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ABSTRACT

Data quality is paramount in today’s data-driven world, especially
in the era of generative Al Dirty data with errors and inconsisten-
cies usually leads to flawed insights, unreliable decision-making,
and biased or low-quality outputs from generative models. The
study of repairing erroneous data has gained significant impor-
tance. Existing data repair algorithms differ in information uti-
lization, problem settings, and are tested in limited scenarios. In
this paper, we compare and summarize these algorithms with a
driven information-based taxonomy. We systematically conduct
a comprehensive evaluation of 12 mainstream data repair algo-
rithms on 12 datasets under the settings of various data error rates,
error types, and 4 downstream analysis tasks, assessing their er-
ror reduction performance with a novel but practical metric. We
develop an effective and unified repair optimization strategy that
substantially benefits the state of the arts. We conclude that, it is
always worthy of data repair. The clean data does not determine
the upper bound of data analysis performance. We provide valuable
guidelines, challenges, and promising directions in the data repair
domain. We anticipate this paper enabling researchers and users to
well understand and deploy data repair algorithms in practice.
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1 INTRODUCTION

The global application landscape relies heavily on data, while ubiqg-
uitously erroneous information involved in data often compro-
mises the data analysis performance, leading to a huge economic
cost [17, 43, 49, 84]. Dirty data may trigger the spread of fraud
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information, inaccurate decision-making, and even legal repercus-
sions [42, 60, 62, 79, 86]. Among the strategies for efficiently miti-
gating erroneous information and ensuring data quality, automatic
data cleaning [39, 86] has become a pivotal solution, especially
in the age of generative artificial intelligence (GAI), where the
large volume of high-quality training data for powerful GAI models
like ChatGPT [67] and Midjourney [11] currently often resort to
resource-intensive manual data cleaning [87].

The promising automatic data cleaning task is generally con-
ducted in two consecutive stages: error detection and error repair.
The error detection stage is to identify all wrong data values or rule
violation sets, while the error repair stage is to correct these wrong
values into latent right ones [2, 56, 57]. Existing error detection stud-
ies [38, 57, 65, 71] have achieved obvious advancements, with an
average F1 score exceeding 0.85 on real datasets [57, 71]. In contrast,
the error repair is more complex and challenging. Various tech-
niques for error repair have been employed, such as machine learn-
ing [56, 72, 85], transfer learning [36, 56], boosting algorithm [47]
and few-shot learning [56]. However, within the advanced detection
results, the final data repair performance of current methods still
falls short of the expected ideal, with an average F1 score below 0.7
in real scenarios [32, 56, 72]. Thus, it is crucial and urgent to analyze
and explore how to deploy end-to-end data cleaning approaches
with effective data repair algorithms in real-life scenarios.

Table 1 compares and summarizes existing surveys of end-to-end
data cleaning study. They either analyze the data repair process
without experiments [17, 43, 44, 48], or verify the impact of data
repair on downstream tasks while overlooking the inclusion of
certain important algorithms [1, 51]. The limitations and analysis
perspectives come from the following three aspects.

L1: Metric shortfalls in evaluation. Fewer data errors typi-
cally lead to higher data quality and reduced biases in subsequent
analyses, which constitute the main goals of the data cleaning task.
Prior data cleaning surveys [1, 43, 44, 48, 51] lack an evaluation of
error reduction in final data repair results, as indicated in Table 1.
They often evaluate the data repair results with metrics such as
precision and recall, which are based on the proportion of correctly
repaired cells, disregarding the absolute quantity changes. Thus,
such metrics result in a biased evaluation. For example, suppose
there is a dataset that initially encompasses 10 erroneous cells. One
data cleaning approach repairs 100 cells, of which 80 are correct
(including the initial 10 error cells). Despite 70 of 80 values being
identical to their originals, they are still flagged as erroneous values,
and replaced by a value within calculation, thereby should be consid-
ered as a repaired cell. It means that, the dataset currently contains
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Table 1: Comparison of previous surveys and ours.

Survey study Exp. Error reduc. | Error rate Error type
evaluation | evaluation | DRE* | DME* | DRE* | DME*
Ilyas et al. [43, 44] X X X X X X
Krishnan et al. [48] X X X X pd X
Chu et al. [17] X X X X pd pd
Liet al. [51] v X X X X v
Abdelaal et al. [1] v X v X X X
Ours v v v v v v

" DRE and DME refer to data repair and downstream model evaluation.

20 erroneous cells, indicating a doubles amount of erroneous cells
after the repair process. While the precision and recall of this repair
both reach as high as 0.8 and 1.0, respectively. The correct repair of
more initially right data increases the precision, according to the
mediant inequality, but it cannot benefit the data quality. As a result,
a higher precision/recall value does not represent a larger degree
of error reduction. Furthermore, for distance-based metrics like
Jaccard distance or mean squared error (MSE), they only measure
the distance between the repaired and clean data, while ignoring
the distance between the original dirty data and clean data. In a
situation where the initial distance between dirty and clean data
is 0.1, which then increases to 0.15 after repair. Simply stating the
distance as 0.15 fails to directly indicate an increase in data errors. It
cannot convey the actual improvement degree in data quality, either.
Incorporating error reduction degree into evaluations will align
repair algorithms more closely with improving data quality, and
offer a direct perspective on data quality changes.

L2: Insufficient scenarios exploration in evaluation. The
effectiveness of data repair algorithms differs in different scenarios.
As depicted in Table 1, existing surveys lack the study of data repair
algorithms’ capacity under various error types, in either the data
repair performance evaluation or the assessments of its impact
on downstream tasks [1, 17, 44, 48, 51]. Meanwhile, the error rate
analysis is absent in downstream impact evaluation, even though
it is included in repair performance assessments. It results in an
inadequate understanding of the proper deployment specific to
distinct error types and error rates. It is vital and practical to com-
prehensively evaluate data repair algorithms with a diverse range
of error types and rates in both repair and downstream tasks.

L3: Lacking algorithm deployment guidelines. Blindly de-
ploying data repair algorithms may potentially hurt data quality
and task performance. Although existing surveys discuss data re-
pair algorithm performance [17, 43, 44, 48], three critical questions
regarding algorithm deployment remain unanswered: (i) Is data re-
pair consistently beneficial irrespective of the error rate? (ii) Based
on the observation that, the suboptimal performance of data repair
primarily results from incorrect repairs, how to develop a practical
strategy to mitigate incorrect repairs based on error reduction eval-
uation? (iii) How to select the proper repair method in different
scenarios based on task objectives? The data repair process plays a
crucial role in the cleaning task, and addressing these issues will
provide practical guidance to deploy data cleaning algorithms.

Therefore, in this survey, we conduct an exhaustive comparative
analysis and experimental evaluation of 12 state-of-the-art data
repair algorithms. Our main contributions are described below.

o We systematically evaluate twelve mainstream and state-of-the-
art data repair algorithms based on a driven information-based
taxonomy of data repair algorithms, including cstr-driven data
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repair algorithms, data-driven ones, and hybrid-driven ones. We
also state the properly applied scenarios and graphically repre-
sent the workflow within each category.

We define a novel and effective metric named Error Drop Rate to
evaluate the error reduction condition of final data repair results.
Surprisingly, in the majority of cases, most data repair algorithms
tend to introduce more errors rather than eliminate erroneous
information. We propose a universal optimization strategy that
leverages error detection techniques to prevent the alteration of
original right values into wrong ones.

Extensive experiments on twelve real datasets under various error
rates/types and data scales demonstrate both the performance
of twelve data repair algorithms and the impact on four common
downstream tasks. Particularly, except for five algorithms with
publicly available codes, we implement seven additional data re-
pair algorithms for comprehensive comparisons. We investigate
the effect of semantic and syntactic data errors (that simulate
complex practical scenarios) on the algorithm performance.
We conclude several interesting findings: i) Repair algorithms
often increase errors. Contrary to expectations, most existing
data repair algorithms tend to raise the error rate in the data
rather than eliminate it; ii) Using the clean data is not always the
best. Downstream analysis models trained on purely clean data
may perform worse than models trained using dirty data. iii) Data
repair could provide universal benefits for downstream tasks.
With proper algorithm selection, data repair boosts downstream
tasks in the vast majority of cases; iv) Semantic errors pose a more
stubborn challenge. Semantic errors within the data are harder to
eliminate and have a more negative impact on downstream data
analysis than syntactic ones, highlighting the need for greater
consideration in real-world applications.

In the rest of this paper, Section 2 presents the preliminaries,
while the new taxonomy and algorithm analysis are covered in
Section 3. Comprehensive evaluations are offered in Section 4. Sec-
tion 5 discusses current challenges and future directions, followed
by related work in Section 6. Finally, Section 7 concludes the study.

2 PRELIMINARIES

In this section, we first introduce the problem definition. We then
describe the constraints widely used in automatic repair algorithms.
Data cleaning mainly serves two primary goals: eliminating
errors and ensuring data consistency, with the latter being a sub-
goal of the former. In this survey, we aim to evaluate error reduction
performance over the final data repair results, as stated below.

Definition 1. Problem Statement. Given an instance I of relation
R characterized by a set of attributes Attrs = {A1,Az, -+, An}.
Each t € I comprises a set of cells represented by Cells[t] = A;[¢]
corresponding to a distinct attribute in Attrs. For each cell ¢, its
unknown true value is denoted by 7, its initial observed value is
vc, and its estimated true value is 0.. A data repair algorithm aims
to make 0. equal to v} for all cells c.

This error reduction evaluation defined in Definition 1 encom-
passes correcting all erroneous cells within a dataset. It shares
the same definition of holistic repair, as studied in most recently
proposed data repair algorithms [56, 57, 71, 72].



Expert experience and field knowledge of the data serve as a crit-
ical guideline in the data repair process. These guidelines manifest
as rules and constraints (cstrs). Rules provide explicit instructions
for modifying erroneous values, making data repair a deterministic
process [26, 34]. However, real-world scenarios often lack external
sources of authoritative information, such as master data or expert
insights. This absence poses a significant challenge in employing
rules in the data repair process [34]. In contrast, constraints are
designed to capture the relationships between specific attributes
or values. Constraints have a wider range of applications, since
professional external information may not always be accessible.

Numerous automatic data repair algorithms are built based on
constraints like functional dependency (FD) [69] and denial con-
straint (DC) [70], as stated below.

Definition 2. Functional Dependency. A functional dependency
is a statement of the form X — A where X C Attrs and A € Attrs,
denoting that the values of attribute set X uniquely determine the
values of attribute A across all tuples in I. X and A are the left-hand
and right-hand attributes, respectively.

Definition 3. Denial Constraint. A denial constraint ¢ is a state-
ment of the form Vt4,tg € I : = (p1 A -+ A pm) Where p; is in the
following form: t,.Ax ¢ tg.Ay or g Ay $c Ax,Ay € Attrs, cisa
constant, and ¢ is a built-in operator, i.e., # =, <, <, >, >.

Example 1. A sample instance from real-world tax data [4] is
presented in Table 2, along with two real FDs and two DCs:

Fy : City — State,

DCy : Vi, ty € I : =(t1.City = t.City A t1.State # tp.State),

DCy : Viy,tp € I : =(11.City = t5.City A t1.Salary > tp.Salary A
t1.Rate < t3.Rate).

The FD F; means if the values of City are the same, then the
values of State should also be the same. Meanwhile, DC; asserts
that no two tuples in R can have identical City values paired with
differing State values. DC; indicates that within a given City, a
higher Salary should not correspond to a lower Rate of tax. In this
case, F; and DC; are equivalent, expressing the same meaning. The
erroneous cells violating these constraints are colored in gray.

An FD in the above form X — A can be equally expressed in
the following DC format: Vig,t5 € I, —(tq.Xo = tgXo Ao A
ta-Xk = tﬁ-Xk Aty A # t’B.A), Xo, - )Xk € X. While DC has
greater expressive ability than FD. For instance, the monotonic
relationship between values in DCy cannot be captured by FD,
underscoring the expressivity gap between them. Considering the
expressive ability and broader application spectrum, we mainly
focus on DC-based data repair algorithms when evaluating the
repair solutions adopting constraints.

Based on constraints, to achieve data consistency, previous work [8,
18] also offers other repair definitions, which are significant in al-
gorithm understanding and deployment process:

Definition 4. Tolerant Repair. Given a set of constraints X over
a relation schema R, along with a set of modified constraints 3’,
and two instances I and I’ of R. (3/,I’) is a tolerant repair of I if I
adheres to the modified constraint set 3’.

Definition 5. Consistency Repair. Given a set of constraints X
over a relation R, and two instances I and I’ of R. I’ is a consistency
repair of I if I’ adheres to the constraint set 3.
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Table 2: Relation of tax.

Tuple |FirstName |LastName |Gender| City |State |Salary|Rate
t Weiming | Posthoff | Female | Vera |Okla.| 45,000 | 6.25
ty Weiming | Zongtian | Male |Okemos |Mich.| 10,000 | 3.9
t3 Shivraj Alpin | Female |Eastham | Mass.| 90,000 | 5.3
7 Yurdaer | Thackray | Female |Eastham| LA. |30,000 | 5.2

3 DATA REPAIR ALGORITHMS

In this section, we elaborate 12 mainstream data repair algorithms
based on a new information-driven taxonomy. We present a general
and effective strategy to optimize these data repair algorithms.

3.1 Algorithm Taxonomy

Automatic data repair, which typically relies on data and/or con-
straint information, aims to enhance data quality or improve the
performance of downstream tasks.

To offer insights into how they utilize constraints and data ac-
cording to the driven information, we categorize existing data repair
algorithms into three groups, i.e., constraint(cstr)-driven, data-driven,
and hybrid-driven methods. The cstr-driven methods repair data
based on constraints, typically employing equivalent classes (which
are sets of cells that should satisfy the same constraint conditions).
The data-driven algorithms only utilize data distribution informa-
tion (without constraints) to repair data. For hybrid-driven algo-
rithms, except for constraints, they also leverage data information
not covered in constraints to facilitate data repair.

This taxonomy is useful for providing clear guidelines on using
constraints and data, and offering targeted methods for different
error types (cstr-driven for semantic, data-driven for syntactic, and
hybrid for general errors). It also aligns with varying needs in de-
ployment. Cstr-driven methods for regulated scenarios like health-
care and finance, and adaptable data-driven or hybrid methods for
fields like machine learning tasks.

Moreover, there are three primary repair objectives within these
algorithms, namely data consistency, holistic repair, and model per-
formance boost. Data consistency encompasses consistency repair,
which is applied to data with strict constraints like, geographic data
where city names rely on states, and tolerant repair, used when
constraints are either outdated or incorrect. Holistic repair focuses
on maximizing error removal, crucial in fields like cybersecurity or
healthcare. Lastly, the aim of model performance boost is to refine
training data to enhance outcomes of data-driven tasks, such as
image classification. Regarding these objectives, cstr-driven algo-
rithms universally aim to achieve consistency repair. Data-driven
approaches are for holistic repair and enhancing model perfor-
mance. While the hybrid-driven methods are oriented toward tol-
erant repair or holistic repair.

Guided by the taxonomy, we select methods based on the utiliza-
tion of constraints and data. In cstr-driven methods, we examine
widely cited Holistic [18] and Nadeef [22] for mainstream graph-
based and statistic-based data modeling with DCs. For data-driven
ones, methods predominantly encompass statistical boosting and
machine learning (ML)-based techniques, with BoostClean [47]
as the only example for the former, Baran [56] and Scare [85] pi-
oneered for ML applications in data repair. Hybrid-driven tools
like Relative [8] and Unified [16] are representative in heuristic-
based methods, while HoloClean [72] merges constraints with data
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using ML models. Then from a scalability viewpoint, cstr-driven
techniques face time cost challenges; BigDaning [45] alleviate this
with methods to reduce redundancy and group data. Horizon [73]
proposes a fresh strategy to reduce time costs using FDs; mean-
while, Daisy [32] showcases data repair’s practicality for query
tasks. Lastly, MLNClean [30] introduces a novel weighted constraint
application using Markov logic networks, showcasing enhanced
performance and novel constraint application methods.

3.2 Algorithm Description

Each data repair algorithm falls into one of the three categories. We
summarize the workflow of each group of data repair algorithms,
and describe the representative algorithms belonging to the group.

3.2.1 Cstr-driven Data Repair Algorithms. Figure 1 depicts the
workflow of cstr-driven algorithms (not including dashed arrows
and modified constraints in the figure). It takes a dirty dataset with
constraints and the constraints violation detection results as inputs.
It generally includes two phases to get the clean data: getting the
possible correct candidates for constraint violation cells and repair-
ing the data based on cost minimization or reliability maximization.

Specifically, data candidate generation of constraint violation
cells is based on equivalent classes, which shows that a set of at-
tribute values should satisfy the same condition. For example, in
Table 2, the State value of t3 and t4 should be identical due to
the same value of City based on Fy. Thus, (t3.City, t3.State) and
(t4.City, t4.State) form an equivalent class, indicating that their
values should be identical. All values in the equivalent classes could
be the data repair candidates.

In addition, the choice of candidates for repair is determined by
candidates within minimal calculated costs like edit distance [34]
and cardinality [18, 22], or maximal reliability metrics such as fre-
quency [32] and overall data support degree [73].

Holistic [18]. Holistic is a classical repair algorithm address-
ing DC violations. When generating data candidates, it encodes
all equivalent classes in a conflict hypergraph, where nodes and
hyperedges represent violation cells and associated constraints,
respectively. By analyzing nodes’ interactions, Holistic generates a
variety of repair candidates. To determine candidates, it first cal-
culates the applied costs of all candidates, and then heuristics are
employed to achieve cost minimum and data consistency. Due to
the necessity of comparing tuple pairs to find all equivalent classes,
the time complexity of Holistic escalates to O(]I|?). This poses a
significant challenge when dealing with large datasets.

BigDansing [45]. To alleviate the high time cost of repair algo-
rithms, BigDansing proposes two key acceleration strategies. The
first one is removing data irrelevant to the given constraints from
the repair process. The second one is grouping equivalent classes
with the same keys to narrow down the candidates’ number. Thus,
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they accelerate the tuple comparison process and reduce the actual
time cost of data repair.

Horizon [73]. To avoid exhaustively tuple comparisons in group-
ing equivalent classes, Horizon constructs a directed FD pattern
graph with multiple hierarchies, each corresponding to the at-
tributes in FDs. Directed edges connect nodes across hierarchies,
linking values from the left-hand attributes to right-hand ones
indicated by FDs. To group equivalent classes and generate data
candidates, the graph is traversed with a time complexity linear
to the number of edges. Horizon finally determines candidates for
constraint violation cells with the highest support score.

Nadeef [22]. Unlike prior methods leveraging a certain con-
straint type, Nadeef focuses on utilizing various constraints by
compiling and managing them in a unified format. It enables users
to specify not only constraints like FDs and DCs but also other
constraints. Based on the candidates generated with equivalent
classes, Nadeef minimizes the cardinality cost with two data repair
algorithms tailored to emphasize efficiency or effectiveness.

MLNClean [30]. Previous algorithms often instantiate the given
constraints by corresponding values to repair data, which may not
be trustworthy, thus lacking robustness. To mitigate this issue, ML-
NClean leverages Markov logic networks to learn the trustworthy
degree of each instantiated constraint, thereby enhancing the ro-
bustness. Based on the learned instantiated constraints, MLNClean
generates multiple data candidates. Subsequently, a reliability score
of each data candidate is calculated with the trustworthy degree.
To decide the proper candidates, it first selects candidates with
maximal reliability scores, thus generating multiple repaired data
versions. Then, MLNClean designs a fusion score to resolve conflicts
across different data versions and determine the final repairs.

Daisy [32]. Unlike previous methods concerning offline data
repair, Daisy aims to repair results from online queries. It first gen-
erates candidates from the query data based on equivalent classes
indicated by the given DCs. To evaluate candidates’ reliability, Daisy
computes their conditional probability using the frequency appear-
ing with other attribute values. Finally, Daisy merges distinct con-
ditional probabilities to derive the repair candidates.

3.2.2 Data-driven Data Repair Algorithms. The workflow of data-
driven data repair algorithms is plotted in Figure 2. It takes dirty
data and the error detection results as inputs, and extracts data
distribution information. Data candidates are generated for error
cells based on configured strategies. Then, the probability of a
candidate is calculated using ML models [56] or the likelihood
benefit formulas [85]. Note that, when computing the probability
of each candidate, some algorithms may involve few manually
repaired data, as indicated by the dashed line. Finally, the candidates
with the highest probabilities are decided as the repair decisions.
Scare [85]. To achieve holistic repair, Scare incorporates ML
models into the data repair process. To generate data candidates,



Table 3: Summary and analysis of existing data repair algorithms.

Cats. | Algorithms Base model | Human config. Repair goal Candidate source | Candidate evaluation Time complexity | Scala. Strategy
- Holistic [18] Graph-based C+Cost Consistency repair Equivalent class Cardinality/Distance cost | O([Z] - |T|? - |A]) None
¢ | BigDansing [45] | Graph-based C+Cost Consistency repair Equivalent class Cardinality/Distance cost |  O([2] - [I]* - [A]) RR+Group.
5 Horizon [73] Graph-based C Consistency repair Equivalent class Support score O(|I17 - [AT?) VA
é Nadeef [22] Stats-based C+Cost Consistency repair Equivalent class Cardinality cost O(|Z] - |1]* - |A]) None
O | MLNClean [30] Stats-based C+LD Consistency repair Equivalent class Reliability score O(|Z] - [1]* - |A]) VA
Daisy [32] Stats-based C Consistency repair Equivalent class Probability O(|X] - [I]7-1A]) None
&8 Scare [85] ML-based LD+ML model Holistic repair Domain Probability O(|I| - log|I| - |A]?)) None
g’ = Baran [56] ML-based LD+ML model Holistic repair | Domain+Str variation Probability O(|I? - |A]%)) PS
" [BoostClean [47] | Stats. boosting Rep libs. Model perf. boost | Mean+Mode+Median Model performance o(]IT- TA) Rep libs.
) g Unified [16] | Heuristic-based C+4 Paras Tolerant repair Equivalent class Description length cost o(|Z| - 17 - 1A None
-§ = Relative [8] Heuristic-based C+1 Para Tolerant repair Equivalent class Cardinality cost O(|I]% - |APTITy None
T ™ [HoloClean [72] ML-based C+13 Paras+ML | Holistic repair Domain Probability O(IZ] - |I]* - |A]) DP+TP+PS

a set of classifiers is obtained by learning from attribute values
detected as clean. These classifiers are utilized to predict potential
candidates for values of dirty attributes. Then, the joint probability
of candidates is computed based on their co-occurring frequency.
Finally, Scare determines the final tuple repair by selecting the can-
didate values of dirty attributes with the highest joint probability.

Baran [56]. Same to Scare, Baran also pursues holistic repair.
When generating data candidates, instead of solely relying on dirty
data information, Baran provides more comprehensive candidate
generation strategies based on various contexts like vicinity, do-
main, and string variation. It thus significantly enhances the like-
lihood of including the correct values. Within manually cleaned
data and generated candidates of few wrong data, Baran trains a
classifier to determine the repair candidates for other error cells
with the highest probabilities.

BoostClean [47]. BoostClean aims to boost the performance
of downstream analysis models. Unlike the previous two methods,
BoostClean follows an iterative process. It first generates data can-
didates using strategies like mean, mode, and median. Repaired
data stemming from these candidates then trains the downstream
analysis model. BoostClean computes The candidates’ probabil-
ity is computed by assessing the trained model’s performance on
validation data. This iterative process continues until maximum
probability is reached, which translates into optimized model per-
formance and enhanced quality of data repairs.

3.2.3 Hybrid-driven Data Repair Algorithms. Figure 1 also depicts
the workflow of hybrid-driven methods (including the part with
dashed arrows and modified constraints). After the equivalent
classes grouping process, hybrid-driven algorithms generate both
constraint and data candidates. The repair algorithm computes the
costs of data and constraint candidates to determine the minimum-
cost candidates. These rectified constraints and data are then ap-
plied iteratively to further enhance repair, until the optimal state
or cost minimum is reached, as indicated by the dashed arrows.
Unified [16]. Unified aims to achieve tolerant repair with mini-
mal description length (DL) [74] for the entire data with FDs. It first
calculates the overall DL of each FD and its equivalent classes. The
constraints are then processed one by one in the decreasing order of
DL. For each FD, Unified generates both constraint and data candi-
dates based on the equivalent classes. To determine the final repair,
the candidates are evaluated by DL-based cost. Candidates with
minimal cost are decided for the repair. The repaired constraints
and data are then taken into consideration when processing the
next constraint, continuing until reaching the overall minimal DL.

Relative [8]. Similar to Unified, Relative aims to achieve tolerant
repair with FDs. To generate both constraint and data candidates,
Relative first explores FD modification space to generate constraint
candidates, following grouping equivalent classes. For each con-
straint candidate, Relative endeavors to repair data with the spec-
ified threshold. Finally, from the candidates that meet threshold
conditions, the ones with the least cardinality costs are determined
as the final repairs.

HoloClean [72]. Though utilizing both constraint and data infor-
mation, HoloClean focuses on holistic repair, thus lacking the steps
with dashed arrows and modified constraints in Figure 1. After the
detection process, HoloClean skips the equivalent classes grouping,
treating all values in the dirty data as data candidates. For candidate
determination, HoloClean extracts quantitative statistics of con-
straint and identifies probable correct values with Naive Bayesian
model. Utilizing these statistics and data, HoloClean learns a sta-
tistical model and calculates candidate probabilities via DeepDive
framework [75]. Ultimately, data candidates with highest probabil-
ity are selected as final repairs.

3.24 Discussion. Table 3 summarizes these data repair algorithms
from several aspects. The scalable strategy involves reducing re-
dundancy (RR), parallel strategy (PS), domain pruning (DP), tuple
partition (TP), and value-based approach (VA). The human configu-
ration includes cost function (Cost), matching learning (ML) model,
constraints (C), repair libraries (Rep libs.), parameter (Para), and
labeled data (LD) The time complexity is estimated based on the
constraint set size |X|, instance size |I|, and attribute set size |A|.

It is shown in Table 3 that cstr-driven and some hybrid-driven
algorithms mainly use equivalent classes as candidate sources, min-
imizing differences between candidates and original dirty data.
However, these methods mainly consider constraint equivalence,
potentially overlooking other logical or domain-specific relation-
ships. This leads to possible omission of latent correct values and
inadequate data error elimination. In contrast, unconstrained meth-
ods like HoloClean and data-driven algorithms make more liberal
use of information, including domain and string variations. This
increases the likelihood of including latent clean data in the can-
didate pool. However, BoostClean’s reliance on mean, mode, and
median values falls short in identifying latent clean data, resulting
in inferior performance in experiments.

The evaluation of data repair candidates hinges on the mini-
mization of costs and maximization of certain scores. Among them,
probability is heavily influenced by the applied models, forming the
basis of data-driven and some hybrid-driven methods. Other evalu-
ation metrics depend on heuristic approaches and are constrained
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Table 4: Case study of EDR.

Table 5: The used datasets in repair evaluation.

Case | #dy | #dwa2r | #dw2w | #dr2w | EDR | Precision | Recall Name | #Tuples | #Attrs | Error rate | Error types #Cstrs
case 1 | 100 10 0 10 0 0.50 0.10 Hospital 1,000 20 3% T, VAD 15
case 2 | 100 10 90 0 0.10 0.10 0.10 Flights 2,376 7 30% MV, FI, VAD 6
case 3 | 100 10 10 10 0 0.33 0.10 Beers 2,410 1 16% MV, FI, VAD 5
Rayyan 1,000 11 9% | MV, T, FI, VAD 10

by available information within equivalent classes, as employed Tax 200,000 15 4% T, FI, VAD 8

by cstr-driven and some hybrid-driven methods. These metrics can
be customized to prioritize specific elements, making the derived
repair decisions easy to explain. However, these evaluates presume
the majority of the data is accurate, posing challenges when dealing
with significantly erroneous datasets.

The time complexity analysis is primarily based on the instance
size |I|, the constraint set size |X|, and the number of attributes
|A]. Most data repair methods maintain an O(|I|2) complexity due
to necessary tuple comparisons. The real execution time is sub-
ject to various factors such as error and data distribution. Besides,
methods like MLNClean and Horizon focus on operating on the
values, rather than the tuples, often exhibiting shorter running
time in the experiments. For Scare, its time complexity is at the
O(|I| - log |1]) level, but the classifier training process involved in
candidate generation can be time-consuming. BoostClean operates
with a time complexity at the O(|I|) level, owing to the limited
candidate sources. Relative stands out as an exception. Although
it exhibits a time complexity at O(|I|?) level, its exploration of the
FD modification space results in exponential time complexity with
O(|A]), which is also confirmed in our experimental study.

For human configurations, they can be classified into two cat-
egories of human cost: for elements such as constraints, Rep libs,
and labeled data, in-depth knowledge is imperative; for ML models,
parameters, and cost functions, the emphasis is on practical deploy-
ment experience. Algorithms such as Horizon, BoostClean, and
Daisy necessitate minimal knowledge and deployment expenses.
While HoloClean demands extensive knowledge and thorough de-
ployment analysis, suggesting a higher cost. Moreover, BigDansing,
Holistic, Nadeef, Relative, and Unified require additional deploy-
ment experience beyond the standard constraints. MLNClean also
calls for additional specialized knowledge. Scare and Baran require
labeled data and their implementation of ML models may incur
additional training time costs.

3.3 Optimization Strategy

In this subsection, we propose an effective strategy to optimize
the data repair algorithms. We also present a new metric to fairly
evaluate the final data repair results.

The primary cause of suboptimal in existing repair algorithms is
incorrect repair on initial right data. For methods aiming at consis-
tency repair and tolerant repair, this stems mainly from two factors.
First, during repair candidate selection, faulty information is used
as constraint violation cells are not classified as incorrect or correct.
Second, the selection process may result in local-optimal repairs
due to the sole use of equivalent classes. For algorithms target-
ing holistic repair, despite considering a more comprehensive data
range, the error detection performance may fall short compared to
a dedicated error detection model.

As a result, we propose to adopt Raha [57] as an optimization
strategy to further improve existing data repair algorithms, for its
state-of-the-art (sota) error detection performance [1, 57, 71]. Specif-
ically, the error detection results derived by Raha can be employed
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to ensure that, the identified correct data remains unchanged dur-
ing the data repair process, thereby effectively mitigating the risk
of erroneously changing right data. Although inconsistencies may
arise, our experiments validate its efficiency.

Moreover, we attempt to more accurately measure the ultimate
data repair performance. As analyzed earlier, metrics like preci-
sion and recall are biased, and distance-based metrics fail to indi-
cate the improvement degree or conditions of data error increasing.
We denote the initial right data repaired into right and wrong
ones by #dr2, and #d,2.y, respectively. The number of initial wrong
data repaired into right and wrong ones are denoted by #d.2,

and #d,,2, respectively. Hence, precision is calculated as: pre =
#dr2r+#dw2r

#drilr.*'#der+#dr2w+#.dw2\4{ . . .

cording to the mediant inequality, and #d,y2,, distorts the precision

calculation, making a high precision not guarantee error reduction,
and vice versa, as cases shown in Table 4. Further, the FI score, as
the harmonic mean of precision and recall, cannot explicitly reflect
the error reduction degree of data.

To this end, we introduce a new definition termed Error Drop
Rate (EDR) to measure the error reduction performance of data
repair algorithms. It disregards irrelevant data quality factors, and
directly evaluates the error reduction degree. For generality, we
defined it as follows.

. Obviously, #d,2, increases precision ac-

s d2c i rac

dis**¢ — dis (1)
disd2c

Here, dis?2¢ indicates the distance between dirty and clean data,
whereas dis"? is the distance from repaired data to clean data.
Aligning with the problem statements, in the experiments, in the
experiments, disd2e equals to d.y, and dis"?¢ equals to dyy — (dywar —
dr2w). Though ignoring dy2, and d,y2, somehow neglects the al-
gorithms’ repair ability, the benefits of EDR are multiple. Firstly,
EDR allows effective evaluation of data quality enhancements by
contrasting pre and post repaired data distance. Secondly, the nor-
malization process enables equal comparison on repair effectiveness
irrespective of initial data range and quality. Lastly, EDR provides
a straightforward depiction of error reduction/raising (with posi-
tive and negative values), and its monotonic feature signifies that
increased values align with larger data quality improvements.

EDR =

4 EXPERIMENTAL EVALUATION

In this section, we evaluate 12 mainstream data repair algorithms to
address the following key questions: Q1: To what degree can exist-
ing automatic data repair algorithms mitigate errors in real-world
datasets? Q2: Can algorithms with suboptimal repair performance
enhance the performance of downstream analysis models? Q3:
How effective is the proposed general optimization strategy? Q4:
How effectively can these algorithms manage high error rates and
different error types?

Datasets. We conduct repair experiments over five real-world
datasets, as outlined in Table 5. Hospital and Flights [72] include



Table 6: Data repair performance comparison on real-world datasets.

Cat.| Algos. Hospital Flights Beers Rayyan Tax-10k
EDR F1 Hybrid | EDR F1 Hybrid | EDR F1 Hybrid | EDR F1 Hybrid | EDR F1 Hybrid
BigDansing|—0.0897® 0.6239® 0.0298®|—0.1665@ 0.3772® 0.4193©|-0.0111® 0.0802® 0.0185@|—-0.4540® 0.0259® 0.4010®|-1.1938® 0.1463@ 0.3058®
§ Holistic [—0.0039@ 0.6403@ 0.02820|—0.1335® 0.3912@ 0.4014@|—0.0110® 0.0688@ 0.0186®|—0.9614® 0.0047@ 0.4616®|—1.1938® 0.1463@ 0.0099@
E Horizon 0.0530® 0.5661@ 0.0264@| 0.1148@ 0.3869® 0.3290@[-0.0110@ 0.0688@ 0.0219®|—0.9614® 0.0047@ 0.3528®|—50.957® 0.1134® 0.0162®
@ Nadeef |—1.7996@ 0.0713@ 0.1074©|—-0.0528@ 0©® 0.3828®[—0.4783® 0.0094® 0.1101@[-2.5367Q 0©® 0.9503@|—55.387@ 0.0009® 0.2074@
;:2 MLNClean | 0.4322® 0.7240@ 0.0152@|-0.0126® 0.0051@ 0.3576®| 0.0482@ 0.1191@ 0.0057D|—0.6042© 0® 0.4128@|-0.1147@ 0.1927D 0.0053®
Daisy 0® 0@ 0.0284@ 0@ 0® 0.3519@ 0® 0@ 0.0152® 0@ 0® 0.2652Q n/a n/a n/a
L g Scare  |—0.5350®@ 0.1511® 0.0566@|-0.1364® 0.0002® 0.4017®|—-0.5238® 0.0015® 0.1036®|—0.0886® 0® 0.3000®|—-7.4933@ 0.0013@ 0.0337®
co‘?s' E Baran 0.4872® 0.6299® 0.0156®| 0.4910D 0.6369® 0.1894®| 0.7245D 0.7514® 0.0073@| 0.7403D 0.8415D 0.1005D| 0.0160D 0.0634® 0.0050@
™ [BoostClean|—5.7132@ 0.3310® 0.3152@|—0.0028® 0@ 0.5088@)|—0.71740® 0@ 0.1581®@|—0.6220@ 0® 0.48699 0@ 0© 0.00490
=l g Unified | 0.6012® 0.7826® 0.0268®| 0.0415® 0.5579@ 0.3414®|-0.1221@ 0.0106@ 0.0538@|—0.1862@ 0® 0.2612@ n/a n/a n/a
-E E Relative n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
T " [HoloClean | 0.4872®@ 0.6515® 0.0137®|—-0.1390® 0.4711® 0.4019®|-3.7310Q 0.0652©® 0.71410)|—1.8897® 0.6467@ 0.7674®|—0.0213® 0.0417® 0.7020®

Table 7: The case study for in-depth metric analysis.

Algos. Hospital Flights Beers Rayyan Tax-10k
#dw #dWZr #dw2w #dVZV #drzw #dw #dWZr #dw2w #err #erW #dw #dWZV #dWZW #err #drzw #dw #dWZr #dWZ\V #drzr #erW #dw #dWZV #dWZW #err #drzw
BigDansing| 509| 417 2 58| 462(4,920| 2,188 1,521 2| 3,026|3,358| 176 0 3| 213(2,873] 112 418 19| 1,338 375 49 200 4| 448
Baran 509 221 48 0 3(4,920| 2,773 214 0 230(3,358| 2,378 837 0 1|2,873| 2,011 108 0 3| 375 27 173 0 2
HoloClean | 509| 248 187/10,603 0(4,920| 1,712] 3,208| 6,933 1(3,358| 121 121|2,483| 744(2,873| 1,217 813 3,335 1,920| 375 8 254]7,371 19

a high degree of duplicate tuples and correlated columns. Beers is
a real-world dataset sourced through web scraping and manually
cleaned by the dataset owner [56]. Rayyan is another real-world
dataset cleansed by its owners [57]. It contains all the error types,
thus making it hard to repair. Tax is a large dataset describing
tax payment records [4]. It contains various data error types with
200,000 tuples and 15 attributes. Rich with insights into social re-
source allocation and commercial values, these datasets are valu-
able for academic inquiry and data-driven decision-making. Four
kinds of error types, namely missing value (MV), typo (T), vio-
lated attribute dependency (VAD), and formatting issue (FI), exist
in the datasets, and are primarily encountered in real-world scenar-
ios [4, 56, 57, 71]. They stem from either incorrect value allocation,
termed semantic errors, or the presence of out-of-domain values,
known as syntactic errors [56, 71]. For each dataset, the correspond-
ing clean version exists, applied to get evaluation metrics and fur-
ther experiments. To discover denial constraints (DCs), we initially
employ two widely-used DC discovery methods DCFinder [70] and
Hydra [10]. We then manually check all discovered rules, deciding
whether to accept, modify, or deny each rule. The final applied rules
can be viewed in the code repository.

To comprehensively explore various error rates and error types
scenarios not covered by real-world datasets, we generate dirty data
by adding erroneous values randomly into clean data. For semantic
errors, we generate errors by randomly selecting alternatives from
the domain. Regarding syntactic errors, we introduce typos, both
explicit and implicit missing values, and Gaussian noise, aligning
with T, MV, and FI but with a broader range. These errors are
generated using the publicly available code from BigDaMa [9].

Evaluation metrics. We employ the proposed metric EDR, and
running time runtime (in seconds), CPU (in percent), and memory
(in Mb) usage to measure the effectiveness and efficiency of data re-
pair algorithms. For comparison, we report F1 score in real scenarios,
considering its wide application in previous studies [8, 17, 18]. We
have also applied a hybrid distance metric, denoted by hybrid_dis =
wy * MSE+wy * Jac_dis, where MSE represents mean squared error,
and Jac_dis denotes Jaccard distance. The weights wq and w; are

the proportion of values calculated using MSE and Jac_dis, respec-
tively. For downstream data analysis tasks, we employ prevail F1
score for classification, mean squared error (MSE) for regression,
silhouette score for clustering, and accuracy for k nearest neighbor
query (kNN), where k=1 in the experiments.

Implementation details. We re-implement seven pieces of codes
for Holistic [18], BigDansing [45], Horizon [73], Daisy [32], Scare
[85], Unified [16], and Relative [8], due to the unavailable source
codes. We use publicly accessible codebases for other five meth-
ods. For MLNClean and Baran, which require manual cleaning, a
consistent minimum of 20 tuples is used. To feed detection results
into Baran and Scare, we use Raha [57]. For other algorithms, we
adopt their initial detection methods as their repair processes are
closely tied to them. For Holistic, BigDansing, Nadeef and Rela-
tive, we employ the original cardinality functions used in the paper.
The other hyper-parameter settings are adopted as specified in the
source codes or papers. Each reported result represents the average
of three repeated experiments. All experiments are conducted on a
Linux server with an Intel (R) Xeon (R) Gold 6326 CPU @ 2.90GHz
and 512GB RAM, running Ubuntu 20.04.6 LTS.

4.1 Repair Performance on Real Scenarios

The first set of experiments evaluates the performance of all data
repair algorithms over five real-world datasets. Table 6 lists the
corresponding experimental results in terms of EDR, F1I score, and
Hybrid_dis (Hybrid). The best values for each metric within the
same dataset are identified using bold formatting. We also label
the rank in the circle of algorithms within each dataset. As none
of the methods could finish the repair process in 24 hours (labeled
with “n/a”) except MLNClean, we partition Tax into subsets, where
the larger ones encompass the entirety of the smaller ones. The
smallest subset is used to evaluate the repair performance of al-
gorithms, the others are for the repair cost study. For further il-
lustration, Table 7 reports the specific values of #d.,, #dar, #dror
and #dy24 of each dataset over relatively good algorithm from each
group. Based on the repaired data, we then conduct a set of experi-
ments under four data analysis tasks: classification and regression
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Figure 3: Performance of classification, kNN, and cluster on repaired data.

(with XGBoost [14], MLP [78], and RandomForest models [54]), as
well as clustering (with Affinity Propagation [28], Spectral Clus-
tering [66], and K-means models [55]) and kNN query (with An-
noy [52], MiniHash [13], and KD-tree models [6]). For classification,
kNN, and clustering, we select ‘HospitalName’, ‘flight’, ‘style’, and
‘article_title’ for the datasets of Hospital, Flights, Beers, and Rayyan
as the target column, respectively. For regression, ‘Score’ and ‘ibv’
are chosen for the Hospital and Rayyan datasets, as the sole two
featuring numerical attributes. These attributes exhibit a strong
correlation with other values and are important features in the data.
Data repair performance. As shown in Table 6, most data repair
methods exhibit negative values for the EDR metric. This phenom-
enon can be attributed to the fact that, there are more incorrect
repairs on correct values compared to the correct repair of wrong
ones, according to the definition of EDR in Eq. 1. Across datasets,
most algorithms exhibit better EDR value on the Hospital dataset.
This can be attributed to its abundance of redundancies, substantial
cosntraints, and simpler contexts. While other datasets prove chal-
lenging to repair due to either high error rate (on Flights), or fewer
redundancies with more complex contexts (on Beers, and Rayyan).
As for Tax, the data repair algorithms tend to introduce a larger
amount of errors, possibly due to its scare errors and large size.
Among these methods, Baran shows superior EDR performance
on most datasets except Hospital. It can be attributed to its utiliza-
tion of more information(like manually cleaned data and precise
error detection results), and comprehensive candidate generation
strategies, which increase the likelihood of including latent clean
data in the candidate sets to a large extent. For other data-driven
methods, BoostClean and Scare perform much worse due to the
simple strategies for generating candidates, and the dependence
on fully clean attributes, respectively. Moreover, most of the cstr-
driven algorithms display inferior performance except MLNClean.
This observation highlights that, leveraging models like the Markov
network to learn instantiated constraints may be promising. Be-
sides, Daisy does not repair any of the data because the union
of all the conditional probabilities potentially assigns the highest
probability to the initial dirty tuples, leaving them unchanged. For
hybrid-driven methods, HoloClean and Unified perform much bet-
ter on Hospital than other datasets, due to substantial redundancies.
HoloClean is more sensitive to data than Unified. The reason is

that, HoloClean employs Naive Bayesian model to identify possible
correct data, which assumes attribute independence, being chal-
lenging in practice. Relative can not finish the repair in all cases
due to its exponential level of time complexity.

Note that, in the rest of experiments, we exclude Daisy and
Relative, since they either fail to produce results within 24 hours or
have no repair impact on the datasets. The Tax dataset is omitted,
since only MLNClean can complete the repair process.

Downstream task performance. Figure 3 shows the performance
of classification, kNN, and clustering tasks on repaired data. While
Table 8 illustrates the performance of regression. Firstly, it can also
be observed that, with proper selections of repair algorithms, re-
gardless of the applied model, the downstream task performance
can always be enhanced over the dirty data. Besides, among four
tasks, performance on regression is rarely influenced by the repair
data, probably due to the few numerical values in the data. No-
tably, we can see that applying clean data to train the model using
clean data is not always the best for downstream tasks, as demon-
strated by the performance of Xgboost models on Flights. Also, as
evidenced by the RandomForest model on Rayyan, downstream
analysis models trained on purely clean data may perform worse
than models trained using dirty data.

Repair metric evaluation. As shown in Table 6, EDR provides a
simpler and more intuitive repair performance evaluation. With
higher EDR values denoting superior error reduction and nega-
tive (resp. positive) fluctuations indicating error increments (resp.
decrements). While it is hard to interpret the actual error reduction
degree from F1 score and Hybrid_dis. Notably, EDR shares a 0.64
mean overlap rate with the F1 score top 5/11 methods, showing
0.8, 0.6, 0.8, 0.4, and 0.6 scores for Hospital, Flights, Beers, Rayyan,
and Tax-10k. It also registers a 0.84 overlap rate with Hybrid_dis,
posting 1.0, 0.8, 0.8, 0.8, and 0.8 across the same datasets. This phe-
nomenon suggests that while there are some discrepancies in the
rankings produced by these metrics, they are highly correlated in
their evaluation of relative repair performance.

In particular, when considering the F1 score for Flights, Holo-
Clean achieves FI score as high as 0.47, placing it in the top 3
performance. But the fact is that, it tends to introduce more errors
than it eliminates. This is because most of its correctly repaired cells
are from the initial right data, as shown in Table 7. It indicates that,
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Figure 4: Optimization gain ranking.
Table 8: Performance of regression on repaired data. Table 10: Overhead of the optimization strategy.
Hospital Beers T T
Algos. e X e MLP [RandF(x &) [XGB(< &) MLP [Randf(x ) Overhead Hospital | Flights | Beers | Rayyan
Allclean | 29108 |0.0019]  1.3207 27342 00002  1.2741 Max CPU usage 4840% >120% | 2432% | 5690%
No repair | 29108 |0.0026]  1.3207 27342 |0.0002]  1.2741 Max Memory usage | 331Mb 307Mb | 387Mb | 252Mb
BigDansing| 29108 [0.0031] 13207 27342 [0.0010]  1.2741 Runtime 294s 88s 208s 107s
Holistic | 29108 00028 13207 27342 10.0010] 1.2741 Table 11: Frequency of incorrect prevention v.s. effective opt.
Horizon 29108 [0.0027|  1.3207 27342 [0.0010]  1.2741 _ -
Nadeef | 29108 |0.0025] 13207 27342 |0.0002] 12741 Algos. Hospital Flights Beers Rayyan
MLNClean| 29108 [0.0022] 13207 27342 |0.0005|  1.2741 Iden-W Iden-R|Iden-W Iden-R|Iden-W Iden-R|Iden-W Iden-R
Unified 29108 |0.0026]  1.3207 27342 0.0004]  1.2741 Big.| 029 0.52] 0.04 0.40 0 0.55 0 0.72
HoloClean 2.9108  0.0019 1.3207 2.7342  |0.0009 1.2741 Holi. 0.31 0.51 0.05 0.40 0 0.55 0 0.81
Scare 29108 [0.0020]  1.3207 27342 [0.0008]  1.2741 Nadeefl 002 0.01 0 054 0 081 0 071
Baran 29108 [0.0027|  1.3207 27342 |0.0010]  1.2741
BoostClean| 2.9108  [0.0024 1.3207 2.7342  [0.0010 1.2741 MLNC_‘ 0.28 0.30 0.01 036 0.01 020 0 081
N N Hori. 0.34 0.47 0.06 0.19 0 0.56 0 0.98
Table 9: Anal. of repair metric and downstream performance. Baranl 055 024l 003 003 00z 004 00z 036
Task Corr. indicator EDR F1 score Hybrid_dis Scared 0.07 0.79 0 0 0 0.92 0 0.46
Classi. Mean rank corr. 0.5311 0.2423 0.0816 Holo. 0 0.44 0.01 0 0.01 0.57 0 0.96
Mean top-5 overlap. | 0.5733 0.5200 0.4400 Uni. 0 0.19 0.08 0.14 001 0.86 0 0
Regress. Mean rank corr. 0.1909 0.3394 0.0244 Boost. 011 _ 065 0 050 0 078 0 012
Mean top-5 overlap. | 0.6000 0.6000 0.5000
Cluster | Mean rank corr. 0.1158 0.0974 —0.0893 among repair metrics in most cases. This suggests that EDR is a
Mean top-5 overlap. | 0.4133 | 0.4133 0.4133 more reliable indicator of data quality when performing data re-
KNN | Mean rank corr. 0.1920 0.0278 0.0456 pairs aimed at enhancing downstream task performance. Thus, it
Mean top-5 overlap. | 0.5200 0.4000 0.4400 is advisable to accord greater importance to EDR when assessing

the inclusion of #d,, may significantly improve F1 score, while
it actually has no impact on the data error rate, thus making it
accurate in evaluating the quality of repaired data. Similar situa-
tions also occur on Beers and Rayyan when assessing HoloClean.
Meanwhile, #d,,2,, also influences the F1 score calculation. Baran
achieves a low F1 score on Tax-10k, due to incorrect repairs of 173
original wrong cells, constituting a large proportion of all repaired
cells. However, even with an F1 score as low as 0.0634, Baran can
still decrease errors in the data. These instances suggest that, the
F1 score falls short in evaluating the actual error change condition.
With a high F1 score, there may also be an increase in the data error
rate due to a large #d,2,. A low F1 score may be attributed to large
#d.y2, and thus the data errors can still be reduced.

Furthermore, according to the rank of the repair tools in Table 6,
and the performance rank of downstream tasks on different re-
paired data in Figure 3 and Table 8, we evaluate the mean Pearson
correlation coefficient and the mean Top-5 methods’ overlap rate
between repair and downstream performance (across all evaluated
models on the repaired dataset, i.e., Hospital, Flights, Beers, and
Rayyan). As shown in Table 9, EDR displays the strongest correla-
tion with downstream performance, and the highest overlap rate
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repair tools in data analysis tasks.

Effect of optimization strategy. Firstly, to fully represent the ef-
fect of the optimization strategy, we provide the ranks of advance-
ment for both repair metrics and downstream performance. Besides,
we also show the range for the absolute values of improvement,
all of which is demonstrated in Figure 4. The term 'No Imp’ rep-
resents the rank where no enhancements are observed. In other
words, points that are positioned outside the 'No Imp’ range signal
improvements. Notably, in a majority of instances, the optimiza-
tion strategy results in observable improvements. Secondly, we
report the frequency of instances where the optimization strategy
blocks the correct alteration of initially incorrect values, and suc-
cessfully prevents incorrect modifications of initially correct values.
We denote the former and latter frequency as Iden-W and Iden-R,
respectively, as depicted in Table 11. It is noticeable that, despite the
presence of incorrect preventative actions, the instances of Iden-R
exceed those of Iden-W in most scenarios. This outcome suggests
that, on balance, the optimization strategy serves its intended pur-
pose effectively. Finally, to report the extra cost of the optimization
strategy, we have reported its maximum CPU (in percent, e.g. 4840%
indicates the use of 48 CPU cores) and memory usage (in Mb), as




Table 12: Maximum calculation resource usage of the algorithms across varying data sizes.

Algos Tax-10k Tax-20k Tax-30k Tax-40k Tax-50k
gos- Runtime| CPU| Memory|Runtime| CPU| Memory |Runtime| CPU| Memory |Runtime| CPU| Memory|Runtime| CPU| Memory
BigDansing 2,691| 109%| 6,557Mb n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Holistic 45,261 | 109%| 47,670Mb n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Horizon 1,675| 110% 118Mb 5,757 | 111% 162Mb 11,378 | 109% 186Mb 18,613 | 110% 249Mb 27,124| 110% 288Mb
Nadeef 821| 110%| 3,004Mb 4,421| 111%| 6,281Mb 7,497| 112%| 6,763Mb| 15,492| 110%| 8,744Mb| 19,571| 110%| 9,839Mb
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Figure 6: Classification performance vs. different error rates.

well as the end-to-end runtime across four datasets, as outlined in
Table 10. Though the max CPU usage appears high, the memory
usage and runtime are within reasonable limits, ensuring that the
optimization strategy remains practical applications.

Scalable performance. Table 12 displays the execution time (in
seconds), max CPU (in percent), and Memory usage (in Mb) of
data repair algorithms on Tax. It is observed that only half of the
algorithms can finish the experiments, indicating the significant
time cost challenges. Among them, Horizon consumes the least
resources, showing almost a linear increase in resource usage as the
data size increases. This verifies the effectiveness of its value-based
modeling approaches. BoostClean also scales but has a notably
higher CPU and Memory usage. MLNClean appears to be the most
efficient in terms of runtime for smaller datasets, although the mem-
ory usage is still significant. HoloClean and Holistic have extremely
high memory usage even for the smallest data size. It is important
to note that, BigDansing consumes much less resources than Holis-
tic, validating its scaling strategies. Unified cannot complete tasks,
largely due to the extensive time consumption in assessing both
data and constraint cost. For Baran, the challenge in its scalability
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arises from the substantial cost of generating diverse candidates. Its
high CPU usage also indicates the validity of the parallel strategy.

4.2 Effects of Varying Errors

The second set of experiments is to fully verify the effect of data
error both on the repair performance and downstream effects of
data repair algorithms, considering the semantic and syntactic er-
rors across various error rates. We only report EDR metric for its
superiority. Regarding downstream tasks, we focus solely on the
classification tasks, given their extensive applications.

For repair performance, Figure 5 illustrates the experimental re-
sults when the error rate changes from 10% to 90%. The vertical axis
is in an exponential scale. Remarkably, an increase in the error rate
usually corresponds to the reduced correction effectiveness of these
algorithms. Existing data repair algorithms struggle to eliminate
semantic errors, while syntactic errors can be reduced more or less.
It is because that, semantic errors involve similar value patterns
and inter-value relations as the clean data, which may make it hard
to detect and decide the correct candidate. Concerning syntactic
errors, Baran excels across all cases. Even with 90% error rates in
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Figure 7: Real workloads v.s. error rates.

Hospital, it can rectify over half errors, demonstrating its strength
in handling syntactic errors. However, it underperforms in address-
ing semantic errors, possibly due to its feature extraction strategies’
imperfections and reliance on minimal manually cleaned data. Cstr-
driven methods appear to encounter challenges in significantly
reducing errors across varying error rates. For hybrid-driven meth-
ods, consistent with previous results, HoloClean performs much
better on Hospital than other datasets, while Unified demonstrates
greater robustness. Regarding semantic errors, cstr-driven methods
exhibit greater robustness. In particular, MLNClean demonstrates
superior performance compared to syntactic errors, especially on
Hospital and Beers, showing the effectiveness of its strategy to
learn the trustworthy degree of instantiated constraints.

For the classification task, Figure 6 illustrates the corresponding
experimental results. We employ MLP on Hospital and Rayyan, as
MLP generally performs better than XGBoost. We can observe that,
the classification performance decreases almost linearly with an
increasing error rate in most cases, without the sharp drop expected.
Semantic errors generally have larger negative impacts on MLP
than syntactic ones. In terms of semantic errors, except for data
repaired by MLNClean, the repaired dataset scarcely helps improve
the classification performance of the trained model beyond that
achieved with the original dirty dataset. It is attributed to the further
disruption of the data distribution by the repair process, making it
harder for the model to learn feature-label relations.

4.3 Repair Effect on Downstream Tasks

To further answer the critical question of how data repair algorithms
impact the downstream task, we conduct a set of experiments on
datasets with real workloads.

Following previous related works [1, 20, 50, 51], for classification,
we employ Restaurants and Titanic datasets; for regression, Airfoil
and Printer datasets are used; clustering analysis is conducted using
Adult and Dress datasets; and k-nearest neighbor (kNN) queries
perform on Adult and Bank datasets. We employ Xgboost, Spec-
tral clustering, and KD-tree models to conduct this experiment,
selected based on their median performance in previous experi-
ments, thereby proving generality. Due to the lack of clean data, we
treat the initial data as correct, and introduce dirty data by adding
previously mentioned semantic and syntactic errors. Since errors
can be introduced by independent factors in reality, thus the pro-
portion of each specific error (i.e., implicit missing, explicit missing,

2627

typos, gaussian noise, and misallocated values) is equal. These er-
rors are both injected into features and labels. With a 1:4 ratio of
semantic to syntactic errors, we illustrate the performance of four
workloads on both the repaired data and the initial dirty data, given
the absence of corresponding clean data. Besides, for cstr-driven
and some hybrid-driven methods, we adopt the aforementioned
DC discovery tools, i.e., DCFinder [70] and Hydra [10] to discover
constraints, which we then manually check.

As shown in Figure 7, aligning with earlier results, data repair
enhances performance in almost every condition across all 4 tasks
and 7 datasets, with few negligible deviations at a 10% error rate.
With proper algorithm selection, data repair can enhance down-
stream model performance compared to the original dirty data.
Typically, the performance of models with repaired data fluctuates
between that with original dirty data. Among them, Baran can
consistently augment downstream task performance across nearly
all datasets, with the exception of Restaurants. Coupled with ML-
NClean, it boosts model performance except in the case of the Adult
dataset with the kNN task. While Nadeef provides less substantial
improvements, contributing only to the performance enhancement
on Restaurants and Adult within the clustering task. Other meth-
ods also enhance model performance on more than two datasets,
confirming the need for data repair algorithms in practical sce-
narios. Interestingly, on the Restaurant and Dress datasets, as the
error rate increases, performance improves. This counter intuitive
phenomenon may occur due to various factors, such as the model
possibly leveraging noise to avoid overfitting, thereby gaining a
more generalized performance on varied datasets.

4.4 Discussion

It is observed that existing automatic data repair algorithms can

effectively reduce syntactic errors given adequate redundancies

but struggle to eliminate semantic errors. However, with proper
methodology, data repair can benefit downstream tasks in the ma-
jority of situations. We summarize some takeaways for data repair
algorithms regarding the scenarios based on the experiments.

Recommendations. Baran, MLNClean, Horizon, and BigDansing
are better alternatives in real-life scenarios.

e Dominant syntactic errors: Baran emerges as the foremost rec-
ommendation, demonstrating its unique efficacy in dealing with
syntactic errors. Previous experiments have consistently illus-
trated its superior performance over other algorithms.



Dominant semantic errors: To solve semantic errors, the use
of MLNClean is recommended for its beneficial application of
Markov Logic Networks in learning the credibility of constraints,
showing significant performance in managing semantic errors.
Large-scale Datasets: Horizon deserves consideration. In situa-
tions characterized by large volumes of data, the value-based
approach of Horizon can handle large datasets without excessive
computation resource consumption.

User and Domain Expert Involvement: Considering that Holo-
Clean demands considerable human input in the form of config-
urations, it can be beneficial to incorporate this approach as a
way to efficiently leverage user and expert insights.

Guidelines. Based on the experiments, we provide four guidelines
regarding errors, optimization strategies, and data analysis models.

i) The optimization strategy is suggested. The key cause of subpar
performance in current data repair algorithms is incorrect data
repair. Integrating the sota error detection methods can reduce the
risk of incorrectly repairing accurate data.

ii) EDR should be paid more attention. EDR provides an intuitive
and quantifiable assessment of data quality enhancements. By fo-
cusing on it, a more profound understanding of variations in data
quality can be achieved. Furthermore, it exhibits the strongest cor-
relation with the performance of downstream tasks, augmenting
forecasting performances with a higher degree of trustworthiness.

iii) It is always worthy of repairing data for downstream tasks. Data
repair remains a critical operation regardless of the error rate. Via
carefully selecting appropriate data repair algorithms, it is possible
to eliminate up to half of the errors even when the error rate is as
high as 90%. It can significantly benefit the downstream tasks.

iv) Semantic errors should be paid more attention. Semantic errors
may detrimentally affect downstream models more than syntactic
ones. The repair algorithms even exacerbate this disruption. Hence,
resolving semantic errors should be prioritized.

v) Choice of data analysis model also matters. Different models
make different assumptions on data distribution. If improving the
data quality is challenging, taking the time to systematically eval-
uate different models may lead to better performance, like the F1
score discrepancies between XGBoost and MLP in the experiments.

5 FUTURE DIRECTIONS

In this section, we underscore research challenges and potential
avenues for further exploration within the data repair domain.

Research challenges. Within the development of various down-
stream models, especially the arising of large language model
(LLM) [40], more complex data scenarios and problems are ap-
pearing. We summarize current challenges as follows.

Effective and efficient data repair. Existing repair tools struggle
with complex datasets due to the infinite error domain versus a sin-
gle correct value. Efficiency issues persist as well, with solutions like
Baran unable to process 20K records within a day, demonstrating
the pressing demand for improved data repair algorithms.

Proper metrics evaluating data quality for models. Our experi-
ments show no necessarily negative correlation between the down-
stream task performance and data error rate. With the rise of LLMs,
considering data quality issues like hallucination [58, 82] gains
significance. This necessitates the exploration of new metrics to
thoroughly assess data quality w.r.t. applied models.
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Potential directions. current data repair methods mainly focus
on reducing errors, but the advent of LLMs and subsequent complex
data scenarios point towards a shift in future directions:

Combining rule discovery and data information for data repair.
Existing sota algorithms like Baran [46, 56, 61] leverage data infor-
mation. However, their susceptibility to unrelated values highlights
the importance of combining rule discovery and data information,
especially given the high human costs in the big data era [59].

LLM for data repair. Current automated data repair algorithms
struggle to generate candidate solutions beyond the available data [19,
26, 56]. Embracing LLMs, with their reasoning ability and extensive
knowledge, can overcome this by generating semantically signif-
icant and grammatically valid repair candidates [15, 33, 79, 81],
making it a fascinating research direction.

6 RELATED WORK

Data cleaning mainly comprises two steps: error detection and
repair [17]. The error detection involves two work lines, i.e., cstr-
driven algorithms [3, 5, 7, 8, 12, 18, 22, 24, 72], and data-driven
ones [38, 41, 49, 57, 62, 63, 65, 71, 80]. The error repair process typi-
cally employs intrinsic data properties like integrity constraints [17,
18, 24, 31, 34, 73] and the data distribution [56, 77, 85], or exter-
nal information like master data [26], knowledge base [19], and
downstream data analysis models [35, 47, 62] to correct the val-
ues. Deduplication is also an essential operation in data prepara-
tion [21], leveraging meta-information [27, 29, 37], entity match-
ing rules [25, 76], ML models [23, 53, 64, 68], and clustering algo-
rithms [83] to deduplicate the original data. This survey primarily
concentrates on evaluating final data repair results.

7 CONCLUSIONS

In this paper, we comprehensively examine 12 mainstream data
repair algorithms through a new taxonomy in a unified framework.
We propose an effective optimization strategy to improve all of
these algorithms. We also introduce a novel metric for fair data
repair evaluation, highlighting the limitations of existing metrics
in evaluating error reduction. Through thorough testing on five
real-world datasets and analysis across four common downstream
tasks encompassing 7 practical workloads, we assess the algorithms’
efficacy in various complex scenarios and downstream tasks. We
conclude a series of key insights, observations, and future research
directions in the field of data repair. Moving forward, we intend to
further enhance the overall data repair performance in practice.
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