
Biathlon: Harnessing Model Resilience for Accelerating ML
Inference Pipelines

Chaokun Chang
The Chinese University of Hong Kong

ckchang@cse.cuhk.edu.hk

Eric Lo
The Chinese University of Hong Kong

ericlo@cse.cuhk.edu.hk

Chunxiao Ye
The Chinese University of Hong Kong

cxye23@cse.cuhk.edu.hk

ABSTRACT
Machine learning inference pipelines commonly encountered in
data science and industries often require real-time responsiveness
due to their user-facing nature. However, meeting this requirement
becomes particularly challenging when certain input features re-
quire aggregating a large volume of data online. Recent literature
on interpretable machine learning reveals that most machine learn-
ing models exhibit a notable degree of resilience to variations in
input. This suggests that machine learning models can e�ectively
accommodate approximate input features with minimal discernible
impact on accuracy. In this paper, we introduce Biathlon, a novel
ML serving system that leverages the inherent resilience of models
and determines the optimal degree of approximation for each aggre-
gation feature. This approach enables maximum speedup while en-
suring a guaranteed bound on accuracy loss. We evaluate Biathlon
on real pipelines from both industry applications and data science
competitions, demonstrating its ability to meet real-time latency
requirements by achieving 5.3⇥ to 16.6⇥ speedup with almost no
accuracy loss.

PVLDB Reference Format:
Chaokun Chang, Eric Lo, and Chunxiao Ye. Biathlon: Harnessing Model
Resilience for Accelerating ML Inference Pipelines. PVLDB, 17(10): 2631 -
2640, 2024.
doi:10.14778/3675034.3675052

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ChaokunChang/Biathlon.

1 INTRODUCTION
Machine Learning (ML) has gained traction across a diverse array of
applications. In the training phase, developers gather data to train
their machine learning models. In the serving phase, the trained
model is deployed within an inference pipeline, which accepts user
inputs and carries out real-time model inference.

A typical real-time inference pipeline consists of a series of op-
erations related to feature preparation. Generally, there are multiple
feature preparation operators responsible for generating features
based on runtime inputs. Once all the features are prepared, the
model inference operator processes these features as input and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.
doi:10.14778/3675034.3675052

produces an inference result that is returned to the user. Despite re-
cent advancements in deep learning, traditional models like Linear
Regression, Decision Tree, XGBoost still demonstrate exceptional
performance and accuracy on tabular and data science data [36]. In
fact, most inference pipelines in Kaggle [38] are using traditional
models like random forests and gradient boosting [12, 28, 36, 62].
Traditional models are lightweight in terms of inference cost [44].
The heavy-lifting part of those pipelines, however, often falls on
the feature preparation operators when they need to aggregate a
large volume of data [10, 86].

Recent literature in the �eld of machine learning interpretation
[52, 63, 64] shows that machine learningmodels exhibit a notable de-
gree of resilience to variations in input. This phenomenon implies
that the inference results produced by machine learning models
often demonstrate a certain level of stability, even in the presence
of imprecise input features. This suggests that machine learning
models are capable of accommodating approximate input fea-
tures with minimal discernible impact on their predictive
accuracy.

Approximately computing input features can yield signi�cant
acceleration to an entire inference pipeline by alleviating the data
processing burden at its core. Sampling-based approximation query
processing (AQP) enables the preparation of aggregation features
using a smaller subset of the original dataset [4, 19, 49, 58]. Conse-
quently, this approach o�ers a powerful means of expediting the
feature preparation process within an inference pipeline. However,
this endeavor is particularly challenging. First, industrial and data
science inference pipelines typically involve multiple input features,
each exerting a non-uniform impact on the �nal inference result.
Consequently, determining the appropriate approximation level for
each feature becomes a non-trivial task, as their respective in�u-
ences vary. Second, inference pipelines often comprise a complex
�ow of inter-dependent operators. Navigating this intricate inter-
play engenders further complexity when deciding the appropriate
approximation level for each feature. The ultimate goal is to strike a
delicate balance between maximizing speedup through approxima-
tion while maintaining an acceptable level of accuracy loss within
permissible bounds.

We propose Biathlon, a new ML real-time serving system that
harnesses the resilience of ML models to accelerate the execution
of inference pipelines. Biathlon e�ectively determines the appro-
priate approximation degree for each feature by considering both
its computational cost and its importance in relation to the current
inference result. When a feature imposes a high processing burden,
Biathlon allocates a higher level of approximation to expedite exe-
cution. Conversely, if a feature signi�cantly impacts the inference
result, indicating sensitivity to variations in that feature, Biathlon
prescribes a lower approximation level to preserve accuracy.

2631

https://doi.org/10.14778/3675034.3675052
https://github.com/ChaokunChang/Biathlon
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675052
https://www.acm.org/publications/policies/artifact-review-and-badging-current

cls 1 cls 0cls 1cls 0

cls 0

Figure 1: Decision tree ex-
ample

Datastore
Operator

(Median Agg.)

Datastore
Operator

(Index Lookup)

Transform.
Operator

(Min-max Scaler)

Datastore
Operator

(MeanAgg.)

Datastore
Operator

(Table Scan)

Inference
Operator

(XGBoost)

insert/update
per ms

insert/update
per second

insert/update
per hour

Pipeline
triggered per

second

Figure 2: A (simpli�ed) inference pipeline from Kaggle

Approximate Model
Inference

Approximate
Feature Computation

computed
feature :

inference
result:

feature
uncertainty:

inference
uncertainty:

Executor

(Eq. 1)

Yes

No

Inference Result:

Feature Importance
Computation (Eq. 6)

(Eq. 3)

Planner

Linear Fractional
Programming (Eq. 8)

steepest
descent:

main effect index:

Biathlon

Inference Pipeline

approximation plan:

computed feature:
inference result:

feature uncertainty:
inference uncertainty:

Figure 3: System Overview of Biathlon

It is imperative to note the importance of a feature is input-
sensitive. Speci�cally, the importance of a feature �uctuates with
di�erent input values. This variability stems from the dynamic in-
teraction between features across varied input values. For instance,
consider the decision tree in Figure 1. The importance of feature
�3 depends on the value of feature �1. When �1 � 0.8, �3 becomes
immaterial. Conversely, when �1 < 0.8, �3 becomes very important.
As the importance of a feature to a speci�c inference result hinges
upon its runtime input value, it is implausible to ascertain an ap-
proximation degree for each feature o�ine. Hence, Biathlon uses
an online approach to determine the approximation plan during run-
time for each individual inference pipeline execution. Speci�cally,
Biathlon incrementally extracts samples to approximate the feature
values and hence the model output. During the process, it also esti-
mates the importance of features using the samples. By utilizing
these estimates, Biathlon incrementally re�nes the approximation
plan to draw more samples and early-stops once the model output
is statistically guaranteed to be correct.

Biathlon exhibits broad applicability across various ML models.
For models with discrete output (e.g., classi�cation), Biathlon pro-
vides a probabilistic guarantee that the inference result obtained
using its approach is identical to the inference result derived using
exact features. For models with continuous output (e.g., regression),
Biathlon ensures a probabilistic guarantee that the inference re-
sult lies within a bounded error relative to the inference outcome
produced with exact features. This characteristic makes Biathlon
a versatile solution for enhancing the performance of a wide va-
riety of ML inference pipelines. To demonstrate the e�cacy of
Biathlon, we conducted a comprehensive evaluation on real infer-
ence pipelines, originating from both industry applications and data
science competitions. Biathlon successfully harnesses the pipeline
model resiliency to o�er 5.3⇥ and 16.6⇥ speedup, without noticeable
degradation in accuracy.

2 BACKGROUND
A machine learning inference pipeline is often a work�ow of opera-
tors collective for feature preparation and model inference. Typical
operators include:
(1) Datastore Operators: These operators involve external data ac-

cess such as querying a database. Some datastore operators are
lightweight, particularly when suitable indexes are available
(e.g., retrieving the gender of a user based on their unique user
ID). Some are heavyweight, requiring the retrieval of signi�cant

amounts of data for aggregation (e.g., counting the number of
clicks in a user group that shares common interests with the
current user).

(2) Transformation Operators: These operators are responsible for
transforming the data. They require no external data access
and are lightweight. Examples of such transformations include
Standard Scaling, One-Hot Encoding, and N-gram.

(3) Model Inference Operators: A model inference operator is the ter-
minal operator that ends a pipeline and generates a prediction
result. Inferences based on traditional models such as Linear Re-
gression (LR), Support Vector Machines (SVM), and tree-based
models like XGBoost and LightGBM are not computationally
expensive [44]. Our experiments demonstrate that model infer-
ence operations typically execute in milliseconds, falling within
the same ballpark as lightweight datastore lookup and data
transformations.

Figure 2 shows an inference pipeline from Kaggle [38], simpli-
�ed for illustration purpose. This example pipeline consists of �ve
feature preparation operators collectively forming three feature
preparation sub-pipelines, each yielding a distinct feature utilized
in model inference. The data tables in the pipeline have di�erent
update frequencies.

To address the aggregation bottleneck in real-time inference
pipelines, industries such as Databricks[16], Vertex AI [26], and
Tecton [24] often pre-aggregates some features o�ine. These pre-
aggregated features are stored in specialized databases commonly
known as “feature stores” [6, 23, 24, 35] for subsequent online usage.
However, the utilization of feature stores inherently introduces
space overhead and a certain degree of staleness to the features.
This staleness can potentially result in unbounded errors in the
inference results.

RALF [82] is an optimized feature store. To reduce errors result-
ing from potentially stale features, it periodically selects a subset of
features to refresh based on a cost budget. RALF assumes the error
of each prediction can be promptly obtained and leverages those
errors to establish a feedback loop, determining when to reuse a
cached feature and when to refresh and recompute a feature. Un-
fortunately, not many ML pipelines can obtain the error of each
prediction promptly. For instance, in the Trip-Fare pipeline we used
in our experiments, the error of a trip-fare prediction can only be
obtained after the trip has concluded, which may take minutes or
even hours. In such cases, RALF often fails to establish an e�ective

2632

feedback loop due to lagged information, resulting in noticeable
accuracy loss caused by stale features.

Willump [44] exploits the statistical properties of machine learn-
ing models within inference pipelines to reduce the cost of feature
preparation. Willump constructs and utilizes an approximate model
for simple inputs, and only uses the original model for complex
inputs. The approximate model requires fewer features as inputs,
directly cutting the cost of feature preparation. However, training
the approximation model may pose challenges as it requires access
to the training set, which voids all use cases whose training data
are not available (e.g., the use of pre-trained models).

Biathlon distinguishes itself as a pioneer in accelerating infer-
ence pipelines by taking a di�erent approach fromWillump. Instead
of approximating the model, Biathlon focuses on approximating
the features. Approximating the computation of expensive aggre-
gates belongs to a well-established topic called Approximate Query
Processing (AQP). The key, however, lies in determining the appro-
priate level of approximation for each feature, balancing between
maximum speedup and minimal prediction accuracy loss. Biathlon
leverages the inherent resilience found in machine learning models
to address this challenge.

2.1 Approximate Query Processing
Approximate Query Processing (AQP) is a prominent technique
employed to swiftly return approximate responses for queries ne-
cessitating the processing of a large volume of data [4, 19, 49, 58].

Sampling has been the most prevalent AQP approach [4, 19,
20, 32, 39, 48, 58], owing to its three pivotal characteristics: (1)
generality, enabling its broad applicability across a diverse spectrum
of aggregation operators encompassing distributive and holistic
aggregation; (2) simple, requiring solely the speci�cation of a sample
size to work; and (3) theoretical guarantees, providing bounds to the
approximation results.

Sampling-based AQP methods are predominantly dichotomized
based on the employed sampling algorithm. AQP based on uniform
sampling [19, 20, 32, 39, 48, 85] selects samples in a randomized
fashion. This method o�ers several advantages: it is workload-
independent and necessitates no data preprocessing. On the con-
trary, AQP based on biased sampling [4, 58] selects samples based
on historical workloads, endowing certain records with a higher
likelihood of selection. While biased sampling typically demands a
smaller number of samples, it is constrained by its reliance on past
workloads and susceptibility to workload shifts.

Online Aggregation [20, 32] incrementally draw samples until the
estimated error of the aggregation result attains the speci�ed accu-
racy target. Online aggregation can support standard statistics like
SUM, COUNT, AVG, VAR, STD, MEDIAN, and QUANTILE. However, it can-
not support TOP-K, DISTINCT, and extreme statistics MIN and MAX.
Conversely, systems that draw (biased) samples o�ine based on
historical workloads do not have an online sampling overhead [4]
and support more operators. However, their approximated answers
do not necessarily meet the user-speci�ed accuracy target.

Recent advancements in AQP train ML models to replace biased
samples, resulting in improved estimation accuracy [34, 51, 59].
However, this approach is still prone to workload shifts and agnos-
tic to user-speci�ed accuracy targets. Biathlon is an ML serving

system that utilizes online aggregation to approximate expensive
features. Instead of specifying an accuracy target for the aggrega-
tion operators, Biathlon speci�es the accuracy target for the �nal
prediction result and “back-propagates” this target to determine
the accuracy targets for individual upstream aggregate operators
by considering their importance and processing costs.

2.2 Feature Importance
In machine learning, Feature Importance plays a signi�cant role in
various aspects such as Feature Selection, ML Interpretability, and
ML security. For instance, the concept of “permutation importance”
[60] is commonly used to measure the importance of a feature. It is
de�ned as the decrease in a model’s score when the values of that
feature are randomly shu�ed. By permuting the feature values, the
relationship between the feature and the target is disrupted, and
the resulting drop in the model score indicates the extent to which
the model relies on that particular feature.

In Feature Selection, models can be built using only features with
positive importance scores [8]. In Explainable AI, feature impor-
tance scores can be used to interpret speci�c inference outcomes
derived from machine learning models [50, 63, 64, 71]. In Adver-
sarial Machine Learning, evasion attacks [27] involve carefully
preparing adversarial examples to cause mis-classi�cation during
inference time. Feature importance can guide the search for adver-
sarial examples by identifying critical features [80].

To the best of our knowledge, Biathlon represents a pioneering
e�ort in utilizing feature importance to derive approximation plans
for accelerating the execution of inference pipelines.

3 BIATHLON
Given an unoptimized inference pipeline ⌧ , pipeline inputs (e.g.,
user ID), an error bound X , and a con�dence level g , the goal of
Biathlon is to execute⌧ to obtain an inference result ~̂ that satis-
�es the accuracy guarantee speci�ed in Equation 1, with minimal
execution cost:

%A (|. � ~̂ |  X) � g (1)

where . represents the inference result without Biathlon’s opti-
mization (i.e. computing all features exactly).

It is noteworthy that for classi�cation pipelines, the value X must
be 0. Equation 1 intuitively guarantees that the deviation of the
inference result obtained using Biathlon from the actual inference
result will not exceed X with at least g con�dence. The execution
cost of the inference pipeline is:

⇠I = kIk1 = I1 + I2 + · · · + I: (2)

where I = [I1, · · · , I:] is the approximation plan, a vector that
denotes the sample size I 9 for each feature, with I 9 not exceeding
the total number of records # 9 for that feature, i.e. 0  I 9  # 9 .

Currently, Biathlon only approximates features that are com-
puted by expensive aggregation operators. We do not approximate
other operators (e.g., scaling) because their cost is relatively low
compared to aggregation. Inheriting the limitation from online
aggregation [3, 19, 20, 32, 39, 48, 85], Biathlon does not approximate
TOP-K, DISTINCT, MIN, and MAX. So, : is the number of aggregation
features approximated by Biathlon, and ⇠I is the cost of executing

2633

the pipeline according to I, measured in terms of the total number
of samples across all aggregation features.

The optimal approximation plan I⇤ in Biathlon is the one that
satis�es Equation 1 with the minimal cost ⇠⇤. However, similar
to many query optimization problems, �nding the optimal plan
outright without knowing the exact inference result . is infeasible.
Consequently, Biathlon adopts an iterative algorithm to progres-
sively approach Equation 1 step by step.

3.1 Work�ow of Biathlon
Figure 3 illustrates the work�ow of Biathlon. Biathlon comprises
two components: (1) The Planner, responsible for devising an ap-
proximation plan online for the execution of the inference pipeline,
and (2) The Executor, tasked with executing the inference pipeline
approximately in accordance with the plan proposed by the Planner.

Biathlon, when receiving an inference request from a user, begins
with the Planner formulating an initial plan I0 of initial samples
for each input feature. The Executor then utilizes this plan for
execution.

The execution process within the Executor can be divided into
two stages: Approximate Feature Computation (AFC) and Approxi-
mate Model Inference (AMI). During the AFC stage, the Executor
computes the values of approximate features Ĝ and estimates their
feature uncertainties *G . In the subsequent AMI stage, the Ex-
ecutor performs model inference using the approximate features
Ĝ to obtain the approximate inference result ~̂ and estimates its
inference uncertainty*~ . Subsequently, Biathlon performs a val-
idation check to determine whether the current inference result ~̂
aligns with the speci�ed requirement in Equation 1. Speci�cally,
given the inference uncertainty *~ , we can calculate the cumula-
tive probability that*~ falls within the error interval (�X, X). If the
cumulative probability area within (�X, X) is greater than or equal
to g , then the condition in Equation 1 is met, and Biathlon would
return the approximate inference result ~̂ to the users. Otherwise,
Biathlon initiates a feedback loop and channels (Ĝ ,*G) and (~̂,*~)
back to the Planner to devise a new approximation plan I1 for the
next iteration of execution. Biathlon continues iterating through
the feedback loop and draw more samples until the user obtains
an inference result whose inference uncertainty meets Equation 1.
In other words, although unlikely, Biathlon may need to draw all
samples to compute the exact feature in order to satisfy Equation
1 when confronted with worst-case scenarios (e.g., malicious data
distributions).

3.2 Approximate Feature Computation (AFC)
In this stage, Biathlon calculates the values of the features. For
non-targeting features, Biathlon computes their exact values. In
the case of targeting aggregation feature 9 , Biathlon operates simi-
larly to online aggregation, providing e�cient estimations for the
aggregation values through a three-step process.

First, Biathlon randomly selects a sample (9 of size I 9 for at-
tribute 9 according to the approximation plan I. Next, Biathlon
estimates the approximate value of feature 9 using sample (9 . This
process resembles existing sampling-based AQP techniques. Ini-
tially, the aggregation operator \ 9 is applied to its input from the

selected sample (9 . The resulting aggregation is then scaled to ob-
tain an estimate of the true aggregation value on the entire dataset,
denoted as Ĝ 9 = ^ 9 (\ 9 ((9)). Here, ^ 9 represents the scaling opera-
tor speci�c to feature 9 . Lastly, Biathlon estimates the uncertainties
*G of the approximated features.

In contrast to traditional AQP systems that employ statistics
(e.g., standard deviation) to quantify result uncertainty, Biathlon
directly employs the error distribution between the approximate
feature and the exact feature to capture the estimation uncertainty
*G . This approach is chosen because, unlike online aggregation, the
approximation results here serve as intermediate results rather than
�nal results. Therefore, it aims to preserve as much information as
possible for estimating the inference uncertainty*~ later.

In Biathlon, for standard conditional aggregation operators that
can be supported by AQP, including SUM, COUNT, AVG, VAR, and
STD, we adhere to the approach proposed in [53] by setting the
error distribution of the approximate aggregation *G as a normal
distribution. Consequently, estimating*G involves �nding themean
` and standard deviation f of the error distribution. The mean `
is 0 since sampling-based AQP can provide unbiased estimation.
For holistic measures like MEDIAN and QUANTILE, we use Empirical
Bootstrap [22, 61] to obtain an empirical distribution.

Online aggregation eliminates the need for data pre-processing,
enabling Biathlon to handle very dynamic data. Furthermore, online
aggregation draws samples incrementally, which avoids repeated
data access when AFC is triggered multiple times with di�erent
approximation plans before Biathlon stops. With this design, if
Biathlon is unsatis�ed with the inference result and the planner
suggests to increase the sample size of a selected feature from from
I 9 to I09 , the Executor can incrementally draw (I09 �I 9) new samples
instead of drawing I09 samples from scratch. This incremental com-
putation mechanism e�ectively avoids redundant data access and
works for most aggregation operators, including both distributive
measures and holistic measures [25, 81].

3.3 Approximate Model Inference (AMI)
The AMI stage in Biathlon serves a dual purpose: (1) computing
the (approximate) inference result ~̂ using the approximate features
and (2) estimating the uncertainty of the approximate inference
result*~ .

Computing the approximate inference result ~̂ is straightforward
— Biathlon directly incorporates the approximate feature values Ĝ
into the model inference operator to derive the approximate infer-
ence result: ~̂ = M(Ĝ), where M represents the model inference
operator. In Biathlon, the error of the inference result refers to the
discrepancy between the approximate and the exact inference re-
sults. Hence, given the uncertainty of input features*G , estimating
the uncertainty of inference result*~ is actually a problem known
as uncertainty propagation (UP) [65].

There are two types of methods to solve the UP problem: ana-
lytical methods and black-box methods. The former is contingent
upon the availability of model-speci�c closed-form formulas, lim-
iting its applicability to simple models like Linear Regression and
rendering it unsuitable for Biathlon’s objective of supporting a di-
verse array of models. Consequently, Biathlon addresses the UP

2634

problem through a black-box method based on Monte Carlo sim-
ulations (MCS). While alternative black-box methods [46] exist,
they lack the �exibility of MCS and often su�er from the curse of
dimensionality. Standard Monte Carlo methods, however, are com-
putationally intensive due to sampling ine�ciency. Hence, Biathlon
employs quasi-Monte Carlo (QMC) [9], harnessing low-discrepancy
sequences to uniformly cover the input space, thereby achieving
comparable estimation accuracy with fewer samples.

Based on QMC, Biathlon estimates the uncertainty of the infer-
ence result*~ in four steps.
(1) Generate< i.i.d. feature samples G1, · · · , G< , with G8 = *G + Ĝ .

Each G8 still follows a normal distribution as *G . Note that
the< feature samples are generated using a low-discrepancy
sequence [72], also referred to as a quasi-random sequence, to
achieve fast convergence.

(2) Conduct model inference on the generated feature samples,
yielding< inference samples ~1, · · · ,~< , where ~8 = M(G8).

(3) Model the distribution of the true inference result . based on
the ensemble of< inference samples. In the case of a regres-
sion model, the distribution of . follows a normal distribution
(~̄,f2~), where ~̄ = ⇢ (.) ' 1

<
Õ<
8=1 ~

8 , and f2~ = ⇢ ((.�~̄)2) '
1
<

Õ<
8=1 (~8 � ~̂)2. Alternatively, if the model is a classi�cation

model, the distribution of . is a categorical distribution, re-
quiring estimation of the probabilities of all possible classes
using their frequencies in the inference samples. The proba-
bility of class 9 is estimated as ? 9 = 1

<
Õ<
8=1 I~8=9 , where I is

an indicator function that I~=9 = 1 when ~ = 9 and I~=9 = 0
otherwise.

(4) Compute the uncertainty, i.e. *~ . By de�nition, *~ = . � ~̂.
Hence, for regression models, *~ follows a normal distribution
*~ ⇠ # (~̄ � ~̂,f2~). On the other hand, for classi�cation models,

*~ follows a Bernoulli distribution *~ ⇠ ⌫4A=>D;;8
⇣
1 � ?~̂

⌘
,

where?~̂ denotes the probability of class ~̂, i.e., ?~̂ = 1
<

Õ<
8=1 I~8=~̂ .

It is worth highlighting that Monte Carlo methods exhibit a high
degree of parallelizability in their computation. Biathlon leverages
this property by performing the< model inferences simultaneously
in parallel. This approach e�ectively enables e�cient estimation
of *~ with reduced time requirements. As a side note, Biathlon
typically employs parametric methods to model the probability
distribution of . . However, if . deviates from the distribution as-
sumption of parametric methods, Biathlon resorts to the use of
non-parametric Kernel Density Estimation (KDE) instead.

3.4 Planner
The primary responsibility of the Planner in Biathlon is to deter-
mine the approximation plan, denoted as I, at the beginning of each
iteration. In the beginning, the Planner initializes the initial plan
I0 using a small percentage U of data records within each feature.
Therefore, the initial plan is I0 = [U#1, · · · ,U#:], where # 9 repre-
sents the number of records for feature 9 . For subsequent iterations
8 > 0, the Planner determines the next plan I8+1 in accordance with
Equation 3:

I8+1 = I8 + W38 (3)
where 38 is a vector denoting the direction of the maximum reduc-
tion in inference uncertainty based on the current plan I8 , and W

denotes the step size, governing the number of additional samples
to allocate in each iteration. Similar to any iterative optimization
algorithm, the step size is a hyperparameter. An excessively small
step size necessitates additional iterations to ful�ll Equation 1, lead-
ing to increased overhead from more iterations. Conversely, an
excessively large step size may result in an overshoot in terms
of execution cost, causing Biathlon to ful�ll Equation 1 using an
excessively large number of unnecessary samples.

The direction characterized by the maximum reduction in infer-
ence uncertainty 38 at I8 is as follows:

38 = argmax
�I

+0A (. |I8) �+0A (. |I8 + �I)
k�Ik1

(4)

where +0A (. |I8) represents the variance of the inference result
when the approximation plan is I8 , serving as a measure of the
current level of inference uncertainty, which can be easily obtained
given the inference uncertainty*~ in AMI (Section 3.3).

The vector �I = [�I1, · · · ,�I:] speci�es a direction for adjust-
ing the current plan, with each �I 9 2 {0, 1} indicating how the
sample size for feature 9 should be modi�ed. A value of �I 9 = 0
signi�es no change, while �I 9 = 1 indicates the acquisition of W
samples, considering the multiplication by the step size. It is perti-
nent to note that decreasing the sample size for a particular feature
is not considered, as Biathlon computes features incrementally, and
the execution costs associated with a smaller sample size have al-
ready been accounted for in previous iterations. In addition, k�Ik1
is de�ned as k�Ik1 =

Õ:
9=1 �I 9 , re�ecting the increase of execution

cost in that direction. Finally, we note that 38 is not di�erentiable
as I8 is discrete.

Directly computing 38 is not recommended due to the value of
+0A (. |I8 + �I) depends on the execution result of the inference
pipeline, requiring 2: pipeline executions that include expensive
aggregations and model inference. Fortunately, we have been able
to identify a shortcut to estimate 38 with a closed-form solution.
Speci�cally, given a �xed increased sample �I, the corresponding
variance reduction is related to the importance of the feature whose
sample size is increased. The more important the feature is, the
more the variance is reduced by having more samples. In machine
learning, there are many measures to quantify the importance of a
feature, including LIME [63], Shapley Value [71], SHAPE [50], and
Sobol Indices [73]. Among those, we use Sobol Indices because they
de�ne feature importance exactly based on variance reduction.

Sobol Indices comprise a total of 2: � 1 indices with di�erent
orders ranging from �rst-order to :-th-order, where : denotes the
number of features. Among these, there are : �rst-order indices
{�1, · · · , � 9 , · · · , �: }, also known as the Main E�ect indices, with � 9
measuring the importance of feature 9 . There are : (:�1)

2 second-
order indices {�12, · · · , �8 9 , · · · }, where �8 9 quanti�es the importance
of the interaction between features 8 and 9 , and so forth for higher-
order indices. In Biathlon, the �rst-order Main E�ect Indices are
su�cient. The Main E�ect Index for feature 9 is de�ned as [73]:

� 9 =
+0A- 9 (⇢¬- 9 (. |- 9))

+0A (.)
where - 9 represents feature 9 , and ¬- 9 denotes all other fea-

tures except 9 . The denominator represents the variance of the

2635

inference result, while the numerator represents the variance of the
conditional expectation of . given - 9 , quantifying the proportion
of variance contributed by feature 9 . By the law of total variance,
the numerator can also be seen as:

+0A- 9 (⇢¬- 9 (. |- 9)) = +0A (.) � ⇢- 9 (+0A¬- 9 (. |- 9)) (5)

In our context, the denominator of the main e�ect index for
feature 9 , i.e., the variance of the inference, is +0A (. |I8). The term
⇢- 9 (+0A¬- 9 (. |- 9)) in Equation 5 represents the expectation of
conditional inference variance given - 9 , i.e., when - 9 is based on
all # 9 records. In our context, the denominator would then be:

+0A (. |I8) � ⇢ (+0A (. |I89⇤))

where I89⇤ is the plan [I81, · · · ,# 9 , · · · , I8:] with feature 9 com-
puted using all # 9 records. Hence, putting it all together, the im-
portance of feature 9 at plan I8 is:

� 89 =
+0A (. |I8) � ⇢ (+0A (. |I89⇤))

+0A (. |I8) (6)

� 89 can also be computed e�ciently using the Sobol-Satelli method
[68], which is also QMC-based like the one in AMI (Section 3.3).
With those feature samples and inference results, we can derive � 89
for all 9 .

Utilizing the Sobol’s Main E�ect Index, we can estimate the vari-
ance reduction by summing the expected variance reduction caused
by each feature. Let � 8 = [� 81, · · · , � 8:] denote the Sobol’s Main E�ect
Index vector of all features based on the plan I8 . Each individual
� 89 indicates the expected contribution of feature 9 to the inference
variance reduction ratio if 9 becomes exact. Hence, the expected
variance reduction would be+0A (. |I8) · � 89 . Therefore, we can com-

pute the unit reduction per future sample as
+0A (. |I8) ·� 89

9�I 9 , and the
variance reduction caused by giving the next iteration of samples

to feature 9 as
+0A (. |I8) ·� 89 ·�I 9

9�I 9 . Hence, given �I, we can estimate

the overall inference variance reduction as
Õ:

9=1
� 89�I 9
9�I 9 +0A (. |I

8),
i.e.

+0A (. |I8) �+0A (. |I8 + �I) ' (� 8

� I
))�I+0A (. |I8) (7)

Consequently, we can transform Equation 4 into Equation 8:

38 ' argmax
�I

(� 8

� I
)
)

�I

k�Ik1
+0A (. |I8)

= argmax
�I

(� 8

� I
)
)

�I

k�Ik1
//as +0A (. |I8) is a constant

(8)

where 38 can be solved as a linear fractional programming (LFP)
problem with a closed-form solution. Equation 8 has already consid-
ered to give a higher degree of approximation for a more expensive
feature 9 . Speci�cally, when 9 is “more expensive”, it means # 9 is a

relatively large number. A larger # 9 will lead to a smaller
� 89

9�I 9 ,
giving it a smaller chance to qualify as argmax in Equation 8. With
38 from Equation 8, Biathlon can derive the next approximation
plan by Equation 3 accordingly.

Table 1: Real Inference Pipelines

Pipeline
(Description)

DataSet
(Num of
Records)

Num of Operators Num of
Features Num of

User
RequestsDatastore Transfor

-mation
Model

Inference AGG Non-
AGGAGG Others

Trip-Fare [17]
(Predict fare of trip)

NYC Taxi
[75] (3B) 2 0 5 LGBM

(Regression) 3 5 1940

Tick-Price [55]
(Forecast price of tick)

Forex Tick
[37] (1.1B) 1 6 0 LR

(Regression) 1 6 4740

Battery [42]
(Predict remaining
charging time)

NASA Battery
[67] (7.3M) 5 1 0 LGBM

(Regression) 10 1 564

Turbofan [43]
(Predict RUL
of turbofan)

Turbofan
[70] (55M) 9 0 0

Random
Forest

(Regression)
9 0 769

Bearing-Imbalance
[15](Detect

Imbalance of bearing)

Machinery
[77] (95M) 8 0 0 MLP

(Classi�cation) 8 0 338

Fraud-Detection [1]
(Detect fraudulent

click)

TD Click
[74] (242M) 3 0 6 XGB

(Classi�cation) 3 6 8603

Student-QA [29]
(Predict correctness

of a question)

Game Log
[18] (26M) 13 0 0

Random
Forest

(Classi�cation)
21 0 471

4 EVALUATION
We conducted an evaluation of Biathlon on seven real inference
pipelines sourced from Kaggle and Feast [23], with the aim of
demonstrating its ability to reduce inference latency while keeping
accuracy loss within acceptable bounds. Our results show that the
use of Biathlon leads to a reduction in inference latency of between
5.3⇥ and 16.6⇥ times compared to the baseline, which involves exe-
cuting the inference pipeline without any approximation. Moreover,
we �nd that Biathlon can maintain accuracy levels within 1% rela-
tive to the baseline. We also include RALF [82] in the experiments
for comparison. For fair comparison, we give RALF an update cost
budget no less than the execution time of Biathlon.

Workload. Despite numerous reports about inference pipelines
with expensive aggregations (e.g., [1, 7, 15, 17, 30, 55, 76, 78]), very
few of them have their corresponding real data available as open
source. The ones in FEBench [86] only include feature preparation
operators, without any model (i.e., no trained model nor training
labels provided). The ones we used in the evaluation are all pub-
licly available. Their characteristics are described in Table 1. The
pipelines perform regression or classi�cation tasks and employ dif-
ferent numbers of features and models. Certain aggregation queries
can generate multiple aggregate features (e.g., in Trips-Fare, the
same datastore query produces two features: COUNT and AVER-
AGE). Each pipeline is also associated with a log of real requests,
including information such as user IDs. We execute all the requests
and calculate the corresponding averages. All inference pipelines
were implemented using Python and Scikit-Learn [60].

System Setup. Biathlon is implemented using Python. We used
ClickHouse [13], an open-source OLAP DBMS designed for real-
time data analytics with support for online sampling, as our datas-
tore. Nonetheless, it is worth noting that Biathlon is not tied to any
speci�c data store solution and may be used with other databases,
such as MySQL, or data analytics frameworks, such as Pandas and
Dask, without losing its advantages. All the experiments were run
on servers with Intel Xeon E5-2620 CPU (2.1 GHz with 8 physical
cores), 256 GB of memory, and 745 GB of Intel DC S3610 Series SSD.

Metrics. To provide a comprehensive evaluation of Biathlon, we
run the experiments �ve times and report the average latency of the
system when serving all real user requests, as well as its speedup
compared to the baseline. Additionally, we report the accuracy.
Unless stated otherwise, the accuracy is measured using the true

2636

label in the hold-out set. We use F1-score and A2-score to measure
the accuracy of classi�cation and regression pipelines, respectively.

Default Con�guration. During the evaluation process, we have
employed a default con�guration that is shared by all workloads
for Biathlon. Speci�cally, we set the sampling ratio for the initial
plan as U = 0.05. Following typical online aggregation systems [85],
we set the step size W as 1% of the total number of records across
all features. The con�dence level g is set to 0.95. For classi�cation
tasks, we set the error bound X = 0 to ensure precise results. For the
regression tasks, we set X = "�⇢, where"�⇢ is the mean absolute
error of the pre-trained model in the test set. Additionally, we set
< = 1000 as the number of samples for QMC.

4.1 End to End Performance
Figure 4 presents the performance evaluation of Biathlon on the
seven inference pipelines under the default con�guration. The top
�gure illustrates the latency comparison among the baseline, RALF,
and Biathlon on the seven workloads. It is evident that feature
computation (FC) is the most time-consuming and dominates the
latency of the baseline. The baseline incurs a latency of more than
a second on most pipelines, which is not ideal for user-facing appli-
cations. Despite their distinct characteristics, running the inference
pipelines on Biathlon shows a signi�cant speedup, ranging from
5.3⇥ to 16.6⇥. More importantly, Biathlon is able to achieve sub-
second real-time response latency on all pipelines. The bottom
�gure shows the accuracy of each workload in Biathlon. It is ev-
ident that Biathlon achieves its real-time latency with almost no
accuracy loss with respect to the exact baseline.

RALF, in contrast, despite having very low latency, indeed su�ers
from accuracy loss and unbounded error. Speci�cally, as a feature
store, RALF generally exhibits lower accuracy in pipelines with
frequent updates (Tick-Price). In pipelines with slow error feedback
(Trip-Fare and Fraud-Detection), RALF also demonstrates lower
accuracy due to the inability to update its feedback loop promptly.
Furthermore, in pipelines withmany new and unseen items (Battery,
TurboFan, Bearing Imbalance and Student-QA), RALF has even
poorer accuracy because it would never compute the feature value
online. Instead, for any compulsory cache miss [33] (i.e., item that
has never been in the cache), RALF would assume a default value
for that feature and rely solely on the error feedback loop to select
those items for pre-computation in the future. Unfortunately, these
pre-computed items are seldom seen again in subsequent requests
in those workloads.

Figure 5 shows a breakdown of the latency components for each
workload in Biathlon. The breakdown comprises three parts: AFC
(which measures the cost of feature preparation), AMI (which con-
siders the cost of model inference and the overhead of QMC in
estimating the inference result uncertainty*~), and Planner (which
online devises the new plan based on the inference variance reduc-
tion via the computation of the Main E�ect Indices of individual
features).

Within Biathlon, the majority of latency is still dominated by
approximated feature computation (AFC), which involves I/O. How-
ever, that time has been signi�cantly reduced when compared with
the baseline because only a small fraction of data (about 5.4% to
14.4% according to our pro�ling) is actually touched. Speci�cally,

the average numbers of iterations consumed by each pipeline, as
shown in Figure 5, are all less than 5, indicating all pipelines are
able to satisfy Equation 1 and early stop. Furthermore, we also
empirically measure the percentage of inference requests whose
actual error, i.e., |. � ~̂ |, falls within our given default error bound
X (X = 0 for classi�cation, X = "�⇢ for regression). We found that
all pipelines have 95% to 100% of their inference requests with real
errors that fall within the required error bound, perfectly aligning
with the speci�ed con�dence level g = 0.95.

4.2 Varying the con�dence level g
In this experiment, we aim to study the impact of the con�dence
level g in Equation 1. Since Equation 1 de�nes the guarantee based
on the error between the prediction made by the baseline and the
prediction made by Biathlon, here we calculate the accuracy based
on using the exact value predicted by the baseline as the oracle
label. Figure 6 shows the result of varying g . It can be observed
that the speedup of Biathlon decreases as the required con�dence
level g increases. This is expected since Biathlon needs to retrieve
more data to achieve a higher level of required con�dence. When
a con�dence level of 1.0 is required, Biathlon necessitates exact
features as input and does not provide any speedup. However, apart
from that, Biathlon maintains a substantial speedup even when the
required con�dence level is as high as 0.99. Some pipelines maintain
near-perfect accuracy while achieving speedup, irrespective of the
con�dence level value. For these pipelines, the initial approximation
plan produces feature computations that yield su�ciently accurate
inference results for the majority of requests. Indeed, there are
still improvements in accuracy with higher con�dence levels but
they are not readily apparent in the �gures. For instance, in the
Turbofan pipeline, the A2-score escalates from 0.9943 to 0.9982 as
the con�dence level rises from 0.0 to 0.99.

4.3 Varying the error bound X
In this experiment, we aim to study the impact of the error bound X
in Equation 1. Figure 7 presents the results of speedup and accuracy
in relation to varying error bound values X . Same as the above, the
accuracy of Biathlon is calculated using the exact value predicted
by the baseline as the oracle label. Only the results of regression
pipelines are shown since the others involve classi�cation, which
cannot tolerate any error.

From the �gure, we can observe that the speedup of Biathlon
increases as the tolerable error X increases. This is expected because
a higher value of X allows Biathlon to satisfy Equation 1 more
easily, resulting in fewer data being retrieved. As the error bound X
continues to increase, the speedup eventually remains stable. This
is because Biathlon can then easily satisfy Equation 1 after the
�rst iteration when given a very large X . Subsequently, further
increasing X would not reduce the number of iterations any further.

Increasing the error bound would naturally have a negative
e�ect on accuracy because more results with larger errors can
satisfy Equation 1. The Tick-Price pipeline is insensitive to this
e�ect because the samples drawn by Biathlon in the �rst iteration
already provide more than enough samples even for the tightest
error bound. Therefore, the relaxation of the error is immaterial for
this pipeline.

2637

(a) Latency (b) Accuracy

Figure 4: Latency and Accuracy (default con�guration)
Figure 5: Latency Break-
down of Biathlon

Figure 6: Varying Con�dence Level g

Figure 7: Varying Error Bound X (Regression Only).

5 RELATEDWORK
Many ML serving systems have been proposed to enhance the
execution e�ciency of inference pipelines. Some systems focus
on simplifying the deployment process through containerized exe-
cution [14, 79] and in-application execution [5, 66], while others
aim to accelerate model inference via resource-sharing [47], com-
pilation [11, 56], scheduling [47, 83], and caching [47]. Some sys-
tems [31, 41, 54, 57, 69] propose integrating machine learning and
database into uni�ed frameworks for inference pipelines, thereby
facilitating cross-optimization [57] between feature computation
operators and inference operators. However, these approaches pri-
marily focus on enabling or optimizing ML inference without lever-
aging the resilience intrinsic to machine learning models, like how
Biathlon did. Some recent systems [2, 21, 44] also leverage some
other statistical properties besides resilience to expedite inference
pipelines, but are limited to Linear models [2] or lack accuracy guar-
antee [21, 44]. In general, we do not recommend using Biathlon for
deep model pipelines. Deep learning models tend to be computa-
tionally expensive compared to traditional non-deep models. Since
Biathlon conducts multiple model inferences for each inference re-
quest during quasi-Monte Carlo (QMC), the resulting overhead can
outweigh the bene�ts gained from feature approximation. However,
it is worth noting that accelerating deep learning pipelines is an

important area of research and there are corresponding solutions
available [40, 45, 84].

6 CONCLUSION AND FUTUREWORK
This paper presents Biathlon, an innovative ML serving system
speci�cally tailored for data science and industry inference pipelines.
Developed to address the stringent user-facing latency demands
of real-time inference, Biathlon incorporates several key compo-
nents: approximate query processing from the database area to
compute feature approximately, uncertainty propagation from sta-
tistical analysis to estimate inference uncertainty, feature impor-
tance based on Sobol Indices from model interpretability to assess
the contribution of individual features to the inference uncertainty,
and an iterative optimization algorithm for determining the best
approximation plan.

Biathlon o�ers maximum speedup with a probabilistic guarantee
of bounded error and achieves a speedup ranging from 5.3⇥ to
16.6⇥ on real pipelines without a noticeable loss in accuracy. In-
herited from online aggregation, there are operators that Biathlon
does not approximate (e.g., Top-K). We believe that, for such cases,
the feature store approach, as demonstrated by RALF, can be a
viable alternative. However, it is essential to remark that the feature
store approach (including RALF) also has its limitations, such as
the absence of error bounds or being restricted to a limited set
of workloads. Therefore, we believe that the feature store caching
methodology of RALF and our AQP approach can complement each
other, opening up an intriguing avenue for future research.

ACKNOWLEDGMENTS
This work is partially supported Hong Kong General Research Fund
(14208023), Hong Kong AoE/P-404/18, and the Center for Perceptual
and Interactive Intelligence (CPII) Ltd under InnoHK supported
by the Innovation and Technology Commission. We also thank
Professor Yufei Tao for his insightful comment about this work.

2638

REFERENCES
[1] 4paradigm. 2023. TalkingData AdTracking Fraud Detection. https:

//github.com/4paradigm/OpenMLDB/tree/main/demo/talkingdata-adtracking-
fraud-detection

[2] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang.
2014. LASER: a scalable response prediction platform for online advertising.
In Proceedings of the 7th ACM international conference on Web search and data
mining. https://doi.org/10.1145/2556195.2556252

[3] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan,
Samuel Madden, Barzan Mozafari, and Ion Stoica. 2014. Knowing when you’re
wrong: building fast and reliable approximate query processing systems. In Pro-
ceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machin-
ery, New York, NY, USA, 481–492. https://doi.org/10.1145/2588555.2593667

[4] Sameer Agarwal, Aurojit Panda, Barzan Mozafari, Samuel Madden, and Ion
Stoica. 2012. BlinkDB: Queries with Bounded Errors and Bounded Response
Times on Very Large Data. arXiv: Databases,arXiv: Databases (Mar 2012).

[5] Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng
Chin, Yael Dekel, Xavier Dupre, Vadim Eksarevskiy, Senja Filipi, Tom Finley,
Abhishek Goswami, Monte Hoover, Scott Inglis, Matteo Interlandi, Najeeb Kazmi,
Gleb Krivosheev, Pete Luferenko, Ivan Matantsev, Sergiy Matusevych, Shahab
Moradi, Gani Nazirov, Justin Ormont, Gal Oshri, Artidoro Pagnoni, Jignesh
Parmar, Prabhat Roy, Mohammad Zeeshan Siddiqui, Markus Weimer, Shauheen
Zahirazami, and Yiwen Zhu. 2019. Machine Learning at Microsoft with ML.NET.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. https://doi.org/10.1145/3292500.3330667

[6] Alibaba. 2023. FeatHub - A stream-batch uni�ed feature store for real-time machine
learning. https://github.com/alibaba/feathub

[7] Alibaba FeatHub. 2023. Fraud Detection. https://github.com/alibaba/feathub/
blob/master/docs/examples/fraud_detection.ipynb

[8] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[9] Russel E. Ca�isch. 1998. Monte Carlo and Quasi-Monte Carlo Methods. Acta
Numerica 7 (Jan. 1998), 1–49. https://doi.org/10.1017/S0962492900002804

[10] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen,
Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan Wu, Yuping Zhao, and
Andy Rudo�. 2021. Optimizing In-Memory Database Engine for AI-Powered
on-Line Decision Augmentation Using Persistent Memory. Proc. VLDB Endow.
14, 5 (jan 2021), 799–812. https://doi.org/10.14778/3446095.3446102

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. Cornell University - arXiv,Cornell University - arXiv
(Feb 2018).

[12] Valerie Chen, Je�rey Li, Joon Sik Kim, Gregory Plumb, and Ameet Talwalkar.
2021. Interpretable Machine Learning. Queue (Dec 2021), 28–56. https://doi.org/
10.1145/3511299

[13] ClickHouse. 2023. Fast Open-Source OLAP DBMS - ClickHouse. https://clickhouse.
com/

[14] Daniel Crankshaw, Xin Wang, Giulio Zhou, MichaelJ. Franklin, JosephE. Gon-
zalez, and Ion Stoica. 2016. Clipper: A Low-Latency Online Prediction Serving
System. arXiv: Distributed, Parallel, and Cluster Computing,arXiv: Distributed,
Parallel, and Cluster Computing (Dec 2016).

[15] Dasmehdixtr. 2020. Binary Classi�cation of Induction Motor Fault | Kag-
gle. https://www.kaggle.com/code/dasmehdixtr/binary-classi�cation-of-
induction-motor-fault

[16] Databricks Inc. 2023. The Data and AI Company - Databricks. https://www.
databricks.com/

[17] Databricks Inc. 2023. feature-store-taxi-example - Databricks.
https://docs.gcp.databricks.com/_extras/notebooks/source/machine-
learning/feature-store-taxi-example.html

[18] etc David Gagnon, Maggie. 2023. Predict Student Performance from Game
Play. https://kaggle.com/competitions/predict-student-performance-from-
game-play

[19] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang.
2016. Sample + Seek: Approximating Aggregates with Distribution Precision
Guarantee. In Proceedings of the 2016 International Conference on Management of
Data. https://doi.org/10.1145/2882903.2915249

[20] Alin Dobra, Chris Jermaine, Florin Rusu, and Fei Xu. 2009. Turbo-Charging
Estimate Convergence in DBO. Proceedings of the VLDB Endowment 2, 1 (Aug.
2009), 419–430. https://doi.org/10.14778/1687627.1687675

[21] Kuntai Du, Qizheng Zhang, Anton Arapin, Haodong Wang, Zhengxu Xia, and
Junchen Jiang. 2022. AccMPEG: Optimizing Video Encoding for Video Analyt-
ics. ArXiv abs/2204.12534 (2022). https://api.semanticscholar.org/CorpusID:
248405608

[22] Bradley. Efron and Robert. Tibshirani. 1993. An introduction to the bootstrap.
Chapman and Hall, New York.

[23] Feast. 2023. Feature Store for Machine Learning. https://github.com/feast-dev/
feast

[24] feather-ai. 2023. Feathr – A scalable, uni�ed data and AI engineering platform for
enterprise. https://github.com/feathr-ai/feathr

[25] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perLogLog: The Analysis of a near-Optimal Cardinality Estimation Algorithm.
Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol.
AH,..., Proceedings (Jan. 2007), 3545. https://doi.org/10.46298/dmtcs.3545

[26] Google Cloud. 2023. Innovate faster with enterprise-ready generative AI. https:
//cloud.google.com/vertex-ai

[27] Gilad Gressel, Niranjan Hegde, Archana Sreekumar, Rishikumar Radhakrish-
nan, Kalyani Harikumar, Anjali S., and Krishnashree Achuthan. 2023. Feature
Importance Guided Attack: A Model Agnostic Adversarial Attack. https:
//doi.org/10.48550/arXiv.2106.14815 arXiv:2106.14815 [cs]

[28] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. 2022. Why do tree-based
models still outperform deep learning on tabular data? arXiv:2207.08815 [cs.LG]

[29] Gusthema. 2023. Student Performance w/ Random Forests. https://www.kaggle.
com/code/cdeotte/random-forest-baseline-0-664/notebook

[30] Gusthema. 2023. Student Performance w/ TensorFlow Decision Forests.
https://www.kaggle.com/code/gusthema/student-performance-w-tensor�ow-
decision-forests

[31] Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur,
Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karana-
sos, and Matteo Interlandi. 2022. Query Processing on Tensor Computation
Runtimes. Proc. VLDB Endow. 15, 11 (jul 2022), 2811–2825. https://doi.org/10.
14778/3551793.3551833

[32] JosephM. Hellerstein, Peter J. Haas, and Helen J.Wang. 1997. Online Aggregation.
In Proceedings of the 1997 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’97). Association for Computing Machinery, New York, NY,
USA, 171–182. https://doi.org/10.1145/253260.253291

[33] John L. Hennessy and David A. Patterson. [n.d.]. Computer Architecture, Fifth
Edition: A Quantitative Approach (5 ed.). Morgan Kaufmann Publishers Inc.

[34] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2019. DeepDB: Learn from Data, not from
Queries! arXiv: Databases,arXiv: Databases (Sep 2019).

[35] Hopsworks. 2023. Hopsworks - Batch and Real-time ML Platform. https://www.
hopsworks.ai

[36] Zezhou Huang, Rathijit Sen, Jiaxiang Liu, and EugeneWu. 2023. JoinBoost: Grow
Trees Over Normalized Data Using Only SQL. (Jul 2023).

[37] JS. 2023. Forex tick data huge database since april 2020 | Kaggle. https://www.
kaggle.com/datasets/joseserrat/forex-april-2020-to-june-2021-tick-data

[38] Kaggle. 2023. Kaggle: Your Machine Learning and Data Science Community.
https://www.kaggle.com/

[39] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximating
Complex AdHoc Queries in BigData Clusters. In Proceedings of the 2016 Inter-
national Conference on Management of Data. https://doi.org/10.1145/2882903.
2882940

[40] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Neural Network Queries over Video at Scale. Proc. VLDB
Endow. 10, 11 (aug 2017), 1586–1597. https://doi.org/10.14778/3137628.3137664

[41] Konstantinos Karanasos,Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Supun Nakandala, Subru Krishnan, Markus
Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino. 2019. Extending
Relational Query Processing with ML Inference. Conference on Innovative Data
Systems Research,Conference on Innovative Data Systems Research (Jan 2019).

[42] Kengle. 2023. Predict Charge Time of Battery. https://www.kaggle.com/code/
kenggle/nasa-battery-life-prediction-dataset-cleaning

[43] Kengle. 2023. RUL Prediction of Turbofan Engine. https://www.kaggle.com/
kenggle/rul-prediction-with-lgbm-on-turbofan-dataset

[44] Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, and
Matei Zaharia. 2019. Willump: A Statistically-Aware End-to-end Optimizer for
Machine Learning Inference. Cornell University - arXiv,Cornell University - arXiv
(Jun 2019).

[45] Ziliang Lai, Chris Liu, Chenxia Han, Pengfei Zhang, Eric Lo, and Ben Kao. [n.d.].
Everest: A Top-K Deep Video Analytics System. In Proceedings of the 2022 Inter-
national Conference on Management of Data (New York, NY, USA, 2022-06-11)
(SIGMOD ’22). Association for Computing Machinery, 2357–2360.

[46] S. H. Lee and W. Chen. 2009. A Comparative Study of Uncertainty Propagation
Methods for Black-Box-Type Problems. Structural and Multidisciplinary Opti-
mization 37, 3 (Jan. 2009), 239–253. https://doi.org/10.1007/s00158-008-0234-7

[47] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, MarcoD. Santambrogio,
Markus Weimer, and Matteo Interlandi. 2018. Pretzel: opening the black box
of machine learning prediction serving systems. Operating Systems Design and
Implementation,Operating Systems Design and Implementation (Oct 2018).

[48] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggrega-
tion via Random Walks. In Proceedings of the 2016 International Conference on
Management of Data. https://doi.org/10.1145/2882903.2915235

2639

https://github.com/4paradigm/OpenMLDB/tree/main/demo/talkingdata-adtracking-fraud-detection
https://github.com/4paradigm/OpenMLDB/tree/main/demo/talkingdata-adtracking-fraud-detection
https://github.com/4paradigm/OpenMLDB/tree/main/demo/talkingdata-adtracking-fraud-detection
https://doi.org/10.1145/2556195.2556252
https://doi.org/10.1145/2588555.2593667
https://doi.org/10.1145/3292500.3330667
https://github.com/alibaba/feathub
https://github.com/alibaba/feathub/blob/master/docs/examples/fraud_detection.ipynb
https://github.com/alibaba/feathub/blob/master/docs/examples/fraud_detection.ipynb
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1017/S0962492900002804
https://doi.org/10.14778/3446095.3446102
https://doi.org/10.1145/3511299
https://doi.org/10.1145/3511299
https://clickhouse.com/
https://clickhouse.com/
https://www.kaggle.com/code/dasmehdixtr/binary-classification-of-induction-motor-fault
https://www.kaggle.com/code/dasmehdixtr/binary-classification-of-induction-motor-fault
https://www.databricks.com/
https://www.databricks.com/
https://docs.gcp.databricks.com/_extras/notebooks/source/machine-learning/feature-store-taxi-example.html
https://docs.gcp.databricks.com/_extras/notebooks/source/machine-learning/feature-store-taxi-example.html
https://kaggle.com/competitions/predict-student-performance-from-game-play
https://kaggle.com/competitions/predict-student-performance-from-game-play
https://doi.org/10.1145/2882903.2915249
https://doi.org/10.14778/1687627.1687675
https://api.semanticscholar.org/CorpusID:248405608
https://api.semanticscholar.org/CorpusID:248405608
https://github.com/feast-dev/feast
https://github.com/feast-dev/feast
https://github.com/feathr-ai/feathr
https://doi.org/10.46298/dmtcs.3545
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://doi.org/10.48550/arXiv.2106.14815
https://doi.org/10.48550/arXiv.2106.14815
https://arxiv.org/abs/2106.14815
https://arxiv.org/abs/2207.08815
https://www.kaggle.com/code/cdeotte/random-forest-baseline-0-664/notebook
https://www.kaggle.com/code/cdeotte/random-forest-baseline-0-664/notebook
https://www.kaggle.com/code/gusthema/student-performance-w-tensorflow-decision-forests
https://www.kaggle.com/code/gusthema/student-performance-w-tensorflow-decision-forests
https://doi.org/10.14778/3551793.3551833
https://doi.org/10.14778/3551793.3551833
https://doi.org/10.1145/253260.253291
https://www.hopsworks.ai
https://www.hopsworks.ai
https://www.kaggle.com/datasets/joseserrat/forex-april-2020-to-june-2021-tick-data
https://www.kaggle.com/datasets/joseserrat/forex-april-2020-to-june-2021-tick-data
https://www.kaggle.com/
https://doi.org/10.1145/2882903.2882940
https://doi.org/10.1145/2882903.2882940
https://doi.org/10.14778/3137628.3137664
https://www.kaggle.com/code/kenggle/nasa-battery-life-prediction-dataset-cleaning
https://www.kaggle.com/code/kenggle/nasa-battery-life-prediction-dataset-cleaning
https://www.kaggle.com/kenggle/rul-prediction-with-lgbm-on-turbofan-dataset
https://www.kaggle.com/kenggle/rul-prediction-with-lgbm-on-turbofan-dataset
https://doi.org/10.1007/s00158-008-0234-7
https://doi.org/10.1145/2882903.2915235

[49] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New
and Where to Go?: A Survey on Approximate Query Processing. Data Science
and Engineering (Dec 2018), 379–397. https://doi.org/10.1007/s41019-018-0074-4

[50] Scott M. Lundberg and Su-In Lee. 2017. A Uni�ed Approach to Interpreting
Model Predictions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY,
USA, 4768–4777.

[51] Qingzhi Ma and Peter Trianta�llou. 2019. DBEst: Revisiting Approximate Query
Processing Engines with Machine Learning Models. In Proceedings of the 2019
International Conference onManagement of Data. https://doi.org/10.1145/3299869.
3324958

[52] Christoph Molnar. 2023. Interpretable Machine Learning. Online. https://
christophm.github.io/interpretable-ml-book/

[53] Barzan Mozafari and Ning Niu. 2015. A Handbook for Building an Approximate
Query Engine. IEEE Data Eng. Bull. (2015).

[54] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo
Curino, Markus Weimer, and Matteo Interlandi. 2020. A tensor compiler for
uni�ed machine learning prediction serving. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 899–917.

[55] Nikhil Kohil. 2020. Stock Prediction using Linear Regression - Starter | Kag-
gle. https://www.kaggle.com/code/nikhilkohli/stock-prediction-using-linear-
regression-starter

[56] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
end-to-end optimization for data analytics applications in weld. Proceedings of
the VLDB Endowment (May 2018), 1002–1015. https://doi.org/10.14778/3213880.
3213890

[57] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi,
and Konstantinos Karanasos. 2022. End-to-end Optimization of Machine Learn-
ing Prediction Queries. In Proceedings of the 2022 International Conference on
Management of Data. https://doi.org/10.1145/3514221.3526141

[58] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. Ver-
dictDB: Universalizing Approximate Query Processing. In Proceedings of the
2018 International Conference on Management of Data. https://doi.org/10.1145/
3183713.3196905

[59] Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella, and Barzan Mozafari.
2017. Database Learning: Toward a Database that Becomes Smarter Every Time.
In Proceedings of the 2017 ACM International Conference on Management of Data.
https://doi.org/10.1145/3035918.3064013

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[61] A. Pol and C. Jermaine. 2005. Relational con�dence bounds are easy with the
bootstrap. Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data (2005). https://doi.org/10.1145/1066157.1066224

[62] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia Floratou,
Konstantinos Karanasos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino,
and Markus Weimer. 2019. Data Science through the looking glass and what we
found there. arXiv: Learning,arXiv: Learning (Dec 2019).

[63] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classi�er. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, San Francisco California USA, 1135–1144. https://doi.org/10.1145/
2939672.2939778

[64] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
Precision Model-Agnostic Explanations. Proceedings of the AAAI Conference on
Arti�cial Intelligence 32, 1 (April 2018). https://doi.org/10.1609/aaai.v32i1.11491

[65] Mathieu Rouaud. [n.d.]. Probability, Statistics and Estimation: Propagation of Un-
certainties in Experimental Measurement. https://www.lulu.com/shop/mathieu-
rouaud/probability-statistics-and-estimation-propagation-of-uncertainties-in-
experimental-measurement/paperback/product-1kwvyjky.html.

[66] Issac Sacolick. 2020. Amazon, Google, and Microsoft take their clouds to the
edge. (2020). https://www.infoworld.com/article/3575071/amazon-google-and-
microsoft-take-their-clouds-to-the-edge.html

[67] B. Saha and K. Goebel. 2007. Battery Data Set. https://data.nasa.gov/dataset/Li-
ion-Battery-Aging-Datasets/uj5r-zjdb/about_data

[68] Andrea Saltelli. 2002. Making Best Use of Model Evaluations to Compute Sen-
sitivity Indices. Computer Physics Communications 145, 2 (May 2002), 280–297.
https://doi.org/10.1016/S0010-4655(02)00280-1

[69] Karla Saur, TaraMirmira, Konstantinos Karanasos, and Jesús Camacho-Rodríguez.
2022. Containerized Execution of UDFs: An Experimental Evaluation. Proc. VLDB
Endow. 15, 11 (jul 2022), 3158–3171. https://doi.org/10.14778/3551793.3551860

[70] Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. 2008. Damage
propagation modeling for aircraft engine run-to-failure simulation. In 2008
International Conference on Prognostics and Health Management. 1–9. https:
//doi.org/10.1109/PHM.2008.4711414

[71] Lloyd S. Shapley. 1952. A Value for N-Person Games. Technical Report. RAND
Corporation.

[72] Ilya M. Sobol. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Ussr Computational Mathematics and Mathematical
Physics 7 (1967), 86–112. https://api.semanticscholar.org/CorpusID:122581245

[73] I. M Sobol0 . 2001. Global Sensitivity Indices for Nonlinear Mathematical Models
and Their Monte Carlo Estimates. Mathematics and Computers in Simulation 55,
1 (Feb. 2001), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

[74] TalkingData. 2023. TalkingData AdTracking Fraud Detection Challenge |
Kaggle. https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-
detection

[75] NYC Taxi and Limousine Commission. 2023. TLC Trip Record Data - TLC. https:
//www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[76] Tecton. 2023. Real-Time Fraud Detection in the Databricks Lakehouse with Tecton.
https://github.com/tecton-ai/blog-sample-code/blob/main/databricks/fraud-
detection/Real-Time_Fraud_Detection_in_the_Databricks_Lakehouse_with_
Tecton.ipynb

[77] Serkan Uysal. 2023. Machinery Fault Dataset. https://www.kaggle.com/datasets/
uysalserkan/fault-induction-motor-dataset

[78] Vivek Khetan. 2016. A linear model on apps and labels. https://www.kaggle.com/
code/vkhetan/a-linear-model-on-apps-and-labels

[79] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim
Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Ra�ki: machine learning
as an analytics service system. Proceedings of the VLDB Endowment 12, 2 (Oct
2018), 128–140. https://doi.org/10.14778/3282495.3282499

[80] Zhibo Wang, Hengchang Guo, Zhifei Zhang, Wenxin Liu, Zhan Qin, and Kui
Ren. 2022. Feature Importance-aware Transferable Adversarial Attacks. https:
//doi.org/10.48550/arXiv.2107.14185 arXiv:2107.14185 [cs]

[81] Richard Wesley and Fei Xu. 2016. Incremental Computation of Common Win-
dowed Holistic Aggregates. Proceedings of the VLDB Endowment 9, 12 (Aug.
2016), 1221–1232. https://doi.org/10.14778/2994509.2994537

[82] Sarah Wooders, Xiangxi Mo, Amit Narang, Kevin Lin, Ion Stoica, Joseph M.
Hellerstein, Natacha Crooks, and Joseph E. Gonzalez. [n.d.]. RALF: Accuracy-
Aware Scheduling for Feature Store Maintenance. 17, 3 ([n. d.]), 563–576.

[83] Yongji Wu, Matthew Lentz, Danyang Zhuo, and Yao Lu. 2022. Serving and
Optimizing Machine Learning Work�ows on Heterogeneous Infrastructures.
Proc. VLDB Endow. 16 (2022), 406–419. https://api.semanticscholar.org/CorpusID:
248665909

[84] Minghao Yan, Saurabh Agarwal, and Shivaram Venkataraman. 2024. Decoding
Speculative Decoding. arXiv:2402.01528 [cs.LG]

[85] Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. 2015.
G-OLA: Generalized On-Line Aggregation for Interactive Analysis on Big Data.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. https://doi.org/10.1145/2723372.2735381

[86] Xuanhe Zhou, Cheng Chen, Kunyi Li, Bingsheng He, Mian Lu, Qiaosheng Liu,
Wei Huang, Guoliang Li, Zhao Zheng, and Yuqiang Chen. 2023. FEBench: A
Benchmark for Real-Time Relational Data Feature Extraction. Proc. VLDB Endow.
16, 12 (aug 2023), 3597–3609. https://doi.org/10.14778/3611540.3611550

2640

https://doi.org/10.1007/s41019-018-0074-4
https://doi.org/10.1145/3299869.3324958
https://doi.org/10.1145/3299869.3324958
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://www.kaggle.com/code/nikhilkohli/stock-prediction-using-linear-regression-starter
https://www.kaggle.com/code/nikhilkohli/stock-prediction-using-linear-regression-starter
https://doi.org/10.14778/3213880.3213890
https://doi.org/10.14778/3213880.3213890
https://doi.org/10.1145/3514221.3526141
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3035918.3064013
https://doi.org/10.1145/1066157.1066224
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1609/aaai.v32i1.11491
https://www.infoworld.com/article/3575071/amazon-google-and-microsoft-take-their-clouds-to-the-edge.html
https://www.infoworld.com/article/3575071/amazon-google-and-microsoft-take-their-clouds-to-the-edge.html
https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-zjdb/about_data
https://data.nasa.gov/dataset/Li-ion-Battery-Aging-Datasets/uj5r-zjdb/about_data
https://doi.org/10.1016/S0010-4655(02)00280-1
https://doi.org/10.14778/3551793.3551860
https://doi.org/10.1109/PHM.2008.4711414
https://doi.org/10.1109/PHM.2008.4711414
https://api.semanticscholar.org/CorpusID:122581245
https://doi.org/10.1016/S0378-4754(00)00270-6
https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection
https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/tecton-ai/blog-sample-code/blob/main/databricks/fraud-detection/Real-Time_Fraud_Detection_in_the_Databricks_Lakehouse_with_Tecton.ipynb
https://github.com/tecton-ai/blog-sample-code/blob/main/databricks/fraud-detection/Real-Time_Fraud_Detection_in_the_Databricks_Lakehouse_with_Tecton.ipynb
https://github.com/tecton-ai/blog-sample-code/blob/main/databricks/fraud-detection/Real-Time_Fraud_Detection_in_the_Databricks_Lakehouse_with_Tecton.ipynb
https://www.kaggle.com/datasets/uysalserkan/fault-induction-motor-dataset
https://www.kaggle.com/datasets/uysalserkan/fault-induction-motor-dataset
https://www.kaggle.com/code/vkhetan/a-linear-model-on-apps-and-labels
https://www.kaggle.com/code/vkhetan/a-linear-model-on-apps-and-labels
https://doi.org/10.14778/3282495.3282499
https://doi.org/10.48550/arXiv.2107.14185
https://doi.org/10.48550/arXiv.2107.14185
https://arxiv.org/abs/2107.14185
https://doi.org/10.14778/2994509.2994537
https://api.semanticscholar.org/CorpusID:248665909
https://api.semanticscholar.org/CorpusID:248665909
https://arxiv.org/abs/2402.01528
https://doi.org/10.1145/2723372.2735381
https://doi.org/10.14778/3611540.3611550

	Abstract
	1 Introduction
	2 Background
	2.1 Approximate Query Processing
	2.2 Feature Importance

	3 Biathlon
	3.1 Workflow of Biathlon
	3.2 Approximate Feature Computation (AFC)
	3.3 Approximate Model Inference (AMI)
	3.4 Planner

	4 Evaluation
	4.1 End to End Performance
	4.2 Varying the confidence level
	4.3 Varying the error bound

	5 Related Work
	6 Conclusion and Future work
	Acknowledgments
	References

