
RAGraph: A Region-Aware Framework for Geo-Distributed
Graph Processing

Feng Yao
Northeastern Univ., China
yaofeng@stumail.neu.edu.cn

Qian Tao
Alibaba Group, China

qian.tao@alibaba-inc.com

Wenyuan Yu
Alibaba Group, China
wenyuan.ywy@alibaba-

inc.com

Yanfeng Zhang
Northeastern Univ., China
zhangyf@mail.neu.edu.cn

Shufeng Gong
Northeastern Univ., China
gongsf@mail.neu.edu.cn

Qiange Wang
Northeastern Univ., China
wangqiange@stumail.

neu.edu.cn

Ge Yu
Northeastern Univ., China
yuge@mail.neu.edu.cn

Jingren Zhou
Alibaba Group, China
jingren.zhou@alibaba-

inc.com

ABSTRACT
In many global businesses of multinational enterprises, graph-
structure data is usually geographically distributed in different
regions to support low-latency services. Geo-distributed graph pro-
cessing suffers from the Wide Area Networks (WANs) with scarce
and heterogeneous bandwidth, thus essentially differs from tra-
ditional distributed graph processing. In this paper, we propose
RAGraph, a Region-Aware framework for geo-distributed graph pro-
cessing. At the core of RAGraph, we design a region-aware graph
processing framework that allows advancing inefficient global up-
dates locally and enables sensible coordination-free message inter-
actions. RAGraph also contains an adaptive hierarchical message
interaction engine to switch interaction modes adaptively based on
network heterogeneity and fluctuation, and a discrepancy-aware
message filtering strategy to filter important messages. Finally,
the experiments show that RAGraph can achieve 1.69× - 40.53×
speedup and 20.9% - 97% WAN cost reduction compared with state-
of-the-art systems.

PVLDB Reference Format:
Feng Yao, Qian Tao, Wenyuan Yu, Yanfeng Zhang, Shufeng Gong, Qiange
Wang, Ge Yu, and Jingren Zhou. RAGraph: A Region-Aware Framework for
Geo-Distributed Graph Processing. PVLDB, 17(3): 264 - 277, 2023.
doi:10.14778/3632093.3632094

PVLDB Artifact Availability:
The source code of this research paper has been made publicly available at
https://www.github.com/farisyao/RAGraph.

1 INTRODUCTION
Iterative graph processing has been regarded as a significant para-
digm in many fields. Recently, with the size of graph-structured
data blowing up promptly, research efforts have been made to
extend graph processing to distributed environments to handle
computation over large-scale graphs, and have made great progress
from both theory perspective and system perspective [19, 24, 25, 30,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:10.14778/3632093.3632094

WAN

5 Mbps

50 Mbps

100 Mbps

Intranet

Intranet Intranet

10Gbps
10Gbps

10Gbps

*bandwidth fluctuation

D1
D2

D3

(a)

 0

 50

 100

 150

 200

 250

 300

Single-Site-Sync

Geo-Sync

Geo-Async

RAGraph

T
im

e
 (

m
in

)

computation
communication

blocking

(b)

Geo-Async Processing

Geo-Sync Processing

 computation communication blocking

D1
D2
D3

D1
D2
D3

(c)

Figure 1: An example of geo-distributed graph processing.
(a) The bandwidth of geo-distributed networks; (b) perfor-
mance of geo-distributed and single-site iterative graph pro-
cessing; (c) performance breakdown of sync/async parallel
processing modes on geo-distributed networks.

44, 45, 78]. These works have significantly enhanced the processing
of iterative graph algorithms from many aspects, such as graph
partition, processing model design, parallel algorithm design, etc.

Unfortunately, most of the existing frameworks assume that the
graph-structured data is distributed to multiple machines within
a single-site data center, which is equipped with high network
bandwidth and homogeneous communication links. While in real-
world application scenarios, geographically distributing the graph-
structured data across multiple data centers is often necessary due
to various constraints. A typical example is managing global-scale
social networks across countries. Facebook has established over 20
data centers located in Europe, Asia, and America, and almost 90% of
its daily active users are outside North America [5]. Another typical
application with geographically distributed graphs is federated
graph computation [10, 72], in which multiple data owners share
partial access permission to their local graphs stored in private data
centers and collaboratively execute graph analytics on the data
union. In such geo-distributed applications, multiple data centers are

264

https://doi.org/10.14778/3632093.3632094
https://www.github.com/farisyao/RAGraph
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632094
https://www.acm.org/publications/policies/artifact-review-and-badging-current

connected by Wide Area Networks (WANs), which results in scarce
and heterogeneous network bandwidth [51, 52]. The increasing data
protection requirements [62] also make redistributing data among
data centers impossible. Therefore, traditional graph partitioning
methods [15, 42, 60] and parallel processing model designs [24, 74]
are no longer effective.

We summarize two essential challenges that lead to the ineffi-
ciencies in geo-distributed iterative graph processing through an
illustrative example.

Example 1: Figure 1a illustrates the network topology of a Al-
iCloud ECS geo-distributed cluster. The cluster consists of three
geo-distributed data centers D1, D2, and D3, each of which is an
8-node cluster connected by 10 Gbps Ethernet. In contrast, the
network bandwidth between data centers can only reach up to
100 Mbps and be heterogeneous due to diverse WAN connections.
Moreover, the WAN links are unstable due to network fluctuation,
whichmay occur even in a short period [11]. Traditional distributed
graph processing systems treat the worker as peer workers and
assume each pair of them has the same network bandwidth. Based
on this, their optimization and scheduling strategies are of a global
uniform mindset, which leads to hardly adapting to heterogeneous
geo-distributed systems with hierarchy network connections.

To expose the challenges raised by the above issues in iterative
graph processing, we run the PageRank algorithm on Twitter graph
[12] on two clusters with different configurations. The first cluster
consists of 24 AliCloud ECS instances (8vCPU and 64GB memory),
all located within a single-site data center. These instances are in-
terconnected via a 10Gbps Ethernet network. The second cluster
consists of 24 ECS instances with identical configurations, and the
instances are deployed across three geo-distributed data centers.
Within each data center, there are 8 ECS instances connected via a
10Gbps local Ethernet network. The three data centers are intercon-
nected by WANs. Figure 1a illustrates the bidirectional bandwidths
of each data center. We test a state-of-the-art synchronous parallel
system, GRAPE [24], on both clusters (i.e., Single-Site-Sync and
Geo-Sync) and, additionally, an advanced asynchronous parallel
processing system, Maiter [74], on the geo-distributed cluster (i.e.,
Geo-Async). The overall computation, communication, and block-
ing time are reported in Figure 1b. Figure 1c shows the performance
breakdown of geo-distributed iterative graph processing under two
parallel processing models (sync and async). Compared with pro-
cessing in a single-site data center, most of the increased running
time in geo-distributed data centers is communication and blocking
time, which the inefficient and heterogeneous WANs cause.

□

Example 1 raises two essential challenges of the geo-distributed
iterative graph processing due to the hierarchical and heteroge-
neous networks.

Imbalance of Message Transmission. Message transmission time be-
tween data centers is much longer than that within a data center,
which results in communication time among data centers occupying
most of the execution time, as shown in Figure 1b. Therefore, reduc-
ing cross-datacenter communication is the key to geo-distributed
graph processing. In addition, the imbalance and fluctuation of net-
work transmission between data centers make inefficient utilization

of WAN resources on partial transmission links. Worse, successive
iterations exacerbate the imbalanced message transmission in iter-
ative graph processing, which is more time-consuming.

Inefficiency of Graph Processing Model. Synchronous graph process-
ing models, e.g., the Bulk Synchronous Parallel (BSP) model [61],
require coordinated computation (i.e., local) and communication
(i.e., global) among vertices in each iteration in order to simplify
the parallel semantic [45]. When it comes to geo-distributed data
centers, the bandwidth among which is highly heterogeneous, the
barriers will block the messages (i.e., coordinated waiting) in each
superstep and dramatically increase the time cost. Back to Figure 1c,
D1 and D2 get stuck in blocking until D3 finishes communication,
thus resulting in a long blocking time of Geo-Sync. Conversely,
Geo-Async under Asynchronous Parallel (AP) model [44, 74] allows
workers to execute independently to avoid coordinated waiting but
incurs frequent communication and high transmission cost. There-
fore, both synchronous and asynchronous parallel models are not
well-qualified for geo-distributed graph processing.

Among the various graph processing systems, Monarch [39],
GeoGraph [71], and PGPregel [77] are designed for geo-distributed
graph processing. Monarch reduces WAN usage for synchronous
parallel processing by optimizing local computation under the GAS
model. GeoGraph reduces communication over the WANs by con-
structing hierarchical clustering among data centers. Both of them
enhance the performance of geo-distributed graph processing tasks,
but inevitably coordinate with other workers on the WANs and fail
to consider the impact of network fluctuation. On the other hand,
PGPregel focuses on efficient geo-distributed privacy protection by
integrating differential privacy into graph processing.

RAGraph. To address these problems, we design and implement
a Region-Aware framework for iterative graph algorithms in geo-
distributed environments. The framework (1) allows advancing in-
efficient global updates to local computation to optimize execution
time, (2) designs a two-layer coordination-free message interac-
tion view to eliminate coordinated waiting, and (3) mitigates the
impact of network congestion by replacing communication roles.
The framework implements unified message management through
the proxy in combination with the above designs. Furthermore,
based on the Region-Aware framework, we propose two runtime
optimizations, including an adaptive hierarchical message inter-
action engine and a discrepancy-aware message filtering strategy.
The adaptive hierarchical message interaction engine proposes two
message interaction ideas of eager/lazy for network heterogeneity,
and switches between both modes adaptively by analyzing the com-
munication link status to address the impact of network fluctuation.
On the other hand, we develop an adaptive buckets structure in
discrepancy-aware message filtering. The range of buckets adap-
tively adjusts with iterations to filter the important messages of the
current phase from the messages generated by different iterations.

Region-Aware framework and runtime optimizations can im-
prove efficiency and guarantee correctness for a considerable scope
of iterative graph algorithms aligned with the monotonic property.
To integrate all these effective methods together, we have developed
a new geo-distributed graph processing system, called RAGraph.
To summarize, we make the following contributions:

265

• Region-Aware Graph Processing Framework. We design a
Region-Aware framework for geo-distributed graph processing
based on three helpful observations. By employing proxy, the
framework allows advancing inefficient global updates locally,
enables coordination-free message interaction, and implements
replacement communication on congested networks.

• Adaptive Hierarchical Message Interaction Engine. Follow-
ing the Region-Aware graph processing framework, we design
and implement a geo-distributed message interaction engine that
can guide global message interaction in eager/lazy modes and
adaptively switch between the twomodes to adapt to complicated
inter-region networks.

• Adaptive Message Filtering Strategy.We filter globally trans-
mitted discrepant messages to reduce communication cost and
design and implement an adaptive buckets structure to adjust
the filtering range of important messages adaptively.

2 PRELIMINARIES
This section reviews the preliminaries for the vertex-centric model
and monotonic property of iterative graph algorithms.

Graphs. A graph G = (V , E,C) consists of a finite set V of vertices,
a set E of directed edges with each (u,v) ∈ E representing a directed
edge from vertex u to vertex v , and a series of functions C which
represents the characterizations C(i)

V (v) or C(j)
E (e) owned by vertex

v in V or edge e in E.

Geo-Distributed Graphs. Given a graph G = (V , E,C), a geo-
distributed partition of G, denoted by S = {G1,G2, ...,Gh } with
Gi = (Vi , Ei ,Ci), is a set of induced subgraphs of G . satisfying that:
(i) ∪hi=1Ei = E; and (ii) Ei ∩ Ej = ∅ for ∀i , j. If a node v ∈ Gi has
edges connected to another subgraph G j (j , i), v is defined as a
boundary vertex.W.l.o.g., we assume data centers {D1, ...,Dh } are
geo-distributed and data center Di stores the subgraph Gi .

Vertex-Centric Model. Many graph processing systems adopt the
"think like a vertex" programming model [47], which uses a vertex-
centric program P to abstract graph algorithm operators for the
input graph G. P is executed on each vertex iteratively, and the
program executed on v , say Pv , will interact with the programs on
v’s neighbors in each iteration. P is performed for iterations until
the states of the vertices converge. Formally, P can be represented
by a triple (A,U,I) for each vertex, where the aggregation func-
tion A aggregates the messages received from neighbors, update
function U updates the vertex state, and interaction function I

defines how vertices interact. Specifically, For a vertex v at the i-th
iteration, the program Pv performs as follows:

x iv = A(Mi−1
v)

siv = U(si−1v , x
i
v) (1)

mi
v ,w = I(siv , x

i
v ,CE (v,w)) (∀w ∈ Nout (v))

where Mi−1
v is defined as the set of messages sent from the ver-

tices pointing to v , i.e., Mi−1
v = {mi−1

u ,v | e(u,v) ∈ E}. x iv is the
aggregation result of v obtained by A and siv denotes the current
state of vertex v at round i . Based on the state si−1v of the previous
round and the aggregation result x iv , v updates its state siv by U.
Finally, vertex v generates the messages for each out edge (v,w)

Table 1: A list of graph algorithms withmonotonic property

Algo. A I Algo. A I

PageRank sum d × xv /Nv SSSP min xv +CE (v ,w)

Katz metric sum β × xv CC max xv

Adsorption sum
pcontw × xv
×CE (v ,w)

PHP sum
d × xv ×CE (v ,w)

or 0 (w = source)
SimRank sum d/(Nv × Nw) HITS sum d × xv
Computing
Paths in DAG

count max BFS min xv + 1

based on siv , x iv , and CE (v,w), and sends to v’s neighbors by I.
Here Nout (v) = {w | e(v,w) ∈ E}.

Monotonic Property. Many iterative graph algorithms in vertex-
centric programs exhibit monotonicity. That is, the vertex state
varies monotonically until convergence. Compared with the vanilla
program in Equation (1), these algorithms natively have identi-
cal A and U, and I does not take the state as the input, i.e.,
I(x iv ,CE (v,w)). Besides, A and I satisfy the monotonic conditions.

Monotonic Conditions. A and I satisfy monotonic conditions if:
(C1) A(X ∪ Y) = A(Y ∪ X) and A(A(X) ∪ Y) = A(X ∪ Y)

(C2) I(A(X ∪ Y)) = A(I(X) ∪ I(Y))

Condition (C1) indicates thatA is commutative and associative [66,
74] so that messages can be partially aggregated and updated by
A. Condition (C2) relaxes the restriction on the composition order
of A and I. In other words, A can be eliminated from a series
of sequential A, I operations. It also states that the input of I
contains the intermediate result and omits the vertex state [28].
Table 1 summarizes some typical iterative graph algorithms that
satisfy the monotonic property.

The monotonic property makes it possible for more flexible iter-
ative processing and has been regarded in traditional graph analy-
sis [24, 26, 29, 54, 63, 66, 74]. This paper focuses on algorithms with
the monotonic property in geo-distributed environments. Hence-
forth, we denote the set of partial messages from the element group
∗ asMi

∗ and use A andU interchangeably.

Example 2: We take an iterative graph algorithm, delta-based
PageRank [74], as an example of execution in a monotonic fashion,
which can be represented as follows:

• A(Mi−1
∗,v) = sum(Mi−1

∗,v); A(si−1v , x
i
v) = sum(si−1v , x

i
v);

• I(x iv ,CE (v,w)) = d × x iv/Nv (∀w ∈ Nout (v)).

Here d is a constant damping factor, and Nv denotes the out-degree
of a vertex v in graph G. Initially, s0v = 0 andM0

v = {1 − d} for all
v ∈ V . When executing, since aggregation functionA (i.e., sum) has
commutative and associative properties satisfying condition (C1),
the vertex v can gather partial messages from incoming neighbors
and use them to update its state monotonically. Then v computes
the message for interaction, i.e., d × x iv/Nv , by the interaction
function I from the gathered partial messages and propagates the
message to outgoing neighbors. It is evident that A and I satisfy
condition (C2). Intuitively, vertex v can use messages from part of
neighbors to complete one iterative operation, which is friendly to
eliminating coordinated operations.

□

266

v1

v3

v2

v4

v5

v6

v12

v7

v8

v10

v11

Ping-Pong

D3

D1 D2

v9

i-th
(i+1)-th

(a) Ping-Pong Effect.

v1

v3

v2

v4

v5

v12

v7

v8

D3

D1 D2

v9

v6

v3
v10
v6

v11

v10

Upper

Lower

Replica

10ms

100ms50ms

v6

v6

v10

v3

(b) Two-layer View.

i-th

v6 v6

v6

D2D1

D3

*congested
network

v6 v6

v6

D2D1

D3

congested
network

*congestion-free

(i+1)-th

(c) Comm. Strategy.

P2,3

v1

v3

v2

v4

v5

v12

v7

v8

v9

v10

v11

P2,1

P1,3

P3,2P3,1

P1,2 v6

Proxy

Network
Status

Ping-Pong

v3

D1 D2

D3

(d) Proxy Design.

Figure 2: An example of Region-Aware framework: (a) cross-datacenter ping-pong effect; (b) two-layer view of local-global
interaction; (c) a replacement communication strategy; (d) Region-Aware proxy design.

3 REGION-AWARE GRAPH PROCESSING
FRAMEWORK

This section begins with three observations under the monotonic
property to draw inspiration for RAGraph’s framework design, then
proposes the design details of the framework, and ends with the
theoretical analysis.

3.1 Observations
We start with a toy example and three observations that could help
optimize geo-distributed graph processing. In a geo-distributed
cluster, as reported in Figure 1a, a sample graph is given with 12
vertices distributed, as shown in Figure 2a, of which 6 are boundary
vertices through whose messages sent to other data centers will
suffer from inefficient and heterogeneous WANs. In comparison,
the subgraph within the data center is executed on efficient LANs.

Observation 1: Ping-Pong Effect. Consider the execution of
PageRank at the blue arrows in Figure 2a. For the message initiated
from v10 transferred via v3 to v12, v3 first receives the message
m(10,3) from v10, and then generates a messagem(3,12) to send to
v12 with value d ×m(10,3)/Nv3 , which suffers from inefficient WAN
transmission. We call this the ping-pong effect. An alternative way
is to use messagem(10,3) to directly generatem(3,12) in data cen-
ter D3 by d ×m(10,3)/Nv3 , if D3 has knowledge of the vertex v3’s
out-degree Nv3 . Consequently, the locally generated messages (e.g.,
m(3,12)) can be used directly for subsequent computations in D3
without waiting for the cross-datacenter propagation. Afterward,
m(10,3) is sent to v3, as messagem(3,12) has been applied from v10
tov12 withoutv3,m(10,3) only interacts viav3 with other neighbors
of v3 except v12. Since communications between data centers are
inefficient, by avoiding the round-trip transmission waiting, this
can boost the message passing and result in a shorter running time.

In addition, the ping-pong effect occurs in other communication-
intensive boundary structures. As the red bidirectional arrow in
Figure 2a shows, both v6 and v10 can compute locally via the ping-
pong effect by using the messages sent to each other. Besides, as
the yellow arrows show, D1 can first aggregate the messages from
v1 and v2 locally, i.e., m(∗,6) = sum(m(1,6),m(2,6)), and then lo-
cally generate the messagem(6,3) in advance using the aggregated
messagem(∗,6) for the subsequent computation of v3.

Observation 2: Inefficient Local-Global Uniform Interaction.
Consider the imbalance of network bandwidth between the inside
(i.e., local) and outside (i.e., global) of the data center and among data
centers. The general approach of applying a uniform interaction

pattern suffers from efficiency gaps due to imbalanced networks.
Specifically, all workers in each iteration coordinated perform global
message interaction (e.g., BSP model [61]), limited by the imbal-
anced global network resulting in coordinated waiting. Besides, the
local-global alternate execution suffers from LAN-WAN bandwidth
imbalance, resulting in local message interaction being subject to
inefficient global message interaction. This motivated us to layer
the message interaction based on the network and connect the
layers via vertex replicas.

Based on the above considerations, we propose a two-layer
coordination-free message interaction view, as shown in Figure
2b, to eliminate forced global message interaction per iteration
and coordination on global. Take PageRank as an example. At
the lower layer of the view, a data center, e.g., D2, computes lo-
cal PageRank scores sv via locally generated partial messages, i.e.,
d × sum(M∗,v)/Nv , where M∗,v = {∪m(u ,v) | u ∈ VD2 }, on the
subgraph as an independent execution unit without forced global
message interaction. The replicas (e.g., v6 in D1 and D3) initiate
the lower-upper layer interaction in different data centers only
when necessary. At the upper layer of the view, global message
interactions are performed via replicas without full attendance to
eliminate coordinated waiting and provide fresh global messages,
i.e.,M∗,v = {∪m(u ,v) | u ∈ V \VD2 }, for lower-layer computations
in D2. Afterward,VD2 can immediately use the received M∗,v for
local computation without coordinating with other parties.

Observation 3: Replica Replaceable Communication. In prac-
tice, the bandwidth between data centers is allocated based on
typical or average usage rather than peak usage [59], resulting in
intermittent network congestion (a.k.a. network fluctuation). When
network congestion occurs, the network throughput on the data
center link drops, resulting in round-trip of message delays, the
time of which fluctuates from hundreds of milliseconds to seconds
or more [16], making transmission inefficient.

Based on themessage passing ofv6 in the upper layer of Figure 2b
with the original vertex v6 in D2 and replicas of v6 in D1 and D3.
Consider the typical communication pattern shown in the upper
part of Figure 2c, and still take PageRank as an example. Both
replicas of v6 send messages to original v6 in D2, then original v6
aggregates the messages from both replicas and local neighbors,
i.e., xv6 = sum{m(D1,v6),m(D2,v6),m(D3,v6)}, and generates new
messages (i.e., d ×xv6/Nv6) to be scattered back to D1 and D3. Such
one-to-many communications result in a large inflow and outflow
of messages on the "one" side (i.e., D2). Transmission delays are
intolerable when congestions occur on the network links of D2.

267

Intuitively, as long as any replica ofv6 knows thev6’s out-degree
Nv6 , the aggregation (e.g., sum{m(D1,v6),m(D2,v6),m(D3,v6)}) and
generation (e.g., d × xv6/Nv6) of messages can be performed. So
we can find a substitute to share the congested communication. As
shown in the lower part of Figure 2c, a replica of v6 in the current
congestion-free data center, D3, is selected as a replacement for the
original v6 in D2 to centrally handle communications and message
interaction from v6 in D1 and D2.

3.2 Region-Aware Message Management
The observations in Section 3.1 inspire us to design a Region-Aware
message management framework. Figure 2d illustrates the structure
of the Region-Aware framework. Specifically, each data center Dk
constructs a proxy Pk ,l for each remote data center Dl (k , l).
Each proxy uniformly maintains the corresponding datacenter-wide
replicas. That is, the proxy is responsible for the global message
interaction and replaceable communication at the upper layer and
assisting acceleration of the ping-pong effect at the lower layer in
the two-layer interaction view, e.g., P3,1 generates the message sent
back from v3 to v12 directly with cached messagemv3 .

Formally, we define the workflow of the Region-Aware message
management as follows:

For any vertex v ∈ Vk :

lx iv = A

(
{mi−1

u ,v | u ∈ Vk }
)
, (2)

дx iv = A

(
{mi−1

u ,v | u ∈ V \Vk }
)
, (3)

siv = A

(
si−1v ,A

(
lx iv ,дx

i
v
))
, (4)

mi
v ,w = I

(
A

(
lx iv ,дx

i
v
)
,CE (v,w)

)
forw ∈ Vk , (5)

mi
v ,w = I

(
A

(
lx iv , {m

i−1
u ,v | u ∈ V \Vl }

)
,CE (v,w)

)
forw ∈ Vl (l , k).

(6)
For any proxy Pk ,l :

mi
Pk ,w

= I

(
A

(
{mi

v ,w | v ∈ Vk }
))

forw ∈ Vl , (7)

mi+1
Pl ,u
= I

(
mi
Pk ,w
,CE (w,u)

)
for u ∈ Vk andw ∈ Vl . (8)

For any vertex v , in each iteration, v in data center Dk first
aggregates the messages received from its local neighbors (Equa-
tion (2)) and other data centers (Equation (3)), then updates its state
in the i-th round based on the aggregation results (Equation (4)).
It finally generates messages to its local neighbors (Equation (5))
and remote neighbors (Equation (6)). Equation (6) indicates that
the generated messages sent to the remote proxy in Dl are only
based on the messages from the data centers except forDl , since our
optimization corresponding to Observation 1 (i.e., the ping-pong
effect) has already applied the effect of the messages from Dl in
last round. All vertex operations (Equation (2) - (6)) occur on the
lower layer of the two-layer interaction view.

For any proxy Pk ,l , for two-layer interaction view, Pk ,l takes
different interaction functions for upper-layer message interaction
and lower-layer message management. Specifically, at the upper
layer, Pk ,l sends the cached messages to the remote data center
Dl through a direct interaction function I (Equation (7)) without
coordinating with other proxies. At the lower layer, considering

AggMsg CharacterizationLocalNbrVid

...

... ...

Mark

...

... ...

 ...

 ...

 ...

Null

v1 1

v2

v3

Pk,l

Pk,h

1

0

A(MPk,v1)

A(MPk,v2)

A(MPl,v3) Null

w1,w2...wj CV(v1)|CE(v1,w)

u1,u2...un CV(v2)|CE(v1,u)

Figure 3: InterTable structure for proxy.
the ping-pong effect, Pk ,l directly computes the message that will
be sent back to local neighbor u from remote neighborw through
the cached message to apply it to u one step ahead through the
interaction function I (Equation (8)).

Design of Proxy. Multiple proxies are deployed in each data center,
which play a key role in Region-Aware framework. Each proxy
maintains a table for region-aware interaction, called InterTable.
The InterTable for Pk ,l maintains the necessary information for local
and remote boundary vertices between data centers Dk and Dl . As
shown in Figure 3, each row maintains the cached information for
a vertex identified by Vid. The Mark column marks whether the
vertex is outside (resp. inside) the data center with value 1 (resp. 0).
The column AggMsg is used for caching the aggregated messages.
For example, when messages targeted at a remote vertex v1, i.e.,
MPk ,v1 , they are aggregated and cached in the AggMsg column
before being sent to the remote data center, which is illustrated in
Equation (7). For the incoming message, when a message targeted
at a local vertex v3 is received from data center Dl , the proxy
Pk ,l first caches the message in column AggMsg, and then v3 will
pull the cached messages from Pk ,l to avoid multi-proxy write
conflicts to v3. For the rows associated with remote vertices, a
LocalNbr column storing the neighbors located inDk and a column
Characterization storing the vertex or edge associated property
are designed, which are used to optimize the computation of the
ping-pong effect as shown in Equation (8).

Design of Communication Module. All replicas can directly
communicate with the original vertex using Equation (7) at the
upper layer through proxies. In order to implement the replaceable
communication described in Section 3.1, we need to get the global
network status and redirect the proxy’s communication to specify
where the new "original" vertex is. Specifically, the proxy monitors
the current network status and shares global information between
the proxies on a time window ∆T . When congestion occurs on Dk ,
the data center with the lowest average round-trip delays for that
time interval, say Dl , will take over the corresponding task based
on the replicas associated with Dk . Accordingly, the Mark of the
replicas in the InterTable is modified to 0 (i.e., inside vertex) on
Pl ,k , and then performed as a local vertex. Note that subject to
the shared global network status, all proxies know whom to send
messages to without coordination. The proxies only need to adjust
the communication route from P∗,k to P∗,l .

Example 3: The delta-based PageRank algorithm in the Region-
Aware framework can be implemented as follows:

• A(Mi−1
∗,v) = sum(Mi−1

∗,v); A(si−1v , x
i
v) = sum(si−1v , x

i
v);

• I(x iv ,CE (v,w)) = d × x iv/Nv (∀w ∈ Nout (v));
• I(x iPk ,w

) = x iw (∀w ∈ Vl).

268

PageRank uses sum to aggregate messages from local (i.e., lx iv) and
remote (i.e., дx iv) neighbors and update state siv . Since condition
(C2) holds, the interaction functionI, i.e.,d×x iv/Nv , can be applied
to multiparty operations. In the ping-pong effect, the proxy uses
the cached global messages x iw to generate new local messages. In
the two-layer view, vertex v in the lower layer can continuously
generate local and global messages viaI from lx iv orдx iv , and useI
in the upper layer to send global messages x iw without coordination.
In addition, the proxy can perform I replacing the congested side
when it knows the v’s out-degree Nv .

□

3.3 Theoretical Analysis
This subsection provides a theoretical analysis for the proper exe-
cution of the Region-Aware framework.

Conditional Equivalence of the Ping-Pong Effect. We illus-
trate that optimizing the ping-pong effect is conditionally equiva-
lent to vertex-centric synchronous processing. Following the vertex-
centric model, i.e., Equation (1), we simplify I(x iv ,CE (v,w)) as
I(x iv) and reorganize I in a monotonic fashion:

mi
v ,w = I(A(Mi−1

v)) (9)

= I(A(∪
j
k=1m

i−1
k ,v)) (10)

= A
(
∪
j
k=1 I(m

i−1
k ,v)

)
(11)

where x iv = A(Mi−1
v) andMi−1

v = ∪
j
k=1m

i−1
k ,v . Equation (11) is true

when obeying condition (C2), and it indicates that I is allowed to
be applied to partial messages independently. Thus, the ping-pong
effect can be optimized locally using local partial messages. If con-
dition (C1) holds, the complete messagemi

v ,w of the i-th iteration
can be obtained by splicing the partial messages I(mi−1

k ,v) using A.
Additionally, the vertex state can be updated using A monotoni-
cally applying partial results from I. In summary, the ping-pong
effect optimization can obtain the same results as the vertex-centric
synchronous processing under monotonic conditions.

Feasibility of Coordination-free Interaction. Coordinating the
consistency among data centers with heterogeneous networks is
inefficient, and a coordination-free message interaction between
replicas with ping-pong computation may confuse the process. We
introduceDelta State Conflict-free Replicated Data Type (δ -CRDT) [7,
55] to guarantee the Strong Eventual Consistency between replicas
(i.e., all correct replicas reach the same state without conflicts).

δ -CRDT provides amutation functionmδ for an update operation,
and the state transition of each replica by joining (i.e.,⊔) the current
state s andmδ (s), i.e., s ′ = s ⊔mδ (s). Interactions between replicas
are occurred by joining each other’s mutation updatesmδ (s∗).

Assume (1) ⊔ is associative, commutative, and idempotent (i.e.,
ACI property), (2) the object has causal consistency assurance, and
(3)mδ (s) on each replica is joined to each other at least once, then
δ -CRDT guarantees that all replicas eventually reach a consistent
convergence state without conflicts.

Applying CRDT to Graph Processing.Back to the iterative graph pro-
cessing with monotonic property, A and I can be analogous to
the join (i.e., ⊔) and mutation (i.e., mδ) functions of δ -CRDT re-
spectively. Specifically, the state of vertex v after i iterations is:

siv = A(si−1v ,A(Mi−1
v)) (12)

= A
(
si−1v ,∪

j
k=1m

i−1
k ,v

)
(13)

= A(si−1v ∪ I(x i−11,v) ∪ ... ∪ I(x i−1j ,v)) (14)

where mi−1
k ,v = I(x i−1k ,v). Following the conditions (C1) and (C2),

Equation (12) can be reorganized to obtain Equation (14). Equa-
tion (14) can be considered that part of the messages (e.g.,mi−1

v ,v)
come from v , while others (e.g., ∪j

k=1{m
i−1
k ,v | k , v}) come from

the replicas. As a result, all replicas useA to join the new messages
through the mutation of I. We next explore in detail the feasibility
of A and I to ensure the correct execution following δ -CRDT.

Causal Consistency. Causal consistency means that all "causally" re-
lated (or potentially related) events must appear in the same order.
δ -CRDT guarantees correct causality by specifying the causal merg-
ing of a group of mutation updates. For iterative graph processing,
following monotonic property, we have:

Theorem 1: Consider iterative graph processing P with A and I

for multi-replica participation. If A and I satisfy the monotonic con-
ditions, then RAGraph with A, I and P guarantees that successive
joins on individual proxies have no causality. □

Proof sketch: Based on monotonic property, the state sn of a
vertex after n iterations is:

sn =A
(
sn−1,A(Mn−1)

)
=A

(
A(sn−2,A(Mn−2)) ∪ A ◦ I(A(Mn−2))

)
=A

(
s0 ∪ (A ◦ I)(M0) ∪ . . . ∪ (A ◦ I)n (M0)

) (15)

Here ◦ is the function composition operator, which represents a set
of operations to be applied consecutively, e.g.,A◦I(M) = A(I(M)).
s0 and M0 denote the initial vertex state and the intermediate
message set, respectively. For arbitrary round i , i > 0, we have
A(Mi) = A ◦ I(A(Mi−1)) = A ◦ I(Mi−1) and Mi = ∪jm

i un-
der monotonic conditions. We decompose the set M0 (i.e., sn =
A((s0 ∪ (A ◦ I)(∪jm

0) ∪ ... ∪ (A ◦ I)n (∪jm
0))). Following con-

dition (C2), any unorderedm (e.g., {mi ,mi−3,mi+3}) can be joined
to act on I. Therefore, when the set M0 is dispersed among the
replicas, there is no causality in the message delivery between the
proxies under the established correct rules. □

ACI Property. δ -CRDT guarantees eventual consistency and con-
vergence of replicas via the ACI property. However, as mentioned
previously, condition (C1) defines the commutative and associa-
tive properties of A but has no constraint on idempotence (i.e.,
A(X ,X) = X). For example, PageRank’s aggregation function sum
does not satisfy the idempotent property. The idempotent prop-
erty avoids duplicate delivery anomaly. Theorem 2 gives system
constraints to guarantee the equivalence with ACI property.

Theorem 2: Assume an underlying reliable communication protocol.
If each message is aggregated by A to each replica exactly once, and
the replica performs exactly-once interaction with its neighbors by I,
then all replicas reach the same state without time constraint. □

269

Proof sketch: Define an elementary message as one that does not
go through other vertices except its destination. Our observation is
that for a pair of adjacent vertices u,v in different data centers Dk
and Dl , respectively, there will be only one elementary message
from u to v , the path of which is u −→ Pk ,l −→ v . The value of
the message will be affected by the interaction function I and I

in path u −→ Pk ,l and Pk ,l −→ v , respectively. Since I does not
change the input, the value of the message from u to v is exactly
I(x iu ,CE (u,v)), same as the value directly received from u.

From the vertex-centric model in Section 2, we know that the
result of the complete message obtained by vertex v in round i-
th is A({mi−1

u ,v | e(u,v) ∈ E}). Based on Equation (2) and (3), the
intermediate result of v in the i-th round would be A(lx iv ,дx

i
v) =

A({mi−1
u ,v | e(u,v) ∈ E}). Therefore, when aggregating дx iv from

other replicas exactly once, a complete and correct message result
from the current round is obtained. □

Based on the above analysis, the Region-Aware framework satis-
fies the three conditions of δ -CRDT based on monotonic property
guaranteeing coordination-free interactions on the replicas. It also
indicates the capabilities’ equivalence of all replicas, which pro-
vides theoretical support for replica replaceable communication for
Observation 3 in Section3.1.

Correctness of Two-layer Message Interaction. In the Region-
Aware framework, two-layer coordination-free message interaction
view can be seen as message passing at different paces between
the lower layer (i.e., local messages) and the upper layer (i.e., global
messages). The following demonstrates the convergence of two-
layer message interaction under the overall view.

Divide local and global messages into consecutive time periods
in asynchronous paces and define Mt = (lx ∪ дx)t as the set of
messages received from the two layers at the t-th time period. For
asynchronous message passing, it will converge to:

Rasync = A
(
Xinit ∪ I ◦ A(M0) ∪ ... ∪ I ◦ A(M∞)

)
(16)

whereXinit represents the initial states of the vertices. DefineMt ,q

as the set of messages that have passed through a q-hop path in
Mt and we haveMt = ∪∞

q=0M
t ,q . Then, we have:

Rasync = A(Xinit ∪ ∪∞
t=0A(∪∞

q=0I ◦ A(Mt ,q))). (17)

If the monotonic conditions (C1), (C2) hold, we reorganize the
messages according to the number of hops:

Rasync = A(Xinit ∪ ∪∞
q=0A(∪∞

t=0I ◦ A(Mt ,q))). (18)

Notice that A(∪∞
t=0I ◦A(Mt ,q)) is exactly the intermediate result

by the messages passing through q hops. We have shown that the
value of a message varies fromm toI(m) every time it goes through
onemore path (nomatter the lower layer or the upper layermessage
passing). This means A(∪∞

t=0I ◦A(Mt ,q)) is exactly the complete
result at q-th round in synchronous paces. Thus, the Region-Aware
framework can converge correctly in finite time under two-layer
message interaction.

The intuition behind our discussion is that the two-layer inter-
action view can treat local and remote neighbor messages indepen-
dently. Thus, the vertex may obtain only partial results on different
hops at different moments. Still, in a finite time, by splicing the

InterTable

Detector

Switcher

WAN

InterTable

Eager Lazy

...

...

......



Switcher

Detector

Dk

Dl

Proxy(k,l)

Proxy(l,k)

v1 v2

v3 v4

v1 v2

v3 v4

Figure 4: Adaptive hierarchical interaction engine structure.

complete messages on all hops, the vertex can obtain the same
results as synchronization.

RAGraph Application Scope. RAGraph focuses on iterative
graph algorithms aligned with the monotonic property. Besides the
examples listed in Table 1, some classic iterative graph algorithms
are well-supported, such as MinimalSpanningTree [32], FacilityLo-
cation [49], WidestPath [8], and Min/Max Label Propagation [27],
etc. On the contrary, some graph algorithms do not obey the mono-
tonic property. For example, GCN-Forward [41], whose aggregation
function A is sum, satisfies condition (C1), but the activation func-
tions like ReLU, Sigmoid, etc., as interaction functions do not satisfy
condition (C2). In addition, Graph Coloring [46], Triangle Count-
ing [6], etc., require the complete neighbor messages to be obtained
simultaneously and do not satisfy the monotonic conditions. In
this regard, RAGraph can support their correct execution with a
generic vertex-centric model.

4 HETEROGENEOUS-AWARE MESSAGE
PASSING MANAGEMENT

This section presents two important runtime optimizations based
on the Region-Aware framework, i.e., the adaptive hierarchical mes-
sage interaction and discrepancy-aware message filtering strategy.

4.1 Adaptive Hierarchical Message Interaction
RAGraph adopts the two-layer message interaction view to cast
off the coordination overhead. To adapt to the heterogeneous and
fluctuating networks in geo-distributed environments, we design
an adaptive hierarchical message interaction engine for the upper-
lower layer, which takes into account the network status on the ba-
sis of coordination-free message interaction. Our approach derives
from two insights into the message passing in geo-distributed envi-
ronments. First, as shown in Example 1, the bandwidth of WANs is
scarcer than that of LANs and highly heterogeneous. As a result, the
commonly adopted real-time message passing in the asynchronous
model will generate frequent cross-datacenter communication and
cause an intolerant overhead. In contrast, an alternative way is to
focus on the computation in the lower-layer subgraphs to achieve
significant message interaction with less frequent communication
but ignores precious WAN resource utilization. A better way is to
consider combining the two in the network status.

270

unchanged decreased unchanged decreased

Iteration Process

Message Bucket range>1

< 0.5

1-0.5

> 1

< 0.5

1-0.5

> 1 1-0.5

< 0.5

< 0.25 < 0.25

< 0.5

1-0.5 < 0.5

< 0.25

< 0.125B1

B2

B3

B1

B2

B3

B1

B2

B3

B1

B2

B3

B1

B2

B3

Figure 5: Buckets for message filtering. Cycle: cached out-
ward message (the darker the color, the larger the values).

Second, the data transmission rate between data centers fluc-
tuates significantly [11, 35]. Meanwhile, during the iterative com-
putation, the number of vertices activated for computing in data
centers changes dynamically, which leads to a variable amount
of transmitted messages. From this perspective, RAGraph needs
to adaptively switch message interaction strategies based on the
current network transmission status.

Basic Idea. Based on the above considerations, we design and im-
plement an adaptive hierarchical message interaction engine on
the proxy. The key idea of the engine is to allow hierarchical mes-
sage interactions and to adaptively choose the message interaction
strategies based on the status of the network. The proxies in the
Region-Aware framework are equipped with two types of message
interactions: eager message interaction for timely vertex updates
and lazy message interaction for significant vertex updates.

For the part of the network with low latency (including intra-
region and part of inter-region networks), the proxy adopts an eager
mode, sending messages eagerly to the corresponding data center
as soon as they are computed. In eager message interaction, the
sender proxy can proactively determine when to send the messages
to the other proxy. In contrast, for the part of the network with
high latency, the sender proxy adopts a lazy mode in which the
receiver proxy decides when to fetch messages from the lazy sender
proxy. Specifically, in the receiver proxy, when the cached messages
tend to achieve local convergence, and no external messages are
received, a "fetch" request is sent to the corresponding data center.
Correspondingly, the sender proxy keeps accumulating messages
and sends the accumulated messages when receiving the "fetch"
request, which we name lazy message interaction.

How to choose the message interaction mode? Here we propose
an adaptive strategy to switch the mode based on the network fluc-
tuation and message traffics. We define τ as the average bandwidth
of the global network and µ as the maximum message size for the
remote vertices of each proxy’s record in InterTable. During the
execution, each proxy counts the average transmission data size
Sδt and average network transmission rate Rδt in the time window
∆T , and adaptively selects the message interaction mode based on
their ratio: if Sδt /Rδt < λ · µ/τ , the proxy will execute in eager
mode and otherwise switch to lazy mode. Here λ is a configurable
parameter, which is set to 0.6 in our experiments.

The structure of the engine is shown in Figure 4. The engine
contains the proxies for message interaction between Dk and Dl .
Proxies on different links in the data center can exhibit different
eager/lazy modes. The message interaction engine of each proxy
includes a detector and a switcher. The detector is responsible for

Algorithm 1: Discrepancy-Aware Message Filtering
input :MessagesM that sequentially come
output :Cached messages partitioned in buckets

1 δB1 = δB∗1 , δB2 = δB∗2;
2 form inM do
3 Assignm to Bi if value ofm falls in range of Bi ;
4 if |B3 | ≤ γ

∑3
i=1 |Bi | then

5 if |B2 | ≥ σ |B1 | then

6 δk =
δBk−11 +δBk−12

2∆xk
;

7 δBi =
δBi
δk

(i = 1, 2);
8 Reassign cached messages based on δB1, δB2;

recording Sδt and Rδt , while the switcher decides which mode
to use and notifies the remote proxy. Note that the intra-region
networks use the eager mode by default.

4.2 Discrepancy-Aware Message Filtering
Due to the skewed distribution of practical graph structures [29, 73]
and heterogeneity of the WAN networks, the values of messages
are highly discrepant: (1) different vertices generate messages with
different importance. The larger the change in the vertex state, the
more possibly it produces significant updates; (2) due to imbalanced
communications, a vertex may receive discrepant messages gener-
ated at different iterations, leading to inefficient communications.

Basic Idea. RAGraph employs buckets with adaptive ranges to fil-
ter important messages to reduce the impact of network status on
message filtering. Specifically, each proxy maintains the messages
to be propagated and assigns them to different buckets according to
their values. Those unimportant messages (i.e. with a small change
in value) will be delayed until they have accumulated enough im-
portance. With the values of overall messages decreasing along
with iterations, the ranges of the buckets adaptively vary to capture
current important messages.

Algorithm 1 illustrates the pseudocode of the discrepancy-aware
message filtering strategy in a proxy. Each proxy in RAGraphmain-
tains 3 buckets B1, B2, and B3, storing unimportant, lowly important,
and highly important messages respectively. The ranges of B1, B2,
and B3 are denoted as (0, δB1], (δB1, δB2], and (δB2,∞), respec-
tively. Each message will be categorized into buckets based on its
value (line 3). If the number of messages in B3 is below a ratio of
the total number of messages, the system will decrease the ranges
of buckets because the highly important messages are rare (lines
6-8). The ranges of buckets will be divided by a unified variable δk ,
and thus the ratio of δB1 to δB2 stays invariable. Formally, we let

δk =
δBk−11 + δBk−12

2∆xk
, δBki =

δBk−1i
δk

for i = 1, 2

where ∆xk denotes the average value of outgoing messages at time
tk . By dividing δk , the average value of messages is exactly at the
middle of B2. Thus, the distribution of message values can be well
depicted. Figure 5 illustrates the process of the strategy in a proxy.

Detection of Shifting Distribution. We may encounter a situ-
ation that |B3 | ≤ γ

∑3
i=1 |Bi | while at the same time |B2 | ≪ |B1 |.

Such a fluctuating distribution counters the intuition that B2 should

271

contain a number of messages due to the continuously decreasing
process of the ranges. In practice, |B2 | ≪ |B1 | indicates that a con-
siderable number of messages are still passing in the network and
have not been received, which is caused by the gap between com-
putation and communication. In such a case, we choose to make
the buckets unchanged until the shifting stops. Thus, we addition-
ally require |B2 | ≥ σ |B1 | (line 5 in Algorithm 1) to avoid shifting
distribution from the decrease of ranges.

5 SYSTEM
We design and implement RAGraph, a graph processing system for
geo-distributed environments. It is developed based on libgrape-
lite [4], an open-source version of GRAPE [24]. Below we discuss
the implementation details of distinctive components.

Data Preprocessing. Graph data is preprocessed to fit the Region-
Aware framework before the computation task starts. RAGraph
utilizes the CSC/CSR format to classify and store interior subgraph
information and constructs InterTable in proxy to quickly distin-
guish the roles of vertices. During loading data, each data center
loads the local subgraph and globally shares the characterizations
cached in InterTable for subsequent computation by proxy. For ex-
ample, PageRank needs to provide the vertex’s out-degree for the
proxy to compute the optimization of the ping-pong effect.

Homomorphic Encryption. RAGraph provides homomorphic
encryption (HE) [70] interfaces to protect the users’ data from other
parties. To get the results without leaking each party’s original mes-
sages and graph topology, HE allows a third party to compute on
encrypted data without knowing the explicit values in advance.
We use an open-source software library HElib [33] to perform
RAGraph’s homomorphic encryption operators. The Region-Aware
framework enables each proxy to uniformly manage the message
interaction on one party’s boundary, which well supports the execu-
tion of HE. RAGraph’s runtime optimizations on cross-datacenter
messages in Section 4 can reduce the number of transmission mes-
sages, thus reducing the computation cost caused by HE.

Termination Checker. The termination check module is executed
in the lazy interaction mode detection phase and global conver-
gence. A convergence threshold Θ determines if the vertex states
are close enough to the stable states. The module checks the con-
vergence of each data center using a dedicated thread. Since each
data center executes without coordination, the module uses the
AllReduce operation to perform global synchronous statistics and
distribute the results to each data center.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Datasets and Test Algorithms.We use five real-world datasets (see
Table 2) in our experiments, including Web-Google [1], Enwiki-
2013 [13], Arabic-2005 [2], UK-2005 [3], and Twitter-2010 [12].
Graphs are partitioned in the common uniform-chunk strategy
unless otherwise stated. That is, vertices are ordered in their local
IDs and uniformly partitioned in different data centers. We use
four typical monotonic graph algorithms in the experiments, in-
cluding PageRank [74], Penalized Hitting Probability (PHP) [67],

Table 2: Dataset Description

Graph Vertices Edges Abbreviation

Web-Google [1] 916,428 6,078,250 GL
Enwiki-2013 [13] 4,203,323 101,311,614 WK
Arabic-2005 [2] 22,744,080 639,999,458 AB
UK-2005 [3] 39,459,925 936,364,282 UK
Twitter-2010 [12] 41,652,230 1,468,364,884 TW

Single Source Shortest Path (SSSP) [14] and Connected Compo-
nents (CC) [37].

Competitors. We compare RAGraph with a representative dis-
tributed graph processing system, GRAPE [24], and two state-of-
the-art geo-distributed graph processing systems, Monarch [39]
and GeoGraph [71]. All competitors and the corresponding test
algorithms are implemented on top of libgrape-lite [4].

Environments. All algorithms are implemented in C++, and the
average result of three runs is reported. AliCloud ECS clusters
from five regions are chosen as geo-distributed data centers for
evaluation, including Qingdao, China; Singapore; Sydney, Australia;
Frankfurt, Germany; Virginia, USA. Each data center is allocated
16 AliCloud ecs.r5.2xlarge instances (8vCPU, 64GB memory).

6.2 Overall Performance
We first evaluate the overall performance of RAGraph, including
running time and WAN cost, by comparing it with competitors.

Running time. Figure 6 shows the running time of PageRank, PHP,
SSSP, and CC algorithms in the compared systems. As can be
seen from the results, RAGraph outperforms others in all cases.
Specifically, RAGraph achieves 2.72× - 40.53× (8.13× on average)
speedup over GRAPE, 2.26× - 9.31× (4.86× on average) speedup over
Monarch, and 1.69× - 7.3× (2.97× on average) speedup over Geo-
Graph.RAGraph does perform iterative graph algorithms efficiently
in geo-distributed environments. This is attributed to RAGraph’s
unique message interaction and communication optimization de-
signs, which accelerate global message interaction, eliminate coor-
dinated waiting times, and reduce the data transmission between
data centers. Notably, the gap between RAGraph and other com-
petitors on PageRank and PHP is more significant than that on CC
and SSSP. This is because PageRank and PHP require more itera-
tions to reach convergence, and RAGraph can avoid the coordinated
waiting times between iterations.

WAN cost.Wemeasure the transmitted data size across data centers
via WANs for each system. Figure 7 shows the WAN cost of each
system. As can be observed, RAGraph incurs the smallest WAN
cost on all tested conditions. Specifically, RAGraph reduces WAN
cost by 40.2% - 97% (73% on average) compared with GRAPE, 30% -
96.8% (67.8% on average) compared withMonarch, and 20.9% - 87.2%
(49.6% on average) comparedwith GeoGraph. Besides,RAGraph has
less improvement compared with GeoGraph on SSSP than on other
algorithms. This is probably because, in SSSP, only a few important
messages (those leading to a shorter distance) activate the update of
the vertex state. Therefore, in SSSP, the proposed message filtering
optimization is not as effective as other test algorithms.

272

 0

 50

 100

 150

 200

 250

 300

GL WK AB UK TW

T
im

e
 (

x
1

0
2
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(a) PageRank

 0

 20

 40

 60

 80

 100

GL WK AB UK TW

T
im

e
 (

x
1

0
2
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(b) PHP

 0

 20

 40

 60

 80

 100

 120

GL WK AB UK TW

T
im

e
 (

x
1

0
2
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(c) SSSP

 0

 5

 10

 15

 20

 25

 30

 35

 40

GL WK AB UK TW

T
im

e
 (

x
1

0
2
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(d) CC

Figure 6: Running time comparison.

 0

 5

 10

 15

 20

 25

GL WK AB UK TW

W
A

N
 C

o
s
t

(G
B

)

GRAPE
Monarch

GeoGraph
RAGraph

(a) PageRank

 0

 1

 2

 3

 4

 5

 6

GL WK AB UK TW

W
A

N
 C

o
s
t

(G
B

)

GRAPE
Monarch

GeoGraph
RAGraph

(b) PHP

 0

 1

 2

 3

 4

 5

 6

GL WK AB UK TW

W
A

N
 C

o
s
t

(G
B

)

GRAPE
Monarch

GeoGraph
RAGraph

(c) SSSP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

GL WK AB UK TW

W
A

N
 C

o
s
t

(G
B

)

GRAPE
Monarch

GeoGraph
RAGraph

(d) CC

Figure 7: WAN cost comparison.

6.3 Performance Gain Analysis
The performance of RAGraph mainly comes from the flexible
Region-Aware framework and two runtime optimizations for
heterogeneous-aware message passing. In this subsection, we quan-
titatively analyze the gain from the framework and the runtime opti-
mizations. Specifically, we report the running time andWAN cost of
the test algorithms by successively enabling RAGraph components,
including Region-Aware framework, adaptive hierarchical message
interaction, and discrepancy-aware message filtering, which we
denote RA, RA +Hi, and RAGraph respectively. The results are com-
pared with the traditional synchronous graph processing system
libgrape-lite [4] and its asynchronous version modified based on
Maiter [74], which we denote Sync and Async, respectively.

The normalized running time and WAN cost of Sync, Async,
RA, RA +Hi, and RAGraph for PageRank and SSSP are reported in
Figure 8. The results for PHP and CC show a similar trend, and
we omit the figures due to space limitations. The running time of
the RAGraph is reported as the unit time (i.e., 1). From Figure 8,
one can find that the running time and WAN cost are reduced after
applying each component of RAGraph in turn. Specifically, Region-
Aware framework can achieve 1.09× - 2.06× speedup comparedwith
Sync, and 1.56× - 3.8× speedup compared with Async. By further
enabling the adaptive hierarchical message interaction, RA +Hi
achieves 1.33× - 1.67× speedup and reduces 16% - 40.1% WAN cost
compared with RA. Finally, the discrepancy-aware message filtering
method lead to a 2.03× - 6.58× speedup and a 43.7% - 94.7% reduction
in WAN cost. This validates the efficacy of the proposed Region-
Aware framework and optimization strategies. Another observation
is that Async produces the largest running time and WAN cost in
most cases. This verifies our claim in Section 1 that traditional
distributed graph processing systems cannot solve the problems in
geo-distributed environments well. Besides, compared with Sync,
the gain of running time from the Region-Aware architecture (i.e.,
the gap between RA and Sync) is more significant than that of WAN
cost. This indicates that the Region-Aware framework can largely
eliminate coordinated waiting times in Sync.

Figure 9 shows Sync, Async, and RAGraph with and without
discrepancy-aware message filtering method in terms of WAN cost

Table 3: Cost of Region-Aware Framework
Region-Aware Framework Applied/Not Applied
Dataset Memory Usage Computation Cost

GL 2.02x 1.24x
WK 1.55x 1.15x
AB 1.37x 1.22x
UK 1.63x 1.17x
TW 1.41x 1.38x

on the GL graph. The blue columns represent the improvement
caused by the discrepancy-aware message filtering method. Specifi-
cally, the discrepancy-aware message filtering method reduces 20%
- 25% WAN cost for Sync, 47% - 55% WAN cost for Async, and 55% -
59% WAN cost for RAGraph. RAGraph obtains a more significant
gain from the discrepancy-aware message filtering method than
Sync and Async. In addition, Async also has significant benefits, but
is still limited by the frequent message transmission in execution.

6.4 Performance Breakdown
As discussed in Example 1, the overall runtime consists of computa-
tion, communication, and blocking time. To study the effect of each
component on RAGraph, we run PageRank and SSSP on the TW
graph and profile the running time of each component recorded in
the data center in Singapore. The result is shown in Figure 10. We
can see that the communication and blocking take up most of the
running time. Compared with competitors, RAGraph eliminates
the blocking time and generates the least communication.

We further study the additional memory and computation cost
in RAGraph, which comes from vertex replica maintenance on In-
terTable and ping-pong effect optimization. We run PageRank on
all five graphs and record the memory usage and running time
before and after applying the InterTable and Region-Aware opti-
mizations. As reported in Table 3, InterTable and Region-Aware
optimizations lead to an average of 1.59× memory usage and 1.23×
computation cost, respectively. However, compared with the benefit
of communication and blocking time reduction (as shown in Figure
10), the additional computation is lightweight. On the other hand,
the memory requirement can be solved by adding instances as the
computation resources are sufficient in geo-distributed data centers.
In summary, it is worthwhile to adopt InterTable and Region-Aware
optimizations in geo-distributed graph processing.

273

 0

 5

 10

 15

 20

AB UK TW

N
o
rm

a
liz

e
d
 T

im
e

Sync
Async

RA
RA+Hi

RAGraph

(a) PageRank running time

 0

 2

 4

 6

 8

 10

 12

AB UK TW
N

o
rm

a
liz

e
d

 T
im

e

Sync
Async

RA
RA+Hi

RAGraph

(b) SSSP running time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

AB UK TW

W
A

N
 C

o
s
t
(G

B
)

Sync
Async

RA
RA+Hi

RAGraph

(c) PageRank WAN cost

 0

 1

 2

 3

 4

 5

 6

 7

 8

AB UK TW

W
A

N
 C

o
s
t

(G
B

)

Sync
Async

RA
RA+Hi

RAGraph

(d) SSSP WAN cost

Figure 8: Performance gain from RAGraph.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Sync Async RAGraph

N
o

rm
a

liz
e

d
 W

A
N

 c
o

s
t

Existing cost
Reduced cost

(a) PageRank

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Sync Async RAGraph

N
o

rm
a

liz
e

d
 W

A
N

 c
o

s
t

Existing cost
Reduced cost

(b) SSSP

Figure 9: Sensitivity tomessage filtering.

 0

 5

 10

 15

 20

 25

GRAPE
Monarch

GeoGraph

RAGraph

T
im

e
 (

x
1

0
3
s
)

computation
communication

blocking

(a) PageRank

 0

 2

 4

 6

 8

 10

 12

GRAPE
Monarch

GeoGraph

RAGraph

T
im

e
 (

x
1
0

3
s
)

computation
communication

blocking

(b) SSSP

Figure 10: Performance Breakdown.

 0

 5

 10

 15

 20

 25

 30

 35

 40

PageRank SSSP

T
im

e
 (

x
1

0
3
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(a) Runing time

 0

 5

 10

 15

 20

 25

 30

PageRank SSSP

W
A

N
 C

o
s
t(

G
B

)

GRAPE
Monarch

GeoGraph
RAGraph

(b) WAN cost

Figure 11: Performance under skewed chunk.

 0

 2

 4

 6

 8

 10

PageRank SSSP

T
im

e
 (

x
1

0
3
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(a) Runing time

 0

 2

 4

 6

 8

 10

PageRank SSSP

W
A

N
 C

o
s
t(

G
B

)

GRAPE
Monarch

GeoGraph
RAGraph

(b) WAN cost

Figure 12: Performance under Fennel.

 0

 5

 10

 15

 20

 25

 30

 35

Low Medium High

T
im

e
 (

x
1

0
2
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(a) PageRank

 0

 1

 2

 3

 4

 5

 6

 7

Low Medium High

T
im

e
 (

x
1

0
2
s
)

GRAPE
Monarch

GeoGraph
RAGraph

(b) SSSP

Figure 13: Sensitivity to network status.

 0

 2

 4

 0.2 0.4 0.6 0.8

S
p
ee

d
u
p

λ

 2

 4

 6

10
-7

10
-5

10
-3

10
-1

S
p
ee

d
u
p

Θ

Figure 14: Sensitivity to
Θ and λ.

 2

 4

 6

 8

 10

 12

2 4 6 8

N
o
rm

a
liz

e
d
 T

im
e

GRAPE
Monarch

GeoGraph
RAGraph

Figure 15: Scalability.

 0

 1

 2

 3

 4

 5

 6

 7

 8

GL WK AB UK TW

N
o

rm
a

liz
e

d
 T

im
e

Monarch-HE
GeoGraph-HE
RAGraph-HE

(a) PageRank

 0

 1

 2

 3

 4

 5

 6

GL WK AB UK TW

N
o

rm
a

liz
e

d
 T

im
e

Monarch-HE
GeoGraph-HE
RAGraph-HE

(b) SSSP

Figure 16: Performance on HE.

6.5 Effect of Data Partition
We explored the performance impact of different data partition cases
in geo-distributed environments. We compare the performance of
systems on the TW graph under different data partition strategies
to evaluate RAGraph. For the skewed chunk partitioning strategy,
vertices are partitioned into h parts: the i-th part contains a ratio
i/(

∑h
j=1 j) of vertices. As shown in Figure 11, RAGraph can achieve

2.23× - 5.02× (3.56× on average) speedup and 41% - 74.9% (57.3%
on average) WAN cost reduction compared with competitors. In
addition, the speedup is more significant under the skewed chunk
strategy than uniform-chunk (i.e., the results in Figure 6), with
a 9.8% - 24.8% improvement. This validates the efficiency of the
RAGraph under a skewed partitioning strategy.

For the uniform partitioning strategy, we additionally test the
performance under the advanced partitioning strategy Fennel [60].
Figure 12 reports the results of the different systems on the TW
graph. RAGraph outperforms others and achieves 2.45× - 4.22×
speedup and 42% - 77% WAN cost reduction compared with com-
petitors. Notably, compared with uniform-chunk strategy (i.e., the
results in Figure 7), it saves 60% of WAN cost on PageRank and 45%
on SSSP. The results on different partitioning strategies indicate
that RAGraph is feasible for data with various partitions.

6.6 Sensitivity to Network Heterogeneity
This subsection evaluates the impact of network heterogeneity on
the systems.We use different data center locations around the world
to build low/medium/high-heterogeneity networks. Specifically, the
low-heterogeneity network is constructed based on data centers

in China (including Beijing, Shanghai, Qingdao, Hangzhou, and
Guangzhou); the medium-heterogeneity network is based on Asia-
wide data centers (including Tokyo, Japan; Singapore; Seoul, Korea;
Beijing, China; and Mumbai, India); and high-heterogeneity net-
work is based on worldwide data centers (see Section 6.1). Figure 13
shows the result of PageRank and SSSP in different systems on
theWK graph. Compared with the competitors, RAGraph achieves
1.22× - 2.43× speedup on the low-heterogeneity network, 1.7× - 2.79
× speedup on the medium-heterogeneity network, and 2.25× - 5.98
× speedup on the high-heterogeneity network. Besides, RAGraph
shows substantial superiority on the high-heterogeneity network,
which validates the effectiveness of the Region-Aware framework.

6.7 Sensitivity to Parameter Settings
We evaluate the impact of the two configurable parameters, i.e., λ
and Θ, which control the eager/lazy mode switching in Section 4.1
and the algorithm convergence, respectively. We run PageRank on
WK graph, varying Θ from 10−7 to 10−1 and λ from 0.2 to 0.8. For
the experiment associated with λ, we normalize the running time
of all cases with λ = 0.2 as unit time. As shown in the lower part
of Figure 14, as λ increases, more proxies turn into eager mode but
may suffer high latency networks resulting in inefficiencies, and
RAGraph reaches its best performance when λ is set to 0.6. For the
experiment associated with Θ, we run Pagerank on RAGraph and
GRAPE and report the speedup of RAGraph over GRAPE under dif-
ferent Θ. As shown in the upper part of Figure 14, the convergence
threshold change has less effect on the effectiveness of RAGraph.
Users can choose arbitrary convergence threshold according to
their requirements.

274

6.8 Scalability
We test the scalability of RAGraph by enlarging the number of
data centers. As the number of data centers increases, more cross-
datacenter messages will be triggered, which limits the performance
of the systems. To evaluate the impact of scaling the number of
data centers on RAGraph, we run PageRank with the number of
geo-distributed data centers varying from 2 to 8. Using the TW
graph, the whole is partitioned into the corresponding number of
parts placed in each data center using the uniform-chunk method.
We take the running time on 2 data centers as the baselines, and
Figure 15 shows the result from RAGraph and the competitors. As
the number of data centers increases, GeoGraph and RAGraph grow
slower than GRAPE and Monarch, and RAGraph performs the best.
GeoGraph derives scaling gain from the clustering of data centers.
While the more independent region computation and communica-
tion optimization allow RAGraph to gain better scalability.

6.9 Performance on Homomorphic Encryption
We finally evaluate the performance of RAGraph and other com-
petitors under RAGraph’s homomorphic encryption (HE) module.
Since the competitors do not contain encryption functions, we port
the HE module to Monarch and GeoGraph such that they can per-
form geo-distributed computation under HE. The total computation
time of HE is reported. Figure 16 shows the normalized time of
HE in different systems, and RAGraph can achieve a 2.32× - 5.97×
speedup over Monarch and a 1.43× - 2.96× speedup over GeoGraph.
We can see that RAGraph requires a shorter running time on the
HE module than Monarch and GeoGraph, and a similar trend can
be observed in WAN cost (see Figure 7). This is reasonable as each
cross-datacenter data transmission always causes a computation
and transmission of encrypted data. Hence, the total computation
cost is proportional to the WAN cost of the RAGraph without HE.

7 RELATEDWORKS
Distributed Graph Data Processing. A large number of tradi-
tional distributed graph processing systems [15, 19, 20, 24, 30, 31,
42, 44, 45, 56, 57, 68, 73–75, 78] have been developed for large-scale
graph data analysis. The Bulk Synchronous Parallel model [61] is
introduced into graph processing by Pregel [45] and adopted by
most distributed graph processing systems [24, 30, 78]. While some
systems, such as GraphLab [44], Maiter [74], and GRAPE+ [21], use
the asynchronous parallel model (AP) to eliminate synchroniza-
tion overhead. PowerSwitch [68] uses a hybrid mode for adaptive
switching between sync and async during computation. Galois [48]
and Priter [73] design priority scheduling from the algorithmic per-
spective, but may be limited by the impact of network transmission
status on data scheduling. LazyGraph [65] involves replicas in local
computation and sets a global sync data coherency stage to get a
global view of replicas for lazy data consistency. The difference is
that RAGraph does not require the proxy to do any global sync
interaction and get the eventual consistency. Fan et al. [22, 23]
perform a partial evaluation to compute local answers, and the co-
ordinator assembles local answers to get the complete query result.
Differently, RAGraph focuses on iterative graph algorithms, where
the local partial evaluation of vertices spans multiple iteration steps
and allows assembling an arbitrary number of partial messages

instead of complete messages at different moments. Several other
works [29, 34, 42, 50, 58, 60, 69] focus on optimizing graph partition
and have been proven to significantly reduce communication cost,
which are orthogonal to the optimization of the RAGraph.

RAGraph is inspired by previous distributed systems but pro-
poses a more purposeful design to run over the heterogeneous and
fluctuating networks in geo-distributed environments.

Geo-Distributed Data Analysis. Several works focus on design-
ing more efficient big-data analysis frameworks in geo-distributed
environments. For example, Medusa [18] allows geo-distributed
computationwithout modifying the Hadoop semantics. GeoDis [17]
optimizes data-intensive jobs by considering data localization
and migration. Both of them are MapReduce-based. Lube [76],
Tetrium [38], etc., are Spark-based frameworks. Lube reduces the
response time by optimizing runtime bottlenecks, and Tetrium con-
siders network and computational resources to achieve multiple
resource allocation. Gaia [36] is a geo-distributed ML system that
uses an approximate BSPmodel to eliminate useless communication
across data centers. Besides, there are other systems that support
database queries [43, 64] and stream data processing [40, 53]. How-
ever, the above systems are designed for general data analysis,
query, or resource allocation [9], and cannot be adapted to the
iterative nature and complex dependencies of the graph algorithms.

Some graph processing systems are designed for geo-distributed
environments [39, 71, 77]. PGPregel [77] is a graph processing sys-
tem focusing on geo-distributed privacy protection by integrating
differential privacy. It assumes a certain tolerance for errors in the
results. In contrast, RAGraph utilizes HE to obtain accurate results.
Monarch [39] reduces the global communication cost by optimiz-
ing the local computation under the GAS model. GeoGraph [71]
reduces WAN usage through hierarchical clustering. The difference
is that RAGraph focuses on the layering and heterogeneity of the
network while considering the effects of network fluctuation.

8 CONCLUSION
We design and implement RAGraph, which consists of a Region-
Aware framework and two runtime optimizations for geo-
distributed graph processing. Firstly, we design a Region-Aware
framework based on three helpful observations: the ping-pong
effect optimization for accelerating inefficient global updates, a
two-layer view for coordination-free message interaction, and a
replaceable communication strategy for network congestion. Fur-
thermore, we develop the adaptive hierarchical message interaction,
in which two types of message interaction modes are allowed, and
RAGraph could adaptively choose the message interaction mode
based on network status and message traffics. Lastly, we introduce
a discrepancy-aware message filtering strategy to adaptively filter
important messages in a discrepancy range of messages.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Founda-
tion of China (U2241212, 62072082, and 62202088), the 111 Project
(B16009), the Fundamental Research Funds for the Central Univer-
sities (N2216015, N2216012), and a research grant from Alibaba
Innovative Research (AIR) Program. Yanfeng Zhang is the corre-
sponding author.

275

REFERENCES
[1] 2002. web-Google. https://www.cise.ufl.edu/research/sparse/matrices/SNAP/

web-Google.html.
[2] 2005. Arabic-2005. https://law.di.unimi.it/webdata/arabic-2005/.
[3] 2005. UK-2005. https://law.di.unimi.it/webdata/uk-2005/.
[4] 2020. libgrape-lite. https://github.com/alibaba/libgrape-lite.
[5] 2021. Facebook Daily Active Users (DAUs). https://investor.fb.com/investor-

events/event-details/2021/Facebook-Q2-2021-Earnings/default.aspx.
[6] Mohammad Al Hasan and Vachik S Dave. 2018. Triangle counting in large

networks: a review. WIRES DATA MIN KNOWL 8, 2 (2018), e1226.
[7] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2016. Efficient state-based

crdts by delta-mutation. In NETYS. 62–76.
[8] John S Baras and George Theodorakopoulos. 2010. Path problems in networks.

SLCN 3, 1 (2010), 1–77.
[9] Mohammed Bergui, Said Najah, and Nikola S Nikolov. 2021. A survey on

bandwidth-aware geo-distributed frameworks for big-data analytics. Journal of
Big Data 8, 1 (2021), 40.

[10] Akash Bharadwaj and Graham Cormode. 2022. An Introduction to Federated
Computation. In SIGMOD.

[11] Kirill Bogdanov, Miguel Peón Quirós, Gerald Q. Maguire Jr., and Dejan Kostic.
2015. Toward Automated Testing of Geo-Distributed Replica Selection Algo-
rithms. In SIGCOMM.

[12] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
label propagation: A multiresolution coordinate-free ordering for compressing
social networks. In WWW.

[13] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In WWW.

[14] Venkatesan T. Chakaravarthy, Fabio Checconi, Prakash Murali, Fabrizio Petrini,
and Yogish Sabharwal. 2017. Scalable Single Source Shortest Path Algorithms for
Massively Parallel Systems. TPDS 28, 7 (2017), 2031–2045.

[15] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-
entiated graph computation and partitioning on skewed graphs. In EuroSys.

[16] Brian Cho andMarcos K Aguilera. 2012. Surviving Congestion in Geo-Distributed
Storage Systems. In ATC. 439–451.

[17] Moïse W Convolbo, Jerry Chou, Ching-Hsien Hsu, and Yeh Ching Chung. 2018.
GEODIS: towards the optimization of data locality-aware job scheduling in geo-
distributed data centers. Computing 100 (2018), 21–46.

[18] Pedro ARS Costa, Xiao Bai, Fernando MV Ramos, and Miguel Correia. 2016.
Medusa: An efficient cloud fault-tolerant mapreduce. In CCGrid.

[19] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: a communication-
optimizing substrate for distributed heterogeneous graph analytics. In SIGPLAN.

[20] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incre-
mentalization of Graph Partitioning Algorithms. PVLDB 13, 8 (2020), 1261–1274.

[21] Wenfei Fan, Ping Lu, Wenyuan Yu, Jingbo Xu, Qiang Yin, Xiaojian Luo, Jingren
Zhou, and Ruochun Jin. 2020. Adaptive asynchronous parallelization of graph
algorithms. TODS 45, 2 (2020), 1–45.

[22] Wenfei Fan, Xin Wang, and Yinghui Wu. 2012. Performance Guarantees for
Distributed Reachability Queries. PVLDB 5, 11 (2012).

[23] Wenfei Fan, Xin Wang, Yinghui Wu, and Dong Deng. 2014. Distributed graph
simulation: Impossibility and possibility. Proceedings of the VLDB Endowment 7,
12 (2014), 1083–1094.

[24] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng,
Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing Sequential Graph
Computations. In SIGMOD.

[25] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping
Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing Sequential Graph Computations.
ACM Trans. Database Syst. 43, 4 (2018), 18:1–18:39.

[26] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. Risgraph: A real-time streaming system for
evolving graphs to support sub-millisecond per-update analysis at millions ops/s.
In SIGMOD.

[27] Yasuhiro Fujiwara and Go Irie. 2014. Efficient label propagation. In ICML. 784–
792.

[28] Shufeng Gong, Chao Tian, Qiang Yin, Wenyuan Yu, Yanfeng Zhang, Liang Geng,
Song Yu, Ge Yu, and Jingren Zhou. 2021. Automating incremental graph process-
ing with flexible memoization. PVLDB 14, 9 (2021), 1613–1625.

[29] Shufeng Gong, Yanfeng Zhang, and Ge Yu. 2020. HBP: Hotness Balanced Partition
for Prioritized Iterative Graph Computations. In ICDE.

[30] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
OSDI.

[31] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In OSDI.

[32] Ronald L Graham and Pavol Hell. 1985. On the history of the minimum spanning
tree problem. AHC 7, 1 (1985), 43–57.

[33] Shai Halevi and Victor Shoup. 2020. Design and implementation of HElib: a
homomorphic encryption library. IACR Cryptol. ePrint Arch. (2020), 1481.

[34] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2021. CuSP:
A Customizable Streaming Edge Partitioner for Distributed Graph Analytics.
SIGOPS 55, 1 (2021), 47–60.

[35] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In SIGCOMM.

[36] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.
Ganger, Phillip B. Gibbons, and OnurMutlu. 2017. Gaia: Geo-DistributedMachine
Learning Approaching LAN Speeds. In NSDI.

[37] Tsan-sheng Hsu, Vijaya Ramachandran, and Nathaniel Dean. 1994. Parallel
implementation of algorithms for finding connected components in graphs. In
DIMACS.

[38] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu,
and Mingyang Zhang. 2018. Wide-area analytics with multiple resources. In
EuroSys.

[39] Anand Padmanabha Iyer, Aurojit Panda, Mosharaf Chowdhury, Aditya Akella,
Scott Shenker, and Ion Stoica. 2018. Monarch: Gaining Command on Geo-
Distributed Graph Analytics. In HotCloud.

[40] Albert Jonathan, Abhishek Chandra, and Jon B. Weissman. 2018. Multi-Query
Optimization in Wide-Area Streaming Analytics. In SoCC.

[41] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[42] Dongsheng Li, Yiming Zhang, Jinyan Wang, and Kian-Lee Tan. 2019. TopoX:
Topology refactorization for efficient graph partitioning and processing. PVLDB
12, 8 (2019), 891–905.

[43] Hangyu Li, Hong Xu, and Sarana Nutanong. 2017. Bohr: Similarity Aware Geo-
distributed Data Analytics. In HotCloud.

[44] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and JosephM. Hellerstein. 2012. Distributed GraphLab: A Framework forMachine
Learning in the Cloud. PVLDB 5, 8 (2012), 716–727.

[45] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD.

[46] David W Matula, George Marble, and Joel D Isaacson. 1972. Graph coloring
algorithms. In GTC. 109–122.

[47] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking Like
a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale Distributed
Graph Processing. ACM Comput. Surv. 48, 2 (2015), 25:1–25:39.

[48] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In SOSP.

[49] Camilo Ortiz-Astorquiza, Ivan Contreras, and Gilbert Laporte. 2018. Multi-level
facility location problems. EJOR 267, 3 (2018), 791–805.

[50] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-
gio Iacoboni. 2015. HDRF: Stream-Based Partitioning for Power-Law Graphs. In
CIKM.

[51] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data
analytics. SIGCOMM 45, 4 (2015), 421–434.

[52] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek Pai, and Michael J Freedman.
2013. Making Every Bit Count in {Wide-Area} Analytics. In HotOS.

[53] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, andMichael J. Freedman.
2014. Aggregation and Degradation in JetStream: Streaming Analytics in the
Wide Area. In NSDI.

[54] Shafiur Rahman, Nael B. Abu-Ghazaleh, and Rajiv Gupta. 2020. GraphPulse:
An Event-Driven Hardware Accelerator for Asynchronous Graph Processing. In
MICRO. 908–921.

[55] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-free replicated data types. In SSS. 386–400.

[56] Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In PPoPP.

[57] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and Lizy K. John.
2018. Start Late or Finish Early: A Distributed Graph Processing System with
Redundancy Reduction. PVLDB 12, 2 (2018), 154–168.

[58] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. In SIGKDD.

[59] Xiaoyi Tao, Kaoru Ota, Mianxiong Dong, Wuyunzhaola Borjigin, Heng Qi, and
Keqiu Li. 2020. Congestion-aware traffic allocation for geo-distributed data
centers. TCC 10, 3 (2020), 1675–1687.

[60] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. FENNEL: streaming graph partitioning for massive scale graphs.
In WSDM.

[61] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (1990), 103–111.

[62] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

276

https://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html
https://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html
https://law.di.unimi.it/webdata/arabic-2005/
https://law.di.unimi.it/webdata/uk-2005/
https://github.com/alibaba/libgrape-lite
https://investor.fb.com/investor-events/event-details/2021/Facebook-Q2-2021-Earnings/default.aspx
https://investor.fb.com/investor-events/event-details/2021/Facebook-Q2-2021-Earnings/default.aspx

[63] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In ASPLOS.
237–251.

[64] Hao Wang, Di Niu, and Baochun Li. 2020. Turbo: Dynamic and Decentralized
Global Analytics via Machine Learning. TPDS 31, 6 (2020), 1372–1386.

[65] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying Liu, and
Xiaobing Feng. 2018. Lazygraph: lazy data coherency for replicas in distributed
graph-parallel computation. In PPoPP.

[66] Qiange Wang, Yanfeng Zhang, Hao Wang, Liang Geng, Rubao Lee, Xiaodong
Zhang, and Ge Yu. 2020. Automating Incremental and Asynchronous Evaluation
for Recursive Aggregate Data Processing. In SIGMOD.

[67] Yubao Wu, Ruoming Jin, and Xiang Zhang. 2014. Fast and unified local search
for random walk based k-nearest-neighbor query in large graphs. In SIGMOD.

[68] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015.
SYNC or ASYNC: time to fuse for distributed graph-parallel computation. In
PPoPP.

[69] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed Power-law
Graph Computing: Theoretical and Empirical Analysis. In NeurIPS.

[70] Xun Yi, Russell Paulet, and Elisa Bertino. 2014. Homomorphic encryption. In
Homomorphic encryption and applications. 27–46.

[71] Ye Yuan, Delong Ma, Zhenyu Wen, Yuliang Ma, Guoren Wang, and Lei Chen.
2020. Efficient Graph Query Processing over Geo-Distributed Datacenters. In
SIGIR.

[72] Ye Yuan, Delong Ma, Zhenyu Wen, Zhiwei Zhang, and Guoren Wang. 2021.
Subgraph matching over graph federation. PVLDB 15, 3 (2021), 437–450.

[73] Yanfeng Zhang, Qinxin Gao, Lixin Gao, and Cuirong Wang. 2011. PrIter: a
distributed framework for prioritized iterative computations. In SOCC.

[74] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. 2013. Maiter: An
asynchronous graph processing framework for delta-based accumulative iterative
computation. TPDS 25, 8 (2013), 2091–2100.

[75] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Guang Tan, and Bing Bing Zhou. 2017.
HotGraph: Efficient Asynchronous Processing for Real-World Graphs. IEEE Trans.
Computers 66, 5 (2017), 799–809.

[76] Laiping Zhao, Yanan Yang, Ali Munir, Alex X Liu, Yue Li, and Wenyu Qu. 2019.
Optimizing geo-distributed data analytics with coordinated task scheduling and
routing. TPDS 31, 2 (2019), 279–293.

[77] Amelie Chi Zhou, Ruibo Qiu, Thomas Lambert, Tristan Allard, Shadi Ibrahim,
and Amr El Abbadi. 2022. PGPregel: an end-to-end system for privacy-preserving
graph processing in geo-distributed data centers. In SOCC. 386–402.

[78] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In OSDI.

277

	Abstract
	1 Introduction
	2 Preliminaries
	3 Region-Aware Graph Processing Framework
	3.1 Observations
	3.2 Region-Aware Message Management
	3.3 Theoretical Analysis

	4 Heterogeneous-Aware Message Passing Management
	4.1 Adaptive Hierarchical Message Interaction
	4.2 Discrepancy-Aware Message Filtering

	5 System
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 Performance Gain Analysis
	6.4 Performance Breakdown
	6.5 Effect of Data Partition
	6.6 Sensitivity to Network Heterogeneity
	6.7 Sensitivity to Parameter Settings
	6.8 Scalability
	6.9 Performance on Homomorphic Encryption

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

