
2576

https://doi.org/10.14778/3675034.3675048
https://github.com/FangShuheng/IACS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675048
https://www.acm.org/publications/policies/artifact-review-and-badging-current

train. That is because, with evolving graphs, graph distributions, at-
tributes, and communities are all subject to change. To illustrate the
limitation of a transductive learning approach to learn across dif-
ferent graphs, we conducted empirical analysis. Fig. 1 reveals data
heterogeneity on 10 Facebook ego-networks regarding the structure
of communities, graphs and attribute distributions. Fig. 1(a) depicts
the density and size of the largest communities extracted from the
10 ego-networks. Fig. 1(b) and Fig. 1(c) plot the degree distributions
and attribute distributions of the 10 ego-networks, respectively. As
all are so different across graphs, transductive learning approaches,
that rely on the natural generalization of Graph Neural Network
(GNN) to deal with ACS for a graph, cannot construct a model to
deal with ACS across heterogeneous graphs.

In this paper, we explore a new inductive approach for ACS
across graphs for a query with multiple query nodes and query
attributes. By inductive, we learn shared latent knowledge across
different communities/graphs to capture diversified patterns in both
structure cohesiveness and attribute homogeneity. We characterize
the existing learning-based CS/ACS approaches and our approach
in Table 1. Here, single/multi-node query indicates the ability to
deal with a query with a single/multiple query node(s), and the
attributed query indicates the ability to deal with query attributes.
AQD-GNN [29]/ICS-GNN [21] do not have inductive ability since
their trained models are tailored for specific graph/community.
CommunityAF [11] and COCLEP [35] have a limited inductive abil-
ity, as they rely on the natural generalization of GNN to deal with
CS for a graph. In other words, the inductive ability derives from
GNN. These approaches cannot be easily extended to support het-
erogeneous data, since they follow supervised learning paradigm.
The emergence of different attribute domains, graph structures,
and community patterns poses serious obstacles for existing mod-
els to adapt to heterogeneous data. CGNP [17] is a meta-learning
approach and has inductive ability. However, like CommunityAF
and COCLEP, CGNP is designed for single-node queries and fails
to deal with ACS across attributed graphs for multi-node queries
and attributed queries. It is also challenging to extend CGNP to
handle ACS due to the difficulty of aligning the attributes from
heterogeneous graphs and encoding query information with graph
structure effectively and collaboratively.

There are two main challenges in designing an inductive learn-
ing framework for ACS. (1) How to empower the model to support
complex ACS queries by inductive learning, procuring effective gen-
eralization on new communities, graphs and attributes? (2) How to
enable the shared model to absorb and induce prior effective common
knowledge about ACS across different tasks that exhibit heterogeneity
in communities, graphs and attributes? For (1), we construct a shared
model across multiple ACS tasks, where a task is a graph with only a
few training samples. The shared model requires aligning the node
attributes and query attributes in graphs across different tasks.
Specifically, to support queries containing multiple query nodes
and query attributes, we align the node attributes of graphs for
training and inference, in a compatible, fixed-length vector space,
and we integrate the topological information of query nodes and
semantic information of query attributes to the largest extent. For
(2), we adopt a three-phase workflow, i.e., “training-adaptation-
inference”. We first train the shared model to learn some common

Table 1: Learning-based Community Search Approaches

Approaches Single-node
Query

Multi-node
Query

Attributed
Query Induction

AQD-GNN [29] ✔ ✔ ✔ ✘
ICS-GNN [21] ✔ ✘ ✘ ✘
CommunityAF [11] ✔ ✘ ✘ ✔✗

COCLEP [35] ✔ ✘ ✘ ✔✗

CGNP [17] ✔ ✘ ✘ ✔
IACS (Ours) ✔ ✔ ✔ ✔

patterns of communities about the structure or attribute distribu-
tion from a wide range of heterogeneous tasks. Then, the shared
model is fine-tuned via explicit adaptation, before the inference in
new graphs/communities.

We propose a DL framework named Inductive Attributed Com-
munity Search (IACS), for ACS by inductive learning. In brief, IACS
is equipped with an encoder-decoder neural network architecture
that processes one ACS task at a time. To empower the model by
inductive learning, we deploy the “training-adaptation-inference”
three-phase workflow. We adopt a meta algorithm to train a shared
model by a collection of training ACS tasks, and explicitly adapt the
model for a new ACS task by exploiting a small number of training
samples. To enable the model to learn effective common knowledge
from heterogeneous tasks, we align node attributes across differ-
ent graphs in tasks by devising an enhanced attribute encoding
via pre-training node embeddings in attributed augmented graphs.
To further enhance generalization and adaptability, we design an
adaptive encoder with simple yet effective adaptation modules. The
contributions of this paper are summarized as follows.
• We propose a new DL framework, Inductive Attributed Commu-

nity Search (IACS), to comprehensively support CS/ACS queries,
ranging from simple queries with a single node to complex
queries with multiple nodes and multiple attributes.

• We devise a GNN-based encoder-decoder neural network model
which is capable of dealing with heterogeneous ACS tasks. We
design a pre-trained attribute embedding for the GNN encoder to
align the input node features, enabling the model to be shared by
different attribute sets. To prompt model adaptation, we propose
an adaptive decoder with two variants.

• We propose a three-stage workflow to fulfill inductive ACS, i.e.,
training a shared model by a meta algorithm on multiple ACS
tasks, adapting the model to a new ACS task by fine-tuning on
limited training samples and deploying the model for online
queries.

• We conduct substantial experimental studies on 7 real-world
datasets with ground-truth communities. Compared with 3 algo-
rithmic methods, 3 ML/DL-based methods and 2 meta-learning
methods, our IACS framework outperforms these baselines with
higher effectiveness and efficiency.

Roadmap. The rest of the paper is organized as follows. §2 reviews
our related work. In §3, we introduce the problem statement fol-
lowed by existing GNN framework for learning-based ACS. We
elaborate on the architecture and workflow of IACS in §4 and §5,
respectively. We present our comprehensive experimental studies
in §6 and conclude the paper in §7.

2577

2 RELATEDWORK

Attributed Community Search. Attributed community search
(ACS) not only focuses on query nodes but also incorporates query
attributes. When dealing with attributed graphs, algorithmic ap-
proaches [19, 23, 28, 38, 42] have been proposed by considering
both the structural cohesiveness and attribute homogeneity. Al-
gorithmic approaches such as [23, 38, 42] rely on their predefined
subgraph patterns to identify communities which limits their flexi-
bility. ATC [28] and ACQ [19] are two representative approaches
for ACS. They both adopt a two-stage process; they first identify
potential communities based on structural constraints and then
compute attribute scores to verify the candidates. However, the
independent two-stage process fails to capture the correlations be-
tween structures and attributes in a joint fashion, leading to unsat-
isfactory results. With the development of ML/DL, learning-based
approaches for CS [11, 17, 21, 35] have been developed. However,
as the summary in Table 1, except AQD-GNN, these approaches can-
not support multi-node queries or ACS. AQD-GNN [29] proposes
a GNN-based supervised model for ACS in a single graph. The
model is trained by a collection of ACS queries with corresponding
ground-truth, and predicts the communities for unseen queries. The
limitation of AQD-GNN is that the model lacks generalizability for
new communities, graphs and attributes that are not encountered
in the training phase.

GNN for Graph Analytics. GNN iteratively aggregates neighbor
information of nodes by learnable weights to learn powerful rep-
resentation on graphs. In addition to CS, GNN is widely applied
in various graph analytical tasks, including graph combinatorial
optimization problems [10, 22, 36], subgraph matching [4, 15, 41],
subgraph counting [39, 65, 66], community collapsing [67] and com-
munity detection [12, 37]. To further enhance the capabilities of
GNN, inductive learning of GNN [24, 60] has emerged, specifically
targeting model generalization on unseen nodes, edges or graphs.
The down-streaming tasks range from inductive node classifica-
tion [24, 26, 47, 60] to graph classification [5, 34, 64], graph-based
recommender system [18, 44, 58, 62], fraud detection [8, 43] and
inductive link prediction [14, 25, 52]. To the best of our knowledge,
our approach is the first to deal with ACS problem by inductive
learning, facilitating better generalization to new communities,
graphs and node attributes.

ML for Subgraph Extraction. Recently, ML techniques have been
employed for many subgraph extraction tasks, including commu-
nity search, community detection [55], maximum common sub-
graph (MCS) and subgraph isomorphism counting (SIC) [46, 49].
LGNN [12] and CommDGI [63] utilize GNN for community detec-
tion which include a GNN representation module and a detection
module. In contrast to existing MCS algorithms that are based on
Branch and Bound (BnB) algorithm with rule-based heuristics, Mc-
Split [40] and GLSearch [6] introduce reinforcement learning to
the BnB search process, learning more powerful search heuristics.
For the SIC problem, conventional algorithms are trapped into the
dilemmas of scalability or sampling failure. To overcome these
dilemmas, DIAMNet [39], ALSS [66] and NeurSC [53] establish
neural network regression models to answer subgraph counting
queries approximately.

Table 2: Frequently-used Notations
Notation Description

G = (V, E,A) an attributed graph
𝑛/𝑚 number of nodes/edges of graph G

𝑞 = (V𝑞 ,A𝑞) a query with node set V𝑞 and attribute set A𝑞
C𝑞 the community containing query 𝑞

T = (G,𝑄, 𝐿) one task
𝑙+𝑞/𝑙−𝑞 positive/negative samples for query 𝑞
𝑒𝑎 pre-trained attribute embedding for attribute 𝑎 ∈ A
𝑒 (𝑣) original feature encoding for node 𝑣
𝐼𝑙 𝑣 indicator whether the node 𝑣 is in the community
𝑒V𝑞 average query nodes embeddings
𝑒A𝑞 average query attributes embeddings

S𝑖 = (𝑄𝑖 , 𝐿𝑖) support set of a task T𝑖

3 PRELIMINARIES
In this section, we first introduce the definitions of CS and ACS
formally, and then formulate the inductive learning-based CS. Fi-
nally, we describe the existing GNN-based framework for CS as the
technical background. Table 2 depicts the frequently-used notations
and their descriptions.

3.1 Definitions & Concepts
An undirected simple graph G = (V, E) consists of a set of nodes,
V , and a set of undirected edges E ⊆ V × V . Let 𝑛 = |V| and
𝑚 = |E | denote the number of nodes and edges, respectively. The
neighborhood of node 𝑣𝑖 is denoted as N(𝑣𝑖) = {𝑣 𝑗 | (𝑣 𝑗 , 𝑣𝑖) ∈ E}.
Community Search (CS). For a graph G = (V, E), given a node
setV𝑞 ⊆ V as a query 𝑞, the problem of Community Search aims
to find the query-dependent community C𝑞 ⊆ V , where the nodes
in C𝑞 are intensively intra-connected, i.e., maintaining cohesive
structure.

An undirected attributed graph G = (V, E,A) has an additional
attribute set A. Each node 𝑣𝑖 possesses its attribute set A𝑖 , and A
is the union of all the node attribute sets, i.e., A = A1 ∪ · · · ∪ A𝑛 .
Attributed Community Search (ACS). For an attributed graph,
G = (V, E,A), given a query 𝑞 = (V𝑞,A𝑞) whereV𝑞 ⊆ V is a set
of query nodes, andA𝑞 ⊆ A is a set of query attributes, the problem
of Attributed Community Search (ACS) aims to find the query-
dependent community C𝑞 ⊆ V . Nodes in community C𝑞 need to
be structure cohesive and attribute homogeneous simultaneously,
i.e., the nodes in the community are densely intra-connected in
structure and the attributes of these nodes are similar.

Learning-based CS/ACS. The general process of the learning-
based approaches [11, 17, 21, 29, 35] consists of two stages, the
training stage and the inference stage. In the training stage, for a
graph G, a parametric ML modelM : 𝑞 ↦→ [0, 1]𝑛 is constructed
offline from a set of queries and corresponding ground-truth com-
munities. In the inference stage, for an online new query, the model
M predicts the likelihood of whether each node is in the community
of the query, as a vector 𝑦 ∈ [0, 1]𝑛 . The query supported can be
non-attributed queries (𝑞 = (V𝑞, ∅)) for CS and attributed queries
(𝑞 = (V𝑞,A𝑞)) for ACS. To be concise, we consider the ACS prob-
lem in this paper and regard CS as a special case of ACS (A𝑞 = ∅).
Distinguished from prior algorithmic approaches [19, 27, 28], the
community C𝑞 discovered by learning-based approaches is not
restricted to any specific 𝑘-related subgraph.

2578

3.2 Problem Statement
For existing learning-based ACS [29], the modelM trained in a
graph G is expected to serve the same graph involving the same
communities in the inference stage. In this paper, we aim to explic-
itly empower themodel to generalize and adapt to new communities
and graphs by inductive learning, in the following two perspectives:

For new communities. For a graph G, given a set of training queries
𝑄 = {𝑞1, · · · , 𝑞𝑖 } with corresponding ground-truth labels from the
community set {C𝑞1 , · · · , C𝑞𝑖 }, the model trained by 𝑄 is used to
answer query 𝑞∗ from a new community C𝑞∗ , i.e., C𝑞1 ∩ C𝑞∗ =

∅, · · · , C𝑞𝑖 ∩ C𝑞∗ = ∅. Furthermore, the graph G may even not
contain the community C𝑞∗ , e.g., C𝑞∗ is in a large online social
network where G is a local subgraph extracted offline.

For new graphs. For a graph G, a model constructed from queries
in G is used to answer queries from a new graph G∗.
Example 3.1: Fig. 2 demonstrates a toy example of above two
perspectives of inductive ACS. In Fig. 2(a), the model is constructed
by training data of an academic community (in orange), and will
be used for answering queries from a new musical community (in
blue). Although the two communities are in a single large graph,
their local structures and attribute sets are different. In Fig. 2(b),
the model is trained by a graph containing one community (on the
left), and is expected to answer ACS queries in a new graph (on the
right).

The challenges of model generalization on new communities and
graphs lie in data heterogeneity, i.e., structural heterogeneity and
attribute heterogeneity. For one thing, the topological structures are
heterogeneous across different communities and graphs. For the
other thing, the attribute set, their semantics and distribution are
heterogeneous across different communities and graphs. In general,
data heterogeneity across different graphs would be more severe
than that across different communities. To this end, in this paper,
we construct a modelM by inductive learning from multiple ACS
tasks.

ACS Task. We formulate an ACS task as a triplet T = (G, 𝑄, 𝐿).
And G = (V, E,A) is an attribute graph, 𝑄 = {𝑞1, · · · , 𝑞𝑖 } is a
set of queries, i.e., 𝑞 𝑗 = (V𝑞 𝑗 ,A𝑞 𝑗), V𝑞 𝑗 ⊆ V , A𝑞 𝑗 ⊆ A, ∀𝑗 ∈
[1, · · · , 𝑖], 𝐿 = {𝑙𝑞1 , · · · , 𝑙𝑞𝑖 } is the set of ground-truth of 𝑗 queries,
correspondingly. Specifically, 𝑙𝑞 is a nonempty node set in G w.r.t.
query 𝑞, containing a set of positive node samples, 𝑙+𝑞 ⊆ C𝑞 , and a
set of negative samples, 𝑙−𝑞 ⊆ (V \ C𝑞).

By inductive learning, the modelM is trained on a set of training
tasks, {T1, · · · ,T𝑁 }, and will be used in a new ACS task T ∗ =

(G∗, 𝑄∗, 𝐿∗). Here, G∗ and the graphs in the training tasks are
either different local subgraphs in a large graph, which do not have
overlapping communities, or are fully different graphs. Here, 𝑄∗
and 𝐿∗ are a small number of queries with corresponding ground-
truth for T ∗, i.e., |𝑄∗ | ≪ |V|, which can be exploited byM to
adapt to the specific task T ∗. The number of queries in 𝑄∗, |𝑄∗ |, is
called shot in the following.

3.3 GNN for Learning-based ACS
Existing learning-based CS/ACS approaches [11, 21, 29, 35] employ
GNN as the backbone of their models. A GNN of 𝐾-layers follows a

Graph for Training

New Graph (unseen community)

7

9

8

{IR, Pop}
{Jazz, Pop}{Jazz, R&B}

{R&B}

{Pop}

10

11

5

4

2

1

3

{DM} {DM,DB,DL}

{DB}

{IR,DL}
{DL}

6{DM}

𝒢!

𝒢"A Single Graph

5

4

2

7

1

3

{DM} {DM,DB,DL}
{DB}

{IR,DL} {DL}

9

8

{Pop}

{Jazz, Pop}
{Jazz, R&B}

{R&B}

{Jazz}

6

{DM}
10

11

12
{NLP}

13

{CV}

12{NLP}

13
{CV}

14
{Classic}

15
{Classic}

14
{Classic}

15
{Classic}

(a) Inductive Setting for Communities

4

5

3

1

2

{Tennis} {Soccer, Run}

{Run}

{Swim} {Tennis, Soccer}

6{Run}

New Graph (unseen community)Graph for Training

5

4

2

7

1

3

{DM} {DM,DB,DL}

{DB}

{IR,DL} {DL}

9

8

{IR}
{Hiking}

{Hiking, Camping}

6
{DM}10

{Camping}

7
{Sing}

8
{Dance}

(b) Inductive Setting for Graphs
Figure 2: Two Cases of Inductive ACS

neighborhood aggregation paradigm to generate a new embedding
for each node by aggregating the embeddings of its neighbors in
𝐾 iterations. Let ℎ (𝑘) (𝑣) denote the embedding of node 𝑣 in the
𝑘-th iteration. In the 𝑘-th iteration (layer), an aggregate function
𝑓
(𝑘)
A

aggregates the embeddings of the neighbors of 𝑣 generated in

(𝑘 − 1)-th layer as Eq. (1). Subsequently, a combine function 𝑓 (𝑘)
C

updates the embedding of 𝑣 as Eq. (2). The aggregate and combine
functions of each layer are neural networks.

𝑎 (𝑘) (𝑣) = 𝑓 (𝑘)
A
({ℎ (𝑘−1) (𝑢) |𝑢 ∈ N (𝑣)}), (1)

ℎ (𝑘) (𝑣) = 𝑓 (𝑘)
C
(ℎ (𝑘−1) (𝑣), 𝑎 (𝑘) (𝑣)) . (2)

For dealing with ACS, the query information is injected into
the initial node embedding, ℎ (0) (𝑣), by concatenating identifiers of
query nodes and query attributes to the original node features as
Eq. (3).

ℎ (0) (𝑣) = [𝐼𝑞 (𝑣)∥𝐼A (𝑣)∥A(𝑣)], (3)

Here, 𝐼𝑞 (𝑣) ∈ {0, 1} identifies whether node 𝑣 is a query node,
𝐼A (𝑣) ∈ {0, 1} |A | identifies which attributes are the query at-
tributes, andA(𝑣) is the vectorized representation of the attributes
of 𝑣 . Through the transformation of 𝐾 layers, GNN-based mod-
els predict the likelihood that 𝑣 is in the community of the query
by a prediction layer 𝑓 , i.e., 𝑦 (𝑣) = 𝑓 (ℎ (𝐾) (𝑣)), where the predic-
tion layer 𝑓 may contain extra neural network layers, followed
by sigmoid activation. Thereby, an ACS task T = (G, 𝑄, 𝐿) is a
query-specific binary classification task in G, where GNN-based
models are trained by minimizing the binary cross entropy (BCE)
loss on queries 𝑄 and ground-truth 𝐿 as Eq. (4).

L(𝑞;𝜃) = −
∑︁
𝑣+∈𝑙+𝑞

log𝑦 (𝑣+) −
∑︁
𝑣−∈𝑙−𝑞

log(1 − 𝑦 (𝑣−)) (4)

Existing approaches train a distinct model for each ACS task by
implicitly assuming that the graph used for training and inference
for unseen queries are the same. Such transductive models cannot
infer communities for queries from different graphs and different
attribute sets.

2579

GNN
Encoder Aggregator Adaptive

Decoder
… …

𝒱!
𝒜!

4
4

21

3

𝒱!
𝒜!

1

(𝑞", 𝑙!!)

𝑙!#

𝑙!$
2

3

𝑞∗

𝜌!⨁𝜙!

(𝑞&, 𝑙!")…

𝑝 ∈ ℝ'

Enhanced Attribute Embedding

(a) Architecture: the model processes one ACS task at a time by a GNN encoder, an aggregator and a decoder

Model
ℳ

…

Model
ℳ ∗

Training Phase Adaptation Phase Inference Phase

New Queries

Training ACS Tasks New ACS Task

Model
ℳ ∗

(b) The Three-phase Workflow

Figure 3: Architecture and Workflow of IACS

4 IACS ARCHITECTURE
In this section, we first present a high-level overview of IACS, and
then introduce the architecture of each component in detail.

4.1 Overview
We present the overview of our IACS framework, including the
model architecture and workflow.

Architecture. Fig. 3(a) shows the architecture of IACS. Given an
ACS task T = (G, 𝑄, 𝐿), IACS directly models the predictive dis-
tribution 𝑝 (𝑦𝑞∗ |𝑞∗,T) for a new query node 𝑞∗ ∈ V \ 𝑄 , where
𝑦𝑞∗ = {𝑦𝑞∗ (𝑣)}𝑣∈V ∈ {0, 1}𝑛 is the binary target prediction indi-
cating whether each node 𝑣 in G is in the community of the query
𝑞∗. IACS adopts an encoder-decoder neural architecture which pro-
cesses a task at a time by Eq. (5).

𝑝 (𝑦𝑞∗ |𝑞∗,T) = 𝜌𝜃
(
𝑞∗,

⊕
(𝑞,𝑙𝑞) ∈ (𝑄,𝐿)

𝜙𝜃 (𝑞, 𝑙𝑞)
)

(5)

Here, 𝜙𝜃 (·) is a neural encoder that transforms a query 𝑞 with the
corresponding ground-truth 𝑙𝑞 into a context embedding. We devise
an enhanced attribute encoding via pre-training node embeddings
in attributed augmented graphs to align node attributes across
different graphs. We adopt a GNN encoder to encapsulate hidden
graph structure and query-specific knowledge into the context
embedding. Then, a commutative aggregate operator ⊕ aggregates
all the context embeddings generated from𝑄 and 𝐿 in the task into
a task-level context embedding in a permutation-invariant fashion.
The task-level context embedding, serving as a neural index, is used
to predict the community membership for new queries. In other
words, finally, a neural decoder 𝜌𝜃 (·) takes the task-level embedding
and any query 𝑞∗ to predict its community. In the following, we
will elaborate on the design details of the encoder, the aggregator
and the decoder, respectively.

Workflow. As Fig. 3(b) illustrates, the workflow of IACS consists
of three phases sequentially, the training, adaptation and inference
phases. In the training phase, the model of IACS,M, is trained over
a set of training tasks, {T1, · · · ,T𝑁 }. By learning shared encoder,
aggregator and decoder, prior knowledge for ACS is induced from
these multiple tasks. Then, the shared model M is deployed to
a new ACS task T ∗ = (G∗, 𝑄∗, 𝐿∗) by an adaptation phase. The
shared model is slightly adjusted to a task-specific modelM∗ by
the ground-truth 𝑄∗ and 𝐿∗ provided, and the task-level context

Jazz PopR&B IR DM DL DB

5

4

2

7

1

3

{DM} {DM,DB,DL}

{DB}

{IR,DL} {DL}

9

8

{IR, Pop}
{Jazz, Pop}

{Jazz,
R&B}

{R&B}
{Pop}

6
{DM}

10

11

Figure 4: A graph G and its attribute-augmented graph GA

embedding is constructed byM∗. In the inference phase, the de-
coder queries the task-level embeddings for new queries to form
the ACS results. We defer the details of the three-stage workflow
of IACS in §5.

4.2 Encoder
For each query 𝑞 = (V𝑞,A𝑞) ∈ 𝑄 and the corresponding ground-
truth 𝑙𝑞 ∈ 𝐿, the encoder 𝜙𝜃 (·) is a K-layer GNN that transforms
(𝑞, 𝑙𝑞) together with the graph G into a node embedding matrix
𝐻𝑞 = {ℎ (𝐾) (𝑣)𝑣∈V } ∈ R𝑛×𝑑

𝐾
. Here, ℎ (𝐾) (𝑣) is a 𝑑𝐾 dimensional

vectorized output of the𝐾-th layer of GNN for node 𝑣 . The subscript
𝑞 of 𝐻𝑞 indicates that the node embeddings 𝐻𝑞 , as the query-level
context embedding, is particularly for query 𝑞. To be specific, all
the queries in one task share the encoder, and queries across dif-
ferent tasks share the encoder. For one thing, to fulfill induction
over multiple tasks, the input of the encoder should be aligned to
a compatible, fixed-dimensional vector space. Unfortunately, the
encoders of existing methods [29, 35] typically require retraining
for a new task due to the supervised learning paradigm they adopt.
For the other thing, to support accurate ACS, we enhance the input
of the GNN encoder by fusing the features of the query node and
node attribute in-depth. To this end, we construct the initial node
embedding ℎ (0) (𝑣) ∈ R(𝑑+1) as Eq. (6), by concatenating the binary
ground-truth identifier 𝐼𝑙 (𝑣) ∈ {0, 1} and an enhanced attribute
embedding 𝑒 (𝑣) ∈ R𝑑 .

ℎ (0) (𝑣) = [𝐼𝑙 (𝑣)∥𝑒 (𝑣)],where 𝐼𝑙 (𝑣) =
{
1 𝑣 ∈ 𝑙+𝑞 ∪V𝑞,
0 otherwise.

(6)

In Eq. (6), 𝐼𝑙 (𝑣) identifies whether the node 𝑣 is in the community
ground-truth for the query 𝑞, under the close-world assumption.
The enhanced attribute embedding 𝑒 (𝑣) encodes the attributes as-
sociated with the node 𝑣 , whose details are given as follows.

Enhanced Attribute Encoding. One-hot attribute encoding is
widely used by GNN in node classification and link prediction [24,
31]. However, the GNN model cannot be shared by different ACS
tasks with different attribute sets. Moreover, such sparse encoding

2580

is lack of insight for ACS problem, which is correlated with both
attribute information and topological structure. These motivate us
to design a fixed-length, enhanced attribute encoding.

To establish a connection between nodes and attributes, a previ-
ous approach, AQD-GNN [29], constructs a bipartite graph contain-
ing two types of nodes, i.e., graph nodes and attribute nodes, where
the graph nodes are connected to the attribute node associated.
However, the bipartite graph fails to incorporate the knowledge of
the original graph structure. To capture the integration between
graph structure and attribute, we pre-train an enhanced attribute en-
coding on an attribute-augmented graph GA = (V∪VA , E∪EA),
which is constructed from a graph G = (V, E,A). Precisely, here
VA is a set of nodes where each node 𝑣𝑎 represents an attribute
𝑎 ∈ A. And EA ⊆ V × VA is a collection of edges, if node 𝑣
possesses an attributed 𝑎, there exists an edge connecting node 𝑣
to the corresponding attributed node 𝑣𝑎 . Fig. 4 shows the attribute-
augmented graph GA for an attributed graph G. We use a scalable,
task-independent graph embedding algorithm, ProNE [61], to pre-
train a node embedding for the attribute-augmented graph GA .
With the pre-trained attribute embedding, we encode the enhanced
attributed embedding of node 𝑣 as the summation of the embedding
of its attributes (Eq. (7))

𝑒 (𝑣) =
∑︁

𝑎∈A(𝑣)
𝑒𝑎, (7)

where 𝑒𝑎 ∈ R𝑑 is the pre-trained embedding of attributed node 𝑣𝑎
in GA , andA(𝑣) denotes the set of attributes associated with node
𝑣 . Therefore, via node embedding of the attribute-augmented graph,
the graph nodes in different tasks acquire a fixed-length attribute
encoding which also leverages the graph structure of the task.

4.3 Aggregator
Recall that given an ACS taskT = (G, 𝑄, 𝐿), the GNN encoder𝜙𝜃 (·)
generates a query-level embedding 𝐻𝑞 ∈ R𝑛×𝑑

𝐾
for each query 𝑞

with corresponding ground-truth 𝑙𝑞 . The aggregator combines the
query-level embedding 𝐻𝑞 for all queries in 𝑄 into one task-level
context embedding 𝐻 ∈ R𝑛×𝑑𝐾 . We use the permutation invariant
operator, average, as the parameter-free aggregator as Eq. (8).

𝐻 =
1
|𝑄 |

∑︁
𝑞∈𝑄

𝐻𝑞 (8)

The task-level embedding 𝐻 serves as a learned query index of the
task T , which will be used to be queried by the embedding of a
query 𝑞 = (V𝑞, E𝑞) in the decoder 𝜌𝜃 (·). This idea is enlightened
by a neural network architecture for 3D scene understanding and
rendering, Generative Query Network (GQN) [16], where embed-
dings of few-shot 3D views are aggregated for querying the view
of a new 3D perspective.

4.4 Adaptive Decoder
Distinguished from existing works [17, 29] without any adaptabil-
ity enhancement in their models, in IACS, we design an adaptive
decoder 𝜌𝜃 (·) to predict the community membership for a new ACS
query 𝑞∗ = (V𝑞∗ ,A𝑞∗), by leveraging the task-level embedding 𝐻
as a hidden query index. Intuitively,𝐻 preserves the status of all the
nodes in G, involving the graph structure and attribute distribution

from the enhanced attributed encoding, and known community
information from 𝑄 and 𝐿. The community membership of 𝑞∗ is
predicted by computing the similarity of the embedding of 𝑞∗ with
the embedding 𝐻 .

Firstly, to improve the adaptability of model prediction on one
task, we introduce a specific adaptation modulation, Feature-wise
Linear Modulation (FiLM), into the decoder, which has demon-
strated to be highly effective in various applications [7, 9, 45].
Specifically, FiLM applies a feature-wise affine transformation on
𝐻 , conditioned on 𝐻 itself as shown in Eq. (9).

𝛾 =𝑊𝛾𝐻, 𝛽 =𝑊𝛽𝐻,

𝐻 = 𝛾 ⊙ 𝐻 + 𝛽.
(9)

In Eq. (9),𝑊𝛾 ,𝑊𝛽 ∈ R𝑑
𝐾 ×𝑑𝐾 are two weight matrices and ⊙ is the

element-wise matrix multiplication. The matrices 𝛾 and 𝛽 learned
from𝐻 , scales and shifts𝐻 into a self-adaptive task-level embedding
𝐻 ∈ R𝑛×𝑑𝐾 in a feature-wise way. Furthermore, to improve the
effectiveness of the modulation, we design a variant of FiLM with a
gating mechanism to avoid filtering out informative features. This
FiLM variant is shown in Eq. (10) where𝑊𝛿 ,𝑊𝜖 ∈ R𝑑

𝐾 ×𝑑𝐾 are
weight matrices.

𝛿 = sigmoid(𝑊𝛿𝐻), 𝜖 =𝑊𝜖𝐻,

𝛾 = 𝛾 ⊙ 𝛿 + 𝜖 ⊙ (1 − 𝛿), 𝛽 = 𝛽 ⊙ 𝛿 + 𝜖 ⊙ (1 − 𝛿),

𝐻 = 𝛾 ⊙ 𝐻 + 𝛽.
(10)

The adaptive task-level embedding 𝐻 from FiLM modulation is
used to answer ACS query 𝑞∗ = (V𝑞∗ ,A𝑞∗) by similarity compu-
tation. Specifically, we construct the vector representation of 𝑞∗
by firstly formulating the respective query node embedding and
query attribute embedding as Eq. (11). Since𝐻 is a node embedding
of G, the query node embedding 𝑒V𝑞∗ ∈ R

𝑑𝐾 is the average node
embedding in 𝐻 for query nodes 𝑣 ∈ V𝑞∗ . And the query attrib-
uted embedding 𝑒A𝑞∗ is the average of attribute embeddings for
query attributes 𝑎 ∈ A𝑞∗ , where the attribute embeddings are the
pre-trained embeddings of the attribute-augmented graph. Then, as
shown in Eq. (12), the final query embedding 𝑒𝑞∗ ∈ R𝑑

𝐾
is generated

by concatenating the query node embedding and query attribute
embedding, followed by the mapping of a multi-layer perception
(MLP).

𝑒V𝑞∗ =
1
|V𝑞∗ |

∑︁
𝑣∈V𝑞∗

𝐻 (𝑣), 𝑒A𝑞∗ =
1
|A𝑞∗ |

∑︁
𝑎∈A𝑞∗

𝑒𝑎 (11)

𝑒𝑞∗ = MLP
(
𝑒V𝑞∗ ∥𝑒A𝑞∗

)
(12)

Finally, we use the inner product operation ⟨·⟩ to compute the simi-
larity score of the query embedding 𝑒𝑞∗ and the adaptive task-level
embedding 𝐻 as Eq. (13). And the similarity score is transformed
into the predictive probability that one node is in the same com-
munity with query 𝑞∗. The inner product operation indicates that
the smaller the angle between the node embeddings in 𝐻 and the
query embedding in the vector space, the more likely the nodes are
from the same community of the query.

𝑝 (ˆ𝑙𝑞∗ |𝑞∗,T) = sigmoid
(
⟨𝑒𝑞∗ , 𝐻 ⟩

)
(13)

2581

Algorithm 1: IACS Training Phase
Input : training task set D = {T𝑖 }𝑁𝑖=1, learning rate 𝛼 , number of

epochs𝑇
Output :parameters 𝜃 of meta modelM

1 for 𝑒𝑝𝑜𝑐ℎ ← 1 to𝑇 do
2 Shuffle the task set D = {T𝑖 }𝑁𝑖=1;
3 for T𝑖 = (G𝑖 ,𝑄𝑖 , 𝐿𝑖) ∈ D do
4 S𝑖 ∼ (𝑄𝑖 , 𝐿𝑖) ; ▷ sample a support set
5 for (𝑞, 𝑙𝑞) ∈ S𝑖 do
6 𝐻𝑞 ← 𝜙𝜃 (𝑞, 𝑙𝑞 , G𝑖) ; ▷ compute query-level embedding

7 𝐻 ←
⊕
(𝑞,𝑙𝑞) ∈S𝑖 𝐻𝑞 ; ▷ compute task-level embedding

8 for (𝑞, 𝑙𝑞) ∈ (𝑄𝑖 , 𝐿𝑖) do
9 𝑝 (ˆ𝑙𝑞 |𝑞, T𝑖) ← 𝜌𝜃 (𝑞,𝐻) ; ▷ compute predictive probability

10 Compute the Loss L(𝑞) by 𝑝 (ˆ𝑙𝑞 |𝑞, T𝑖) and 𝑙𝑞 ;
11 L ← ∑

(𝑞,𝑙𝑞) ∈ (𝑄𝑖 ,𝐿𝑖) L(𝑞) ;
12 𝜃 ← 𝜃 − 𝛼∇𝜃 L; ▷ update model parameters

13 return 𝜃 ;

It is worth mentioning that our IACS model can be easily gener-
alized to deal with CS queries without query attributes, i.e., 𝑞∗ =
(V𝑞∗ , ∅). Here, we use 𝑒V𝑞∗ in Eq. (11) as the query embedding 𝑒𝑞∗ ,
and then compute the predictive probability by Eq. (13).

5 IACSWORKFLOW AND ANALYSIS
We present the 3-phase workflow of IACS in this section, followed
by a detailed complexity analysis.

Model Training Phase. In the training phase, we construct a
shared modelM by training on a set of possible heterogeneous
tasks D = {T𝑖 }𝑁𝑖=1 offline. Then, the procured model can be used
for model adaptation and inference for online ACS queries. The
training objective is to minimize the negative log-likelihood of the
predicted community membership across all the training tasks as
shown in Eq. (14), which is aligned to the BCE loss (Eq. (4)) between
the prediction and ground-truth.

L =
∑︁
T𝑖 ∈D

∑︁
(𝑞,𝑙𝑞) ∈ (𝑄𝑖 ,𝐿𝑖)

− log 𝑝 (ˆ𝑙𝑞 |𝑞,T𝑖) (14)

=
∑︁
T𝑖 ∈D

∑︁
(𝑞,𝑙𝑞) ∈ (𝑄𝑖 ,𝐿𝑖)

©­«−
∑︁
𝑣+∈𝑙+𝑞

log𝑦 (𝑣+) −
∑︁
𝑣−∈𝑙−𝑞

log(1 − 𝑦 (𝑣−))ª®¬
Algorithm 1 presents the training algorithm of IACS by stochastic

gradient descent. The algorithm iterates on randomly shuffled train-
ing tasks and processes one task for a gradient update in line 3-12.
Specifically, for each task T𝑖 , we first randomly sample a fixed-size
support set S𝑖 from the given query 𝑄𝑖 and ground-truth 𝐿𝑖 in T𝑖
(line 4). Second, the GNN encoder, 𝜙𝜃 (·), computes a query-level
embedding 𝐻𝑞 for each query 𝑞 and its corresponding ground-
truth 𝑙𝑞 in S𝑖 (line 5-6). Third, all the query-level embeddings are
aggregated into one task-level embedding 𝐻 by the permutation-
invariant average aggregator ⊕ of Eq. (8) in line 7. Fourth, for each
query in 𝑄𝑖 , we compute the predictive probability 𝑝 (ˆ𝑙𝑞 |𝑞,T𝑖) by
the adaptive decoder 𝜌 (·) (line 9) and the query-specific loss L(𝑞)
(line 10). Finally, the model parameters are updated by one gradient
step based on the aggregated task-specific loss (line 11-12).

Algorithm 2: IACS Adaptation Phase
Input : test task T∗ = (G∗,𝑄∗, 𝐿∗) , parameters 𝜃 of meta model

M, learning rate 𝛼 , fine-tuning step 𝑠
Output :fine-tuned parameters 𝜃∗ and self-adaptive embedding 𝐻

1 S∗ ← (𝑄∗, 𝐿∗) ; 𝜃∗ ← 𝜃 ▷ initialize fine-tuning data and parameters
2 for 𝑖 ← 1 to 𝑠 do
3 for (𝑞, 𝑙𝑞) ∈ S∗ do
4 𝐻𝑞 ← 𝜙𝜃 (𝑞, 𝑙𝑞 , G∗) ; ▷ compute query-level embedding

5 𝐻 ←
⊕
(𝑞,𝑙𝑞) ∈S𝑖 𝐻𝑞 ; ▷ compute task-level embedding

6 for (𝑞, 𝑙𝑞) ∈ S∗ do
7 𝑝 (ˆ𝑙𝑞 |𝑞, T∗) ← 𝜌𝜃 (𝑞,𝐻) ; ▷ compute predictive probability
8 Compute the Loss L(𝑞) by 𝑝 (ˆ𝑙𝑞 |𝑞, T∗) and 𝑙𝑞 ;
9 L ← ∑

(𝑞,𝑙𝑞) ∈S∗ L(𝑞) ;
10 𝜃 ∗ ← 𝜃 ∗ − 𝛼∇𝜃 L; ▷ update model parameters

11 return 𝜃 ∗ and 𝐻 ; ▷ 𝐻 is computed from Eq. (9) or Eq. (10)

Model Adaptation Phase. For a new ACS test task, the modelM
is first fine-tuned via a swift adaptation phase, utilizing a possible
limited amount of community ground-truth, thenM is used for
inference onACS queries. Algorithm 2 outlines the adaptation phase
of IACS for a task T ∗ = (G∗, 𝑄∗, 𝐿∗). The algorithm fine-tunes
modelM by 𝑠 gradient steps, by leveraging (𝑄∗, 𝐿∗) as the support
set S∗, where the forward-pass of the model (line 3-7) is similar
to Algorithm 1. Here, we also use (𝑄∗, 𝐿∗) for making predictions
and computing the loss. After model adaptation, the algorithm
returns fine-tuned model parameters and the self-adaptive task-
level embedding 𝐻 procured by the FiLM module in the adaptive
decoder (Eq. (9) or Eq. (10)). The embedding 𝐻 is persisted as a
neural index for computing online queries.

Model Inference Phase. For a query 𝑞∗ = (V𝑞∗ ,A𝑞∗) in G∗, we
first extract query node embedding 𝑒V𝑞∗ from 𝐻 and extract query
attribute embedding 𝑒A𝑞∗ from the enhanced attributed embed-
dings. Then, the two embeddings are fused by Eq. (12) to generate
the overall query embedding 𝑒𝑞∗ . As shown in Eq. (13), the query
embedding 𝑒𝑞∗ is used to predict the probability of community
membership of each node by computing the inner product similar-
ity with the persisted embedding 𝐻 . To transform the probability
into community membership, we use a threshold 𝛾 , i.e., the node
is regarded as in the community of query 𝑞∗ if and only if the
probability is greater than 𝛾 .

Complexity Analysis. We analyze the complexity of IACS briefly.
For time complexity, to be concise, we assume that basic vector
operations such as addition, multiplication, concatenation, and
inner product take constant time. The GNN encoder in IACS takes
O(𝐾𝑚 |S|) time for a single task, where 𝐾 is the number of GNN
layers,𝑚 is the number of edges and |S| is the number of shots.
The complexity of the big ⊕ operation, i.e., an average pooling,
is O(𝑛 |S|). For the decoder, the inner product operation takes
O(𝑛 |𝑄 |) time. In total, the training complexity of Algorithm 1 is
O(𝑇𝑁𝑐 (𝑛 +𝑚)), where 𝑐 is a constant determined by 𝐾,𝐾 ′, |S|, |𝑄 |,
and 𝑇 and 𝑁 correspond to the numbers of iterations and training
tasks, respectively. Similarly, the complexity of the fine-tuning
algorithm, Algorithm 2, is O(𝑠𝑐 (𝑛 +𝑚)), where 𝑠 represents the
number of fine-tuning steps. And the time complexity of the test
algorithm is O(𝑐 (𝑛 +𝑚)) for a single query. In addition, the space

2582

Table 3: The Profiles of Dataset
Dataset | G | |V | | E | |A | | C | graph des. attribute des. community des. # tasks

Arxiv [54] 1 169,343 1,166,243 N/A 40 paper citation NA research topics 1,000
Amazon2M [13] 1 2,449,029 61,859,140 N/A 47 product co-purchasing NA product categories 5,000

Cora [57] 1 2,708 5,429 1,433 7 paper citation paper keywords research topics 192
Citeseer [57] 1 3,327 4,732 3,703 6 paper citation paper keywords research topics 192
Reddit [24] 1 232,965 114,615,892 1,164 50 post co-comment synthetic post categories 1,000

Facebook [33] 10 4,039 88,234 2,281 193 social friendship user profiles friend circles 10
Twitter [33] 973 81,306 1,768,149 512,985 4,065 social friendship user profiles friend circles 973

complexity for training (adaptation) and inference are 𝑂 (|S|𝑛𝑑𝐾 +
|A|𝑑𝑎) and 𝑂 (𝑛𝑑𝐾 + |A|𝑑𝑎), respectively. Here, 𝑛𝑑𝐾 is the size
of the persisted task-level embedding and |A|𝑑𝑎 is the size of the
persisted attribute embedding.

6 EXPERIMENTAL STUDY
We introduce the experimental setup in §6.1 and test our IACS
in-depth in the following facets: ① Compare the effectiveness of
IACS on CS and ACS queries with various baselines (§6.2) ② Study
the efficiency and scalability of IACS (§6.3) ③ Conduct an ablation
study to investigate the effect of different GNN layers and aggregate
operations (§6.4).④ Investigate the sensitivity of IACS regarding
parameter configurations (§6.5) ⑤ Explore the capability of model
adaptation in task streaming (§6.6) ⑥ Conduct a case study of the
visualization of CS results (§6.7).

6.1 Experimental Setup

Datasets.We use 7 real-world graph datasets, whose profiles are
summarized in Table 3. Here, 5 of them (Arxiv, Amazon2M, Cora,
Citeseer and Reddit) are single graphs, aiming to test model in-
duction across different communities, and the other two datasets
(Facebook and Twitter) contain multiple graphs, aiming to test in-
duction across graphs. Notably, Arxiv and Amazon2M are only
used for testing non-attributed CS due to the absence of discrete
attributes. For Reddit, we generate synthetic attributes following
the protocol of [28].

Task & Queries Settings. For single graph datasets, we construct
the CS/ACS task by partitioning the graph into disjoint components
using METIS algorithm [30]. For Twitter and Facebook, each graph
is an ego-centric social network that forms a task. The numbers
of total tasks are listed in Table 3. The tasks are approximately
split by 60% for training, 10% for validation and 30% for test. In
addition, we also investigate model generalization ability across
different datasets. One is that models are trained by 128 tasks from
Cora and are deployed for inference on 32 tasks from Citeseer
(Cora2Citeseer). The other is that models are trained by tasks from
Twitter and are deployed for inference on tasks from Facebook
(Twitter2Facebook).

For each task, we construct two settings, 4-shot and 8-shot, which
use 4 and 8 queries as the support set S and make the prediction
on the other 16 queries, respectively. For each query 𝑞 = (V𝑞,A𝑞),
we randomly sample 1 ∼ 3 nodes from a community as the query
node setV𝑞 . For ACS task, we additionally sample 1 ∼ 3 attributes
from the top-3 most frequent attributes in that community as the
query attribute set A𝑞 For training tasks, we sample 5% nodes

from C𝑞 and the remaining nodes as the training labels 𝑙+𝑞 and 𝑙−𝑞 ,
respectively.

Baselines. To comprehensively evaluate the performance of IACS,
we compare with 8 baselines that fall into 3 categories, i.e., al-
gorithmic approaches, supervised-learning based approaches and
meta-learning based approaches. We briefly introduce them as be-
low.

• Algorithmic approaches. ❶ Closest Truss Community (CTC) [27]
finds the 𝑘-truss with the largest 𝑘 that contains query nodes and
has the minimum diameter among the truss. ❷ Attributed Truss
Community Search (ATC) [28] is an attributed community search
algorithm. Given query nodes and query attributes, it finds the
maximal (𝑘, 𝑑)-truss containing the query nodes and iteratively
removes unpromising nodes from the truss to obtain a maximal
attribute score. ❸ Attributed Community Query (ACQ) [19] aims
to search a subgraph whose nodes are tightly connected and
share common attributes with the given query nodes.

• Supervised-learning based approaches. ❶ Interactive Community
Search via GNN (ICS-GNN) [21] constructs a GNNmodel for each
query node 𝑣 , and predicts the scores for the remaining nodes
by this model. Subsequently, ICS-GNN extracts the subgraph
with a fixed number of nodes connecting to 𝑣 by maximizing the
summation of scores.❷Query Driven-GNN (QD/AQD-GNN) [29]
proposes a GNN-based model to combine the representations of
the graph, query nodes and possible query attributes. QD/AQD-
GNN does not have explicit transferability or inductive learning
capability. ❸ Supervised GNN (Supervise). One GNN model is
constructed for each test task from scratch by training on the
support set following the baseline in [17]. To support ACS, we
extend the baseline by concatenating multi-hot vectors to the
input matrix of GNN, which identifying the query nodes and
query attributes.

• Meta-learning based approaches.Wealso compare 2meta-learning
based approaches for CS, which are originally proposed in [17].
Similar to Supervise, we conduct the same extension for the two
approaches to support ACS. ❶ MAML adopts Model-Agnostic
Meta-Learning algorithm [20] to train a GNN model on all the
training tasks. The task-specific parameters of GNN are updated
in an inner loop and the task-sharing parameters are updated
in an outer loop. ❷ Feature Transfer (FeatTrans) trains a GNN
model on all the training tasks. For a test task, the final layer
of the GNN is fine-tuned on the support set, while all the other
parameters are kept intact.

Since CTC and ICS-GNN do not support attributed queries, we only
compare them for CS problem. Moreover, ACQ and ICS-GNN only

2583

Table 4: Overall Performance on Non-Attributed CS (%)
4-shot 8-shotDataset Approach

Pre Rec F1 Pre Rec F1

CTC 54.23±0.53 2.16±0.04 4.15±0.09 54.04±0.72 2.16±0.05 4.15±0.09
ICS-GNN 62.72±0.26 21.09±0.07 31.57±0.10 62.53±0.36 21.12±0.05 31.57±0.08
QD-GNN 59.97±0.41 83.60±1.18 69.84±0.47 58.91±0.29 89.62±1.14 71.09±0.29
Supervise 67.99±0.33 69.78±1.49 68.87±0.86 69.09±0.39 74.29±0.98 71.60±0.38
MAML 63.51±1.07 60.25±2.50 61.81±1.42 62.77±0.72 60.34±3.64 61.48±1.82

FeatTrans 65.35±0.64 55.18±1.81 59.81±0.88 64.18±0.69 55.42±1.09 59.47±0.74
IACS 63.65±0.62 89.26±1.05 74.31±0.37 64.14±0.49 90.21±1.31 74.97±0.31
IACS-G 59.75±0.42 97.99±0.76 74.23±0.13 65.06±0.81 88.12±1.65 74.84±0.36

A
rx
iv

IACS-P 61.99±2.56 92.63±5.77 74.12±0.21 65.45±0.42 87.07±0.53 74.72±0.24
CTC 80.30±0.35 4.06±0.02 7.73±0.04 80.27±0.27 4.06±0.01 7.73±0.02

ICS-GNN 79.50±0.27 6.55±0.01 12.11±0.02 79.63±0.29 6.55±0.02 12.11±0.03
QD-GNN 75.46±0.33 95.15±0.53 84.17±0.04 75.33±0.26 96.68±0.13 84.67±0.21
Supervise 83.86±0.09 77.07±0.44 80.32±0.25 84.46±0.35 80.18±0.52 82.27±0.29
MAML 78.48±1.62 65.83±8.70 71.38±5.59 79.13±0.88 62.38±4.76 69.66±2.83

FeatTrans 78.41±0.92 57.89±1.39 66.60±1.14 78.69±0.34 57.18±1.22 66.22±0.72
IACS 80.52±0.34 93.42±0.83 86.48±0.22 81.44±0.75 93.34±1.07 86.97±0.21
IACS-G 79.92±0.31 94.25±0.93 86.49±0.21 80.49±0.16 94.60±0.52 86.98±0.24

A
m
az
on

2M

IACS-P 79.63±0.88 94.77±1.09 86.54±0.29 80.62±0.81 94.86±0.74 87.16±0.26

Table 5: Overall Performance on ACS in Single Graph (%)
4-shot 8-shotDataset Approach

Pre Rec F1 Pre Rec F1

ATC 58.99±0.87 5.01±0.17 9.24±0.29 57.83±0.36 4.97±0.25 9.16±0.42
ACQ 70.59±2.14 6.97±1.32 12.66±2.19 69.15±1.43 6.79±0.99 12.36±1.64

AQD-GNN 52.70±1.04 84.29±7.59 64.77±2.78 52.26±2.06 85.15±5.57 64.74±3.01
Supervise 60.45±2.00 63.20±1.53 61.79±1.67 62.30±1.88 66.74±0.84 64.43±1.16
MAML 55.53±1.61 43.18±4.27 48.46±2.45 56.15±0.94 45.02±3.05 49.93±1.94

FeatTrans 58.67±2.54 37.97±1.38 46.08±1.51 58.44±1.74 39.86±2.17 47.38±1.91
IACS 64.74±1.55 71.15±1.45 67.78±0.94 67.06±1.45 71.48±1.84 69.19±1.41
IACS-G 65.75±0.54 70.12±1.33 67.86±0.56 67.48±1.62 71.90±1.98 69.59±0.87

C
it
es
ee
r

IACS-P 65.52±1.15 70.37±1.43 67.84±0.66 67.25±1.86 72.08±0.74 69.57±0.98

ATC 82.84±0.77 39.15±1.68 53.16±1.63 83.73±0.87 39.00±0.91 53.21±0.79
ACQ 97.74±0.27 22.82±1.02 36.99±1.35 98.16±0.03 22.49±1.20 36.58±1.59

AQD-GNN 85.88±1.63 89.54±1.89 87.67±1.38 85.51±1.73 92.20±1.39 88.73±1.42
Supervise 86.16±1.38 78.14±1.93 81.95±1.51 87.14±0.95 80.15±0.49 83.50±0.49
MAML 88.30±0.78 64.46±3.15 74.66±2.27 OOM OOM OOM

FeatTrans 87.76±2.41 34.78±3.22 49.72±3.34 88.07±0.59 36.46±2.43 51.53±2.40
IACS 84.03±1.20 84.11±3.84 84.01±1.26 83.50±1.69 85.07±4.36 84.20±1.49
IACS-G 83.81±1.73 85.33±2.23 84.54±1.14 86.07±0.86 84.01±2.63 85.00±1.11

R
ed
di
t

IACS-P 84.85±1.28 83.90±2.53 84.35±1.31 85.89±1.84 83.21±1.72 84.51±1.33

support single query node, thereby we randomly sample one query
node when |V𝑞 | > 1. All the approaches are tested on the same set
of queries to achieve a fair comparison.

Implementation & Parameter Setting. For the GNN encoder of
IACS, we try GCN [31], GraphSAGE [24], GIN [56] and GAT [51],
and use GAT as the default GNN model. We set the number of the
GNN layers as 3, and each GNN layer has 128 hidden units. All
the learning-based baselines follow the same GNN configurations.
We use ProNE [61] to generate the 128-dim attributed embedding
from the attribute-augmented graph. For the decoder of IACS, the
number of hidden units in the FiLM module and MLP is set to 128.

The learning framework of IACS is built on PyTorch [2] with
PyTorch Geometric [3]. The models are trained by Adam optimizer
for 200 epochs over the training task set, and are fine-tuned for 10
steps on each test task by default, with a learning rate of 0.001. It
is worth mentioning that the performance of IACS is robust in the
empirical intervals of training hyper-parameters. For other learning-
based baselines, the training hyper-parameters are kept as their
default configurations. The experiments of all the learning-based
approaches are conducted on a Tesla A100 with 80GB memory. The
algorithmic approaches are tested on the same Linux server with
96 AMD EPYC 7413 CPUs and 512GB RAM.

Evaluation Metrics. To evaluate the quality of the searched com-
munities, we use precision, recall and F1-score between the predic-
tion and the ground-truth as quantitative metrics. F1-score is the

Table 6: Overall Performance on ACS in Multiple Graphs (%)
4-shot 8-shotDataset Approach

Pre Rec F1 Pre Rec F1

ATC 60.23±5.10 11.99±0.88 19.97±1.26 41.14±4.18 11.11±3.27 17.22±3.71
ACQ 38.86±3.52 66.92±5.79 48.90±1.92 40.60±3.06 64.00±3.33 49.65±3.07

AQD-GNN 37.71±1.65 96.70±5.93 54.26±2.59 36.71±1.03 96.29±4.68 53.14±1.75
Supervise 59.32±1.22 79.61±5.37 67.95±2.73 64.34±1.63 83.38±3.20 72.59±1.08
MAML 47.06±6.12 89.04±3.86 59.85±8.12 46.12±3.30 73.30±5.89 56.44±2.45

FeatTrans 50.11±6.62 68.34±8.66 56.84±4.28 50.82±1.16 59.77±6.87 72.16±3.40
IACS 85.61±2.16 79.55±4.13 78.09±4.09 66.13±1.62 84.33±3.80 74.08±1.34
IACS-G 85.75±2.27 81.31±4.51 77.42±3.82 64.87±1.67 88.17±3.04 74.72±1.64

Fa
ce
bo

ok

IACS-P 81.82±4.42 80.79±2.69 77.37±4.62 65.92±4.20 87.36±1.66 75.05±2.31

ATC 32.18±1.27 13.98±0.93 19.49±1.13 32.28±3.87 13.9±1.24 19.42±1.86
ACQ 42.71±1.08 10.79±0.42 17.23±0.61 47.69±3.33 9.45±1.11 15.76±1.62

AQD-GNN 28.84±0.37 85.50±3.88 43.11±0.68 29.22±0.60 91.65±2.09 44.30±0.61
Supervise 36.96±0.75 69.30±2.18 48.20±1.09 40.64±1.31 73.98±2.87 52.46±1.68
MAML 25.31±1.74 42.67±3.92 31.76±2.42 27.06±3.38 46.80±1.38 34.22±2.88

FeatTrans 29.46±0.78 39.66±1.87 33.79±1.03 29.31±0.68 40.61±1.71 34.03±0.72
IACS 48.74±2.22 65.23±0.56 55.77±1.47 53.28±1.88 71.04±1.30 60.88±1.45
IACS-G 49.91±2.32 65.36±1.94 56.57±1.67 54.95±1.29 71.13±1.31 61.99±1.04

Tw
itt
er

IACS-P 49.97±2.64 65.15±0.98 56.52±1.58 54.63±1.30 71.57±1.45 61.96±1.19

ATC 59.44±2.88 4.94±0.14 9.12±0.22 60.64±3.32 5.13±0.31 9.45±0.54
ACQ 70.90±1.98 6.31±0.70 11.58±1.18 73.81±2.64 6.79±0.94 12.43±1.60

AQD-GNN 52.75±3.80 81.87±8.71 64.01±4.42 52.91±3.05 83.50±4.13 64.76±3.33
Supervise 59.61±3.39 61.67±2.29 60.60±2.72 62.81±3.44 66.29±1.52 64.47±2.21
MAML 55.55±5.22 45.79±3.14 43.87±3.57 55.49±3.80 70.52±8.40 60.43±0.81

FeatTrans 60.09±4.43 30.71±6.18 40.29±5.65 62.24±5.94 31.77±6.48 41.76±6.56
IACS 62.12±4.96 65.49±4.42 63.60±3.28 66.46±3.47 70.43±1.91 68.36±2.49
IACS-G 63.68±2.46 65.89±3.32 64.76±2.84 66.60±3.84 71.89±2.48 69.07±2.28

C
or
a2
C
it
es
ee
r

IACS-P 62.69±4.62 66.14±2.94 64.33±3.55 66.14±3.97 71.99±3.04 68.89±2.89

ATC 77.92±6.75 12.88±0.74 22.08±1.04 70.30±9.71 11.25±1.91 19.35±3.05
ACQ 68.89±0.81 37.21±8.31 49.51±4.76 20.38±0.58 44.58±3.51 28.22±0.47

AQD-GNN 37.49±0.49 96.81±3.49 37.49±1.03 37.61±3.45 95.10±8.97 53.84±4.54
Supervise 58.12±4.20 80.28±8.12 58.12±5.27 62.32±4.41 81.44±4.99 70.55±4.15
MAML 38.12±0.42 97.57±1.67 38.12±0.37 37.97±1.58 95.01±4.40 54.20±1.19

FeatTrans 38.45±0.42 98.05±1.04 38.45±0.43 38.20±0.86 97.06±1.39 54.81±0.72
IACS 72.10±5.43 85.44±4.30 72.10±1.58 66.29±3.99 84.90±0.58 73.68±2.88
IACS-G 67.76±3.00 86.17±1.65 67.76±1.80 64.86±1.81 86.36±3.48 74.05±1.94Tw

itt
er
2F
ac
eb
oo

k

IACS-P 72.38±4.80 83.69±6.53 72.38±1.75 65.14±0.85 86.07±2.36 74.28±1.19

Arxiv Amazon2M
10−1

101

103

105

Ti
m

e
(s

)

CTC ATC ACQ ICS-GNN (A)QG-GNN Supervise
MAML FeatTrans IACS IACS-G IACS-P

Arxiv Citeseer Facebook
100

101

102

103

(a) Training Time

Ti
m

e
(s

)

Arxiv Citeseer Facebook
10−2

100

102

104

(b) Inference Time

Figure 5: Comparison of Training and Inference Time

harmonic average of precision and recall, which better reflects the
overall performance.

6.2 Overall Effectiveness
We discuss the overall performance of IACS for both non-attributed
CS and ACS, focusing on 4-shot and 8-shot learning settings. Re-
call that the number of shots refers to the number of queries in
the support set S. We compare three variants of IACS, i.e., IACS
without FiLM (IACS), IACS with plain FiLM (IACS-P) (Eq. (9)) and
IACS with gating FiLM mechanism (IACS-G) (Eq. (10)) against the 8
baselines. To ensure statistical robustness, we conduct each experi-
ment 5 times by varying random seeds, and report the mean and
the standard deviation in Table 4-6.

Table 4 presents the results on non-attributed CS, where the first
and second best F1 scores are highlighted and underlined, respec-
tively. Our observations illustrate that IACS models consistently
outperform all the baselines. The superiority of IACS is primarily
evident in its significant improvement in recall (+1.28% compared
to the best baseline) while maintaining a relatively high precision
(59.75% ∼ 81.44%). CTC and ICS-GNN exhibit unsatisfactory results.

2584

1 5 10 20 5010−3

10−1

101

103

Number of Nodes(×103)

Ti
m

e
(s

)
Supervise (A)QG-GNN ICS-GNN MAML
FeatTrans IACS IACS-G IACS-P

1

1 5 10 20 5010−2

10−1

1

10

Number of Nodes(×103)

Ti
m

e
(s

)

(a) Training Time of Amazon2M

0.5 1 5 10 1510−3

10−2

10−1

1

10

Number of Nodes(×103)
(b) Training Time of Reddit

1 5 10 20 5010−3

10−1

101

103

Number of Nodes(×103)

Ti
m

e
(s

)

(c) Inference Time of Amazon2M

0.5 1 5 10 1510−3

10−2

10−1

1

Number of Nodes(×103)
(d) Inference Time of Reddit

Figure 6: Scalability Test for One Task (Second)

Precisely, CTC struggles to identify the inflexible community pat-
terns, resulting in lower recall (2.16% ∼ 4.06%) compared to other
approaches. That limits its ability to identify all relevant nodes
in the community. ICS-GNN cannot support multi-node queries;
thus, we randomly select one node from the query node set in our
experiment, which may also lead to inaccurate results. QD-GNN
and Supervise outperform the meta-learning based baselines, which
may be because the meta-learning baselines have a weak generaliza-
tion ability and the common knowledge they learned has negative
transfer impact on new tasks.

Table 5-6 show the performance on ACS. Note that in Table 5,
“OOM” indicates the GPU runs out-of-memory. In general, IACS
achieves the highest F1 score in most cases (5 out of 6), even when
the graphs of training and inference are from different datasets,
i.e., Cora2Citeseer. ATC and ACQ exhibit poor performance due to
their low recall. Because of the inflexible two-stage search process,
they retrieve a limited number of nodes in communities. AQD-
GNN shows comparatively better accuracy, especially on Reddit.
However, due to the limited inductive capability, we need to retrain
the model for each new task in order to acquire sufficient task-
specific knowledge. We speculate that the community pattern or
attribute distribution across heterogeneous tasks differs on Reddit,
making the common knowledge less beneficial for new tasks. The
supervised-learning based approaches still perform better than
meta-learning approaches, which is similar to the results of non-
attributed CS. We further verify the generalization ability for more
datasets, where the training and inference datasets are different or
from different domains, and the results are reported in our online
appendix [1].

Additionally, it is worth noting that the improvement in the
8-shot setting is relatively lower compared to the 4-shot setting.
The reason lies in that our framework is particularly well-suited for
tasks involving only a small number of queries with ground-truth.
For the three variants of IACS, IACS-G performs better than other

two models in most cases of ACS tasks, which provides empirical
evidence for the effectiveness of the gating mechanism in the FiLM
module. In contrast, IACS and IACS-P tend to perform better in
non-attributed CS tasks.

6.3 Efficiency & Scalability
In this section, we evaluate the GPU training/inference time for
the three IACS models of IACS against all the baselines. Here, the
training time we reported for all the learning-based approaches is
for one epoch. And the inference time corresponds to the cost of
the model inference phase. It is noteworthy that the inference time
of ICS-GNN contains the training time due to its online learning
design. Fig. 5 presents the comparison of the training and inference
time on three datasets. We report the comprehensive results across
all the datasets in our online appendix [1].

In general, IACS models exhibit faster training and inference
time compared to other baselines, except Arxiv, where IACS fails to
surpass the efficiency of FeatTrans, because of the simple design of
FeatTrans. ICS-GNN costs the longest time, since it needs to retrain
a model for each query. CTC also spends longer time to compute
the diameter and maintain the 𝑘-truss structure, especially when
dealing with large candidate communities such as Arxiv. For ACS,
the three IACS models are the most time-efficient approaches. On
the contrary, the 2 algorithmic approaches ATC and ACQ, exhibit
the longest computation time due to their two-stage process.MAML,
Supervise and FeatTrans require concatenating additional multi-hot
vectors representing query attributes to the input matrix of the
GNN, leading to lower efficiency compared to IACS. Regarding
QD/AQD-GNN, the usage of extra learning modules such as the
query encoder and attribute encoder prevents it from outperforming
IACS for both non-attributed and attributed CS tasks.

The three IACSmodels share similar training and inference costs,
with IACS-G requiring slightly longer time. That is because IACS-G
incorporates an additional gating mechanism in the FiLM module.
Regarding model selection for a specific dataset, IACS is the optimal
choice when efficiency is the principal factor. In summary, our
models outperform other baselines by delivering superior overall
effectiveness while maintaining competitive efficiency.

Scalability.We test the scalability of IACSmodels and other learning-
based approaches in Fig. 6, which illustrates the GPU training and
inference time for a single task as the number of nodes in the graph
increases. The default data point in Fig. 6 indicates that GPU runs
“OOM”. Fig. 6(a) and 6(c) show the results for non-attributed CS,
where the scalability of IACS is not able to surpass that of Super-
vise in graphs with 50, 000 nodes, but it is considerably better than
ICS-GNN, QD-GNN and MAML, regardless of the number of nodes.
MAML and FeatTrans fail to scale to graphs with 50, 000 nodes.
In Fig. 6(b) and 6(d) for ACS, only AQD-GNN and IACS can scale
to graphs with 15, 000 nodes efficiently. This phenomenon can be
attributed to the fact that the other three approaches involve the
concatenation of multi-hot vectors to the input matrix, which in-
curs extra computation and space overhead. The training time of
AQD-GNN remains stable and becomes faster than IACS in 15, 000
nodes. However, IACS exhibits significantly faster inference time
than AQD-GNN, especially when dealing with larger graphs.

2585

Table 7: Performance with Different GNN Layers and Query Feature Fusion Modules (%)

Module Arxiv Citeseer Twitter Twitter2Facebook Cora2Citeseer
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

GAT 63.58 92.37 75.32 62.88 70.18 66.33 51.25 64.97 57.30 71.82 84.91 77.82 64.73 60.32 62.45
GCN 63.40 88.32 73.81 63.97 59.33 61.56 28.72 74.63 41.47 80.94 77.32 79.09 63.67 58.37 60.90

GraphSAGE 64.95 87.83 74.68 62.49 60.79 61.63 60.34 57.10 58.67 79.17 78.28 78.72 65.28 57.68 61.24
GATBias 64.01 91.69 75.39 63.92 69.16 66.43 51.49 65.81 57.77 69.60 88.63 77.97 62.84 63.64 63.24
GIN 61.35 90.35 73.08 66.56 69.28 67.89 37.25 60.66 46.15 71.00 74.29 72.61 63.31 69.59 66.30

Sum
Not Available

50.15 99.93 66.78 28.58 93.16 43.74 37.93 100.00 54.99 55.22 91.78 68.95
Multiplication 51.35 96.56 67.05 28.84 53.10 37.38 38.12 99.97 55.20 53.04 97.66 68.75
Concatenation 63.92 69.16 66.43 51.49 65.81 57.77 69.60 88.63 77.97 62.84 63.64 63.24

5 10 15 20 25 300.70

0.75

0.80

0.85

Ratio of Observed Labels(%)

F1

IACS IACS-G IACS-P

1

0 5 10 15 20 25 300.72

0.73

0.74

0.75

Number of Finetune steps

F1

(a) Arxiv

0 5 10 15 20 25 30

0.80

0.82

0.84

0.86

Number of Finetune steps

F1

(b) Reddit

0 5 10 15 20 25 300.59

0.62

0.65

0.68

Number of Finetune steps

F1

(c) Cora2Citeseer

5 10 15 20 25 300.72

0.74

0.76

0.78

Ratio of Observed Labels(%)

F1

(d) Arxiv

5 10 15 20 25 300.80

0.85

0.90

0.95

Ratio of Observed Labels(%)

F1

(e) Reddit

5 10 15 20 25 300.60

0.65

0.70

0.75

0.80

Ratio of Observed Labels(%)

F1

(f) Cora2Citeseer

Figure 7: F1 Score of IACS under Different Hyper-parameters

0.3

0.6

0.9

F1

IACS IACS-Streaming IACS-G IACS-G-Streaming IACS-P IACS-P-Streaming

0.4

0.6

0.8

F1

0.4

0.6

0.8

F1

1 2 3 4 5 6 7 8 9 10 11 120.4

0.6

0.8

Task ID

F1

Figure 8: Streaming Model Adaptation on Twitter

6.4 Ablation Studies
We investigate the performance of different GNN layers in the en-
coder, and fusion operations in Eq. (12) for incorporating query
node and query attribute embeddings. Table 7 presents the perfor-
mance of corresponding IACS variants on 5 datasets. For different
GNN layers, we test GAT, GCN, GraphSAGE, GATBias and GIN,
by fixing the fusion operation as vector concatenation. GATBias
incorporates an additional attention bias, the shortest distances
between each node and query nodes, into the attention weights for
message passing. Regarding the best and the second-best scores,
in general, GATBias shows competitive performance among all
the datasets, and particularly performs better in non-attributed CS
tasks. GATBias not only applies self-attention to weigh the node

representations based on the neighbors’ importance, but also ex-
plicitly injects query-specific knowledge prior into the attention
mechanism. Specially, GIN achieves better performance in citation
networks for ACS tasks. GIN is known for its powerful expressive
capability, allowing it to generate highly effective representations
for distinguishing the membership of nodes in subgraph patterns.
It is worth mentioning that the superior performance of our frame-
work does not rely on the specific choice of GNN.

In addition, to test the impact of different fusion operations,
we introduce vector summation and element-wise multiplication
operations, i.e., 𝑒V𝑞 + 𝑒A𝑞 and 𝑒V𝑞 ⊙ 𝑒A𝑞 , as alternatives to the
vector concatenation in Eq. (12). Here, we keep GATBias as the
GNN layer in the encoder. Since non-attributed CS (Arxiv) does not
require fusing the query attribute embedding, the corresponding
results are not available in Table 7. Our testing results reveal that
the 3 operations yield competitive results. It should be noted that
the optimal choice of aggregation operation may vary from the
dataset, as different datasets may benefit from different aggregation
approaches.

6.5 Parameter Analysis
We study the parameter sensitivity of IACS w.r.t. two key hyper-
parameters: (1) the number of fine-tuning steps and (2) the ratio
of training labels. Fig. 7 shows how the hyper-parameters affect
the F1 of IACS models for both non-attributed CS (Arxiv) and ACS
(Reddit and Cora2Citeseer).

Number of Fine-tuning Steps. Fig. 7(a)-(c) illustrate the F1 scores
achieved with different numbers of fine-tuning steps. The step 0
indicates that models are not fine-tuned via an adaptation phase.
We find that the model without fine-tuning cannot achieve compa-
rable results to those achieved by the fine-tuned models. In Reddit
(Fig. 7(b)) and Cora2Citeseer (Fig. 7(c)), we observe a remarkable
performance improvement as the number of fine-tuning steps in-
creases. However, it is worth noting that in some cases, a large num-
ber of fine-tune steps can lead to over-fitting, thereby degenerating
the model’s accuracy. For non-attributed CS, i.e., Arxiv (Fig. 7(a)),
we observe that the performance is less sensitive to the number of
fine-tuning steps compared to other datasets. In general, we find
that using 30 fine-tuning steps tends to achieve the overall best
performance.

Ratio of Training Labels. In Fig. 7(d)-(f), we present the F1 scores
obtained under different ratios of training labels, which are vary
in the range of 5% ∼ 30% of the total number of the nodes, for
both positive and negative labels. There is an obvious increasing
tendency for the three IACS models. This trend is intuitive since

2586

(a) Reddit Training case 1 (b) Reddit Training case 2 (c) Reddit GT 1 (d) Reddit Predict 1 (e) Reddit GT 2 (f) Reddit Predict 2

(g) Twitter Training case 1 (h) Twitter Training case 2 (i) Twitter GT 1 (j) Twitter Predict 1 (k) Twitter GT 2 (l) Twitter Predict 2

(m) Cora Training case 1 (n) Cora Training case 2 (o) Citeseer GT 1 (p) Citeseer Predict 1 (q) Citeseer GT 2 (r) Citeseer Predict 2

Figure 9: Visualization of Training, Ground-Truth (GT) and Predicted Community for Reddit, Twitter and Cora2Citeseer: The
yellows nodes are query nodes and the numbers are query attributes.

a higher ratio of training labels indicates more prior knowledge
available for the model to train. However, there are special cases
where the F1 scores decline as the ratio increases. This can be
attributed to over-fitting, which can adversely affect the model’s
performance. In general, a ratio of 30% observed labels tends to
achieve the best overall performance. However, it is worth noting
that even with a small number of labels, i.e., 5%, IACS models can
still yield high F1 scores. These results validate the effectiveness of
IACS in addressing CS/ACS when training data is scarce.

6.6 Streaming Model Adaptation
To explore the adaptability IACS, we conduct an experiment to
test streaming IACS models which are continuously fine-tuned by
steaming ACS tasks of Twitter. Fig. 8 presents the 3 IACS model
variants, compared with their corresponding original models which
are fine-tuned by a single task.

As depicted in Fig. 8, the results indicate that three IACS models
exhibit an improvement ratio of 3% in the streaming adaptation
model. The efficacy of the IACS stems from its ability to preserve
crucial common knowledge among the ACS tasks during the adap-
tation process. The streaming adaptation process can benefit from
this property, leading to higher F1 scores for the streaming model
than the original model across a wide range of sequential tasks. In
special cases such as Task 5 in IACS-P, we observe that the stream-
ing model fails to surpass the original model. We speculate that the
performance gap may derive from the discrepancy of graph struc-
tures and attribute distributions between Task 5 and the previous
tasks. The process of adapting the IACS-P to Task 5 may disrupt
the previously learned parameters, leading to a negative impact on
performance. In summary, the results obtained from the streaming
model adaptation verify the distinct adaptation capability of IACS.

6.7 Case Study
We conduct a case study to investigate the inductive generalization
ability of IACS on new communities and graphs. In Fig. 9, we vi-
sualize the different patterns of communities that the model has

learned, and the prediction results on three datasets, Twitter, Reddit
and Cora2Citeseer. The yellow nodes are the query nodes, while
the numbers in the nodes represent their corresponding attributes.
To enhance the presentation clarity, we only display the query
attributes in the figures.

For each row, the 2 figures on the left show distinct communities
in the training graphs. As we can observe, these communities ex-
hibit variations, characterized by heterogeneous topological struc-
tures and attribute distributions. The four figures on the right depict
ground-truth communities and the corresponding predicted com-
munities in the test tasks. We observe a notable overlap between
the identified communities and the ground-truth, thus confirming
the accuracy of our predictions. Our model demonstrates a remark-
able inductive ability by effectively extracting data heterogeneity
across multiple training tasks and adapting to new communities
and graphs.

7 CONCLUSION
In this paper, we explore a new inductive learning framework called
IACS to effectively perform CS and ACS across heterogeneous
graphs. By leveraging three-phase workflow and encoder-decoder
neural architecture, IACS overcome the limitations of the prior
transductive and algorithmic methods. Experimental results in 7
real-world datasets demonstrated its ability to comprehensively
support complex queries while adapting well to new graphs for
both CS and ACS. IACS outperforms other baselines with higher
F1 scores by 28.97% and 25.60% on average in CS and ACS, respec-
tively. The source code and full version have been made available
at https://github.com/FangShuheng/IACS.

ACKNOWLEDGMENTS
This work was supported by the Research Grants Council of Hong
Kong, China, No. 14203618, No. 14202919 and No. 14205520. Kangfei
Zhao is supported by National Key Research and Development Plan,
No. 2023YFF0725101.

2587

REFERENCES
[1] [n.d.]. Code and appendix of IACS. https://github.com/FangShuheng/IACS.
[2] [n.d.]. Pytorch. https://github.com/pytorch/pytorch.
[3] [n.d.]. Pytorch Geometric. https://github.com/rusty1s/pytorch_geometric.
[4] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.

2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the twelfth ACM international conference on web search and data
mining. 384–392.

[5] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,
Yizhou Sun, and Wei Wang. 2019. Unsupervised inductive graph-level repre-
sentation learning via graph-graph proximity. arXiv preprint arXiv:1904.01098
(2019).

[6] Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. 2021. Glsearch: Maximum
common subgraph detection via learning to search. In International Conference
on Machine Learning. PMLR, 588–598.

[7] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal.
2020. Improved few-shot visual classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14493–14502.

[8] Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and
Junzhou Huang. 2020. Rumor detection on social media with bi-directional
graph convolutional networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 34. 549–556.

[9] Marc Brockschmidt. 2020. Gnn-film: Graph neural networks with feature-wise
linear modulation. In International Conference on Machine Learning. PMLR, 1144–
1152.

[10] Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher
Morris, and Petar Velickovic. 2023. Combinatorial optimization and reasoning
with graph neural networks. J. Mach. Learn. Res. 24 (2023), 130–1.

[11] Jiazun Chen, Yikuan Xia, and Jun Gao. 2023. CommunityAF: An Example-Based
Community Search Method via Autoregressive Flow. Proceedings of the VLDB
Endowment 16, 10 (2023), 2565–2577.

[12] Zhengdao Chen, Xiang Li, and Joan Bruna. 2017. Supervised community detec-
tion with line graph neural networks. arXiv preprint arXiv:1705.08415 (2017).

[13] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 257–266.

[14] Daniel Daza, Michael Cochez, and Paul Groth. 2021. Inductive entity represen-
tations from text via link prediction. In Proceedings of the Web Conference 2021.
798–808.

[15] Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc
Viet Hung Nguyen, and Karl Aberer. 2021. Efficient streaming subgraph isomor-
phism with graph neural networks. Proceedings of the VLDB Endowment 14, 5
(2021), 730–742.

[16] SMAli Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos,
Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,
et al. 2018. Neural scene representation and rendering. Science 360, 6394 (2018),
1204–1210.

[17] Shuheng Fang, Kangfei Zhao, Guanghua Li, and Jeffrey Xu Yu. 2023. Community
search: a meta-learning approach. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 2358–2371.

[18] Shuheng Fang, Kangfei Zhao, Yu Rong, Zhixun Li, and Jeffrey Xu Yu. 2024. All-
in-One: Heterogeneous Interaction Modeling for Cold-Start Rating Prediction.
arXiv preprint arXiv:2403.17740 (2024).

[19] Yixiang Fang, CK Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective community
search for large attributed graphs. Proceedings of the VLDB Endowment (2016).

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[21] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: lightweight
interactive community search via graph neural network. Proceedings of the VLDB
Endowment 14, 6 (2021), 1006–1018.

[22] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea
Lodi. 2019. Exact combinatorial optimization with graph convolutional neural
networks. Advances in neural information processing systems 32 (2019).

[23] Fangda Guo, Ye Yuan, Guoren Wang, Xiangguo Zhao, and Hao Sun. 2021. Multi-
attributed community search in road-social networks. In 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE). IEEE, 109–120.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[25] Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. 2020. Inductive
link prediction for nodes having only attribute information. arXiv preprint
arXiv:2007.08053 (2020).

[26] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-
pling towards fast graph representation learning. Advances in neural information
processing systems 31 (2018).

[27] Xin Huang, Laks VS Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Approx-
imate closest community search in networks. arXiv preprint arXiv:1505.05956
(2015).

[28] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community
Search. Proc. VLDB Endow. 10, 9 (2017), 949–960.

[29] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang.
2022. Query driven-graph neural networks for community search: from non-
attributed, attributed, to interactive attributed. Proceedings of the VLDB Endow-
ment 15, 6 (2022), 1243–1255.

[30] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[31] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[32] Juyong Lee and Jooyoung Lee. 2013. Hidden information revealed by optimal
community structure from a protein-complex bipartite network improves protein
function prediction. PloS one 8, 4 (2013), e60372.

[33] Jure Leskovec and Julian Mcauley. 2012. Learning to discover social circles in
ego networks. Advances in neural information processing systems 25 (2012).

[34] Jia Li, Yongfeng Huang, Heng Chang, and Yu Rong. 2022. Semi-supervised
hierarchical graph classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 5 (2022), 6265–6276.

[35] Ling Li, Siqiang Luo, Yuhai Zhao, Caihua Shan, Zhengkui Wang, and Lu Qin.
2023. COCLEP: Contrastive Learning-based Semi-Supervised Community Search.
IEEE 39th ICDE (2023).

[36] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. 2018. Combinatorial optimization
with graph convolutional networks and guided tree search. Advances in neural
information processing systems 31 (2018).

[37] Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Jian Yang, and Philip S Yu. 2020. Deep learning for community detection:
progress, challenges and opportunities. arXiv preprint arXiv:2005.08225 (2020).

[38] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao.
2020. VAC: vertex-centric attributed community search. In 2020 IEEE 36th Inter-
national Conference on Data Engineering (ICDE). IEEE, 937–948.

[39] Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. 2020.
Neural subgraph isomorphism counting. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1959–1969.

[40] Yanli Liu, Chu-Min Li, Hua Jiang, and Kun He. 2020. A learning based branch
and bound for maximum common subgraph related problems. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 34. 2392–2399.

[41] Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec,
et al. 2020. Neural subgraph matching. arXiv preprint arXiv:2007.03092 (2020).

[42] Jiehuan Luo, Xin Cao, Xike Xie, Qiang Qu, Zhiqiang Xu, and Christian S Jensen.
2020. Efficient attribute-constrained co-located community search. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, 1201–1212.

[43] Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang, and
Sophia Ananiadou. 2022. Divide-and-conquer: Post-user interaction network for
fake news detection on social media. In Proceedings of the ACM web conference
2022. 1148–1158.

[44] Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Da Luo, Kangyi Lin, Junzhou
Huang, Sophia Ananiadou, and Peilin Zhao. 2022. Neighbour interaction based
click-through rate prediction via graph-masked transformer. In Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 353–362.

[45] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. Film: Visual reasoning with a general conditioning layer. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 32.

[46] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando
Silva. 2021. A survey on subgraph counting: concepts, algorithms, and applica-
tions to network motifs and graphlets. ACM Computing Surveys (CSUR) 54, 2
(2021), 1–36.

[47] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=Hkx1qkrKPr

[48] Dhiman Sarma, Wahidul Alam, Ishita Saha, Mohammad Nazmul Alam, Moham-
mad Jahangir Alam, and Sohrab Hossain. 2020. Bank fraud detection using
community detection algorithm. In 2020 second international conference on in-
ventive research in computing applications (ICIRCA). IEEE, 642–646.

[49] Guojiang Shen, Difeng Zhu, Jingjing Chen, and Xiangjie Kong. 2022. Motif
discovery based traffic pattern mining in attributed road networks. Knowledge-
Based Systems 250 (2022), 109035.

[50] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[51] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

2588

https://github.com/FangShuheng/IACS
https://github.com/pytorch/pytorch
https://github.com/rusty1s/pytorch_geometric
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr

[52] Botao Wang, Jia Li, Yang Liu, Jiashun Cheng, Yu Rong, Wenjia Wang, and Fugee
Tsung. 2024. Deep Insights into Noisy Pseudo Labeling on Graph Data. Advances
in Neural Information Processing Systems 36 (2024).

[53] Hanchen Wang, Rong Hu, Ying Zhang, Lu Qin, Wei Wang, and Wenjie Zhang.
2022. Neural subgraph counting with wasserstein estimator. In Proceedings of
the 2022 International Conference on Management of Data. 160–175.

[54] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[55] Su Xing, Xue Shan, Liu Fanzhen, Wu Jia, Yang Jian, Zhou Chuan, Hu Wen-
bin, Paris Cecile, Nepal Surya, Jin Di, et al. 2022. A comprehensive survey on
community detection with deep learning. IEEE Trans. Neural Netw. Learn. Syst
(2022).

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In 7th International Conference on Learning
Representations, ICLR 2019,. OpenReview.net. https://openreview.net/forum?id=
ryGs6iA5Km

[57] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[58] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[59] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and
Xiangnan He. 2019. A simple convolutional generative network for next item

recommendation. In Proceedings of the twelfth ACM international conference on
web search and data mining. 582–590.

[60] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[61] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. Prone: Fast
and scalable network representation learning.. In IJCAI, Vol. 19. 4278–4284.

[62] Muhan Zhang and Yixin Chen. 2019. Inductive matrix completion based on
graph neural networks. arXiv preprint arXiv:1904.12058 (2019).

[63] Tianqi Zhang, Yun Xiong, Jiawei Zhang, Yao Zhang, Yizhu Jiao, and Yangyong
Zhu. 2020. CommDGI: community detection oriented deep graph infomax. In
Proceedings of the 29th ACM international conference on information & knowledge
management. 1843–1852.

[64] Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen, and Liang Wang.
2020. Every document owns its structure: Inductive text classification via graph
neural networks. arXiv preprint arXiv:2004.13826 (2020).

[65] Kangfei Zhao, Jeffrey Xu Yu, Qiyan Li, Hao Zhang, and Yu Rong. 2023. Learned
sketch for subgraph counting: a holistic approach. The VLDB Journal (2023),
1–26.

[66] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A learned
sketch for subgraph counting. In Proceedings of the 2021 International Conference
on Management of Data. 2142–2155.

[67] Kangfei Zhao, Zhiwei Zhang, Yu Rong, Jeffrey Xu Yu, and Junzhou Huang.
2021. Finding critical users in social communities via graph convolutions. IEEE
Transactions on Knowledge and Data Engineering (2021).

2589

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions & Concepts
	3.2 Problem Statement
	3.3 GNN for Learning-based ACS

	4 IACS Architecture
	4.1 Overview
	4.2 Encoder
	4.3 Aggregator
	4.4 Adaptive Decoder

	5 IACS Workflow and Analysis
	6 Experimental Study
	6.1 Experimental Setup
	6.2 Overall Effectiveness
	6.3 Efficiency & Scalability
	6.4 Ablation Studies
	6.5 Parameter Analysis
	6.6 Streaming Model Adaptation
	6.7 Case Study

	7 Conclusion
	References

