Referring to the upper and lower bounds of neighbor count in

Propositions 4.3, 4.4 and 4.6, there are three cases for points p in

bucket B[u] to consider in pruning.

4.3.1 Case 1: ? must be an inlier. If the lower bound in Propo-

sition 4.6 is no less than the neighbor count threshold k, having
∑u+ℓ−1
8=u−ℓ+1 |B

(d ) [8] | ≥ k, ℓ = ⌊r/W⌋, then all the points p in bucket

B[u]must have r-neighbor count |N (p, r) | ≥ k, i.e., inliers. In other

words, all the data points in bucket B[u] are pruned and have no

need to load from disk.

4.3.2 Case 2: ? must be an outlier. If the upper bound in Proposi-

tion 4.3 or 4.4 is less than the neighbor count threshold k, it means

that the r-neighbor count has |N (p, r) | < k for all the points p in

bucket B[u], i.e., outliers. In other words, the entire bucket B[u]

can be directly output as outliers without further checking. For a

query of outlier count, the data points in bucket B[u] have no need

to load from disk.

4.3.3 Case 3: ? is a suspicious point. Otherwise, we are not able to

directly determine the category of point p by the bucket statistics

only, and thus need to further check all related buckets, i.e., 2_ + 1

from � [D − _] to � [D + _], where _ = ⌈r/W⌉. Nevertheless, for the

case where there is only one file involved in the current processing
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window, we only need to load the data points in up to 4 additional

buckets to determine the r-neighbors of the points p in bucket B[u],

i.e., B[u − _], B[u − ℓ], B[u + ℓ], B[u + _], where ℓ = ⌊r/W⌋. For

instance, for the example in Figure 5(8), all the points in buckets

B[u−1] and B[u+1] must be the r-neighbors of any point p ∈ B[u].

That is, we only need to check r-neighbors of p in two additional

buckets B[u − 2] and B[u + 2]. For other examples in Figures 5 (5)-

(7), the points in B[u − 2], B[u − 1], B[u + 1] and B[u + 2] may or

may not be the r-neighbors of p, and thus need further checking.

The r-neighbor count for this special case is computed as follows.

Proposition 4.8. If there is only one file involved in the current

processing window, for a point ? in bucket B[u], the count of its r-

neighbors can be computed by loading data points in at most 4 addi-

tional buckets, having

|N (p, r) | =

u+ℓ−1
∑

8=u−ℓ+1

|B[8] | +

�

�

�

�

�

�

{

p′ ∈
⋃

9∈{u±_,u±ℓ }

B[ 9]
�

�

� dist (p, p′) ≤ r
}

�

�

�

�

�

�

,

where ℓ = ⌊r/W⌋ ≥ 1 and _ = ⌈r/W⌉.

When ℓ = _, e.g., the examples in Figures 5(4) and 5(8), the count

of the r-neighbors of ? can be computed by loading data points in

only 2 additional buckets, B[u−_] = B[u−ℓ] and B[u+ℓ] = B[u+_],

referring to Proposition 4.8. Indeed, for ℓ = ⌊r/W⌋ < 1, i.e., the

examples in Figure 5(1)-(3), it also needs only to load 2 additional

buckets, B[u − 1] and B[u + 1].

Example 4.9 (Example 4.7 continued). Consider again the query

with F = 20, B = 10, : = 5, A = 10 on the time series in Figure

6. Referring to the analysis in Example 4.7, for a point p in bucket

B[3], the lower bound of |N (?, r) | is 9, according to Proposition 4.6.

Moreover, the upper bound of |N (p, r) | is
∑3+2
8=3−2

∑2
ℎ=1

|B(h) [8] | =

23, since r = 2W = 10 and Proposition 4.3 applies. Given |N (p, r) | ≥

9 > 5 = k, point p in� [3]must be an inlier, i.e., the aforesaid Case 1.

However, for another query with neighbor count threshold k = 10,

the points in bucket B[3] cannot be pruned by the aforesaid lower

and upper bounds. To check such suspicious points, we need to

load additional buckets from � [3− 2] to � [3+ 2], i.e., � [1] to � [5],

from files �1 and �2 on disk.

For the special case where only one file is involved in the cur-

rent processingwindow, e.g., Figure 4, it is easy to check suspicious

points by just loading 4 or 2 additional buckets, according to Propo-

sition 4.8. For instance, back to the single file case in Figure 4. Con-

sider a query with w = 20, s = 10, k = 15, r = 10 on the time series

in Figure 4. Point p in bucket B[4] has bounds 10 ≤ |N (?, r) | ≤ 20,

referring to Propositions 3.5-3.7, and cannot be pruned by Case 1 or

Case 2. Fortunately, given ℓ = _ = 2, we only need to load two addi-

tional buckets, i.e., B[2] and B[6], to determine the r-neighbors of

p ∈ B[4]. It follows |N (p, r) | = 1+|B[3] |+|B[4] |+|B[5] |+0 = 11 < k,

where only 1 neighbor is found in B[2]. That is, p is an outlier.

4.4 Multi-File Query Algorithm

Algorithm 1 presents the query processing on multiple files with

possibly overlapping time ranges. We update the bucket statistics

|B(h) [u] | for the expired and new segments in the sliding window.

The lower and upper bounds of bucket statistics are obtained in

Lines 11 and 12 referring to Proposition 4.1. Based on the bounds

of neighbor count in Section 4.2, inliers and outliers are directly

pruned and obtained. Otherwise, for those points cannot be pruned,

unfortunately, we need to load 2_ + 1 buckets in the window to

determine their neighbors, and thus determine whether outlier or

not. For the query processing in single file, we only need to load

additional 4 buckets in Line 20 referring to Proposition 4.8, instead

of 2_ + 1 buckets.

Algorithm 1 Outlier Query on Multiple Files

Input: A window Wt at time t with size w and slide s, neighbor

distance threshold r and count threshold k

Output: outlier set Ot of current windowWt

1: _ := ⌈r/W⌉

2: ℓ := ⌊r/W⌋

3: initialize outlier set Ot := ∅

4: initialize buckets B if algorithm runs for the first window

5: for each bucket B[u], u := 1 to V do

6: for each file Fh do

7: for each expired segment Sg do

8: |B(h) [u] | := |B(h) [u] | − |�
(h)
6 [D] |

9: for each new segment Sg do

10: |B(h) [u] | := |B(h) [u] | + |�
(h)
6 [D] |

11: |B̌[u] | := |B(d ) [u] |

12: |B̂[u] | :=
d
∑

ℎ=1
|B(h) [u] |

13: if
∑D+ℓ−1
8=D−ℓ+1 |�̌ [8] | ≥ : then

14: continue

15: else if ⌈r/W⌉ − r/W <
1
2 and

∑D+_
8=D−_

|�̂ [8] | < : then

16: Ot := Ot ∪ B[u]

17: else if ⌈r/W⌉ − r/W ≥ 1
2 and

max
(

∑u+_−1
8=u−_

|�̂ [8] |,
∑u+_
8=u−_+1

|�̂ [8] |
)

< k then

18: Ot := Ot ∪ B[u]

19: else

20: load buckets from B[u − _] to B[u + _]

21: point-wise checking the points in the buckets

22: return Ot

Complexity Analysis. Consider involved d files, V buckets and l

segments in awindow. The update of bucket statistics takesO(Vld)

time. In the worst case, all the n points in the window may be out-

put as outliers, inO(n) time. Otherwise, we need to load a constant

number i.e., 2_ + 1, of additional buckets in Line 20 among d files,

which takesO(dn) time. Referring to the average number of points

in a bucket n
V
, it takes O( n

2

V
) time.

Algorithm 1 runs in O(Vld + dn + n2

V
) time, and needs O(VZ d)

extra space, where d is the number of files, V is the number of

buckets,l is the number of segments in a window, n is the number

of points in a window, and Z is the number of segments in a file.

5 EXPERIMENTS

We conduct extensive experiments to demonstrate the higher effi-

ciency of our LSMOD method in processing outlier queries under

various settings.
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Table 2: Dataset and query settings

Name # data

points

bucket

width W

r w # windows

TAO-OceanGraphic 600k 0.5 2.0 10,000 1,180

UCI-Gas 900k 0.01 0.05 100,000 160

UCI-PAMAP2 300k 0.1 0.5 1,200 4,980

WH-Chemistry 100m 2 10 1,200 1,666,647

TY-Vehicle 100m 2 10 1,200 1,666,647

GW-WindTurbine 100m 5 20 1,200 1,666,647

Table 3: The corresponding relationships between out-of-

order rates and out-of-window rates in various datasets

out-of-order rate out-of-window rate

TAO Gas PAMAP2 WH TY GW

0.02 0.009 0.010 0.008 0.009 0.009 0.009

0.04 0.019 0.021 0.018 0.019 0.019 0.019

0.06 0.029 0.031 0.028 0.029 0.029 0.030

0.08 0.039 0.042 0.038 0.039 0.039 0.041

0.10 0.049 0.053 0.048 0.049 0.049 0.051

5.1 Experimental Settings

Table 2 lists the real-world datasets employed in the experiments,

including the default window size w and number, i.e., how many

windows are tested in the experiments. For example, if the window

size is 20 min, the 20-minute window contains 1,200 points (1 point

per second). With slide size equal to 1 minute (60 data points), the

dataset having 100m points contains (100,000,000 - 1,200) / 60 =

1,666,647 windows. In the experimental evaluation of this paper,

we set a large w/s = 20 by default, as in NETS [23] and CPOD [20].

All the baselines are implemented in their own streaming set-

tings. All the experiments run on a machine with Intel Core i7

(2.80GHz), 16 GB of memory.

5.2 Out-of-order Evaluation

In general, we do not assume a known bound on the delay of points.

Thereby, like other DBMS, the query answers are based on the data

that have already been persisted in the database. In this sense, a

new run of the query may lead to a different result, when there are

new data received within the query range. Nonetheless, we con-

duct an experiment to evaluate the correctness of query answers

based on the currently persisted data.

5.2.1 Varying Out-of-order Workloads. In the first experiment of

Figures 7 and 8, we consider the case that, upon the execution of a

query, all relevant points are already persisted. That is, this special

experiment assumes the underlying data being periodic and with-

out duplicate points of the same timestamp. As shown in Figure 7,

when all the periodic points are persisted without further updates,

the database query by our LSMOD can always return the correct

answer having F1 score = 1.

It is notable that the existing streaming outlier detection meth-

ods, CPOD, NETS and MCOD, cannot always return the correct

answers, even knowing that the underlying data being periodic

and without duplicate points of the same timestamp. The reason
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Figure 7: F1 scores under different out-of-order rates

is that the arrivals of data points could be out-of-order. These ex-

isting outlier detection approaches cannot handle the delayed data

points that are out of the currently processing window, leading

to incorrect answers. In contrast, our solution LSMOD processes

the query over all the out-of-order points persisted in the database,

rather than only those cached in the window of data streams.

Table 3 indicates the corresponding out-of-window rates, i.e.,

how much data is out of the windows that should contain the data.

As illustrated in Table 3, with the increase of out-of-order data,

there are more out-of-window data as well. As aforesaid, since out-

of-window data are ignored by the existing streaming outlier detec-

tion methods, CPOD, NETS andMCOD, they cannot always return

the correct answers with worse F1 score in Figure 7.

The SOTA approaches for in-order streaming data such as NETS

and CPOD can indeed process out-of-order data, as long as late

data is still within the current windows. Rather than sorting all

timestamps inwindows, the compared approaches directly process

the out-of-order data stream in the experimental evaluation. As

illustrated in Figure 8, even without the overhead of sorting the

streaming data, the online streaming computation by NETS and

CPOD is still much slower than our LSMOD, thanks to the pre-

computation and pruning in the database.

5.2.2 Varying UpdatingWorkloads. Similar to otherDBMS, if points

might also be updated after being received, it is challenging to

know whether the result of a query is "final" even if all data has
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Figure 8: Time costs under different out-of-order rates

been delivered. Thereby, rather than considering out-of-order ar-

rivals without updates, Figures 9 and 10 evaluate the query an-

swers over the data that may be updated after the query.

As illustrated in Figure 9, the more the data will be updated af-

ter the query, the lower the F1 score of the query answer would

be. Again, the correctness of the existing streaming outlier detec-

tion methods, CPOD, NETS and MCOD, is worse than our data-

base solution LSMOD. The reason is still that the updates may be

delivered out of the currently processing window, and thus lead to

wrong answers. In contrast, the database query LSMOD considers

all the delivered data points and their updates thus far.

It is true that there is a significant overhead during the merge

process, where late data points could overwrite previous ones. As

illustrated in Figure 10, the larger the update rate is, the more our

LSMOD costs to merge them. The existing streaming outlier de-

tection methods, CPOD, NETS and MCOD, are less affected, since

they simply neglect the updates that are out of the current win-

dows (leading to lower F1 score in Figure 9).

5.2.3 Discussion on Correctness. When there is no bound for the

delay assumed, a delayed data point may come after the issue of

a query. In this case, the correctness of the query is not guaran-

teed, i.e., the query result could be different when the delayed data

point finally arrives. On the other hand, supposing all delayed data

points arrive within a limited bound, if we execute the query after
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Figure 9: F1 scores under different update rates

the maximum delay of the last point, the result must be correct. It

is because all the relevant data points are persisted.

5.3 Parameter Evaluation

5.3.1 Varying Slide Size B Relative to Window Size F . As in the

CPODpaper [20], we conduct a direct repetition of one of the previ-

ous experiments for the comparison, in Figure 11, reporting the av-

erage processing time for each sliding window, with various slide

sizes (relative to window sizes).

Indeed, although the hardware is different, the performance of

CPOD is not profoundly different. Similar to [20], with the ratio

of slide sizes to window sizes increasing, the method takes more

time, because there are more points to process in each new slide.

It also has a better understanding of how the two systems would

compare. That is, no matter where the outlier detection query is

processed, in the streaming system CPOD or the database system

with our LSMOD, a larger slide size relative to the window size

leads to higher processing time. Nevertheless, the improvement by

our proposal is consistently observed under various slide sizes.

This of course could extend to other baselines/datasets that could

bematched to experiments in previouswork. Note that the datasets

(b) TAO-OceanGraphic and (d) UCI-Gas are also used in CPOD

[20], NETS [23] and MCOD [19]. As shown in Figure 11, similar

results of these existing methods and improvements by our pro-

posal are observed in both datasets.
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Figure 10: Time costs under different update rates

It is true that for a small s/w (i.e., large w/s), SOTA approaches

having specific designs for incremental computations performwell.

Nevertheless, our LSMOD benefits from such small increments as

well, and consistently show the improvement.

5.3.2 Varying File Numbers. Figure 12 evaluates the time costs un-

der different file numbers. The number of files is chosen by the

corresponding page size setting of the database, i.e., the maximum

number of points in a file. By default, the system sets the page size

as 50,000 points. Thus, for a dataset with 1,000,000 data points, the

data are read from 1,000,000/50,000 = 20 files. By setting a smaller

page size, the corresponding file number will be larger. It is not

surprising that LSMOD costs a bit more time to handle more files.

It is true that parameters that can "tilt" the results in one direc-

tion or another. As shown in Figure 12, a single file with almost

all data in order would perform better, since LSMOD has tighter

bounds for pruning in this case as presented in Section 3.

5.3.3 Varying File Disorder Degree. Figure 13 evaluates the time

costs under different disorder degree. A disorder degree, e.g., 0.02,

is chosen by randomly making 2% points in a file delayed and

batched with other files having higher versions. With the increase

of disorder degree, LSMOD costs a bit more time to handle the

out-of-file disorder issues, whereas the streaming outlier detection

methods neglect them if not in the current window (with correct-

ness issue).
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Figure 11: Varying slide size relative to window size

Moreover, Figure 13 shows that the lower the disorder degree

is, the better the proposed LSMOD performs. It is again owing to

the stronger pruning power. When there is no out-of-file disorder

issue, the corresponding file statistics could be directly utilized.

5.3.4 Varying Consecutive Missing Point Numbers. Note that the

default value used for missing points may result in the detection

of an outlier or not. Thereby, Figure 14 evaluates the detection cor-

rectness by varying missing points. As shown, when the consecu-

tive missing points are less than : = 50, the outlier detection F1

score is low. The reason is that the default values of missing points

are insufficient to form inliers, and thusmistakenly detected as out-

liers. On the other hand, when the consecutive missing points ex-

ceed : = 50, the default values become inliers. They would not af-

fect largely the detection of other outliers, having higher F1 score.

5.3.5 Varying Width W on Value Range of Buckets. To illustrate

how to choose bucket size, we conduct an experiment to evalu-

ate the difference of using various bucket sizes. It considers a per-

sistent query with the neighbor distance threshold A . We will not

choose W > A , since lower bounds do not apply in this case accord-

ing to the analysis in Section 3.3.2. Thereby, Figure 15 varies the

bucket sizeW from 0.01A to A . As shown, with the increase of bucket

size W , LSMOD takes significantly less time to execute, since there

are less buckets to traverse. In this sense, it is the best to choose a

bucket size W equal to the neighbor distance threshold A , if possible.
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Figure 12: Varying file number (baselines not affected)

6 RELATED WORK

Modern SPEs like Flink also provide dedicated mechanisms for late

arrivals [6]. For stateful analysis such as aggregates, the tuples are

immediately added to the according windows in Flink. To produce

the results of each window, Flink utilizes watermarks to trigger

the window operators, when all tuples in the windows have been

received. Moreover, Flink allows to specify a maximum delay time,

called an allowed lateness. It explicitly specifies how long eachwin-

dow should wait for late arrivals before being finally evicted. Anal-

ogously, in our scenario, if the query is issued after such a known

limit of delay, the correctness of query answer is also guaranteed.

TinTiN also discusses dedicated approaches to handle late ar-

rivals [21]. A determinism scheme is proposed to ensure timely

output based on the timely available input. As a middleware for

streaming system, it can top-up the guarantees of aggregation ap-

plications with out-of-order arrivals, if the application conforms to

the strict determinism.

The Borealis paper [12] in CIDR 2005 was the first to point out

the possibility of using revision tuples. The authors envision dy-

namic revision of query results, with the consideration of revision

records. It processes and generates “delta” showing only the effects

of revisions, rather than regenerating the entire result.

The CIDR 2007 paper [13] was the first to work out how to do

this systematically for relational algebra. CEDR formally defines a

spectrum of consistency levels to deal with latency or out-of-order
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Figure 13: Varying file disorder degree

delivery. Its implementation is based on a set of relational algebra

operators, most of which are based on view update semantics.

Microsoft StreamInsight’s query processor [7] also worked this

way. It utilizes the “current time increment” events to signal the

engine that no more events earlier than what have already been

received will arrive. Current time increment events effectively cue

the engine to process the events that have arrived and subsequently

adjust any with timestamps earlier than the current time.

Apache Beam [8] by Google built systems later which could cor-

rect prematurely issued incorrect answers. It tries to determine

when all data have arrived (based on data source types) and then

advances the watermark past the end of the window. One can use

triggers to decide when each individual window aggregates and re-

ports its result, including how the window emits late elements [9].

Similarly, Spark Streaming [10] also adopts the idea of water-

marking to deal with out-of-order arrivals. It allows users to spec-

ify the threshold of late data, and lets the engine automatically

track the current event time in the data and attempt to clean up

old state accordingly [11].

Trill [14] introduces a method to handle and preaggregate late

arriving data. It maintains several ordered runs for a stream, im-

plemented as blocks of MemTable in Apache IoTDB [25], which is

similar to a run/file in LSM-Trees. While the idea is alike, to preag-

gregate chunks of data and combine with late arriving data in the

impatience framework part, our studied problem is more difficult
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Figure 14: F1 score under various consecutivemissing points

in two folds. (1) The outlier detection problem is more complicated

to aggregate, as illustrated in Section 3. (2) Loading all runs/files

from disk into memory incurs significant extra overheads.

TheVLDB 2008work [17] pushes incomplete data through query

plans to partially compute results, and revises as late arriving data

invalidates earlier results, similar to Microsoft StreamInsight. Both

of these systems hold back the final answer until punctuation to

avoid exposing listeners to revisions. Again, while they consider

aggregation and join operations for out-of-order processing sys-

tems, we study the outlier detection problem with more compli-

cated aggregation in an LSM-Tree based database system.

Note that none of the work described above specifically works

out for outlier detection. (1) For the partially processed results for

outlier detection, since the outliers in different segments cannot

be directly aggregated, we design the bucket statistics in each seg-

ment for outlier pruning, in Section 3.1. (2) Moreover, to combine

things to produce the final answers, we show that unlike outliers,

bucket statistics of different segments among different files on disk

can be combined, and thus enable the outlier pruning, in Section 4.1.

Indeed, in addition to database systems, it is interesting to extend

our solution to the streaming systems in the future work.

7 CONCLUSION

In this paper, we present an efficient method, LSMOD, for querying

outliers in Apache IoTDB, an LSM-tree based time series database.
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Figure 15: Varying the width W on value range of buckets

Owing to the out-of-order arrivals, a time series may be stored in

multiple fileswritten at different time. Evenworse, some points for-

merly recorded may be overwritten by later arrivals, e.g., for data

correction. Unfortunately, such storage strategies prevent detect-

ing outliers separately in each file and merging them as the results.

In this sense, we optimize the efficiency of distance-based outlier

query in Apache IoTDB, by addressing the issue of overlapping

files for delayed data. Based on bucket statistics in files, we derive

the upper and lower bounds of neighbor count to prune outliers

and inliers, respectively. Moreover, we illustrate that the neighbor

count may also be determined by loading points in a constant num-

ber of additional buckets, e.g., at most 4 buckets for single file in

Proposition 4.8. Extensive experiments demonstrate the high effi-

ciency of the proposed LSMOD compared to the existing streaming

outlier detection methods. It has now been deployed as a function

in Apache IoTDB.
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